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ILL-POSEDNESS OF THE CAUCHY PROBLEM FOR TOTALLY
DEGENERATE SYSTEM OF CONSERVATION LAWS

WLADIMIR NEVES, DENIS SERRE

Abstract. In this paper we answer some open questions concerning totally
degenerate systems of conservation laws. We study the augmented Born-Infeld

system, which is the Born-Infeld model augmented by two additional conser-
vations laws. This system is a nice example of totally degenerate system of

conservation laws and, global smooth solutions are conjectured to exist when

the initial-data is smooth. We show that this conjecture is false, for the more
natural and general condition of initial-data. In fact, first we show that does

not exist global smooth solution for any 2 × 2 totally degenerated system of

conservation laws, which the characteristics speeds do not have singular points.
Moreover, we sharpen the conjecture in Majda [20]. Under the same hypothe-

sis of initial-data, we show that the Riemann Problem is not well-posed, which

follows for weak solutions of the Cauchy Problem. In the end, we prove some
results on the direction of well-posedness for the less physically initial-data.

1. Introduction

In this paper, we are interested in the well-posedness condition of the initial-data
problem for the Augmented Born-Infeld equations, also called ABI, as introduced in
Brenier [5]. Due to the linear degeneracy of the BI and ABI systems and they very
peculiar structure, it seems reasonable to conjecture that both systems admit global
in time smooth solutions for any smooth initial data. We show that this conjecture
is false, for the most physical important and general initial-data condition for totally
linear degenerated systems (see Definition 1.4), which is the ABI and BI case. In
fact, this result follows from Theorem 2.1, which says that any 2×2 totally linearly
degenerated system of conservation law (which the propagation speeds do not have
singular points), does not have global smooth solutions for smooth initial-data of
this type. Moreover, the catastrophe appears in the Lipschitz norm for some non-
conservative variables and in the sup norm for conservative ones. Therefore, in some
sense we sharpen Majda’s conjecture. Under the same hypothesis of initial-data, i.e.
the more natural one, we show that the Riemann Problem is not well-posed, that
is, there does not exist solution. The latter, implies that the Cauchy Problem is not
well-posed, at least considering the only existence result for systems of conservation
laws (on only one space variable) obtained by the Glimm’s scheme, which does not
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work here. In the end, we prove some results of well-posedness and stability of the
Cauchy Problem for the less physically condition of initial-data.

Usually in Continuum Physics a truncation process is established in order to
simplify the system of balance laws. By dropping some equations and reducing the
size of the variables we obtain a simpler system. This process is so good as the
entropy structure is not changed and, the number of wave speeds does not increase.
It is not the case for the problem of elastodynamics in nonlinear elasticity, obtained
by truncation from the thermoelastic one, see Dafermos [12]. So to compensate the
lack of convexity in the stored energy function, Dafermos propose an alternative
approach, see also [15], which is to embed the original system of elastodynamics into
a larger one, augmented by two additional conservation laws. Now, the enlarged
system endowed a uniformly convex entropy, so the initial-value problem is locally
well-posed for classical solutions, i.e. initial-data in Hs, with s > 1 + d/2, where d
is the spatial dimension. Further, we have uniqueness and continuously dependence
on the initial-data for a broader class of weak solutions, for instance, in the class
of Riemann Problems, see [13, 14], also Bressan et al. [6, 7, 8, 9] in the BV case.

In [5], Brenier has done the same procedure for the BI system, which is the most
famous model for nonlinear Maxwell’s equations, see [4]. He embed the original
BI model into a large one (the ABI), augmented by two additional conservation
laws by using the stored energy function and the Poynting vector as two additional
independent variables. So the ABI model posses a uniformly convex entropy and
thus, the comment above takes place here. As the ABI model keeps the linear
degeneracy condition of the BI model, Brenier admits the existence of solutions on
sufficiently large time intervals and, his goal was in direction of asymptotic analysis,
that is, he provided some mathematical confirmation that the BI model establishes
a nonlinear transition between wave particle behaviors according to the intensity
of the electromagnetic field. In fact, at least for small (smooth)initial data, there
exists global smooth solution for the BI model. This result was obtained by Chae
and Huh [10].

In this paper, since the Cauchy problem is locally well-posed for classical so-
lutions, the main question is to investigate if the totally linear degeneracy condi-
tion implies global existence for any smooth initial-data. Moreover, since we have
uniqueness and continuous dependence for the Riemann problem, the fundamen-
tal question in this case is to prove existence of solutions. As we shall see, the
results obtained here derive from the fact that, spite of the name, totally linear
degenerate systems are not simpler in their structure, nor easier to understand,
under the pretext that the linear one is less complicated, see [23]. In fact, it is the
contrary, for instance linear degenerated fields can lead to solutions which display
large oscillations even if of hight frequency. Therefore, it is not natural nor gen-
eral to assume that, the initial-data has sufficiently small oscillations, indeed, more
physically correct is to assume that it really has oscillations.

Finally, we mention the results obtained in [21]. They were able to show that,
shocks could appear in the solution of the Riemann problem for BI model. Hence,
we prove that the Rankine-Hugoniot condition of the ABI system is not equivalent
to the BI one. Moreover, the BI model is not complete by himself and thus, it must
be augmented by some selection criteria. Clearly, one of them is the ABI system,
see Theorem 3.8, but [24] proposed a different BI enlarged system.
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Let us consider the ambient space R3, so by (t, x) ∈ R+ × R3 we denote the
points in the time-space domain. We consider as independent variables, the electric
induction D, the magnetic induction B, the Pointing vector P , all of them taking
values in R3 and, the positive energy function h. Thus the ABI model as proposed
in [5] is the following system of equations

∂tD + curl x

(
−B + D × P

h

)
= 0, (1.1)

∂tB + curl x

(
D + B × P

h

)
= 0, (1.2)

div xD = 0, div xB = 0, (1.3)

∂th + div xP = 0, (1.4)

∂tP + div x

(P ⊗ P −D ⊗D −B ⊗B

h

)
= ∇x(

1
h

). (1.5)

Equations (1.1), (1.2) come from the Ampere and Faraday’s Law respectively, equa-
tion (1.3) are compatible constrains, and (1.4), (1.5) are the two additional kine-
matically induced equations.

Remark 1.1. If the two additional variables, that is, h and P satisfy

h =
√

1 + |D|2 + |B|2 + |D ×B|2, P = D ×B, (1.6)

at the initial time, then it remains true for any time when there exists a smooth
solution to (1.1)-(1.5). In this sense, we identify the 6 dimensional (algebraic)
submanifold of R10, i.e. (1.1)-(1.5) where h, P are given by (1.6), with the original
BI model. Moreover, we note that, the smooth solution of the BI model, i.e. (1.1)-
(1.3) implies the solution of (1.4), (1.5).

The variables of the ABI model, that is D, B, h and P , satisfy an additional
conservation law,

∂tη + div x
(ηh− 1)P + D ×B − (D ⊗D + B ⊗B)P

h2
= 0, (1.7)

where η is the following uniformly convex function

η(D,B, h, P ) =
1 + |D|2 + |B|2 + |P |2

2h
.

Therefore, η is a convex entropy for the ABI system, see Definition 1.3.
Now, as observed for the Born-Infeld model, see [21], the ABI system itself

posses the wave isotropy condition and, we focus on plane waves. Hence, only a
single spatial variable is needed. Let us choose x = x1, as a such spatial coordinate.
Thus all the fields involved in (1.1)-(1.5) depend on (t, x) ∈ R+ × R. Moreover, it
follows that

∂tD1 = 0, ∂xD1 = 0,

∂tB1 = 0, ∂xB1 = 0.

