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Abstract 
While numerous artificial neural network (ANN) models have been electronically 
implemented and simulated by conventional computers, optical technology provides a far 
superior mechanism for the implementation of large-scale ANNs. The properties of light 
make it an ideal carrier of data signals.  With optics, very large and high speed neural 
network architectures are possible.  Because light is a predictable phenomenon, it can be 
described mathematically and its behavior can be simulated by conventional computers.  
A hologram is in essence a capture of the light field at a particular moment in time and 
space.  Later, the hologram can be used to reconstruct the three dimensional light field 
carrying optical data.  This makes a hologram an ideal medium for capturing, storing, and 
transmitting data in optical computers, such as optical neural networks (ONNs).  
Holograms can be created using conventional methods, but they can also be computer 
generated.  In this paper, we will present an overview of optical neural networks, with 
emphasis on the holographic neural networks.  We will take a look at the mathematical 
basis of holography in terms of the Fresnel Zone Plate and how it can be utilized in 
making computer generated holograms (CGHs).  Finally, we will present various 
methods of CGH implementation in a two layer holographic ONN. 
 
1.  Introduction 
A multitude of neural network models have been designed for and simulated by 
conventional computers and special-purpose computational hardware.  They have also 
been implemented using digital electronic technology.  However, most electronic 
technologies fall short of providing a suitable medium for producing circuits for very 
high density neural networks composed of millions of neurons with parallel processing 
architectures.  Among other things, a prominent limiting factor for an achievable 
minimum size for a neural network's electronic circuitry lies in the minimum spatial 
requirements for physically interconnecting the neurons.  The number of interconnections 
in a fully-connected network is equal to the square of the number of neurons.  A two-
layer, fully-connected network of 10

4
 neurons, for example, would require 10

8
 

interconnections, which is beyond the state-of-the-art electronic technology.  If our goal 
is to build large-scale artificial neural networks (ANNs) capable of producing a 
conglomerate of complex functions, we need to find an alternative form of 
implementation. 
 
1.1  Background in Optics 
The solution lies in the optical implementation of ANNs.  Optics is the study of the 
generation, propagation, and detection of electromagnetic radiation in the visible 
spectrum of light and its practical applications. Light is a predictable phenomenon with 
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definite properties of reflection, refraction, and diffraction, in different mediums.  The 
predictable properties of light can be calculated, using the laws of physics, for any given 
medium and its geometry.  The light may be coherent, as in laser light, or incoherent, as 
in normal white light.  Light can be easily controlled in its intensity and direction, and it 
can be focused onto microscopically small regions.  Thus, light becomes a natural 
medium for data signals that can be used to build computing mechanisms, including 
neural networks.  While optical technology has been utilized in a broad range of 
industrial applications, it has particularly been responsible for major advances in the 
computer industry.  From laser CDs to holographic storage devices, from high bandwidth 
fiber optic lines to optical analog networking, optics has pushed the computer industry to 
ever greater heights, even while optical computing is still in its infancy. 
 
1.2  Holographic ONNs and the Focus of this Paper 
Much progress in the area of optical ANNs has been made in the last decade.  This paper 
serves to provide an overview of the field of optical neural networks (ONNs), focusing 
on the holographic ONNs.  The main component of any holographic network is the 
hologram.  In addition to conventional methods, holograms can also be generated using a 
computer.  The main focus of this paper is the formulation of such computer generated 
holograms (CGHs) and the mathematical derivation necessary in building an application 
that will allow generation of CGHs of a single point to as many points that may comprise 
the object.  After exploring the physics of holograms, we will explore the programming 
issues concerning computer generated holograms, and describe an architecture for the 
implementation of plane CGH within an ONN. 
 
2.  Benefits of Holography 
Many of the optical and opto-electronic devices incorporate holography, which provides 
further advantages and allows model designs that otherwise would be very expensive or 
altogether not even possible.  With the holographic technology at hand, establishing and 
cloning high order interconnection weight matrices can be an inexpensive operation.  In 
many of the integrated opto-electronic systems where the interconnections are confined 
to one dimension, interconnections can easily be programmed into the system using 
holograms in the plane of the waveguide [Feldman, et. al., 1988].  Holograms are also 
utilized in optically programmed electronic interconnection systems where the 
interconnections are controlled by photoconductivity.  As many as 106 interconnection 
patterns can be stored on holograms within a Page Oriented Holographic Memory and 
called forth at will to reconfigure the interconnections  [Agranat, et. al., 1988].  Also, the 
read/write ability of volume holograms, implemented with volumetric photorefractive 
crystals, make volume holograms ideally suited for real-time implementations of neural 
network models.  Another area in which holography plays a significant role is in modular 
neural networks where an assembly of specialized neural network models compete for 
dominance in an environment of various problem domain classes [Minsky 1986].  Thus 
holographic memories used in ONNs architectures show a high degree of 
reconfigurability and parallelism unmatched by any electronic system. 
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3.  Holography: An Overview 
Holograms have been used extensively in the optical implementation of ANNs.  It is vital 
to have a thorough understanding of the principles of holography in order to appreciate 
their use in various technologies including ONNs.  While the mathematical derivations of 
holograms will be covered in detail in a later section, the objective here is to provide an  
overview of the general aspects of holography. 
 
3.1  Historical Background 
Holography, a technique invented by Gabor in 1948 and further developed by Leith and 
Upatnieks, makes it possible to record the amplitude as well as the phase of the light field 
on to a high resolution photographic film [Gabor 1948], [Leith and Upatnieks 1963] 
[Kock 1975].  A hologram is simply an ultra high resolution photographic image 
recorded using special techniques.  Instead of using ordinary white light as in 
conventional photography, holography uses coherent laser light to illuminate the object 
during the photo recording process.  The same wavelength laser is necessary to view the 
recorded hologram.   
 
