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ABSTRACT Distributed energy resources are capable of enhancing grid resilience through island operations
in contingency. This paper proposes a multi-year, multi-criteria generation expansion model to achieve
distribution power resilience through renewable energy integration. In cases that distribution circuits or fuel
lifeline are destroyed post natural disasters, wind- and solar-based generators form island microgrids to
power the critical load. The goal is to determine the sizing, siting and maintenance of distributed energy
resources such that system cost and power shortage in contingency are minimized. Moment methods and
central limit theorem are used to characterize the spatial climate uncertainty, generation intermittency,
and voltage variation. The research contributions are twofold. First, the expansion model achieves triple
goals by meeting the annual load growth, reducing the carbon footprint, and enhancing the grid resilience
manifested as prevention and survivability. Second, we present an improved direct zigzag algorithm to search
for the Pareto solutions. Numerical examples show that the zigzag search outperforms evolutionary-based
algorithms as it can identify higher-quality non-dominant solutions by exploring a wider Pareto frontier.

INDEX TERMS Power resilience, island microgrid, prevention and survivability, zigzag algorithm, chance
constraint.

I. INTRODUCTION
At present physical hardening and distributed generation
(DG) are the two primary approaches to enhancing the
resilience of distribution grid. Adding redundant overhead
lines and backup generation, fortifying poles, trimming
vegetation, and preventive maintenance all fall into the hard-
ening category [1]–[3]. The second approach for resilience
attainment is to design and implement active distribution grid
in which microgrid systems or distributed energy resources
(DER), such as wind turbine, photovoltaic system, and bat-
tery energy storage, can operate in island mode to power
the critical load post the disaster attacks [4], [5]. The global
installation of DER units and microgrid capacity consis-
tently increases, making the distribution grid more active
in power supply. The study [6] shows that in 2012 alone,
the world-wide new installation of DER reached 142 GW,
representing 39% share of the new capacity addition of
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that year. The rise of active distribution systems opens
the way of deploying resilient smart grid via microgrid
generation [7], [8].

EPRI [9] interprets and defines the grid resiliency in
three aspects: 1) prevention, 2) survivability, and 3) recovery.
Prevention aims to avoid or mitigate the distribution system
damage. Survivability includes the use of backup, mobile or
distributed generating units to maintain some basic electricity
supply to critical loads. Recovery ought to provide for rapid
damage assessment, prompt crew deployment to damaged
sites and readily available replacement components.

This paper aims to design a resilient distribution system
against disastrous weather events through the progressive
integration of wind- and solar-based DER units. We pro-
pose a multi-criteria distributed generation expansion model
to achieve prevention and survivability performance. In our
model, prevention is achieved by allocating DER units and
adopting preventive maintenance. Survivability is attained
through the island microgrid operation in contingency.
In case that several or all distribution lines are damaged or
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disconnected, renewable DER units can be clustered and form
island microgrid systems to power the critical loads.

The remainder of the paper is organized as follows.
Section II reviews the probabilistic DG planning models.
Sections III performs the cost analysis of the DG system.
Section IV characterizes the voltage variation and bidirec-
tional power flow. In Section V amulti-criteria DG expansion
model featured with prevention and survivability is formu-
lated under generation uncertainty. In Section VI, we demon-
strate the computational efficiency of the zigzag optimization
algorithm in a 13-node distribution network. Section VII
concludes the paper.

NOMENCLATURE
Notation Description
i = index for the type of DER unit.
j = index for the node of the distribution network.
t = index for the planning year.
l = index for the power line between two adjacent

nodes.
m = number of DER types, for i = 1, 2, . . . , m.
n = number of nodes for placing DER, for j = 1,

2, . . . , n.
T = number of planning years, for t = 1, 2, . . . , T .
J = number of nodes along a feeder for j =

1, 2, . . . , J .
Pijt = power output of DER type i at node j in year t ,

a random variable.
Di = load of node i, random variable.
Ll = load of line l, and l = 1, 2, . . . , n-1, random

variable.
Pci = power capacity of DER type i.
r = annual discount factor.
aij = DER capacity cost ($/MW) for type i at node j.
bij = DER operating cost ($/MWh) for type i at

node j.
cij = carbon credits ($/MWh) for DER type i at

node j.
dij = subsidies ($/MW) of DER type i at node j.
tai = annual operating time for DER type i.
Fi(y) = cumulative distribution function for lifetime of