Therefore, D1, B1 are constant functions and, for simplicity we assume D1 = B1 =
0. Then, from (1.1)-(1.5), we obtain the following system of conservation laws

∂tD2 + ∂x(
B3 + D2P1

h
) = 0, (1.8)
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∂tD3 + ∂x(
−B2 + D3P1

h
) = 0, (1.9)

∂tB2 + ∂x(
−D3 + B2P1

h
) = 0, (1.10)

∂tB3 + ∂x(
D2 + B3P1

h
) = 0, (1.11)

∂th + ∂xP1 = 0, (1.12)

∂tP1 + ∂x

(P 2
1 − 1
h

)
= 0, (1.13)

∂tP2 + ∂x

(P1P2

h

)
= 0, (1.14)

∂tP3 + ∂x

(
P1P3

h

)
= 0. (1.15)

Next, we present some mathematical considerations for systems of conservation
laws. Let U be an open subset of Rn and, let f : U → Rn be a continuously differ-
entiable map. For some T ∈ R+, we consider the following system os conservation
laws in one space dimension

div t,x(u, f(u)) ≡ ∂tu + ∂xf(u) = 0 (t, x) ∈ (0, T )× R, (1.16)

where u : (0, T ) × R → U is the unknown and f is given. The set U is called
the set of states and the map f the flux-function. We are concerned with initial-
value problem, that is, we seek u(t, x) ∈ U solution of (1.16) and that satisfies an
initial-data

u(0, x) = u0 x ∈ R, (1.17)

where u0 : R → U is a given bounded measurable function. As is well-known, in
general for conservation laws there does not exist (global) solutions, even if the
data is infinitely differentiable. Consequently, the theory of conservation laws is
developed with the concept of weak solutions. The following definition tell us in
which sense a bounded mensurable function, is a weak solution of (1.16), (1.17).

Definition 1.2. We say that u ∈ L∞((0, T ) × R;U) is a weak solution of (1.16),
(1.17) if it satisfies∫ T

0

∫
R
(u, f(u)) · ∇t,xφ(t, x) dxdt +

∫
R

u0 φ(0, x) dx = 0, (1.18)

for any function φ ∈ C∞0 (R2).

By definition a weak solution is a distributional solution. Moreover, if u ∈ L∞

is a C1 function outside a manifold Γ (with codimension one), across which it has
jump discontinuities, then it can be shown using (1.18), see [12, 23], that u must
satisfy the so called Rankine-Hugoniot condition

nt[u] + nx[f(u)] = 0,

where n = (nt, nx) is the outward unit normal vector along the manifold Γ, [u] :=
u+ − u−, [f(u)] := f(u+)− f(u−), and

u+ = lim
δ→0+

u((t, x) + δn), u− = lim
δ→0+

u((t, x)− δn).
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Definition 1.3. A real Lipschitz function η is called an entropy for (1.16), with
associated entropy flux q ∈ W 1,∞(U), when for every open set Π ⊂ (0, T )× R and
for every u ∈ C1, which solves (1.16) pointwise, we have

∂tη(u) + ∂xq(u) = 0 in D′(Π).

If, in addition η is a convex function, then we say that (η, q) is a convex entropy
pair. Moreover, a weak solution of (1.16), (1.17) is called an entropy solution, when
∂tη(u) + ∂xq(u) ≤ 0 in the sense of distributions for every convex entropy pair.

We recall that, see [12, 23], a system of conservation laws is said hyperbolic,
when for any v ∈ U , the matrix of entries

Ai,j(v) :=
∂fi(v)
∂vj

(i, j = 1, . . . , n),

has n real eigenvalues λ1(v) ≤ λ2(v) ≤ · · · ≤ λn(v) and is diagonalizable. Thus,
there exist ri(v), (i = 1, . . . , n) linearly independent (right) corresponding eigen-
vectors and

A(v) ri(v) = λi(v) ri(v).

Since the ABI system is endowed with a renormalized equation induced by a uni-
formly convex entropy, from a well-known result, it is symmetrizable and hyperbolic.
Moreover, the propagation speeds, i.e. λ’s of (1.8)-(1.15) are easily calculated, we
have

λi =
P1 − 1

h
=: λ− < λj =

P1

h
=: λo < λk =

P1 + 1
h

=: λ+, (1.19)

(i = 1, 2, 3; j = 4, 5; k = 6, 7, 8).

Definition 1.4. For the system of conservation laws (1.16), a point v ∈ U is said
of linear degeneracy of the i-characteristic family when

∇vλi(v) · ri(v) = 0, (1.20)

otherwise, it is of genuine nonlinearity of the i-characteristic family. If (1.20) holds
for every v ∈ U , then the i-characteristic family is called linear degenerated. More-
over, we say that (1.16) is totally linear degenerated, when every i-characteristic is
linear degenerated.

Again, the correspondent characteristic fields, i.e. the (right) eigenvectors of
(1.8)-(1.15) are easily calculated and, the wave speeds are constant along then,
that is, the ABI system is totally linear degenerated. In fact, from (1.19), it is an
immediate application of the Boillat’s theorem, see [1].

Remark 1.5. Actually, totally degenerated systems are rather common. For in-
stance, besides of course the linear systems, belong to this class, the Einstein equa-
tions for vacuum, the von Krmn-Tsien fluid when a and b are constants, see [2, 17],
the incompressible relativistic fluid, see [18, 27], the relativistic string, see [3, 22].

Definition 1.6. A smooth function w : U → R is called an i-Riemann invariant of
(1.16), when for any v ∈ U

∇vw(v) · ri(v) = 0. (1.21)
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Remark 1.7. We recall the well-known result that, any hyperbolic system of (1.16)
with n = 2 has a coordinate system of Riemann invariants. Let

∂tu
1 + ∂xf1(u1, u2) = 0,

∂tu
2 + ∂xf2(u1, u2) = 0,

(1.22)

be a such 2 × 2 hyperbolic system. Hence, considering smooth solutions we can
rewrite (1.22) in the following form

∂tw
1 + λ1 ∂xw1 = 0,

∂tw
2 + λ2 ∂xw2 = 0,

where wi and λi, (i = 1, 2), are the Riemann invariants and wave speeds respec-
tively. Moreover, if (1.22) is totally linear degenerated and each wave speed does
not have singular points, i.e. ∇vλi(v) 6= 0, (i = 1, 2), for any v ∈ U , then the linear
degeneracy makes λi be an i-Riemann invariant. Therefore, we could write (1.22)
as

∂tλ1 + λ2 ∂xλ1 = 0,

∂tλ2 + λ1 ∂xλ2 = 0.
(1.23)

2. The Smooth Case

In this section we study the existence of global smooth solutions of the initial-
value problem for the ABI system. Regarding the (1.8)-(1.15) system of conser-
vation laws, we observe that it uncouples. In fact, we could resolve first (1.12),
(1.13) and, once h, P1 are obtained, it remains to solve (1.8)-(1.11) and (1.14),
(1.15). The later ones, are simple transport equations with constant coefficients.
Let b = P1/h, thus P2 and P3 are constant functions on the line with the direction
(1, b). Hence, without loss of generality, we take P2 = P3 = 0 and, make P ≡ P1.
Then, it remains to solve a 4×4 linear symmetric system of conservation laws with
constant coefficients, which is well-known simple to solve, as we shall see at Section
4. Hence, we fix our attention in the following initial-value problem

∂th + ∂xP = 0 in (0, T )× R, (2.1)

∂tP + ∂x

(P 2 − 1
h

)
= 0 in (0, T )× R, (2.2)

(h, P ) = (h0, P0) in {0} × R, (2.3)

where h0 and P0 are given bounded smooth scalar functions. As mentioned at
the introduction, we are not assuming that h0, P0 have small sup norm, nor have
sufficiently small oscillations. The system (2.1), (2.2) has wave speeds

λ− =
P − 1

h
< λ+ =

P + 1
h

, (2.4)

and an easy computation shows that, it is totally linear degenerated. Therefore,
since for any (h, P )

∇λ− =
(
− P − 1

h2
,− 1

h

)
6= 0,

∇λ+ =
(
− P + 1

h2
,+

1
h

)
6= 0,
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from Remark 1.7, we can rewrite (2.1)-(2.3) in the following form

∂tλ
− + λ+ ∂xλ− = 0 in (0, T )× R,

∂tλ
+ + λ− ∂xλ+ = 0 in (0, T )× R,

(2.5)

(λ−, λ+) = (λ−0 , λ+
0 ), in {0} × R, (2.6)

where

λ−0 (x) :=
P0(x)− 1

h0(x)
and λ+

0 (x) :=
P0(x) + 1

h0(x)
.

