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BOUNDARY MONOTONICITY FORMULAE AND
APPLICATIONS TO FREE BOUNDARY PROBLEMS I: THE

ELLIPTIC CASE

GEORG S. WEISS

Abstract. We derive a monotonicity formula at boundary points for a class of

nonlinear elliptic partial differential equations, including the obstacle problem

case, quenching, a free boundary problem with Bernoulli-type free boundary
condition as well as the blow-up case. As application model we prove – for

Dirichlet boundary data satisfying certain assumptions – the global existence

of a classical solution of the free boundary problem with Bernoulli-type free
boundary condition in two and three dimensions.

1. Introduction

Monotonicity formulae have proved useful in: Deriving growth estimates, ana-
lyzing asymptotic behavior, proving regularity, and investigating behavior that is
neither of a microscopic nor of a very large order (global analysis). Unfortunately
most of the known monotonicity formulae are valid only in an interior setting or
in special boundary cases, for example the convex domain case (cf. [9]). Only re-
cently progress has been made by B. White who succeeded in deriving a boundary
monotonicity formula for the Plateau problem (see [6],[17]). In parabolic prob-
lems, boundary monotonicity formulae are desirable for the investigation of interior
points, too, as the existing monotonicity identities are formulae for the Cauchy
problem; cut-off or perturbation arguments have been only partly successful (see
for example [14] and [11]).

In this first elliptic paper we derive boundary monotonicity identities for the
following class of semilinear elliptic equations containing free boundary problems
as well as the blow-up case:

∆u =
λ+

2
p max(u, 0)p−1 − λ−

2
p max(−u, 0)p−1 for p ∈ (0,+∞)− {2}

and for p = 0,

∆u = 0 in {u > 0} ∪ {u < 0},
|∇max(u, 0)|2 − |∇max(−u, 0)|2 = λ+ − λ− .
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In the interior case, the identities coincide with those derived by the author in [16].
As model application we prove a global regularity result for the free boundary

problem with Bernoulli-type free boundary condition,

∆u = 0 in Ω ∩ {u > 0}, |∇u| = 1 on Ω ∩ ∂{u > 0}, u = uD on ∂Ω. (1.1)

The applications of (1.1) are as various as the modelling of jets and cavities [3],
electro-chemical machining [13] and optimal heat conductors [8]. As singular limit
problem of a reaction-diffusion equation it has also been used as a model for the
propagation of equidiffusional premixed flames with high activation energy [4]. For
the mathematical background of (1.1) see [1]. For a boundary regularity result in
a two-dimensional special setting see [2].

The natural regularity for a solution u of this problem is Lipschitz regularity
[1]. On the other hand, the harmonic function with Lipschitz boundary values – a
special solution of problem (1.1) – is not necessarily Lipschitz continuous on Ω̄. We
construct therefore another solution of the problem, the minimal solution, which
we prove to be Lipschitz continuous under a growth assumption on uD.

Our main result here (Theorem 4.2) is that, assuming further conditions on uD,
there exists in two and three dimensions a classical solution of (1.1) on Ω̄, i.e.
∂{u > 0} is locally a C1,β-surface on Ω̄ and u satisfies the condition |∇u| = 1 on
∂{u > 0} ∩ Ω̄.

Applications of the monotonicity formulae in other areas like regularity at corners
or cusps, and behavior of solutions in irregular domains seem feasible. Concerning
the application to the above Bernoulli-type free boundary problem, there is a result
by Karakhanyan, Kenig and Shahgholian for the smooth separation case – i.e.
tangential touch of the fixed and the free boundary – which uses different methods
[12].

2. Notation

We denote by χA the characteristic function of the set A, by x · y the Euclidean
inner product on Rn, by |x| the Euclidean norm in Rn, by Br(x0) := {x ∈ Rn :
|x − x0| < r} the ball of center x0 and radius r, and by ei the i-th unit vector in
Rn. We shall often use abbreviations for inverse images like {u > 0} := {x ∈ Ω :
u(x) > 0}, {xn > 0} := {x ∈ Rn : xn > 0} etc. and occasionally we shall employ
the decomposition x = (x′, xn) of a vector x ∈ Rn. By ν we will always refer to the
outer normal on a given surface, by ∇u · ν to the normal derivative of the function
u and by ∇θu = ∇u − (∇u · ν)ν to the tangential gradient of u on the surface.
Finally Hs shall denote the s-dimensional Hausdorff measure.

3. The Elliptic Monotonicity Formula

In this section we derive the monotonicity formula in the elliptic case. By a
translation we take the point at which we derive the monotonicity formula to be
the origin.