3.2  Holography Versus 2D Photography 
When light reflects off an object it travels outward in a straight line in a non-obtrusive 
free space.  This light carries with it the 3D information defining the object.  An 
observer's eye intercepts this light and from it abstracts 3D information about the object.  
Holography, in essence, is a technique devised to freeze the travelling light in its path at 
the film plane.  Then during the viewing of the hologram it is as if the original light is 
released and allowed to continue its journey just as it was prior to the capture.  Thus, an 
observer's eyes viewing the hologram are in essence intercepting the same reflected light 
propagating through space as if coming directly from the original object just as it would 
have been at the exact moment of the holographic recording.  This is the most important 
characteristic of holography--the ability to reconstruct the original object light wave.  
This is possible because in the holographic process the film records the amplitude 
(intensity) as well as the phase of the light field at the film plane.  In particular, the phase 
information preserves the data about the travelling direction of light beams.  This, in turn, 
pertains to the depth and orientation information, derived by the observer's visual system, 
of the various points of reflection on the surface of the object.   However, ordinary 
photographs are different in that they capture only the point intensities (2D information) 
of a 3D object.  Thus, an ordinary photograph is simply a new object itself: a picture--a 
painted abstraction of an object on paper.  This means when we look at an ordinary 
photograph, we are simply looking at the document describing the object because this 
light reflecting off the photograph carries to the eye information about the photograph 
itself.  It does not reconstruct the original light waves that carried the object information 
to the photographic plane at the time of recording.  The holographic film on the other 
hand, records the interference patterns caused by interfering wavefronts of coherent light 
beams at the film plane.  The physics of this phenomenon of wave interference at the 
holographic recording plane is further illustrated in a later section on the physics of 
holography.  The interference pattern is recorded on the holographic plate as pixel 
intensity variations forming an ultra high density data matrix with pixel size close to the 
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wavelength of light used.  As a result, the recorded information implicitly contains 
bothamplitude and phase information.  Having both, the amplitude as well as the phase, 
allows the reconstruction of the original light field carrying the object information.  When 
the processed holographic plate is illuminated with a laser equivalent to the reference 
beam of the same original wavelength, a three-dimensional image of the original object 
reappears.  Actually, what happens is that the reference (reconstruction) beam propagates 
through the interference gratings in the film and by reverse convolution the original 
object wave is reconstructed at the holographic plane. This object wave travels on 
outward from the plate just as it would have at the time of the recording.  An observer in 
the path of this wave can thus view the original 3D object from varying angles of 
perspective--a phenomenon known as optical parallax.  Instead of a planar reference 
beam, the hologram could just as well be constructed with two different object waves.  In 
that case, when one object wave is reflected onto the hologram, the other object wave can 
be derived.  This way various images can be holographically associated.  The great ability 
of holograms to be able to store vast amounts of information and then recall immediately 
on demand suggests that a hologram is an ideal medium for neural network applications. 
 
4.  ANNs and ONNs 
In the recent years there has been a huge influx of interest toward artificial neural 
network technologies, and optical neural networks have received much attention.  Much 
literature is available to aid in a thorough understanding ANNs [Yu 1993], [Simpson 
1992], [Hopfield 1982], as well as ONNs [Yu 1993], [Farhat 1989], [Midwinter and 
Selviah 1989], [Hsu, et. al., 1988], [Farhat 1987], [Soffer, et. al., 1986], [Farhat, et. al., 
1985].  In order to illustrate several key features of optical implementation of neural 
networks, it is useful to first explore the main features of a typical artificial neural 
network.  With this background, a straightforward transition to ONNs is easily made. 
 
4.1  The Artificial Neural Network 
Neural networks are intelligent systems.  They are information processing systems that 
accept inputs and produce outputs.  Any neural network is comprised of at least two 
physical components, namely, the neurons or processing elements (PEs) and the 
interconnections.  All PEs communicate with each other via weighted interconnections.  
The PEs are configured in layers such as input, output, and hidden layers.  Figure 1 
illustrates a typical multi-layer neural network.  
In addition to the input and the output layers, there can be zero to many hidden layers 
depending on the type and model of the network.  In addition to the input and output 
layers, hidden layers provide the necessary non-linearity to the solution space required in 
resolving many multidimensional non-linear problem spaces.  The dimensionality 
(number of PEs) of any layer depends on its use within the problem-solution space of the 
network.  It is important to note that all the PEs of a given layer operate in parallel and 
process their data synchronously, which in turn implies a simultaneous parallel data 
transmission across the weighted interconnections between any two layers.  The PEs can 
be interconnected in any desired pattern set forth by the design architecture for a given 
neural network model. 
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        Figure 1.  Artificial neural network architecture. 
 
While the mathematical function performed by a PE may depend on the particular neural 
network model architecture, the basic operation of any PE can be generalized by the 
representation in Figure 2.  Each PE in a given layer collects the values from all of its 
weighted input connections simultaneously and performs a predefined mathematical 
operation (typically a dot product followed by a thresholding function), and produces a 
single output value transmitted simultaneously to all the PEs whose inputs it is connected 
to. 

Figure 2.  Operation of a neural network processing element (neuron). 
 
In a given state, a layer of PE (e.g., an input layer) in the neural network is an abstraction 
of a data pattern describing the problem space.  The most outstanding characteristic of a 
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neural network is its ability to associate a given input pattern with the desired output 
pattern.  An ANN is able to capture (learn) each distinctive associative mapping of input-
output data pattern pairs and later quite efficiently reproduce (recall) the paired output 
pattern given its associated input.  Such systems are called associative networks.  One-to-
one association is very useful in various problem solutions; however, many solution 
domains demand the extraction of the non-linear relationships hidden within the complex 
associations of a problem domain.  Such non-linear problem-solution capabilities allow 
accurate predictions and emerging foresights we so relate to intelligence.  ANNs are able 
to de-coagulate the hidden non-linear relationships within a problem domain and capture 
such characteristics within their weight-matrix state.  This non-linear hyper-dimensional 
mapping capability can then be utilized by propagating an input pattern existing within 
the bounds of problem domain to receive its non-linearly associated output pattern. 
 