Now, we assume the more natural and general condition, that is

λ−M − λ+
m > 0, (2.7)

where

λ+
m := inf

x∈R
λ+

0 (x), λ−M := sup
x∈R

λ−0 (x).

In fact, the important point is that, when the initial energy is not small and more-
over the initial-data has oscillations, we can always take x1, x2 ∈ R, x1 < x2, such
that

λ−0 (x1) > λ+
0 (x2). (2.8)

Indeed, once h0 is not small, for each x ∈ R, λ+
0 (x) is not so distant of λ−0 (x), since

λ+
0 (x)− λ−0 (x) =

2
h0(x)

.

Moreover, since h0, P0 have oscillations instead of global, we could take a local
condition, that is, there exists an interval I ⊂ R, such that

λ−M := sup
x∈I

λ−0 (x) > inf
x∈I

λ+
0 (x) =: λ+

m.

Considering this more physically correct condition of initial-data for linear degen-
erated systems, we have the following theorem.

Theorem 2.1. Let λ−0 , λ+
0 be two bounded smooth functions, which satisfy condi-

tion (2.7). Then, there does not exist globally smooth solution of the initial-value
problem (2.5), (2.6) with initial-data (λ−0 , λ+

0 ). Moreover, there exists a finite max-
imal time T ∗, such that

lim sup
t→T∗

(‖∂tu(t)‖L∞ + ‖∂xu(t)‖L∞) = +∞ (u = (λ−, λ+)). (2.9)

That is, the catastrophe appears in the Lipschitz norm for (λ−, λ+).

Proof. 1. The first part of the proof follows by contradiction, i.e. the assumption
of (2.7) and the existence of global smooth solution, implies a contradiction. By
(2.7), there exist x1, x2 ∈ R, x1 < x2 that satisfies (2.8), i.e.

λ−0 (x1) > λ+
0 (x2).

Let (λ−, λ+) be the global smooth solution of (2.5) with initial-data (λ−0 ,λ+
0 ). We

recall that, by the equivalence between (2.1), (2.2) with (2.5) and from (2.4), we
have for all (t, x) ∈ R+ × R

λ−(t, x) < λ+(t, x).



8 W. NEVES, D. SERRE EJDE-2005/124

Set γ+(t) = (t, x(t)), γ−(t) = (t, x(t)) the characteristics curves, solutions respec-
tively of the differential equations

dx

dt
= λ+(t, x(t)),

dx

dt
= λ−(t, x(t)).

Hence, from (2.5) we obtain that, λ− is constant over γ+(t) and, λ+ is constant
over γ−(t), which means that λ−, λ+ are bounded functions. Indeed, since

λ−m ≤ λ−0 (x) ≤ λ−M , λ+
m ≤ λ+

0 (x) ≤ λ+
M ,

and the solution is globally, it follows that

λ−m ≤ λ−(t, x) ≤ λ−M , λ+
m ≤ λ+(t, x) ≤ λ+

M ,

for any t ≥ 0. For convenience we denote by γ+
i , γ−i , (i = 1, 2), when respectively

λ−(t, x) = λ−0 (xi) (over γ+
i ),

λ+(t, x) = λ+
0 (xi) (over γ−i ),

for some point xi ∈ R. Thus, over γ+
1 (t),

dx

dt
= λ+(t, x(t)) > λ−(t, x(t)) ≡ λ−0 (x1).

Analogously, over γ−2 (t),

dx

dt
= λ−(t, x(t)) < λ+(t, x(t)) ≡ λ+

0 (x2).

Now, we use the comparison principle for ordinary differential equations, see [19],
applied to the characteristics curves γ+

1 (t), γ−2 (t), which implies respectively

x(t) > x1 + λ−0 (x1)t, (2.10)

x(t) < x2 + λ+
0 (x2)t. (2.11)

It follows from (2.10), (2.11) that, for every t > 0, the characteristics γ+
1 (t), γ−2 (t)

are respectively in the right and left sides of the lines

y1(t) = x1 + λ−0 (x1)t, y2(t) = x2 + λ+
0 (x2)t.

Moreover, from (2.8) the lines y1(t) and y2(t) intersect. Therefore, there must exists
a point (τ, ξ) ∈ R+ × R, such that

γ+
1 (τ) = γ−2 (τ),

where we have used that (λ−, λ+) is bounded. Consequently, given ε > 0, we have

λ−(γ+
1 (τ − ε)) ≡ λ−0 (x1) > λ+

0 (x2) ≡ λ+(γ−2 (τ − ε)).

Letting ε → 0+, we obtain a contradiction.
2. The second part of the proof is an application of the Continuation Principle for
classical solutions of conservation laws, see [20]. Let [0, T ∗) be the maximal interval
of smooth existence, then for any 0 ≤ t < T ∗

λ−m ≤ λ−(t, x) ≤ λ−M , λ+
m ≤ λ+(t, x) ≤ λ+

M .

Therefore, the Continuation Principle implies (2.9). �
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Observe that, we proved the catastrophe in the Lipschitz norm for (λ−, λ+),
which are non-conservative variables of the (2.5), (2.6) initial-value problem. Al-
though, if we stick to the original conservatives variables of the (2.1), (2.2) system,
h in particular, we have blow up in sup norm. It means that, the blow up in
sup norm of the conservative variables may coincide with the blow up in Lipschitz
norm of some non conservative variables. In fact, we have shown that, for the more
natural and general condition of initial-data, any 2× 2 totally degenerated system
of conservation laws, which the characteristics speeds do not have singular points,
does not have global smooth solution. The important fact was the existence of
oscillations in linear degenerated fields.

On the other hand, if sufficiently small oscillations are assumed, then we could
have

λ+
m − λ−M > 0, (2.12)

which is a sufficient condition for existence of global smooth solutions in this case
of 2 × 2 systems, see [20]. Therefore, in some sense we have proved that (2.12) is
also a necessary condition. Moreover, we sharpen Majda’s conjecture [20] which
says that, for totally linear degenerated system of conservation laws the blow up in
the Lipschitz norm never happens for any smooth initial-data.

Now, we return our attention to the ABI system. From Remark 1.1 once (1.6)
is satisfied at the initial time, it remains true for any time in the maximal interval
of the existence of smooth solution. Furthermore, we could choose an initial-data
for the ABI system, which satisfies (1.6) and the condition (2.7). Therefore, if we
suppose the existence of global solution for the ABI system, then from Theorem
2.1 we obtain a contradiction. Finally:

Corollary 2.2. Let D0, B0 be two bounded smooth fields. Let

h0 =
√

1 + |D0|2 + |B0|2 + |D0 ×B0|2, P0 = D0 ×B0,

such that, for some interval I ⊂ R

sup
x∈I

P0(x)− 1
h0(x)

> inf
x∈I

P0(x) + 1
h0(x)

.

Then, there does not exist globally smooth solution of the initial-value problem (1.8)-
(1.15) with initial-data (D0, B0, h0, P0).

Therefore, the conjecture which says that the ABI system or the BI itself has
global in time smooth solutions for any smooth initial-data is false. In fact, for the
more natural and general condition of initial-data, we do not have global smooth
solution.