3.1. Assumptions.
(1) Ω is an open set in Rn and ∂Ω−{0} is of class C1, i.e. for each x ∈ ∂Ω−{0},

Ω is in some neighborhood of x the subgraph of a C1-function.
(2) p ∈ [0,+∞)−{2}, r0 > 0, u ∈ H1,2(Br0(0)∩Ω) and ∇u has an L2-trace on

Br0(0) ∩ ∂Ω.
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(3) α = 2
2−p and ∇u(x) · x − αu(x) = 0Hn−1-a.e. on {x ∈ Br0(0) ∩ ∂Ω :

ν(x) · x = 0}, i.e. u is homogeneous on the “cone-part” of the boundary.
(4) u is a variational solution in the sense of Definition 3.1 in [16]: a) for

p ∈ (0,+∞)− {2}, of the equation

∆u =
λ+

2
p max(u, 0)p−1 − λ−

2
p max(−u, 0)p−1 . (3.1)

b) for p = 0, of the problem

∆u = 0 in {u > 0} ∪ {u < 0},
|∇max(u, 0)|2 − |∇max(−u, 0)|2 = λ+ − λ− on ∂{u > 0} ∪ ∂{u < 0}.

(3.2)

For the sake of completeness let us recall the definition of a variational solution
[16, Definition 3.1]. We define u ∈ H1,2

loc (Ω) to be a variational solution of (3.1),
(3.2), if u ∈ C0(Ω)∩C2(Ω∩ ({u > 0}∪{u < 0})), (χ{u>0}u

p−1 +χ{u<0}(−u)p−1) ∈
L1

loc(Ω) for p ∈ (0, 1) and the first variation with respect to domain variations of
the functional

F (v) :=
∫

Ω

(
|∇v|2 + λ+χ{v>0}v

p + λ−χ{v<0}(−v)p
)

vanishes at v = u, i.e., for any φ ∈ C1
0 (Ω; Rn),

0 = − d

dε
F (u(x + εφ(x)))|ε=0

=
∫

Ω

(
|∇u|2 ÷ φ− 2∇uDφ∇u + λ+χ{u>0}u

p ÷ φ + λ−χ{u<0}(−u)p ÷ φ
)

.

(3.3)

Remark 3.1. It follows that minimizers of the energy are variational solutions,
provided that they are continuous and satisfy the L1-bound.

Extension of the data: we cover {x ∈ ∂Ω : ν(x) · x 6= 0} up to a set of vanishing
n−1-dimensional Hausdorff measure by countably many disjoint balls Bρj

(xj) such
that xj ∈ ∂Ω and Bρj

(xj)∩∂Ω ⊂ {x ∈ ∂Ω : ν(x)·x 6= 0} is a C1-graph of a function
on x⊥ for each x ∈ Bρj

(xj).
Now we define Dj := {θx : x ∈ Bρj

(xj)∩ ∂Ω, θ ≥ 1} and we define homogeneous
extensions gj : Dj → R and hj : Dj → Rn as follows: for θ ≥ 1 and x ∈ Bρj

(xj) ∩
∂Ω, let gj(θx) := θαu(x) and let hj(θx) := θα−1∇u(x). Moreover we set σj :=
sgn ν(xj) · xj .

Remark 3.2. Observe that the union of the graphs of gj and u is in general not a
graph in Rn+1.

Theorem 3.3 (Elliptic Monotonicity Formula). Suppose that∫
Br0 (0)∩Ω

|u|p +
∞∑

j=1

∫
Br0 (0)∩Dj

(
|hj |2 + |hj · ∇gj |+ g2

j + |gj |p
)

< +∞.

Let us define functions

I(r) = r−n−2(α−1)

∫
Br(0)∩Ω

(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)

,

IB(r) = αr1−n−2α

∫
∂Br(0)∩Ω

u2dHn−1 ,
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Ej(r) = r−n−2(α−1)

∫
Br(0)∩Dj

(
− |hj |2 + 2hj · ∇gj + λ+χ{gj>0}g

p
j

+λ−χ{gj<0}(−gj)p
)

,

EB
j (r) = αr1−n−2α

∫
∂Br(0)∩Dj

g2
j dHn−1 .

Then Φ0(r) := I(r) − IB(r) +
∑∞

j=1 σj(Ej(r) − EB
j (r)) satisfies for a.e. 0 < ρ <

σ < r0 the monotonicity identity

Φ0(σ)− Φ0(ρ) =
∫ σ

ρ

r−n−2(α−1)

∫
∂Br(x0)∩Ω

2
(
∇u · ν − α

u

r

)2

dHn−1dr ≥ 0 .

We defer the proof of this theorem to the Appendix and go into the applications
first.