 
4.2  Limitations of Electronic Implementation of ANNs 
In implementing any neural network, the essential factors to address are how to establish 
the physical connections between PEs, storage and accessibility of weight values, process 
for weighting the inputs, the PE function (e.g., dot product computation of weighted 
inputs) and thresholding, and finally the parallel process synchronization issues.  In 
electronic implementation of a neural network, all connections have to be hardwired, the 
weights have to be stored separately on electromagnetic storage devices, and all the 
weighted inputs computed either by another intermediate processor or integrally 
processed by the neuron (PE) itself.  Real-time process synchronization, then, becomes a 
challenging issue in achieving computational efficiency.  All of this, in addition to 
numerous other factors discussed earlier, poses size-limiting design constraints and 
produces high order computation latencies. 
 
 
4.3  Optical and Opto-electronic Implementation of ANNs 
Optics offers many advantages in implementing artificial neural networks as opto-
electronic systems.  The interconnections can be established with focused light beams 
from one element to another.  Light does not suffer from cross-talk, so light beams can, in 
fact, intersect and superimpose each other without being affected.  Thus, numerous 
connections can be very densely packed.  Typically, laser beams are used for such 
connections and the beam intensity (proportional to amplitude2) can be analogous to the 
data value being transmitted.  At the transmitting end is a light source element and at the 
receiving end is a photo-detector that computes the intensity value of the intercepted light 
beam.  This information can then be further processed into the non-linear function and 
threshold computations via electronic calculating devices.  Thus, the most important 
function that light performs within an optically-implemented neural network is to 
establish free-space interconnections between processing elements. 
 
Another function of light within the implementation of ONNs results from its wave 
behavior.  Light, as a wave, has both phase and amplitude.  It is through the properties of 
phase and amplitude that light is able to convey information about the object off of which 
it is reflected, and this information can be captured in a holographic medium and used in 
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the implementation of ONNs.  The information-conveying capacity of holograms can 
play several key roles in optical neural networks. 
  
Light, as data transmitting medium, can be introduced into an opto-electronic neural 
network as a pattern of light modulated by electrical signals.  Spatial Light Modulators 
(SLMs) are opto-electronic devices comprised of an array of modulators that can be used 
to insert modulated pattern of light at any layer in the network.  While SLMs are ideal in 
serving as integrated opto-electronic PEs, very high density SLMs can be used for 
deriving dynamic holograms that serve as interconnection weight filters or associative 
memories.  Most ONN implementations, however, utilize ultra-high-density films as the 
2D holographic medium or photorefractive crystals for volumetric holograms [Hsu, et. 
al., 1988], [Soffer, et. al., 1986].  
 
The use of holographic techniques in the development of optical ANNs has been well 
documented and numerous implementations have been discussed in the literature [Liu 
1994], [Mikaelian 1994].  As discussed earlier, in neural networks communication 
between neurons is conducted through weighted connections.  In ONNs, it is necessary to 
have a means to store the synaptic weight values and perform weight related calculations 
somewhere along the light path between the transmitting input element and the receiving 
output element so as to determine the test for activation potential of the output neuron.  A 
hologram is ideally suited to provide a medium for not only the storage of weight values 
between each pair of input-output neurons but is inherently able to conduct the necessary 
calculations for weighted data throughput simply by the light transmitting through the 
hologram during the reconstruction phase.  While the weight values are directly a product 
of the varying intensities (a property of light associated with the distance from the 
emitting source), the calculations are performed by the mere holographic reconstruction 
process of light simply propagating through the recorded interference pattern gratings.  In 
a pure optical neural network, therefore, all operations can theoretically be performed at 
the speed of light.   
 
Various types of 2D and 3D holographic materials and techniques are used in 
holographic ONNs.  The nature of holographic wiring of the interconnections is only 
constrained by the optical properties of the material being used as the hologram storage 
medium.  Different materials offer different index changes and mechanical stability and 
power scattering efficiency.  For example, typical volume holographic materials offer a 
maximum index change of 10

-2
, which translates into an upper limit of 100 layers (each 

layer storing an individual 2D hologram) within a crystal of 1 cm thickness by an allowed 
change in phase thickness of approximately 100 wavelength units for the material 
[Midwinter and  Selviah 1989]. 
 
In considering the formation of modifiable optical interconnections, the holographic 
photorefractive crystals can meet the demand of high storage capacities and very fast 
response speeds while offering the much needed optical non-linearities between neural 
layers [Hsu, et. al., 1988], [Hopfield 1982].  While volumetric photorefractive crystals are 
best suited for volumetric holograms, the readily available two dimensional spatial light 



 

modulators (SLMs) are the opto-electronic devices that offer the speed and resolution, as 
well as the necessary non-linearities mediated by electronic effects.  High resolution 
SLMs are also well suited in implementing holograms into the network. 
 
5.  Spatial Light Modulators in Opto-electronic ONNs 
In electronics, the processing elements are electronic circuits built out of logical gates.  
These circuits perform the neuronal calculations of activation functions, including the 
weight calculation and the output values.  The electronic processing elements have to be 
connected by a charge carrying material, e.g. a wire.  In optics, a beam of light is used to 
connect any two elements.  In a true optical ANN, light is emitted and received by 
elements that are in themselves the processing elements (neurons).  The means by which 
these optical processing elements perform neuronal calculations is inherent within the 
intensity amplitude and phase properties, as well as the refractive, defractive, and 
reflective properties, of the light-transmitting and photo-detective materials from which 
these elements are made.  In exploring the opto-electronic implementations of ANNs, it is 
useful to discuss the most commonly implemented component in optical ANNs, namely, 
the SLM.   
 