DER type i.
fi(y) = probability density function for lifetime of

DER type i.
Ri(y) = reliability function of DER type i.
ηi, βi = scale and shape parameters of Weibull reliabil-

ity function.
t fi , t

p
i = downtime duration for DER type i in a correc-

tive and a scheduledmaintenance, respectively.
ui(τi) = maintenance cost rate for DER type i.
Rl = resistance of link l, for l = 1, 2, . . . , n− 1.
Il = current in link l, for l = 1, 2, . . . , n − 1,

random variable.
Vj = voltage of node j, for j = 1, 2, . . . , n, random

variable.
VDG = nominal voltage of the distribution network.

cw, dw = scale and shape parameters of Weibull wind
speed distribution.

sm = maximum solar irradiance on PV in a year.
as, bs = shape parameters of the beta distribution.
λt = green energy coefficient in year t , for t = 1,

2, . . . ,T .
xijt = installation of DER type i at node j in year t ,

binary decision variable.
τi = maintenance interval for DER type i, decision

variable.
ω = random wind profile or solar irradiance.
ξ = random consumption activity of nodal power.

II. LITERATURE REVIEW
A large body of literature pertaining to DG siting and sizing
is available, and readers are referred to the recent survey by
Georgilakis and Hatziargyriou [10]. The main objective of
DG planning is to allocate DER units in distribution networks
to optimize the system performance, such as cost, reliability,
power quality and carbon emissions. In these studies, grid
resilience features such as prevention and survivability are not
explicitly incorporated in the DER siting and sizing model.

Recently, grid resilience is emerging as a key criterion
to measure how a power system can survive and withstand
under extreme weather or unusual events. Panteli et al. [11]
use a set of severity risk index to determine the application
of defensive islanding of power grid in extreme weather.
It boosts the grid resilience by splitting the network into stable
and self-adequate islands in order to isolate the components
with higher failure probability, especially cascading failures.
Kwasinski et al. [12] compare the availability of different
DER units upon natural disaster onslaught. Their study shows
that wind turbine (WT) and solar photovoltaic (PV) outper-
form fuel-based generators because the lifeline of fuel supply
is likely damaged after the harsh weather or earthquake.
Bie et al. [13] propose a quantitative framework along
with several metrics (i.e. LOLP and EDNS) to evaluate
power grid resilience, extending the scope of reliability
measures to resilience measures. Ma et al. [14] propose
a resilience-oriented design framework via line hardening,
backup DG, and use of automatic switches. A two-stage
mixed-integer stochastic optimization incorporating spatio-
temporal correlation uncertainties is formulated to minimize
the cost of investment, loss of load, DG operation, and
damage repairs. Liu et al. [15] use Monte Carlo simulation
to compare the grid resilience between network hardening,
topology reconfiguration and microgrid operations based on
IEEE 30-bus and 118-bus systems. Their study shows that
topology reconfiguration andmicrogrid operations could out-
perform network hardening under extreme events.

To continuously supply electric power under extreme
weather conditions, we propose a distributed generation
expansion model by minimizing the maximum nodal power
shortage when all or certain distribution lines are discon-
nected post disaster attack. The contributions of this paper
are highlighted in following:
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• The proposed DG expansion model achieves triple
goals: meeting the annual load growth, reducing carbon
footprint, and enhancing grid resilience manifested as
prevention and survivability. The novelty of our work is
to incorporate prevention and survivability features into
the traditional DG expansion process.

• Island microgrid operation is designed into the distribu-
tion system through onsite wind and solar generation.
Hence, it can avoid cascading failures resulted from
common cause failures, such as damaged fuel supply
infrastructure.

• We present an improved direct zigzag search algorithm
to solve the multi-criteria optimization model by explor-
ing a wider Pareto front.

III. SYSTEM RESILIENCE AND COST ANALYSIS
A. THREE LEVELS OF RESILIENCE
Figure 1 depicts five resilience states that evolve with
time upon the extreme event attack: reliability, degradation,
stabilization, recovery or repair, and renewed state. Let P(t)
be the power at time t , three different levels of grid resilient
behavior are explained below.

FIGURE 1. Resilient system vs. non-resilient system.

Level 1: If WT, PV and battery are adopted as DER in
the distribution grid, the grid is able to meet the load with
no significant performance degradation provided the battery
capacity is large enough. Such design is referred to as ‘fully’
resilient system as shown by path AD.
Level 2: If only WT and PV are adopted, P(t) is likely to

decline due to their intermittent generation and the poten-
tial loss of substation. Path AB represents the degradation
process. The design objective is to ensure that the average
power fromWT and PV remains atPd . In that way, the critical
loads within a node still can be energized from time t2, At t3
the system starts to recover and eventually return to P0 at t4.
Since critical loads are energized in [t1, t4], the grid operating
with path ABCD is also treated as a resilient system.
Level 3: If there is no WT and PV or other DER units,

P(t) will continue to drop after t2. The grid power eventually
crashes at t3 if all the lines are disconnected or the substa-
tion is damaged. Therefore, the system is considered as a
non-resilient design.