Corollary 3.4. Suppose in addition that the following suprema are finite:

sup
r∈(0,r0)

r−n−2(α−1)

∫
Br(0)∩Ω

(
|min(λ+, 0)|χ{u>0}u

p + |min(λ−, 0)|χ{u<0}(−u)p
)

,

sup
r∈(0,r0)

r1−n−2α

∫
∂Br(0)∩Ω

u2dHn−1 ,

sup
r∈(0,r0)

∞∑
j=1

∫
Br(0)∩Dj

(
|hj |2 + |hj · ∇gj |+ |min(σjλ+, 0)|χ{gj>0}g

p
j

+|min(σjλ−, 0)|χ{gj<0}(−gj)p
)

,

sup
r∈(0,r0)

∞∑
j=1

max(σj , 0)r1−n−2α

∫
∂Br(0)∩Dj

g2
j dHn−1 .

Then Φ0(r) ↘ Φ0(0) as r ↘ 0, and for any open D ⊂⊂ Rn and k ≥ k(D) the
sequence uk(x) = u(ρkx)

ρk
α is bounded in H1,2(D ∩Ωk), where Ωk = {ρk

−1y : y ∈ Ω}.
Moreover,

χΩk
(∇uk(x) · x− αuk(x))→ 0 strongly in L2

loc(Rn) as k →∞.

Proof. Defining Djk = {ρk
−1y : y ∈ Dj} and calculating, for 0 < R <∞,

I(Rρk) = R−n−2(α−1)

∫
BR(0)∩Ωk

(
|∇uk|2 + λ+χ{uk>0}uk

p + λ−χ{uk<0}(−uk)p
)
,

IB(Rρk) = αR1−n−2α

∫
∂BR(0)∩Ωk

uk
2dHn−1 ,

E(Rρk) = R−n−2(α−1)

∫
BR(0)∩Djk

(
− |hj |2 + 2hj · ∇gj

+ λ+χ{gj>0}g
p
j + λ−χ{gj<0}(−gj)p

)
,

EB(Rρk) = αR1−n−2α

∫
∂BR(0)∩Djk

g2
j dHn−1 ,
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we infer from the monotonicity formula Theorem 3.3 and from the assumed growth
estimate that uk is bounded in H1,2(D ∩ Ωk) for k ≥ k(D). Since Φ0 is non-
decreasing and bounded in (0, r0), we know that Φ0 has a right limit at 0. Conse-
quently, as k →∞,

0← Φ0(ρkS)− Φ0(ρkR)

=
∫ S

R

r−n−2(α−1)

∫
∂Br(0)∩Ωk

2
(
∇uk · ν − α

uk

r

)2

dHn−1dr

=
∫

(BS(0)−BR(0))∩Ωk

2|x|−n−2α (∇uk(x) · x− αuk(x))2 .

�

4. Application Example: Boundary Regularity for a Free Boundary
Problem with a Bernoulli-type Condition on the Free Boundary

Let Ω be a bounded domain in Rn whose boundary is of class C2,γ for some
γ ∈ (0, 1) and let uD : ∂Ω → [0,+∞) satisfy uD ∈ C2,γ({uD > 0}) as well as the
non-degeneracy condition ∇θuD 6= 0 on the boundary of {uD > 0} relative to ∂Ω;
here ∇θ denotes the tangential gradient. Let us extend uD to a smooth function on
Ω̄. Moreover, let u be the minimal solution of the free boundary problem ∆u = 0
in Ω ∩ {u > 0}, |∇u| = 1 on Ω ∩ ∂{u > 0} and u = uD on ∂Ω. A minimal solution
is a function with uD-boundary data on ∂Ω, satisfying for each open Ω′ ⊂ Ω the
following conditions:

(1) u is a global minimizer of the energy

EΩ′(w) =
∫

Ω′
(|∇w|2 + χ{w>0})

on the affine subspace {w ∈ H1,2(Ω′) : w − u ∈ H1,2
0 (Ω′)}.

(2) For each global minimizer v of the energy EΩ′ on the affine subspace {w ∈
H1,2(Ω′) : w − v ∈ H1,2

0 (Ω′)}, satisfying v ≥ u on ∂Ω′ (that is, max(u −
v, 0) ∈ H1,2

0 (Ω′)), we have v ≥ u in Ω′.
For the following reason there exists a minimal solution and this minimal solution
is unique: let v1, v2 be a global minimizer of the energy EΩ′ on the affine sub-
space {w ∈ H1,2(Ω′) : w − v1 ∈ H1,2

0 (Ω′)}, {w ∈ H1,2(Ω′) : w − v2 ∈ H1,2
0 (Ω′)},

respectively, and assume that v1 and v2 satisfy v1 ≤ v2 on ∂Ω′. Then

EΩ′(v1) + EΩ′(v2) = EΩ′(min(v1, v2)) + EΩ′(max(v1, v2)),

EΩ′(min(v1, v2)) ≥ EΩ′(v1) and EΩ′(max(v1, v2)) ≥ EΩ′(v2).
Consequently EΩ′(min(v1, v2)) = EΩ′(v1) and EΩ′(max(v1, v2)) = EΩ′(v2), im-

plying that min(v1, v2) is a global minimizer on {w ∈ H1,2(Ω′) : w−v1 ∈ H1,2
0 (Ω′)}

and max(v1, v2) is a global minimizer on {w ∈ H1,2(Ω′) : w − v2 ∈ H1,2
0 (Ω′)}.