3. The Riemann Problem

The aim of this section is to study the existence of solution for the ABI system in
the class of Riemann Problem. Thus, we consider initial-data, see equation (1.17),
of the following form

u0(x) =

{
u`

0 if x < 0,

ur
0 if x > 0,

(3.1)

where u`
0, u

r
0 are given constants. We recall that, since there exist results of weak-

strong uniqueness, once we obtain the existence of solution for the Riemann Prob-
lem, we have well-posedness. Hence, we seek for self-similar solutions of (1.16),
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(3.1), that is
v(ξ) = u(t, x) (ξ =

x

t
)

in BVloc(R; Rn)∩L∞(R; Rn) that satisfies in the sense of distributions the ordinary
differential equation

[ξ v(ξ)− f(v(ξ))]′ = v(ξ) (′≡ d

dξ
) (3.2)

obtained from (1.16) and, the boundary conditions

v(−∞) = u`
0, v(+∞) = ur

0. (3.3)

In fact, v is a Lipschitz function and thus by the Rademacher’s Theorem it is
differentiable L1-a.e., see [16]. Hence, (3.2) is satisfied by:
i) Constant states; for each Lebesgue point ξ, where v′(ξ) = 0.
ii) Jump discontinuities; for each discontinuity point ξ, where the Rankine-Hugoniot
jump condition must hold, i.e.

ξ [v+ − v−] = f(v+)− f(v−) (v+ := v(ξ+), v− := v(ξ−)).

iii) Centered simple waves; for each Lebesgue point ξ, where v′(ξ) 6= 0. From (3.2),
i.e. [Df(v(ξ))− ξ Id] v′(ξ) = 0, we must have

ξ = λi(v(ξ)) and v′(ξ) = c(ξ)ri(v(ξ)) (i = 1, . . . , n). (3.4)

Moreover, if we set

C := {ξ ∈ R ; v′(ξ) = 0},
J := {ξ ∈ R ; the Rankine-Hugoniot condition holds},

W := {ξ ∈ R ; v′(ξ) 6= 0}
then, R is the union of these pairwise disjoint sets. Therefore, the solutions v(ξ) of
(3.2), (3.3) are given by a combination of (i)-(iii).

Remark 3.1. By differentiating the first relation in (3.4) and, utilizing the second,
we obtain

[Dλi(v(ξ)) · ri(v(ξ)]c(v(ξ)) = 1.

Since v′ is a locally finite Radon measure, we observe that, the centered simple
waves are points of genuine nonlinearity of the i-characteristic family. Moreover,
from the above expression, we determine the scalar function c. Therefore, for totally
linear degenerated systems of conservation laws, we have W = ∅.

Usually, the jump v+ − v− is called the amplitude and its size |v+ − v−| is
the strength of the jump discontinuity. Moreover, when the strength of the jump
discontinuity is less than a positive (sufficiently) small δ, we say that the the jump
discontinuity is weak.

Definition 3.2. We say that the jump discontinuity (v−, v+; ξ) is a i-classical shock
(or i-Lax shock, or i-compressive shock), when there exists an index i, (1 ≤ i ≤ n)
such that

λi(v+) < ξ < λi(v−),

λi−1(v−) < ξ < λi+1(v+).
(3.5)

It implies that at the point of discontinuity, there are n+1 incoming characteristics,
of which the speeds are the eigenvalues

λ1(v+), . . . , λi(v+), λi(v−), . . . , λn(v−).
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Moreover, (3.5) is called the Lax shock admissibility criterion. When the left or the
right part of (3.5)1 is satisfied as equality, the jump discontinuity is called a left or
a right i-contact discontinuity and, if both parts holds as equalities, then we have
a i-contact discontinuity. When there are at least n + 2 incoming characteristics,
the jump discontinuity (v−, v+; ξ) is called a i-overcompressive shock, that is, there
exists a index i such that

λi+1(v+) < ξ < λi(v−). (3.6)

When there are n incoming characteristics, the jump discontinuity (v−, v+; ξ) is
called a i-undercompressive shock (or i-transitional shock), that is, there exists a
index i such that

λi(v±) < ξ < λi+1(v±). (3.7)

When there are n − 1 incoming characteristics, the jump discontinuity (v−, v+; ξ)
is called a i-rarefaction shock (or i-counter Lax shock), that is, there exists a index
i such that

λi(v−) < ξ < λi(v+),

λi−1(v+) < ξ < λi+1(v−).
(3.8)

In any (3.6)-(3.8) case, we say that the jump discontinuity is a non-classical shock.

To solve the Riemann Problem for the ABI system, we start studying when given
two constant states

u` = (D`
2, D

`
3, B

`
2, B

`
3, h

`, P `
1 , P `

2 , P `
3 ),

ur = (Dr
2, D

r
3, B

r
2 , Br

3 , hr, P r
1 , P r

2 , P r
3 ),

(3.9)

not necessarily close, nor small, how they could be connected. Since the ABI system
of equations is totally linear degenerated, from Remark 3.1, we are not allowed to
use centered simple waves. So, it rest to connect u` ≡ u− and ur ≡ u+ by jump
discontinuities. Therefore, for any s := ξ ∈ J , we regard the Rankine-Hugoniot
jump condition given from (1.8)-(1.15), that is

s(D+
2 −D−

2 ) =
B+

3 + D+
2 P+

1

h+
− B−

3 + D−
2 P−1

h−
, (3.10)

s(D+
3 −D−

3 ) =
−B+

2 + D+
3 P+

1

h+
− −B−

2 + D−
3 P−1

h−
, (3.11)

s(B+
2 −B−

2 ) =
−D+

3 + B+
2 P+

1

h+
− −D−

3 + B−
2 P−1

h−
, (3.12)

s(B+
3 −B−

3 ) =
D+

2 + B+
3 P+

1

h+
− D−

2 + B−
3 P−1

h−
, (3.13)

s(h+ − h−) = P+
1 − P−1 , (3.14)

s(P+
1 − P−1 ) =

(P+
1 )2 − 1
h+

− (P−1 )2 − 1
h−

, (3.15)

s(P+
2 − P−2 ) =

P+
1 P+

2

h+
− P−1 P−2

h−
, (3.16)

s(P+
3 − P−3 ) =

P+
1 P+

3

h+
− P−1 P−3

h−
. (3.17)

First, we study (3.14), (3.15), which is the Rankine-Hugoniot condition for the
2 × 2 totally linear degenerated system given by (2.1), (2.2), with P ≡ P1. From
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(3.14) and (3.15), we have

(P+
1 − P−1 )2

h+ − h−
=

(P+
1 )2 − 1
h+

− (P−1 )2 − 1
h−

.

Hence, after some algebra we obtain(
P+

1

(h−

h+

)1/2 − P−1
(h+

h−
)1/2

)2

=
(h+ − h−)2

h+ h−
.

Therefore, it follows that

P+
1

(h−

h+

)1/2 − P−1
(h+

h−
)1/2 = −h+ − h−

h+ h−

or,

P+
1

(h−

h+

)1/2 − P−1
(h+

h−
)1/2 =

h+ − h−

h+ h−
.

From the former and the second, we obtain respectively

P−1 − 1
h−

=
P+

1 − 1
h+

, (3.18)

P−1 + 1
h−

=
P+

1 + 1
h+

. (3.19)

If we explicit P−1 in (3.18), and analogously in (3.19), then from (3.14) we calculate
the value of s. Thus we have respectively

s =
P+

1 − 1
h+

and s =
P+

1 + 1
h+

.

Therefore, considering the 2 × 2 system of conservation laws given by (2.1), (2.2),
with P ≡ P1, we have the following statement.

Lemma 3.3. Let u− = (h−, P−), u+ = (h+, P+) be two given constant states. Let
(2.1), (2.2) be the system of conservation laws for u = (h, P ). Then u−, u+ could
be connected only by contact discontinuities in the following form:
i) When (u−, u+) satisfies (3.18), by a contact discontinuity of speed

s = λ−(u−) = λ−(u+).

ii) When (u−, u+) satisfies (3.19), by a contact discontinuity of speed

s = λ+(u−) = λ+(u+).

Since the Rankine-Hugoniot condition does not depend on contact discontinu-
ities, nor the conservative form of the system, so the following theorem gives general
features and explicit solutions of the Riemann problem for any 2 × 2 totally de-
generated system of conservation laws, which satisfies the conditions in Remark
1.7.