5.1  The Function of an SLM within an ONN 
A spatial light modulator (SLM) is simply a device used to modulate the light being 
transmitted through it.  There are numerous types of SLMs designed for a variety of 
tasks.  However, all of the SLMs play a basic role in optical computing, such that they are 
used to propagate a desired pattern of a laser beam either by passing that laser beam 
through the SLM or by reflecting the laser beam off of the SLM.  Figure 3 is a cross-
sectional diagram of a typical SLM utilizing a liquid crystal light modulator and a 
photoconductive detector sandwiched between transparent electrodes [Midwinter 1989]. 
 

Figure 3.  Cross-section of a spatial light modulator. 
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ctrically addressed SLMs (EA-SLMs) and optically addressed SLMs (OA-
LMs).   

es because these information-relaying 
vices transmit information at different speeds. 

LM which are especially 
romising in achieving high-processing speeds [Ichioka 1996]. 

 as the main component in very large holographic 
ssociative memory neural networks. 

ummary chart comparing many of the state-of-
e-art SLMs is given in [Ichioka 1996]. 

5.2  Traditional Classification of SLMs 
A variety of SLMs are currently available and can be traditionally classified into two 
types: ele
S
 
5.2.1  Electronically-Addressed SLMs 
EA-SLMs are used in electro-optic hybrid systems.  In general, an EA-SLM receives an 
electronic signal to modulate the light accordingly.  The EA-SLM used in a particular 
implementation must be chosen to at least match the speed of the independent electrical 
system from which it receives its signals.  For example, an EA-SLM may have to work 
synchronously in conjuction with a video monitor (LCTV) or LEDs with lenslet array 
system, a CCD camera or special photo-detector systems, and a computer, each of which 
may require different EA-SLM response tim
de
  
Liquid crystal displays (LCDs) are commonly used as EA-SLMs.  Recent advances in 
thin-film-transistor LCDs (TFT-LCDs) have resulted in high-resolution, high-contrast, 
full-color or grayscale displays.  TFT-LCDs, however, cannot function at speeds much 
higher than the standard TV video rate.  Alternative liquid crystal materials and 
implementations provide greater speeds.  EA-SLMs can also be produced using materials 
such as an opto-electronic thin film of PLZT or a magneto-optical material like iron 
garnet.  Deformable mirror devices are another type of EA-S
p
 
5.2.2  Optically-Addressed SLMs 
OA-SLMs receive optical signals to modulate the transmitted light.  The two most 
common materials used in OA-SLMs are liquid crystal and photorefractive crystal.  
Because of their speed, resolution, and contrast, ferroelectric crystal devices have become 
one of the most important developments in OA-SLMs.  OA-SLMs developed for optical 
parallel processing have been made using photorefractive crystals [Ichioka 1996].  
Innovations in OA-SLMs have been the largest advancement in achieving realtime 
modifiable volumetric holograms used
a
 
5.3  Functional Classification of SLMs 
Ichioka, et. al. suggest that as the technology for SLMs develops further, we may want to 
use a more functional type of classification--input SLMs, output SLMs, and processor 
SLMs.  They also propose a model for an adaptive SLM that can modulate both digital 
and analog signals.  Also an elaborate s
th
 
6.  A Holographic ONN Architecture 
A neural network model may be comprised of several interconnected layers.  The 
principle behind any two layers is the same and is similarly applied to all subsequent 
layers implemented in a specific ONN architecture.  Therefore, a single layer ONN will 
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 serve as the master base model for any 
dditional ONN layers comprising the system.   

 the 

Figur layer 
t

in  
directs the li stablishing 

weighted connections between every input and output elements. 

be the architecture under consideration and will
a
 
6.1  Single Layer Holographic ONN Architecture 
Figure 4 shows an ONN architecture with an input layer connected to the output layer 
through a holographic interconnection scheme.  The optical interconnections are achieved 
with a hologram of spatially variant light objects at varying depths from the output layer 
abstracted as weighted interconnections between the input and output neurons.  Each 
input neuron is a simple contraption that either blocks (neuron off) the input light beam 
(same as the coherent collimated reference light beam) or allows it to pass through 
(neuron on) and subsequently illuminates its associated hologram.  The input neuron can 
therefore be a simple optical shutter or an SLM driven by an externally controlled input 
mechanism such as a computer.  Each output neuron is a fan-in contraption that registers 
the collective intensities of the various point objects in its projected field of view.  A 
cylindrical lens can be used to collect the light rays and project them collectively onto
output neuron.   The output neuron can therefore be a simple photo-intensity sensing  

e 4.  A Holographic ONN architecture where the input layer is connected to the output 
hrough a holographic array.  Each input element is a shutter mechanism (controllable 
transparency) that may or may not let the reference beam through.  The holographic 

terconnection is either a 1D array of strip holograms or 2D array of point holograms which
ght onto the output layer detector through a cylindrical lens, thus e

 
 
device such as a commercial photo-detector specially designed for ONNs or a charged 
coupled devise (CCD) camera.  Finally, the interconnection hologram plane consists of a 
hologram of points matrix comprising of points at varying depths pertaining to their 
relative weighted interconnections.  However, using a single hologram for the entire set 
of interconnections may result in a reduced resolution through reverse convolution in the 
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ction single-point 
olograms for each input-output interconnection (shown in Figure 5b). 