Therefore, u defined by u(x) := inf{v(x) : v is a global minimizer of EΩ with
respect to uD-boundary data } is the unique function with properties 1) and 2):
first, by [1, 1.3] there exists a global minimizer, so the set in the above infimum is
non-empty. Next, as the family of global minimizers with respect to uD-boundary
data is locally in Ω equicontinuous, we may reduce the family in the definition of u
to a countable family (wm)m∈N of global minimizers with respect to uD-boundary
data. Since min(w1, . . . , wm) is for each m ∈ N a global minimizer with respect
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to uD-boundary data, the limit u, too, must by weak lower-semicontinuity of the
energy be a global minimizer with respect to uD-boundary data. Consider now v
as in property 2): extending the function min(v, u) by u outside Ω′, we see that
the extended function is contained in the set of the above infimum. Consequently
min(v, u) ≥ u in Ω′. Last, taking two functions u1 and u2 with properties 1) and
2), we may set Ω′ := Ω and test property 2) for u1 with u2 and vice versa to obtain
the uniqueness.

Incidentally – going back to v1 and v2 defined above – the strong maximum
principle tells us that 0 < v1(x0) = v2(x0) for some x0 ∈ Ω′ implies that v1 = v2 in
the connected component of x0. In particular, v1 < v2 on ∂Ω′ implies v1 ≤ v2 in
Ω′.

Although the harmonic function with uD boundary data – corresponding to
the “maximal solution” in our concept – can except in the case uD ≡ 0 never be
Lipschitz continuous on Ω̄ (in the two-dimensional case this is a consequence of
Corollary 3.4), Lipschitz continuity of the minimal solution can be ensured by an
assumption on uD. More precisely:

Proposition 4.1 (Lipschitz continuity). Let Ω and uD be as above and let u be
the minimal solution with respect to Ω and uD. If (Ω, uD) satisfies in addition for

R0 :=

{(
( 2

n )−
2

n−2 − 1
)−1/2 diam(Ω), if n ≥ 3

(e− 1)−1/2 diam(Ω), if n = 2,

φx0,R0(x) :=

{
R0

n−2

(
1− ( |x−x0|

R0
)2−n

)
, if n ≥ 3

−R0 log R0
|x−x0| , if n = 2

K−
δ (y0) := {x ∈ Rn : ∇θuD(y0) · (x− y0) ≤ −δ|∇θuD(y0)|}

the condition
uD ≤ max(φx0,R0 , 0) on ∂Ω for some δ > 0, each y0 ∈ ∂Ω ∩ {uD = 0}
and some x0 ∈ ∂BR0(y0) ∩ {x ∈ Rn : ν(y0) · (x− y0) > 0} ∩K−

δ (y0),
(4.1)

then u is Lipschitz continuous on Ω̄ and ∂{u > 0} cannot approach ∂Ω tangentially.
More precisely: u = 0 in an open neighborhood of the interior of {uD = 0} relative
to ∂Ω, and there is κ ∈ (0, 1) such that for each y0 in the boundary of {uD = 0}
relative to ∂Ω, the free boundary is in an open neighborhood of y0 contained in
{x ∈ Rn : −κ|x − y0| ≤ µ(y0) · (x − y0) ≤ κ|x − y0|}. Here µ(y0) denotes the
outward pointing unit co-normal on the relative boundary of {uD = 0}.

Proof. Let y0 and x0 as in the Proposition. Since u is the minimal solution, we can
compare it to max(φx0,R0 , 0) in Ω to obtain the growth estimate

u(y0 + x) ≤ |x| (4.2)

as well as
u = 0 in BR0(x0) ∩ Ω ;

note that by the choice of R0 and by [1, 2.6], max(φx0,R0 , 0) is a global minimizer in
Ω. On the other hand, as u is subharmonic in Ω, we may at a point y0 on the relative
boundary of {uD = 0} define K+

δ̃
:= {x ∈ Rn : ∇θuD(y0) · (x−y0) ≥ δ̃|∇θuD(y0)|},

and make use of the non-degeneracy of uD and compare u to the global minimizer
max(−φx1,R1 , 0) (cf. [1, 2.6]) where x1 ∈ ∂BR1(y0) ∩ {x ∈ Rn : ν(y0) · (x − y0) >
0} ∩ K+

δ̃
such that R1 ≥ c, x1 6∈ Ω and uD ≥ max(−φx1,R1 , 0) on ∂Ω ∩ BR1(x1);
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such constants c > 0 and δ̃ > 0 depending only on n, Ω, uD exist because of the
non-degeneracy of uD as well as the smoothness of ∂Ω and uD|{uD>0}. We obtain
u > 0 in Ω ∩BR1(x1). Both balls BR1(x1) and BR0(x0) are touching the point y0,
implying the non-tangential touch of the free boundary.