Theorem 3.4. A self-similar weak solution (h, P ) of (2.1), (2.2) in R+ × R, with
initial-data

(h(0, x), P (0, x)) =

{
(h`

0, P
`
0 ) if x < 0,

(hr
0, P

r
0 ) if x > 0,

(3.20)
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is given at most by:
i) One contact discontinuity; with speed s = λ−(u`

0) = λ−(ur
0) or s = λ+(ur

0) =
λ+(u`

0), when respectively

P `
0 − 1
h`

0

=
P r

0 − 1
hr

0

or
P `

0 + 1
h`

0

=
P r

0 + 1
hr

0

.

In any case, the solution is given by

(h, P )(t, x) =

{
(h`

0, P
`
0 ) if x < s t,

(hr
0, P

r
0 ) if x > s t.

ii) Two contact discontinuities; one of speed s1 = λ−(u`
0) = λ−(ū), and another

with speed s2 = λ+(ū) = λ+(ur
0), with s1 < s2, when

h̄ =
2

λ+(ur
0)− λ−(u`

0)
and P̄ =

λ+(ur
0) + λ−(u`

0)
λ+(ur

0)− λ−(u`
0)

.

The solution is given by

(h, P )(t, x) =


(h`

0, P
`
0 ) if x < s1 t,

(h̄, P̄ ) if s1 t < x < s2 t,

(hr
0, P

r
0 ) if x > s2 t.

Proof. 1. The (i) and (ii) type solutions follow easy from Lemma 3.3. Further, the
(h̄, P̄ ) intermediate state in (ii) is implied from the condition that

P `
0 − 1
h`

0

=
P̄ − 1

h̄
and

P̄ + 1
h̄

=
P r

0 + 1
hr

0

.

2. From Lemma 3.3 we only have contact discontinuities, which follows that we are
not allowed to have two or more intermediate distinct states. For instance, let us
suppose two, that is

ū = (h̄, P̄ ) and ¯̄u = (¯̄h, ¯̄P ).
So, the solution would be given by

(h, P )(t, x) =


(h`

0, P
`
0 ) if x < s1 t,

(h̄, P̄ ) if s1 t < x < s2 t,

(¯̄h, ¯̄P ) if s2 t < x < s3 t,

(hr
0, P

r
0 ) if x > s3 t.

(3.21)

Since for any two states u−, u+, we have

s = λ±(u−) = λ±(u+),

we are not allowed to have two distinct contact discontinuities of the same kind
side by side. Indeed, suppose that

s1 = λ−(u`
0), s2 = λ−(ū), s3 = λ+(ur

0).

Hence, we have s1 = λ−(u`
0) = λ−(ū) = s2, which implies a contraction. Analo-

gously,
s1 = λ−(u`

0), s2 = λ+(ū), s3 = λ+(ur
0).

Now, we observe that it is not possible to intercalate two different kinds of contact
discontinuities. For instance, if s1 = λ−(u`

0), s2 = λ+(ū) and s3 = λ−(ur
0), then

s2 = λ+(ū) = λ+(¯̄u) > λ−(¯̄u) = λ−(ur
0) = s3.
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Consequently, the solution is ill-defined, that is, (h, P ) given by (3.21) is a multi-
valued function. Therefore, we must have only one intermediate state. The another
cases are similar. �

Now, if we assume the more natural and general condition of initial-data for
degenerated fields, i.e. (2.7) and moreover (2.8), where in this case of constant
states means that

λ−(u`
0)− λ+(ur

0) > 0, (3.22)

then it follows from Theorem 3.4:

Corollary 3.5. There does not exist solution in BVloc∩L∞ of the Riemann problem
for (2.1), (2.2), when the initial-data (3.20) satisfies the condition (3.22), that is

P `
0 − 1
h`

0

>
P r

0 + 1
hr

0

.

Remark 3.6. We recall that, when (h`
0, P

`
0 ) and (hr

0, P
r
0 ) are sufficiently close,

they can be always connected to each other. That is, any weak jump discontinuity
associated a linear degenerated characteristic family, could be always connected by
a contact discontinuity. In fact, there is not a contradiction with Corollary 3.5,
since in this case we do not have (3.22) condition of initial-data satisfied.

We return to the ABI system, that is, the Rankine-Hugoniot condition (3.10)-
(3.17). Now, if we set

d±i :=
D±

i

h±
, b±i :=

B±
i

h±
, p±i :=

P±i
h±

(i = 2, 3),

then we can rewrite (3.10)-(3.17) as

d+
2 ζ+ − d−2 ζ− − b+

3 + b−3 = 0, (3.23)

d+
3 ζ+ − d−3 ζ− + b+

2 − b−2 = 0, (3.24)

b+
2 ζ+ − b−2 ζ− + d+

3 − d−3 = 0, (3.25)

b+
3 ζ+ − b−3 ζ− − d+

2 + d−2 = 0, (3.26)

ζ+ − ζ− = 0, (3.27)

(P+
1 ζ+ + 1)/(h+)− (P−1 ζ− + 1)/h− = 0, (3.28)

p+
2 ζ+ − p−2 ζ− = 0, (3.29)

p+
3 ζ+ − p−3 ζ− = 0, (3.30)

where ζ± := s h± − P±1 . So instead of s, we have two unknowns, i.e. ζ±. Hence,
we obtain one more equation to be satisfied

φ(ζ+, ζ−) :=
P+

1 + ζ+

h+
− P−1 + ζ−

h−
= 0, (3.31)

which implies that s must have the same value given by

ζ+ = s h+ − P+
1 or ζ− = s h− − P−1 .

Once we obtain ζ± that satisfies (3.23)-(3.31), the Rankine-Hugoniot condition is
satisfied. Clearly from (3.27), we must have

ζ− = ζ+ =: ζ.



EJDE-2005/124 AUGMENTED BORN-INFELD EQUATIONS 15

Therefore, it follows from (3.23)-(3.31) that:
i) When ζ = 0, we must have d−i = d+

i , b−i = b+
i , (i = 2, 3), h− = h+, and P−1 = P+

1 ,
that is

(D−
2 , D−

3 , B−
2 , B−

3 , h−, P−1 ) = (D+
2 , D+

3 , B+
2 , B+

3 , h+, P+
1 ), (3.32)

and we could have a jump in Pi, (i = 2, 3). Moreover, we have

s =
P+

1

h+
=

P−1
h−

.

ii) When ζ 6= 0, we must have p−i = p+
i , (i = 2, 3),

(ζ2 − 1)(d+
i − d−i ) = 0 (i = 2, 3),

(ζ2 − 1)(b+
i − b−i ) = 0 (i = 2, 3),

P+
1 ζ + 1

P−1 ζ + 1
=

h+

h−
=

P+
1 + ζ

P−1 + ζ
.

The latter, implies that
(ζ2 − 1)(P+

1 − P−1 ) = 0.

If (ζ2 − 1) 6= 0, then u− must be equal to u+, which is not the case. Consequently,
we must have

ζ = ±1.

Hence, we could have a jump in (Di, Bi, h, P1, Pi), (i = 2, 3). Moreover, we have

s =
P+

1 ± 1
h+

=
P−1 ± 1

h−
.