Our model is presented at Level 2 where the distribution
grid may lose certain amounts of power post the extreme

event. Since WT and PV units could accelerate the power
restoration by reducing the recovery time, this is another
value-added resilience feature of onsite generation. The
restoration becomes more difficult and takes a longer time
if the grid is completely down.

B. SYSTEM COST ANALYSIS
The cost of a DG system comprises of four main items:
installation, operating and maintenance, carbon credits, and
equipment subsidies. Let i be the index of available DER
types for i = 1, 2, . . . ,m. Further let xijt ∈ {0, 1} be the
binary decision variable representing DER type i is installed
at node j for j = 1, 2, . . . , n in year t for t = 1, 2, . . . ,T . The
present worth of DG cost over a period of T years, Ceq, can
be estimated by

Ceq =
T∑
t=1

(1+ r)1−t
m∑
i=1

n∑
j=1

xijtaijPci

, (1)

where aij is the capacity cost ($/MW) of DER type i at node j,
and Pci is the power capacity for DER type i. Parameter r is
the discount factor. Though wind and solar generation does
not require fuels, the costs of leasing the land for equipment
placement is treated as part of the capacity cost.

WT and PV are prone to field failures. System reliabil-
ity and availability can be improved through preventative
maintenance (PM) by pro-actively inspecting and replacing
aging components. Age-based PM is perhaps the most widely
used maintenance policy in power industry because of the
scheduling flexibility [16], [17]. The cost rate in [17] is
adopted to estimate the maintenance expense. Let Cmn be the
maintenance cost of the DG system over T years, then

Cmn =
T∑
t=1

(1+ r)1−t
m∑
i=1

n∑
j=1

tai zijtui(τi)

=

T∑
t=1

(1+ r)1−t
m∑
i=1

n∑
j=1

tai zijt

×

(
cfi Fi(τi)+ c

p
i Ri(τi)

τiRi(τi)+ Fi(τi)
∫ τi
0 fi(y)ydy

)
(2)

With

fi(y) =
(
βi

ηi

)(
y
ηi

)βi−1
e
−

(
y
ηi

)βi
. (3)

where τi is the decision variable representing the PM interval,
and ui(τi) is the maintenance cost rate of DER type i during a
PMcycle. Here tai is the annual operating hours of DER type i,
and zijt =

∑t
k=1 xijk is the cumulative DER units of type i

installed at node j through year t . Note that Fi(y) and fi(y) are,
respectively, theWeibull cumulative distribution function and
the probability density function, and ηi and βi are the scale
and shape parameters, respectively. Ri(τi) is the reliability of
DER type i, and Ri(τi) = 1-Fi(τi). Weibull distribution is
widely used to model the failure probability of WT and PV
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units [18], [19]. Finally, cfi is the cost of a corrective mainte-
nance action, and cpi is the cost of a scheduled maintenance
action on generation type i.
The operating cost of the distribution grid is the expenses

associated with the routine equipment checking, line inspec-
tion and trimming of vegetation. Based on [20], The operating
cost, denoted as Cop, is assumed to be proportional to the
energy generated

Cop =
T∑
t=1

(1+ r)1−t
m∑
i=1

n∑
j=1

tai zijtbijPijt

, (4)

where bij is the operating cost per MWh of electricity
generated from DER type i at node j. The justification
of Equation (4) is that tear and wear on turbines, solar PV,
and distribution circuits likely increase with energy genera-
tion [20]. Some studies treat annual operating and mainte-
nance cost as a fixed quantity, but others prefer to use cost
per MWh (e.g. $/MWh). In this paper Cop is assumed to be
proportional to the energy delivered.

Carbon credits and equipment subsidies aim to incentivize
the adoption of WT or PV units. Let cij be the credits given to
the DER type i at node j whenever one MWh of renewable
energy is produced. Also let dij be the subsidies per MW
capacity of DER type i at node j. The present worth of total
incentives received by the DG system over T years, denoted
as Cin, can be estimated as

Cin =
T∑
t=1

(1+ r)1−t
m∑
i=1

n∑
j=1

tai zijtcijPijt


+

T∑
t=1

(1+ r)1−t
m∑
i=1

n∑
j=1

xijtdijPci

. (5)

The incentives can be treated as the cost savings for renew-
able DG system, hence cij <0 and dij <0 in equation (5).