To prove the Lipschitz continuity, let us first derive a bound for the normal
derivative of u on ∂Ω ∩ {u > 0}. Let z0 ∈ ∂Ω ∩ {u > 0} be a point close to
{uD = 0} and let R2 := dist(z0, {uD = 0}). By the already proven part (the
non-tangential touch) we know that u > 0 in Ω ∩ Bc̃R2(z0) where c̃ ∈ (0, 1) is a
constant depending on n, Ω, uD and the chosen relative neighborhood of {uD = 0}.
Scaling v(x) = u(z0+c̃R2x)

c̃R2
and Ω̃ = 1

c̃R2
(Ω − z0) we infer from the above growth

estimate that v is a harmonic function in B1(0) ∩ Ω̃ satisfying |v| ≤ 2
c̃ in B1(0).

Since we assumed z0 to be close to {uD = 0}, Ω̃ is near B1(0) a domain close to a
half-space and its smoothness is uniform in z0. Thus we may apply local boundary
regularity for harmonic functions (see for example [10, Corollary 6.7]) and obtain
a bound for ‖∇v‖L∞(Ω̃∩B 1

2
(0)) depending only on n, Ω, uD and the chosen relative

neighborhood of {uD = 0}. Scaling back, we obtain a uniform bound for |∇u| at
points of ∂Ω that are close to {uD = 0}.
At points of ∂Ω that are relatively far from {uD = 0}, the distance to the set
{u = 0} is estimated from below by a positive constant, and we combine the bound
for u, i.e. u ≤ sup∂Ω uD, with local boundary regularity for harmonic functions to
derive a bound for |∇u|.

Thus ∇u is bounded on {u > 0} ∩ ∂Ω, and the fact that

lim sup
x→x0∈Ω∩∂{u>0}

|∇u(x)| ≤ 1

(see [1, Remark 6.4]) together with the maximum principle yields the Lipschitz
continuity of u on Ω̄. �

Theorem 4.2. Let n = 2, 3, let Ω be a bounded domain of class C2,γ and let
uD : ∂Ω → [0,+∞) satisfy uD ∈ C2,γ({uD > 0}), the non-degeneracy condition
∇θuD 6= 0 on the boundary of {uD > 0} relative to ∂Ω as well as condition (4.1).
Furthermore let us assume that the boundary data satisfy

|∇θuD(x) · (x− x0)− αuD(x)| ≤ C|ν(x) · (x− x0)|

on ∂Ω ∩ Br0(x0) for some C < ∞ and every x0 ∈ ∂Ω ∩ {uD = 0}. Last, let u be
the minimal solution of the free boundary problem ∆u = 0 in Ω∩{u > 0}, |∇u| = 1
on Ω ∩ ∂{u > 0} and u = uD on ∂Ω. Then ∂{u > 0} is locally a C1,β-surface on
Ω̄ for some β ∈ (0, 1), and u satisfies the condition |∇u| = 1 on ∂{u > 0} ∩ Ω̄.

The following lemma stating uniqueness of the blow-up limit will be crucial in
the proof of the theorem.

Lemma 4.3. Let the assumptions of Theorem 4.2 be satisfied. Then, at each
point x0 of the boundary of {uD = 0} relative to ∂Ω, u(x0 + rx)/r converges on
each compact subset of {ν(x0) · (x − x0) < 0} to exactly one of the two half-plane
solutions h1 and h2 as r → 0. Here

h1(x) = max(x · ∇θuD(x0) + xn

√
1− |∇θuD(x0)|2, 0) ,

h2(x) = max(x · ∇θuD(x0)− xn

√
1− |∇θuD(x0)|2, 0) .
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Proof. Observe that as

∇gj(x) · ν(x) =
αuD(x)−∇θuD(x) · (x− x0)