 

 
Figure grams 

in a 1 x 3 array.    in a 5 x 3 array. 

ram would contain object points 
t equal distances from their respective output neurons. 

reconstruction phase.  As each input neuron is independent of the other neurons in the 
input layer and in its interconnections to the neurons of the output layer, each input 
neuron is connected to the output layer via its own hologram hereby called the strip 
hologram.  While the interconnection scheme may be established through a 1D array of 
one-input-to-many-outputs connection strip holograms (shown in Figure 5a), it is also 
suitable to implement a 2D array of one-input-to-one-output interconne
h

5a.  3 strip holograms  Figure 5b.  15 point holo

 
 
6.2  Strip Holograms 
A strip hologram interconnects a single input neuron to all the output neurons.  Thus a 
single strip hologram contains object points of varying depths, each of which pertains to 
the weighted interconnection between the input and the particular output it is connected 
to.  A strip hologram, therefore, will be a hologram of as many points as there are output 
neurons if the input is fully connected to the output layer.  If, however, the synaptic 
weights of all such connections are zero, then the strip hologram would be a blank 
hologram (i.e. solid black).  For a scenario in which all the connections between an input 
and all the outputs are weighted equally, the strip holog
a
 
To create a strip hologram, it is first necessary to evaluate the minimum separation 
between objects of different input neurons’ perspectives based on holographic plate size, 
diffraction noise created by the SLM (or emulsion), and other optical aberrations caused 
by the medium being used.  These could only be studied for specific physical devices 
used during the actual experiment.  Nonetheless, they are extremely important because 
they can be the limiting factors for the number of input-output neurons that can be used 
within the system without superceding an acceptable noise level that does not affect the 
neural network operations.  One way to overcome these limitations is to use a 2D matrix 
of single point object holograms, one hologram for each one-to-one interconnection.  
Individual blocks of SLMs would then display each point hologram in a real-time ONN 
implementation.  This method will also help to control the noise that would otherwise be 
created by light diffracting into adjacent output neurons. The minimum size of each 
hologram is limited only by the desired degree of optical resolution vs. aberration.  
However, keeping the hologram size to the minimum, and spacing the output neurons 
(photo-detectors) so that they are seated exactly opposite their relative interconnection 
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d; thus its light 
ys are prevented from reaching the neighboring output photo-detectors. 

 the CGH generation and implementation process, 
hich is described in the next section. 

he technique implemented in the HoloGen application presented in the next 
hapter.   

hologram axis, as well as distancing the object point behind the hologram plane at least 
some distance away (pertaining to the highest weight value) will further help in the noise 
reduction.  The reason noise is reduced is because such a method would be analogous to 
looking through a tube at the point situated inside the tube at the other en
ra
 
6.3  Mutiple Layer Holographic ONN Architecture 
To implement a holographic optical neural network of additional consecutively connected 
layers, the inner layers would be implemented with SLMs, rather than photo-detectors, so 
that the light received by the output SLM can be modulated to become the input for the 
next layer.  Each layer would have its own holographic interconnection weight matrix 
also implemented with SLMs.  Such an architecture can accommodate any of the ANN 
algorithms such as those for Backpropagation networks, Hamming nets, Bidirectional 
associative memories, etc.  Special measures would have to be taken, however, to design 
some of these networks that learn in a feedback process.  The feedback could either be 
handled electronically by computer control or by establishing additional loop backed 
layers to serve as the feedback network.  The important ingredient in any holographic 
optical network, therefore, is obviously
w
 
7.  Computer Generated Holograms 
Numerous methods have been used in synthesizing holograms [Siemens-Wapniarski and 
Givens 1968], [Waters 1966].   Synthetic binary holograms of nonexistent 3D objects 
was successfully produced as early as 1966 by James P. Waters by plotting black and 
white dots on a plotter and using photo-reduction to create the hologram [Waters 1966].  
The biggest concern for Waters was to introduce a method that would reduce the 
computational time in generating the CGH as well as in compensating for the negative to 
positive transfer process and thus he generated a sampling of only purely opaque or 
transparent portions comprising his synthetic holograms.  However, today's technologies 
offer much faster computation speeds allowing inexpensive grayscale CGH generations 
which is t
c
 
7.1  Fresnel Zone Plate Holograms 
In 1950, G. L. Rogers pointed out the similarity between a Gabor hologram and a Fresnel 
Zone Plate (FZP) [Rogers 1950]. Since then computer generated holograms have relied 
heavily upon the use of FZP holograms of single point objects at various depths to 
compute a superimposed multi-point CGH of a finite 3D object defined by the multiple 
points thereof.  A digital computer is used to generate the necessary intensity values for 
each pixel or emulsion grain.  These intensity points are then plotted in grayscale on a 
high definition printer to create the holographic negative of the interference pattern.  
Then an ultra high density photo-reduction process is employed to create the final 
positive film of the hologram.  Similarly, in real-time optical implementations, the 
intensity values are used as inputs into the SLM array comprising the hologram [Poon 
1993], [Hasmoto 1991].  Recently, similar attempts have been made in successfully 
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ideo [Onural, et. al., 
994], and holographic scanner technologies [Poon, et. al., 1996]. 

tical derivations necessary in formulating the computer program of a CGH 
pplication. 

n) wave and is denoted by 
r, yr, zr).  For an on-axis plane, reference wave zr is infinity. 

 

Figure 6.  General setup for an on-axis point object hologram 
production. 

demonstrating holographic TV [Macovski 1971], holographic v
1
 
It is therefore important to understand the principles of physics that describe holographic 
aspects employed in generating typical FZP holograms.  The following section describes 
the mathema
a
 
7.2  The Physics of Holography 
To be able to construct a CGH, it is necessary to understand the hologram recording 
process mathematically  [Poon 1996],  [Banerjee and Poon 1991], [Feitelson 1988], [Lee 
1978], [Smith 1969], [Siemens-Wapniarski 1968], [Goodman 1968], [Waters 1966].  Let 
the holographic recording medium be a two-dimensional plane (x, y), with its center as 
the origin of a Cartesian (x, y, z) coordinate system.  Since any 3D object can be 
described as a collection of points in 3D space, only a single point object will suffice in 
understanding the mathematical aspects of the holographic process.  The point object, 
denoted by (xo, yo, zo), can be abstracted as a plane light beam passing through a pinhole 
aperture.  Figure 6 shows a general setup for an on-axis recording of a point object 
hologram.  The setup consists of a collimated laser beam split by a beam splitter into two 
beams, one of which is deflected onto the pinhole aperture while the other is guided 
directly onto the hologram plane.  The light passing through the aperture forms a 
diverging spherical wave known as the object wave.  The wave projected directly onto 
the hologram plane is know as the reference (or reconstructio
(x

 
 
The two waves being mutually coherent interfere and form an interference pattern on the 
hologram plane.  The holographic recording of an interference pattern between the 
mutually coherent spherical object wave and the plane reference wave is illustrated in 
Figure 7.  On the holographic plate, where the two wave fields are in phase, they 
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htness or intensity variations on the 
olographic film emulsion plate.  Brightness or intensity of light is directly proportional 
 the square of the light's amplitude [Kock 1975]. 