Therefore, considering the ABI system of conservation laws given by (1.8), (1.15),
we have the following:

Lemma 3.7. Let u± = (D±
2 , D±

3 , B±
2 , B±

3 , h±, P±1 , P±2 , P±3 ) be two given constant
states. Let (1.8)-(1.15) be the ABI system of conservation laws for u = (D,B, h, P ).
Then u−, u+ could be connected only by contact discontinuities in the following
form:
i) When (u−, u+) satisfies (3.32), by a contact discontinuity of speed

s = λo(u−) = λo(u+).

ii) When (u−, u+) satisfies

D+
2 + B+

3

h+
=

D−
2 + B−

3

h−
,

D+
3 −B+

2

h+
=

D−
3 −B−

2

h−
,

P+
1 − 1
h+

=
P−1 − 1

h−
,

P+
i

h+
=

P−i
h−

(i = 2, 3),

by a contact discontinuity of speed

s = λ−(u−) = λ−(u+).

iii) When (u−, u+) satisfies

D+
2 −B+

3

h+
=

D−
2 −B−

3

h−
,

D+
3 + B+

2

h+
=

D−
3 + B−

2

h−
,

P+
1 + 1
h+

=
P−1 + 1

h−
,

P+
i

h+
=

P−i
h−

(i = 2, 3),

by a contact discontinuity of speed s = λ+(u−) = λ+(u+).
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Obviously, if (3.9) satisfies (3.10)-(3.17) with h± and P± given by

h± =
√

1 + |D±|2 + |B±|2 + |D± ×B±|2, P± = D± ×B±, (3.33)

then D±, B± satisfy the Rankine-Hugoniot condition for the BI system. How-
ever, it is not clear that we have the converse. In fact, it is not true. Indeed,
as showed in [21], we could have jump discontinuities in the BI model, which are
not contact discontinuities. On the other hand, from Lemma 3.7, we have only
contact discontinuities in the case of the ABI system. Consequently, the Rankine-
Hugoniot condition of these systems are not equivalent. For instance, there exist
states (D±, B±) which satisfy the Rankine-Hugoniot condition for the BI system,
but do not satisfy the ABI one, with h± and P± given by (3.33). Next we show
that, if a field (D,B, h, P ) with h, P given by (1.6) is a piecewise smooth solution
of the ABI system, then it does not have dissipative shocks.

Theorem 3.8. Let (D+, B+), (D−, B−) be two given constant states, and h±,
P± given by (3.33). If (D±, B±, h±, P±) satisfy the Rankine-Hugoniot condition
for the ABI system (1.8)-(1.15), then (D±, B±) also satisfy the Rankine-Hugoniot
condition for the entropy equation (1.7).

Proof. First, let us note that, since D1 = B1 = 0 and P = D ×B

P2 = P3 = 0,

P ≡ P1 = D2B3 −D3B2.

Furthermore, we have

(D ⊗D)P
h2

=
(D · P ) D

h2
= 0,

(B ⊗B)P
h2

=
(B · P )B

h2
= 0.

Hence, the Rankine-Hugoniot condition for the entropy equation (1.7), is given by

s(η+ − η−) =
η+P+

1

h+
− η−P−1

h−
,

where η± = η(D±, B±, h±, P±). Therefore, for ζ± = sh± − P±1 , we must have

η+ζ+

h+
− η−ζ−

h−
= 0. (3.34)

Since (D±, B±, h±, P±) satisfy the Rankine-Hugoniot condition for the ABI system
(1.8)-(1.15), we have ζ+ = ζ−. Moreover, from (3.33) and the definition of η, we
get

η± =
h±

2
.

Consequently, the right-hand side of (3.34) is zero, which completes the proof. �

The following theorem gives general features and explicit solutions of the Rie-
mann problem for the ABI system of conservation laws.

Theorem 3.9. A self-similar weak solution (D,B, h, P ) of (1.8)-(1.15) in R+×R,
with initial-data

(D,B, h, P )(0, x) =

{
(D`

0, B
`
0, h

`
0, P

`
0 ) if x < 0,

(Dr
0, B

r
0 , hr

0, P
r
0 ) if x > 0,

(3.35)
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is given at most by:
i) One contact discontinuity; with speed s = λ−(u`

0) = λ−(ur
0), when

D`
20

+ B`
30

h`
0

=
Dr

20
+ Br

30

hr
0

,
D`

30
−B`

20

h`
0

=
Dr

30
−Br

20

hr
0

,

P `
10
− 1

h`
0

=
P r

10
− 1

hr
0

,
P `

i0

h`
0

=
P r

i0

hr
0

(i = 2, 3);

or, with speed s = λo(u`
0) = λo(ur

0) when

(D`
20

, D`
30

, B`
20

, B`
30

, h`
0, P

`
10

) = (Dr
20

, Dr
30

, Br
20

, Br
30

, hr
0, P

r
10

);

or, with speed s = λ+(u`
0) = λ+(ur

0) when

D`
20
−B`

30

h`
0

=
Dr

20
−Br

30

hr
0

,
D`

30
+ B`

20

h`
0

=
Dr

30
+ Br

20

hr
0

,

P `
10

+ 1
h`

0

=
P r

10
+ 1

hr
0

,
P `

i0

h`
0

=
P r

i0

hr
0

(i = 2, 3).

In any case, the solution is given by

(D,B, h, P )(t, x) =

{
(D`

0, B
`
0, h

`
0, P

`
0 ) if x < s t,

(Dr
0, B

r
0 , hr

0, P
r
0 ) if x > s t.

ii) Two contact discontinuities; one of speed s1 = λ−(u`
0) = λ−(ū), and another

with speed s2 = λo(ū) = λo(ur
0), with s1 < s2, when

D`
20

+ B`
30

h`
=

D̄2 + B̄3

h̄
,

D`
30
−B`

20

h`
=

D̄3 − B̄2

h̄
,

P `
10
− 1

h`
0

=
P̄1 − 1

h̄
,

where ū = (D̄, B̄, h̄, P̄ ) is given by

D̄ = Dr
0, B̄ = Br

0 , h̄ = hr
0, P̄1 = P r

10
,

P̄i = P `
i0

hr
0

h`
0

(i = 2, 3);

or, one of speed s1 = λo(u`
0) = λo(ū), and another with speed s2 = λ+(ū) = λ+(ur

0),
with s1 < s2, when

Dr
20
−Br

30

hr
0

=
D̄2 − B̄3

h̄
,

Dr
30

+ Br
20

hr
0

=
D̄3 + B̄2

h̄
,

P r
10

+ 1
hr

0

=
P̄1 + 1

h̄
,

where ū = (D̄, B̄, h̄, P̄ ) is given by

D̄ = D`
0, B̄ = B`

0, h̄ = h`
0, P̄1 = P `

10
,

P̄i = P r
i0

h`
0

hr
0

(i = 2, 3);

or, one of speed s1 = λ−(u`
0) = λ−(ū), and another with speed s2 = λ+(ū) =

λ+(ur
0), with s1 < s2, when

D̄2 =
(Dr

20
−Br

30

hr
0

+
D`

20
+ B`

30

h`
0

)
/(λ+(ur

0)− λ−(u`
0)),

D̄3 =
(D`

30
−B`

20

h`
0

+
Dr

30
+ Br

20

hr
0

)
/(λ+(ur

0)− λ−(u`
0)),
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B̄2 =
(Dr

30
+ Br

20

hr
0

−
D`

30
−B`

20

h`
0

)
/(λ+(ur

0)− λ−(u`
0)),

B̄3 =
(D`

20
+ B`

30

h`
0

−
Dr

20
−Br

30

hr
0

)
/(λ+(ur

0)− λ−(u`
0)),

h̄ =
2

λ+(ur
0)− λ−(u`

0)
, P̄1 =

λ+(ur
0) + λ−(u`

0)
λ+(ur

0)− λ−(u`
0)

,

P̄i =
2P `

i0
/h`

0

(λ+(ur
0)− λ−(u`

0))
=

2P r
i0

/hr
0

(λ+(ur
0)− λ−(u`

0))
(i = 2, 3).

In any case, the solution is given by

(D,B, h, P )(t, x) =


(D`

0, B
`
0, h

`
0, P

`
0 ) if x < s1 t,

(D̄, B̄, h̄, P̄ ) if s1 t < x < s2 t,

(Dr
0, B

r
0 , hr

0, P
r
0 ) if x > s2 t.

iii) Three contact discontinuities; the first of speed s1 = λ−(u`
0) = λ−(ū), the

second of speed s2 = λo(ū) = λo(ũ), and the third of speed λ+(ũ) = λ+(ur
0), with

s1 < s2 < s3, when

D̃2 = D̄2 =
(Dr

20
−Br

30

hr
0

+
D`

20
+ B`

30

h`
0

)
/(λ+(ur

0)− λ−(u`
0)),

D̃3 = D̄3 =
(D`

30
−B`

20

h`
0

+
Dr

30
+ Br

20

hr
0

)
/(λ+(ur

0)− λ−(u`
0)),

B̃2 = B̄2 =
(Dr

30
+ Br

20

hr
0

−
D`

30
−B`

20

h`
0

)
/(λ+(ur

0)− λ−(u`
0)),

B̃3 = B̄3 =
(D`

20
+ B`

30

h`
0

−
Dr

20
−Br

30

hr
0

)
/(λ+(ur

0)− λ−(u`
0)),

h̃ = h̄ =
2

λ+(ur
0)− λ−(u`

0)
, P̃1 = P̄1 =

λ+(ur
0) + λ−(u`

0)
λ+(ur

0)− λ−(u`
0)

,

P̄i =
2P `

i0
/h`

0

(λ+(ur
0)− λ−(u`

0))
, P̃i =

2P r
i0

/hr
0

(λ+(ur
0)− λ−(u`

0))
(i = 2, 3).