(x− x0) · ν(x)
on ∂Dj ,

the assumption |∇θuD(x) · (x− x0)−αuD(x)| ≤ C|ν(x) · (x− x0)| ensures that the
gj-integrals in the monotonicity formula stay bounded as r → 0. By a rotation we
may take ν(x0) to be en where en is the n-th unit vector in Rn. By the assumptions
and by (4.2), ur(x) = u(x0 + rx)/r converges on {xn = 0} to max(x ·w, 0) for some
w ∈ Rn−1 ∩ B1(0) − {0}. Each limit u0 of (ur)r∈(0,1) with respect to a sequence
rk → 0 as k → ∞ is harmonic in the open set {xn > 0} ∩ {u0 > 0}, homogeneous
of degree 1 (cf. Corollary 3.4) and a global minimizer of the energy EB1(0) with
respect to u0-boundary values (cf. [1, Lemma 5.4]). In the two-dimensional case,
it follows from the homogeneity and from the fact that u0 is harmonic in the
open set {u0 > 0} ∩ {xn > 0} that u0 is linear in each connected component of
{u0 > 0} ∩ {xn > 0} and must therefore be a half-plane solution max(x · v, 0)
satisfying v ∈ ∂B1(0) (cf. [15, Corollary 3.3]).
In the three-dimensional case we proceed as follows: according to Proposition 4.1,
the free boundary ∂{u0 > 0} does not touch {xn = 0} ∩ {∇θuD(x0) · x < 0}.
Moreover, by [15, Corollary 2.9], the set {u0 = 0} is the finite union of convex
cones with vertex at the origin. But then the connected component of {u0 = 0}0
touching {xn = 0} must be the restriction of some half-space {x · v < 0} (where
v ∈ ∂B1(0)) to the set {xn > 0}. Since u0 satisfies on {xn > 0} ∩ ∂{x · v > 0} the
boundary conditions u0 = 0 and ∂vu0 = −1, we obtain from the unique solvability
of the Cauchy problem that u0(x) = max(x · v, 0).

Furthermore, in the two- and three-dimensional case, |v′|2 + v2
n = 1. Note that

v′ = ∇θuD(x0). Thus vn =
√

1− |∇θuD(x0)|2 or vn = −
√

1− |∇θuD(x0)|2.
Therefore h1 and h2 make up the whole ω-limit set with respect to r → 0, and
we obtain uniqueness of the blow-up limit. �

Proof of the Theorem. Let us consider a point x1 in the boundary of {uD = 0}
relative to ∂Ω. For small δ1 > 0 and each x0 ∈ Ω ∩ Bδ1(x1) ∩ ∂{u > 0}, we
obtain from Lemma 4.3 that u is in Br(x0) ∩ Ω close to some half-plane solution
max(x · v(x1), 0) (in particular, u = 0 in Br(x0) ∩ {(x − x0) · v(x1) < −δ2} and
u > 0 in Br(x0) ∩ {(x− x0) · v(x1) > δ2}). Thus interior regularity theory (see [1,
Theorem 8.1]) implies that ∂{u > 0} is in B r

4
(x0) the graph of a C1,β-function in

the direction of −v(x1) with a uniformly bounded C1,β-norm. We obtain that for
each point x2 ∈ ∂{u > 0}∩∂Ω (note that this set coincides by Proposition 4.1 with
the boundary of {uD = 0} relative to ∂Ω), ∂{u > 0}∩Ω is in an open neighborhood
of x2 the graph of a C1,β-function in the direction of −v(x2).

Combining this with interior regularity results (we refer to [1, Theorem 8.3] for
the two-dimensional case and to [5] for the three-dimensional case), this yields the
statement of our theorem. �

5. Appendix

Proof of the monotonicity formula: For small positive κ,

ηκ(x) := max(0,min(1,
1
κ

(r − |x|))), ξκ(x) := min(1,
1
κ

dist(x, Ωc)) ,
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we take after approximation φκ(x) := ηκ(x)ξκ(x)x as test function in (3.3). We
obtain

0 = Iκ
1 + Iκ

2 + Iκ
3 , (5.1)

where

Iκ
1 =

∫
ηκξκ

(
n|∇u|2 − 2|∇u|2 + nλ+χ{u>0}u

p + nλ−χ{u<0}(−u)p
)
,

Iκ
2 =

∫
ξκ

(
|∇u|2∇ηκ · x− 2∇u · x∇u · ∇ηκ + λ+χ{u>0}u

p∇ηκ · x

+ λ−χ{u<0}(−u)p∇ηκ · x
)
,

Iκ
3 =

∫
ηκ

(
|∇u|2∇ξκ · x− 2∇u · x∇u · ∇ξκ + λ+χ{u>0}u

p∇ξκ · x

+ λ−χ{u<0}(−u)p∇ξκ · x
)

.