 
 

Figure 7.  Interference pattern created on the holographic 
plate by the plane reference wave and the spherical point 

object wave. 

ribution of the reference plane wave on the hologram plane, 
en the field intensity distribution being recorded on the hologram is the square modulus 

of the interference given b

x, y; z=0) by a 
omplex function F(x, y), the light field F(x, y; z) at any other plane z distance away can 

reinforce, giving rise to constructive interference, and where the two wave fields are out 
of phase, they cancel, giving rise to destructive interference.  At each point (emulsion 
grain or pixel) on the holographic plate, the wave fields are either added or subtracted 
algebraically, for an occurring constructive interference or a destructive interference, 
respectively.  These constructive and destructive interferences at the hologram plane form 
ripple like patterns and are recorded as light brig
h
to
 

 
 
7.3  The Mathematical Basis of CGHs 
If O(x, y; z) is the field distribution of the spherical object wave on the hologram plane 
and R(x, y; z) is the field dist
th

y: 
 

I(x, y) = |O(x, y; z) + R(x, y; z)|2.      (1)  
 
The light field in terms of its amplitude and phase at a given plane (
c
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e described as [Goodman 1968], [Yu 1983], [Banerjee and Poon 1991]: 

F(x, y; z) = F(x, y) * h(x, y; z)    (2) 
 

he symbol * in (2) denotes convolution and h(x, y; z) is the free space impulse response 

h(x, y; z)  =  exp [i (2π/λ) r]     (3) 
 
where  r = sqrt(x2 t: 

   (4b) 

The complex function F(x,
 distance z from the hologram plane, can be described by an offset delta function: 

F(x, y)  =  δ(x - xo, y - yo).     (5) 
 

sing (4b) and (5), we can rewrite (2) as: 

F(x, y; z)  = exp [i (2π/λ) ((x - xo)2 + (y - yo)2)/2z].   (6) 
 

he point object field O(x, y; z) will be: 

 [i (2π/λ) ((x - xo)  + (y - yo) )/2z]  (7) 

while the reference field distributi
ntire hologram plane and is given as : 

R(x, y; z) = a       (8) 

where 'a' is a inally, substituting (7) and (8) 
into(1), we get: 

=  |exp [i (2π/λ) ((x - xo)  + (y - yo) )/2z] + a|   

plane wave (λ), the point image 
will be created.  Figures 8a, 8b, and 8c show examples of on-axis FZP holograms for 
points (xo = 0 mm,  yo = 0 mm, z = 5 mm),  (xo = 0.1 mm,  yo = 0.1 mm, z = 5 mm),  and  
(xo = -0.1 mm,  yo = -0.1, z = 10 mm mm), respectively. 

b
 

T
given by: 

 + y2 + z2).    Substituting r into (3), we ge
 

 h(x, y; z)  =   exp [i (2π/λ) sqrt(x2 + y2 + z2)]   (4a) 
 h(x, y; z)  ~   exp [i (2π/λ) (x2 + y2)/2z]            

 
 y), for the point-object-offset at (xo, yo) from the origin and at 

a
 

U
 

T
 

O(x, y; z) = F(x, y; z) = exp 2 2

 
on, in case of the on-axis recording, is uniform over the 

e
 

 
constant.  For simplicity, a is set to 1.  F

 
2      I(x, y) =  |O(x, y; z) + R(x, y; z)|  

2 2 2

    =  2 + 2cos[(2π/λ) ((x - xo)2 + (y - yo)2)/2z] 
     =  2 + 2cos[(π/zλ) ((x - xo)2 + (y - yo)2)]       (9) 
 
The holographic field distribution defined by (9) is called the Fresnel Zone Plate (FZP), 
with its center displaced at (xo, yo) from the center (0, 0) of the holographic plate (x, y).  
If such a Fresnel hologram is illuminated by an on-axis 



 

 

 
    Figure 8a.  Hologram   Figure 8b.  Hologram  Figure 8c.  Hologram 

    of a point at center.   of an off-set point.            of an off-set point. 
 
 

The FZP of (9) is an on-axis hologram.   To derive I(x, y) for an off-axis hologram, 
where the reference beam is at an angle θ to the hologram plane, the R(x, y; z) is given 
by: 
 

R(x, y; z) = exp [i (2π/λ) Sin θ x].    (10) 
 
In this case, the hologram I(x, y) is described as: 
 

       I(x, y)  =  |O(x, y; z) + R(x, y; z)|2 
=  |exp [i (2π/λ) (x2 + y2)/2z] + exp [i (2π/λ) Sin θ x]|2  

    =  2 + 2cos[(2π/λ) ((x2 + y2)/2z - x Sin θ)]      (11) 
 
Given the parameters in (11), each point (x, y) on the computer generated hologram 
image can be plotted.  I(x, y) would be directly correlated as the white intensity or 
transparency of the pixel in the image. 
 