The solution is given by

(D,B, h, P )(t, x) =


(D`

0, B
`
0, h

`
0, P

`
0 ) if x < s1 t,

(D̄, B̄, h̄, P̄ ) if s1 t < x < s2 t,

(D̃, B̃, h̃, P̃ ) if s2 t < x < s3 t,

(Dr
0, B

r
0 , hr

0, P
r
0 ) if x > s3 t.

The proof follows from Lemma 3.7 in a similar way given at Theorem 3.4.
Again, if we assume the more natural and general condition of initial-data for

degenerated fields, which here implies that we have either

λ−(u`
0) > λo(ur

0),

λo(u`
0) > λ+(ur

0),

λ−(u`
0) > λ+(ur

0),

(3.36)
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then it follows from Theorem 3.8 that we do not have solution of the Riemann
problem for the ABI system.

Corollary 3.10. There does not exist solution of the Riemann problem for (1.8),
(1.15), when the initial-data (3.35) satisfies (3.36).

4. The well-posed case

In this section we focus on the well-posedness case. So we have to assume the less
natural initial-data condition for degenerated fields. As we have noted in Section
2, under the (2.12) initial-data condition the system (2.1), (2.2) has smooth global
solution for smooth initial-data. Next, we recall a result in Serre [23], which gives
a global solution of (2.5), (2.6) for non-smooth initial-data.

Proposition 4.1. Let λ−0 , λ+
0 be two BV ∩L∞ scalar functions that satisfy (2.12),

that is
sup
x∈R

λ−0 (x) < inf
x∈R

λ+
0 (x).

Then, for every T > 0, there exists a weak solution (λ−, λ+) of the Cauchy problem
(2.5), (2.6) with initial-data (λ−0 , λ+

0 ), such that, for any entropy pair F (u, v) =
(η(u, v), q(u, v)), u 6= v ∈ R,

η(u, v) :=
α(u) + β(v)

v − u
, q(u, v) :=

v α(u) + u β(v)
v − u

(α, β ∈ C(R)),

(λ−, λ+) satisfies ∫ T

0

∫
R

F (λ−(t, x), λ+(t, x)) · ∇t,xφ(t, x) dx dt

+
∫

R
η(λ−0 (x), λ+

0 (x))φ(0, x)dx = 0,

(4.1)

for any function φ ∈ C∞0 ((−∞, T )× R). Moreover, for almost every t ∈ (0, T ),

inf
x∈R

λ−0 (x) ≤ λ−(t, x) ≤ sup
x∈R

λ−0 (x),

inf
x∈R

λ+
0 (x) ≤ λ+(t, x) ≤ sup

x∈R
λ+

0 (x),
(4.2)

and
TV (λ−(t)) ≤ TV (λ−0 ), TV (λ+(t)) ≤ TV (λ+

0 ).

The proof is obtained via Glimm’s scheme and the compensated compactness
theory. Furthermore, we have well-posedness from the results given by Bressan et
al. [6, 7, 8, 9].

Now, we look at the ABI system. In the smooth case, that is, when we seek a
solution of the Cauchy problem (1.8)-(1.15) for smooth initial-data, once h, P1 are
known it remains to solve a 6 × 6 linear system of conservation laws with smooth
coefficients. Further, this system is symmetric, which follows easy if we denote
u = (D2, D3, B2, B3, P2, P3) and

f(u) =
(B3 + D2P

h
,
−B2 + D3P

h
,
−D3 + B2P

h
,
D2 + B3P

h
,
P1P2

h
,
P1P3

h

)
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then the differential of f with respect to u is

A :=



P1
h 0 0 1

h 0 0
0 P1

h − 1
h 0 0 0

0 − 1
h

P1
h 0 0 0

1
h 0 0 P1

h 0 0
0 0 0 0 P1

h 0
0 0 0 0 0 P1

h

 .

Consequently, this 6×6 system is hyperbolic and since we are in the case of a single
space dimension, we have an extremely elementary solution of the Cauchy problem.
Indeed,

u(t, x) =
6∑

i=1

φi(x− λit)ri,

where λi, (i = 1, . . . , 6), are the eigenvalues of A with correspondent ri eigenvectors.
Moreover, we have u(0, x) = u0(x) since

u0(x) =
6∑

i=1

φi(x)ri,

which means that, φi is the component of u0 along ri, (i = 1, . . . , 6). Hence, we
have the following corollary.

Corollary 4.2. Let (D0, B0, h0, P0) be bounded smooth functions, such that

sup
x∈R

P0(x)− 1
h0(x)

< inf
x∈R

P0(x) + 1
h0(x)

. (4.3)

Then there exists a global smooth solution u = (D,B, h, P ) of the Cauchy problem
for (1.8)-(1.15) with u0 = (D0, B0, h0, P0). Moreover, for every t ∈ R+

sup
x∈R

|u(t, x)| ≤ sup
x∈R

|u0(x)|. (4.4)

Finally, as in [5] we prove a stability result for the ABI system.

Theorem 4.3. Let (D`, B`, h`, P `) be a sequence of uniformly bounded smooth
functions that satisfy the ABI system (1.8)-(1.15), such that, at the initial time

sup
x∈R

P `(0, x)− 1
h`(0, x)

< inf
x∈R

P `(0, x) + 1
h`(0, x)

,

h`(0, x) =
√

1 + |D`(0, x)|2 + |B`(0, x)|2 + |D`(0, x)×B`(0, x)|2,

P `(0, x) = D`(0, x)×B`(0, x).

Then, there exists a weak limit (D,B, h, P ) which satisfies the ABI system.

Proof. 1. First, let us note that, since for each `, P `(0) = D`(0)× B`(0), we have
for every t ≥ 0, and ` ∈ Z+

P `
2 (t) = P `

3 (t) = 0, P `
1 (t) = D`

2(t)B
`
3(t)−D`

3(t)B
`
2(t).

Hence, from (1.8)-(1.15), we have

∂tD
`
2 + ∂x(

B`
3 + D`

2P
`

h`
) = 0, (4.5)
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∂tD
`
3 + ∂x(

−B`
2 + D`

3P
`

h`
) = 0, (4.6)

∂tB
`
2 + ∂x(

−D`
3 + B`

2P
`

h`
) = 0, (4.7)

∂tB
`
3 + ∂x(

D`
2 + B`

3P
`

h`
) = 0, (4.8)

∂th
` + ∂xP ` = 0, (4.9)

∂tP
` + ∂x

( (P `)2 − 1
h`

)
= 0. (4.10)

2. The uniformly bound of u` := (D`
2, D

`
3, B

`
2, B

`
3, h

`, P `), that is

sup
`
|u`| ≤ C,

implies the existence of u ∈ L∞(R+ × R; R6), such that, for a subsequence u`k of
u`, we have

u`k
ast
⇀ u in L∞(R+ × R; R6).

Clearly, we have that

{∂tu
k + ∂xf(uk)} is pre-compact in W−1,2

loc .

Now, let the entropy pair F (u, v) = (η(u, v), q(u, v)) as given in Proposition 4.1.
As standard in the theory of compensated compactness, for each k, we set µk the
following Radon measure

µk := ∂tη(λ−k , λ+
k ) + ∂xq(λ−k , λ+

k )

where

λ±k :=
P k ± 1

hk
.