The first integral

Iκ
1 →

∫
Br(0)∩Ω

[
n
(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)
− 2|∇u|2

]
as κ→ 0. The second integral Iκ

2 approaches

−
∫

∂Br(0)∩Ω

[
r
(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)
− 2r(∇u · ν)2

]
dHn−1

for a.e. r ∈ (0, r0) as κ→ 0. The third integral Iκ
3 approaches

−
∫

Br(0)∩∂Ω

[
ν · x

(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)
− 2∇u · x∇u · ν

]
dHn−1

as κ → 0. Furthermore the fact that max(u, θ) and −min(u,−θ) are for small
positive θ subsolutions satisfying

∆ max(u, θ)− λ+

2
pχ{u>θ}u

p−1 ≥ 0,

∆(−min(u,−θ))− λ−
2

pχ{u<−θ}(−u)p−1 ≥ 0

implies that the distributions

∆ max(u, θ)− λ+

2
pχ{u>θ}u

p−1,

∆(−min(u,−θ))− λ−
2

pχ{u<−θ}(−u)p−1

are non-negative finite σ-additive measures with support in ∂{u > θ} and ∂{u <

−θ}, respectively. Since λ+
2 pχ{u>θ}u

p−1 → λ+
2 pχ{u>0}u

p−1 in L1
loc(Br(0) ∩ Ω) as

θ → 0+, we obtain that ∆ max(u, θ) ⇀ ∆ max(u, 0) weakly-* in (C0
0 (Br(0) ∩ Ω))∗

as θ → 0+ and that

supp(∆ max(u, 0)− λ+

2
pχ{u>0}u

p−1) ⊂ ∂{u > 0} . (5.2)

Approximating max(u, 0) by mollified functions we now see that∫
∇max(u, 0) · ∇ζ = −

∫
ζ∆ max(u, 0)
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for any ζ ∈ C0(Br(0) ∩ Ω) ∩ H1,2
0 (Br(0) ∩ Ω). An analogous formula holds for

−min(u, 0). Using this and (5.2) one can now easily derive the formula∫
Br(0)∩Ω

|∇u|2 =
∫

∂Br(0)∩Ω

u∇u · νdHn−1 +
∫

Br(0)∩∂Ω

u∇u · νdHn−1

− p

2

∫
Br(0)∩Ω

(
λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
) (5.3)

for a.e. r ∈ (0, r0). Next, multiplying the limit identity of (5.1) by −r−n−2(α−1)−1

we get for a.e. r ∈ (0, r0)

0 = Int1 + Bou1 + Int2 + Int3 + Bou2 + BouΩ
1 , (5.4)

where

Int1 = −(n + 2(α− 1))r−n−2(α−1)−1

×
∫

Br(0)∩Ω

(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)

,

Int2 = 2(α− 1)r−n−2(α−1)−1

∫
Br(0)∩Ω

(
λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)

,

Int3 = (2(α− 1) + 2)r−n−2(α−1)−1

∫
Br(0)∩Ω

|∇u|2 ,

Bou1 = r−n−2(α−1)

∫
∂Br(0)∩Ω

(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)
dHn−1 ,

Bou2 = −2r−n−2(α−1)

∫
∂Br(0)∩Ω

(∇u · ν)2dHn−1 ,

BouΩ
1 = r−n−2(α−1)−1

∫
Br(0)∩∂Ω

[
ν · x

(
|∇u|2 + λ+χ{u>0}u

p

+ λ−χ{u<0}(−u)p
)
− 2∇u · x∇u · ν

]
dHn−1 .

By (5.3), identity (5.4) becomes

0 = Int1 + Bou1 + Int4 + Bou3 + Bou4 + Bou5 + BouΩ
2 , (5.5)

where

Int4 = (2(α− 1)− p

2
(2(α− 1) + 2))r−n−2(α−1)−1

×
∫

Br(0)∩Ω

(
λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)

= 0

by the definition of the value α,

Bou3 = −2r−n−2(α−1)

∫
∂Br(0)∩Ω

(
∇u · ν − α

u

r

)2

dHn−1,

Bou4 = −2αr−n−2(α−1)−1

∫
∂Br(0)∩Ω

u∇u · νdHn−1 ,

Bou5 = 2α2r−n−2(α−1)−2

∫
∂Br(0)∩Ω

u2dHn−1 ,

BouΩ
2 = r−n−2(α−1)−1

∫
Br(0)∩∂Ω

[
ν · x

(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)
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− 2(∇u · x− αu)∇u · ν
]
dHn−1 .