For a multi-point object hologram, a FZP hologram for each individual coordinate object 
point is created separately and the (x, y) pixels of each image are superimposed in 
constructing the final image.  The I(x, y) of the final image is therefore an accumulative 
average I(x, y) = {Sum[I(x, y)1+ I(x, y)2+…I(x, y)n]/n} of the n points comprising the 
object. A hologram of any non-existing object can be constructed using this method. 
 
 
7.4  Advantages and Limitations of CGHs 
Computer-generated holography has both advantages and disadvantages over 
conventional photographic holography in the construction of holograms suitable for ONN 
architecture.  One advantage offered by CGH is the ability to construct non-real objects 
such as a single point.  In implementing ONNs, the lower-bound of the minimum size for 
an optical processing element is then only confined by the wavelength of the light used, 
where a single point would be the abstraction of a single particle-wave beam of light.   
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A second advantage innate to only a CGH process is the ability to defy the physical 
limitations of conventional holography such as light path obstructions.  For example, in 
conventional photographic on-axis holography, the reference beam and the object beam 
cannot be incident along the same path normal to the holographic plane without the use 
of a beam splitter.  The use of a beam splitter, however, will often produce unnecessary 
noise that is absent in the mathematically derived CGH.   
 
The most important disadvantage of a CGH is the immense demand it can make on both 
memory and computational power.  In conventional photographic holography, the film 
resolution is in the order of about 1500 lines per millimeter.  To produce a 10 cm square 
CGH of this same resolution would require 2.25x1010 pixel calculations.  For a 256 
grayscale composition, this would necessitate 1.8x1011 bits, or 22.5 Gigabytes, of 
memory.  This translates further into several folds more of computing cycles that would 
in most cases take many days of calculations. 
 
 
7.5  The Implementation of CGHs within ONN architectures 
A CGH is in reality nothing more than data.  Thus, a CGH, unlike a photographic 
hologram, can be transmitted through a network, even the Internet.  In a world which is, 
each day, becoming increasingly connected, the ability to transmit data at a very high 
speed over networks can be a real advantage, especially in the near-future modular 
network-connected ONN technologies.  However, a CGH in itself cannot be implemented 
into an ONN architecture;  the CGH data must be transferred to a photographic hologram 
or an SLM array.  The process of transferring a CGH to film involves creating a printout 
of the data, from which a photograph, reduced in size, can be made.  The resolution of 
print-based materials is quite low, so the printout that is made must be quite large, even 
for a hologram of less than a centimeter.  The plane of the hologram must be kept flat, so 
the lens of the camera used to take the photograph must be able to capture the image with 
no curvature or distortion of the image.  Either curvature or distortion introduced into the 
final holographic image would then require a processing method to readjust for the 
discrepancy, but such readjustment would be at the expense of compromised data.  
Another constraint is that most printers are not capable of exact and consistent 
grayscaling for every pixel, which also results in further noise.  A similar noise is again 
introduced during the photo-reduction process.  Beyond the above constraints, to generate 
a film-based hologram from a CGH is an involved process; it cannot be accomplished in 
real-time. 
 
The second means by which a CGH can be implemented into an ONN is through the use 
of SLMs to generate a hologram.  The main constraints in using SLMs is that each pixel 
of the hologram is mapped onto an SLM--an opto-electronic light-modulating device--
which is bounded in its minimum size by the available SLM technology [Hasmoto, et. al., 
1991], [Poon, et. al., 1993].   The current technology of SLMs is making great strides at 
obtaining highly compacted resolutions in the order of 300 lp/mm. An up-to-date chart of 
the current state of the art SLMs is given in [Ichioka 1996].  With SLM technology, CGH 
generated holographic weight matrices can be implemented in real-time, which is its 
greatest attribute to the ONN technology. 
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7.6  Single Point Versus Multiple Point Holograms 
The theoretical basis that is used to synthesize a CGH is the ability to mathematically 
derive the formulae to construct a single point object.  In practical holography, however, 
a hologram of a true point object cannot be physically constructed since a point is 
dimensionless.  Only hologram of a disk with finite diameter can be physically 
constructed, and in the limit, as the diameter of the disk approaches zero, the intensity 
distribution is found to be the same as calculated from the relationship in (11) [Waters 
1966].  On the other hand, in using the points method for CGH generation, we must 
depend upon the optical aberrations of the CGH in the reconstruction phase to give points 
physical dimension.  Although this should not pose any problem when considering its 
implementation within an ONN, it is important however, to have a consistent degree of 
light sensitivity observable across all photo-detectors used within the architecture.  
Therefore, it is necessary to establish precise correlation between the range of detectable 
photo-intensities and the sets of point object holograms to be used as the synaptic weight 
values for the interconnections in the ONN.  The weight values would be proportional to 
the depth intensity of detected light.  The design must entail compatibility among the 
SLM setups in conjunction with various photo-detectors available on the market for ONN 
implementations. The following one-point (Figure 9a), four-point (Figure 9b), five-point 
(Figures 9c-d) and nine-point (Figure 9e) patterns for the CGH base weight models may 
be used to accommodate the needs of a given design.  



 

 
 

 Figure 9a    Figure 9b 

   Figure 9c         Figure 9d  

        Figure 9e 
 

Figures 9a-9e show schematic arrangements of various number 
of points representing a single point object. 

 
 
Figures 10a - 10e are the holograms generated with the HoloGen application for the 
patterns of Figures 9a through 9e, respectively, with the samples generated at point object 
depths of 0.5 mm with an on-axis reference beam angle of zero radians and emulsion 
resolution of 0.003 mm/pixel. 
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          Figure 10a.    Figure 10b.  
 

          Figure 10c.    Figure 10d. 
 

       Figure 10e. 
 

Figures 10a-10e show corresponding holograms generated by the 
HoloGen application for point patterns shown in Figures 9a-9e. 