Since λ±k is bounded, it follows that µk ∈ W−1,∞. Moreover, by the Compactness
Theorem for Radon measures, see [16], we have

{µk} is pre-compact in W−1,q
loc , 1 ≤ q < 2.

Hence, from a well-known interpolation result, we also have

{∂tη(λ−k , λ+
k ) + ∂xq(λ−k , λ+

k )} is pre-compact in W−1,2
loc .

By to Young measures theory, see [23, 25, 26], associated with the subsequence
{(λ−k , λ+

k )}∞k=1 there exists a measurable family of Young measures ν(.) : R+×R →
Prob(R2), such that

supp ν(t,x) ⊂ K for a.e. (t, x) ∈ R+ × R,

where K is a compact set of R2 and, Prob(R2) is the space of nonnegative Radon
measures over R. Moreover, for any g ∈ C(R2) the weak star limit

g(λ−k , λ+
k ) ast

⇀ ḡ in L∞(R2),

as k →∞ exists, and

ḡ(t, x) =
∫

R2
g(ξ) dν(t,x)(ξ) = 〈ν(t,x), g〉 for a.e. (t, x) ∈ R+ × R.
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Therefore, we are in the exact conditions to apply the Murat-Tartar div-curl Lemma,
which we shall do five times in the following simple form. Let

ak ⇀ a, bk ⇀ b, ck ⇀ c, dk ⇀ d,

weakly in L2
loc as k →∞. Suppose that

{∂ta
k + ∂xbk, ∂tc

k + ∂xdk} ⊂ U,

where U is a compact set of W−1,2
loc . Then, for a subsequence

akdk − bkck ⇀ ad− bc as k →∞

in the weak topology of measures. Hence, we have the following:

i) ak = P k, bk = (P k)2−1
hk , ck = Dk

2 , dk = Bk
3 +Dk

2 P k

hk ,

Dk
2

hk
+

Bk
3P k

hk
⇀

D2

h
+

B3P

h
;

ii) ak = P k, bk = (P k)2−1
hk , ck = Bk

3 , dk = Dk
2+Bk

3 P k

hk ,

Bk
3

hk
+

Dk
2P k

hk
⇀

B3

h
+

D2P

h
;

iii) ak = P k, bk = (P k)2−1
hk , ck = −Bk

2 , dk = −
(−Dk

3+Bk
2 P k

hk

)
,

−Bk
2

hk
+

Dk
3P k

hk
⇀

−B2

h
+

D3P

h
;

iv) ak = P k, bk = (P k)2−1
hk , ck = −Dk

3 , dk = −
(Bk

2 +Dk
3 P k

hk

)
,

−Dk
3

hk
+

Bk
2P k

hk
⇀

−D3

h
+

B2P

h
;

v) ak = ηk
1 , bk = qk

2 , ck = ηk
2 , dk = qk

1 ,
where

ηk
i :=

αi(λ−k ) + βi(λ+
k )

λ+
k − λ−k

, qk
i :=

λ+
k αi(λ−k ) + λ−k βi(λ+

k )
λ+

k − λ−k
,

ηk
1 qk

2 − ηk
2 qk

1 ⇀ η̄1 q̄2 − η̄2 q̄1 = 〈ν, η1〉〈ν, q2〉 − 〈ν, η2〉〈ν, q1〉.
Here, for brevity ν ≡ ν(t,x).
3. The items (i)-(iv) are enough to pass to the limit as k → ∞ in (4.5)-(4.8).
Moreover, (4.9) is trivial since it is linear. Now, we show that (v) is also enough to
pass to the limit in (4.10). Indeed, from (v)

ηk
1 qk

2 − ηk
2 qk

1 ⇀ 〈ν, η1〈〉ν, q2〉 − 〈ν, η2〉〈ν, q1〉.

On the other hand,

g(λ−k , λ+
k ) = ηk

1 qk
2 − ηk

2 qk
1 ⇀ ḡ = 〈ν, η1 q2 − η2 q1〉.

Consequently, we obtain

〈ν, η1 q2 − η2 q1〉 = 〈ν, η1〉〈ν, q2〉 − 〈ν, η2〉〈ν, q1〉. (4.11)

Now, we note that

(η1 q2 − η2 q1)(λ−, λ+) =
α2(λ−) β1(λ+)− α1(λ−) β2(λ+)

λ+ − λ−
,
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and set the following positive Radon measure

µ(t,x) :=
ν(t,x)

λ+ − λ−
.

Thus, from (4.11) it follows that

〈µ, α2 β1 − α1 β2〉 = 〈µ, α1 + β1〉〈µ, λ+α2 + λ−β2〉
− 〈µ, α2 + β2〉〈µ, λ+α1 + λ−β1〉.

Hence, for β1 = β2 = 0, α1 = α2 = 0 and α1 = α2 = α, β1 = −β2 = β, we obtain
respectively

0 = 〈µ, α1〉〈µ, λ+α2〉 − 〈µ, α2〉〈µ, λ+α1〉, (4.12)

0 = 〈µ, β1〉〈µ, λ−β2〉 − 〈µ, β2〉〈µ, λ−β1〉, (4.13)

〈µ, α β〉 = 〈µ, β〉〈µ, λ+α〉 − 〈µ, α〉〈µ, λ−β〉. (4.14)

From (4.12), there exists a constant C+ such that, for any continuous function α

〈µ, λ+ α〉 = C+〈µ, α〉.
Analogously, from (4.13) there exists a constant C− such that, for any continuous
function β

〈µ, λ− β〉 = C−〈µ, β〉.
Therefore, from (4.14) we have

〈µ, α β〉 = (C+ − C−)〈µ, α〉〈µ, β〉, (4.15)

which means that, µ is the tensor product of two positive measures with supports
contained respectively in Rλ− and Rλ+ , that is

µ(t,x) = σλ−

(t,x) ⊗ θλ+

(t,x).

Moreover, since 〈µ, 1〉 is positive it follows from (4.15)

1 = (C+ − C−)〈µ, 1〉 = (C+ − C−)〈σ, 1〉〈θ, 1〉. (4.16)

Further, for all α, β

〈ν, η〉 = 〈µ, α + β〉 = 〈σ, α〉〈θ, 1〉+ 〈σ, 1〉〈θ, β〉,
〈ν, q〉 = 〈µ, λ+ α + λ− β〉 = 〈σ, α〉〈θ, λ+〉+ 〈σ, λ−〉〈θ, β〉.

Now, we recall that

hk =
2

λ+
k − λ−k

, P k =
λ−k + λ+

k

λ+
k − λ−k

.

Furthermore, we have
(P k)2 − 1

hk
= 2

λ−k λ+
k

λ+
k − λ−k

.

Then, passing to the limit as k →∞, we get

h = w-lim
k→∞

hk = 〈ν,
2

λ+ − λ−
〉 = 2〈µ, 1〉 = 2〈σ, 1〉〈θ, 1〉,

P = w-lim
k→∞

P k = 〈ν,
λ− + λ+

λ+ − λ−
〉 = 〈µ, λ− + λ+〉

= 〈σ, 1〉〈θ, λ+〉+ 〈σ, λ−〉〈θ, 1〉,
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w-lim
k→∞

(P k)2 − 1
hk

= 2〈ν,
λ−λ+

λ+ − λ−
〉 = 2〈µ, λ−λ+〉 = 2〈σ, λ−〉〈θ, λ+〉.

It remains to show that
P 2 − 1

h
= 2〈µ, λ−λ+〉

or equivalently, 2h〈µ, λ−λ+〉 = 〈µ, λ− + λ+〉2 − 1. However,

2h〈µ, λ−λ+〉 = 4〈µ, 1〉〈µ, λ−λ+〉
= 4〈µ, 1〉C+〈µ, λ−〉
= 4C+C−〈µ, 1〉2

= [(C+ + C−)2 − (C+ − C−)2]〈µ, 1〉2

= [(C+ + C−)〈µ, 1〉]2 − 1

= 〈µ, λ− + λ+〈2−1,

where we have used (4.16). Hence, the proof is complete. �
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