Note that Bou3 is the integrand on the right-hand side of monotonicity identity
Theorem 3.3. Moreover,

Int1 + Bou1 + Bou4 + Bou5

= − ∂

∂r

∞∑
j=1

σjαr1−n−2α

∫
∂Br(0)∩Dj

g2
j dHn−1

+
∂

∂r

(
r−n−2(α−1)

∫
Br(0)∩Ω

(
|∇u|2 + λ+χ{u>0}u

p + λ−χ{u<0}(−u)p
)

− αr−n−2(α−1)−1

∫
∂Br(0)∩Ω

u2dHn−1
)

for a.e. r ∈ (0, r0). Consequently, for a.e. r ∈ (0, r0),

Φ′
0(r)

= −Bou3 + r−n−2(α−1)−1
∞∑

j=1

σj

∫
Br(0)∩∂Dj

[
ν · x

(
|∇u|2 − |∇gj |2 + λ+(χ{u>0}u

p

− χ{gj>0}g
p
j ) + λ−(χ{u<0}(−u)p − χ{gj<0}(−gj)p) + |hj −∇gj |2

)
− 2(∇u · x− αu)∇u · ν

]
dHn−1

= −Bou3 + r−n−2(α−1)−1
∞∑

j=1

σj

∫
Br(0)∩∂Dj

[
− 2(∇u · x− αu)∇u · ν + ν · x|∇u|2

+ 2(∇gj · x− αgj)∇gj · ν − ν · x|∇gj |2 + ν · x|hj −∇gj |2
]
dHn−1 .

Since ∇u = ∇gj +∇(u− gj) · νν =: ∇gj + zjν on ∂Dj , we obtain

Φ′
0(r)

= −Bou3 + r−n−2(α−1)−1
∞∑

j=1

σj

∫
Br(0)∩∂Dj

[
2(∇gj · x− αgj)∇gj · ν

− ν · x|∇gj |2 − 2(∇gj · x− αgj + zjx · ν)(∇gj · ν + zj) + ν · x|∇gj |2

+ z2
j x · ν + 2zj∇gj · νx · ν + ν · x|hj −∇gj |2

]
dHn−1

= −Bou3 + r−n−2(α−1)−1
∞∑

j=1

σj

∫
Br(0)∩∂Dj

[
− z2

j x · ν + ν · x|hj −∇gj |2
]
dHn−1

= −Bou3

for a.e. r ∈ (0, r0).

Acknowledgment. The author wants to thank H. Shahgholian for the discussions
on boundary regularity in free boundary problems.

References

[1] Alt, H. W. & Caffarelli, L. A., Existence and regularity for a minimum problem with

free boundary. J. Reine Angew. Math., 325 (1981), 105-144.



12 GEORG S. WEISS EJDE-2004/44

[2] Alt, H. W., Caffarelli, L. A. & Friedman, A., Abrupt and smooth separation of free

boundaries in flow problems. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 12 (1985), 137-172.

[3] Alt, H. W., Caffarelli, L. A. & Friedman, A., Axially symmetric jet flows. Arch. Rational
Mech. Anal., 81 (1983), 97-149.

[4] Buckmaster, J.D. & Ludford, G.S.S., Theory of laminar flames, Cambridge University

Press, Cambridge-New York, 1982.
[5] Caffarelli, L. A., Jerison, D. & Kenig, C., to appear.

[6] Ekholm, T., White, B. & Wienholtz, D., Embeddedness of minimal surfaces with total

boundary curvature at most 4π. Ann. of Math., 155 (2002), 209-234.
[7] Federer, H., Geometric measure theory, Springer, Berlin-Heidelberg-New York-Tokyo, 1969.

[8] Flucher, M., An asymptotic formula for the minimal capacity among sets of equal area.

Calc. Var. Partial Differential Equations, 1 (1993), 71-86.
[9] Giga, Y. & Kohn, R. V., Characterizing blowup using similarity variables. Indiana Univ.

Math. J., 36 (1987), 1-40.
[10] Gilbarg D. & Trudinger N.S., Elliptic partial differential equations of second order.

Springer, Berlin-Heidelberg-New York-Tokyo, 1983.
[11] Ishige, K. & Mizoguchi, N., Blow-up behavior for semilinear heat equations with boundary

conditions. Differential Integral Equations, 16 (2003), 663-690.
[12] Karakhanyan, A. Kenig, C. & Shahgholian, H., The behavior of the free boundary near

the fixed boundary for a minimization problem. Preprint.
[13] Lacey, A.A. & Shillor, M., Electrochemical and electro-discharge machining with a thresh-

old current. IMA J. Appl. Math., 39 (1987), 121-142.
[14] Poon, C., Blow-up behavior for semilinear heat equations in nonconvex domains. Differential

Integral Equations, 13 (2000), 1111-1138.
[15] Weiss, G.S., Partial Regularity for a Minimum Problem with Free Boundary. J. Geom. Anal.,

9 (1999), 317-326.
[16] Weiss, G.S., Partial regularity for weak solutions of an elliptic free boundary problem. Com-

mun. Partial Differ. Equations, 23 (1998), 439-457.
[17] White, B., Half of Enneper’s surface minimizes area. Geometric analysis and the calculus of

variations, 361-367, Internat. Press, Cambridge, MA, 1996.

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,

Meguro, Tokyo, 153-8914 Japan
E-mail address: gw@ms.u-tokyo.ac.jp