 
In most ONN implementations, the 9-point pattern of Figure 9e would be the best option 
for the object type in terms of achieving more stable and accurate intensity readings by 
the detectors under most given environments, thus allowing a better mapping from 
intensity to synaptic weights for the interconnections.  The 9-point pattern does not 
impose much higher limitation than the 1-point pattern on a system's minimum size 
parameters. In all cases of ONN implementation, the distance between the photo-
detectors and the interconnection hologram plane (along with any intermediary lens 
system used to focus the reconstructed object beam onto the photo-detectors) will 
determine the optimal size limitation for the detector plane.  In any case, the observed 
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object dimensions at the detector plane will be much smaller than the size of the object 
itself due to the depth of field between the object and the detector.  Also, as can be seen 
from the comparison of holograms of Figures 10a to 10e, the minimum size requirement 
for a single-point-hologram will not be any greater for a comparable resolution and object 
definition.  The optimum plate size of the hologram used in an ONN implementation is 
ultimately governed by the design requirements necessary in achieving a specified system 
sensitivity criteria that suffices the model architecture.  This is so because, to obtain a 
holographic image, a hologram plate can be as small as only a few emulsion grains to as 
big a plate as one desires.  Also, a holographic image can be reconstructed from any part 
of the hologram with a slight compromise in resolution and perspective. 
 
 
7.7  Strip Holograms in ONNs 
The innovatory concept of strip holograms described in this research is certainly the most 
significant aspect in achieveing higher resolution point intensity detections through the 
CGHs, which translates into more precise weight definitions within an ONN architecture.  
The conventional techniques of using a whole hologram for all the interconnections in the 
ONN architecture introduces unnecessary noise through additional wave interferences 
causing more diffusion and a lower resolution intensity detections.  An additional 
advantage of using strip hologram interconnection scheme is that during the learning 
stage only the strip hologram, for which the interconnection weights must be modified, 
would have to be regenerated.  This would reduce several computational latencies in 
comparison to the whole hologram technique and would result in a faster learning process 
in ONNs. 
 
When using strip holograms in ONNs, it is not necessary that the strip used within the 
array be the entire hologram square plate originally created with the HoloGen 
application.  Holograms retain complete information about the object in every part of the 
holographic emulsion.  So a strip hologram, used within the strip hologram array, can be 
a rectangular cutout of the larger original square hologram plate and it will still create the 
entire object image with only a slight compromise in overall resolution.  It is obviously 
best to use the central portion of the hologram to be able to better position the object 
along the horizontal plane, as well as to get the best resolution.  The outside fringes are 
highly condensed and thus contribute mainly to obtain a sharper focus of the image 
during the reconstruction phase.  However, if the outside portion is used as the master 
hologram, it may be at the expense of resolution. 
 
 
7.8  Point Holograms in ONNs  
In a one-to-one interconnection scheme, the input neurons may be interconnected with 
the output neurons with single point holograms.  This method will provide very high 
resolution intensity detection across the output detectors, since each hologram behaves as 
a Fresnel Lens providing a very high definition focus for a single point.  Another 
advantage of using single point hologram interconnection scheme is that during the 
learning stage only the few holograms, for which the interconnection weights must be 
modified, would have to be regenerated.  This would reduce several computational 
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latencies and would result in a faster learning process in ONNs. 
 
The disadvantage of single-point holograms is that it imposes a size constraint for the 
holographic interconnection latice, since it would require more SLMs than the strip-
hologram scheme for the same number of interconnections. 
 
 
8.  Conclusion 
Neural network architectures will certainly provide some of the most exciting advances in 
the computer industry of the next decade.  If, however, our goal is to build very large, 
high speed neural networks, then we must move from electronic to optical and opto-
electronic implementations of neural network architectures.  Optics offers numerous 
advantages in the implementation of ANNs: freespace, high density interconnections; 
absence of cross-talk; a naturally parallel and analog nature; and a very low power 
consumption.  Holographic devices, which have already made enormous contributions to 
the computer industry, are particularly well-suited for various incorporations within ONN 
architectures, notably SLM-based architectures. 
 
The two most important components in neural networks are the processing elements 
(neurons) and the interconnection weight matrix.  The output of each processing element 
in an ANN is computed via the sum of several products; hence, the primary ANN 
operation is the multiply-accumulate, which is required for every connection in the 
network.  ANNs typically have many connections, each of which has an associative 
weight that must be physically represented within the hardware architecture.  This 
presents a serious design problem as the size of the network scales up [Kaikhah 1995].  
Holographic optical neural networks provide elegant solutions.  While optics provides a 
medium for densely integrated large number of freespace interconnections and data 
communication at the speed of light, the hologram provides a solution for storing as well 
as actually implementing the weight matrix data in an efficient and highly condensed 
format between fully-connected neural layers. 
 
Holograms have been conventionally produced with lasers and film.  Holograms can also 
be generated with computers.  Since light and the holographic process can be described 
mathematically, it is possible to derive holograms using mathematical calculation and 
computer image rendering.  These computer generated holograms can then be 
incorporated within ONN architectures to establish densely packed weighted 
interconnections.  
 
Optics has come to play an important role in numerous technologies of the twentieth 
century, including that of artificial neural networks.  Already, many advances have been 
made in the optical and opto-electronic implementation of various ANN algorithms.  
Most ANN algorithms, however, have been developed with the idea that they would 
eventually be implemented with conventional electronic computers.  However, as we 
come to realize the vital role that ONNs will play in neural network computing and 
develop a much stronger understanding of the nature and scope of ONN architectures, we 
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can begin to develop neural network algorithms that are truly able to utilize the 
advantages that optics offers.  We are beginning to see a trend toward the use of neural 
networks throughout the computer industry.  It is with ANN architectures that computers 
will be able to move into problem domains that have hitherto only been the realm of 
intelligent biological systems.  With the advances in optical computing that are now 
underway and the breakthroughs that are certain to come in the near future, we can expect 
to see ONNs leading the way into the twenty-first century. 
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