IV. VOLTAGE VARIATION ANALYSIS
A. BIDIRECTIONAL POWER FLOW
Though quite a few direct current (DC) transmission lines are
now in place worldwide, the majority of distribution grids
still operate in alternating current (AC) mode. To maintain
the voltage stability, capacitor banks are required and used as
the Volt/Var compensators in AC grid. Since electric vehicles,
battery storage, and solar PV use or generate DC power,
recently the design of DC distribution systems is receiving
much attention in academia and industry. A major advan-
tage of using DC grid is its simplicity in computation and
control. Comparative studies have been performed to justify
and validate the use of DC power flow model [21], [22], and
their conclusion is that DC power flow model is reasonably
accurate to represent AC power flow systems in strategic
planning, such as long-term generation expansion.

We adopt the DC power flow model from [23] to demon-
strate the multi-criteria DG expansion model on the basis that
the planning is performed at the strategic level for multiple

FIGURE 2. Direction of power flow under DER integration [23].

years. By referring to a single distribution line in Figure 2(a),
the DC current in link j is

Ij ∼=
1

VDG

J∑
k=j+1

(Dk − Pk ), for j = 1, 2, . . . , J − 1. (6)

where VDG is the nominal voltage of the DG system, Pk and
Dk are the DER power and the load of node k , and J is the
total number of nodes along the line. For instance, J = 4
in Figure 2. For a single distribution line, the index j for link
is identical to the upstream node index. Similarly, the nodal
voltage is given as

Vj ∼= VDG −
1

VDG

J∑
k=2

rk (Dk − Pk ), for j = 2, 3, . . . , J .

(7)

with

rk =



k−1∑
l=1

Rl for 2 ≤ k ≤ j− 1,

j−1∑
l=1

Rl for j ≤ k ≤ J .

(8)

Note Rl is the link resistance between nodes k and k + 1.
Both equations (6) and (7) allow for estimating the line
current and nodal voltage based on Dk and Pk .

For a DG system, the unidirectional power flow condition
always holds as long as the DER power is absorbed by the
local node. The power flows reversely only if the sum of DER
power exceeds the total demands of the downstream nodes.
Both equations (6) and (7) are applicable to unidirectional
and bi-directional power flow.

B. VARIATION OF VOLTAGE AND CURRENT
Note that Ij and Vj in equations (6) and (7) are random vari-
ables due to the uncertainty of Pj and Dj. Since the distribu-
tion function of Ij and Vj are difficult to derive, we propose a
moment approach to characterizing their stochastic behavior.
Let E[Ij] and Var(Ij) be the mean and variance of the current
of link j connecting nodes j and j+ 1. We have

E[Ij]∼=
1

VDG

J∑
k=j+1

(µDk−µPk ), for j = 1, 2, . . . , J − 1.

(9)

Var(Ij)∼=
1

V 2
DG

J∑
k=j+1

(σ 2
Dk+σ

2
Pk ), for j = 1, 2, . . . , J−1.

(10)

VOLUME 8, 2020 88425



H. Wang, T. Jin: Prevention and Survivability for Power Distribution Resilience: A Multi-Criteria Renewables Expansion Model

where, µDk and σ 2
Dk are the mean and variance of Dk of

node k . Similarly, µPk and σ
2
Pk are the mean and variance of

Pk of node k . The mean and variance of the voltage at node j,
denoted as E[Vj] and Var(Vj), can be obtained as

E[Vj]∼=VDG−
1

VDG

J∑
k=2

rk (µDk−µPk ),

for j = 2, 3, . . . , J . (11)

Var(Vj)∼=
1

V 2
DG

J∑
k=2

r2k
(
σ 2
Dk+σ

2
Pk

)
, for j = 2, 3, . . . , J .

(12)

In next section, we show that equations (9)-(12) are the
foundations in controlling the thermal stress and voltage
variations under generation and load uncertainty.

V. MULTI-CRITERIA DG EXPANSION MODEL
A. STOCHASTIC EXPANSION MODEL
In this section we formulate a multi-year, multi-criteria DG
expansion model based on the voltage and current analysis in
equations (9)-(12). The model captures spatial and temporal
variations, including nodal voltage, power intermittency, load
growth, and environmental concern. Subject to supply relia-
bility, power quality, thermal stress, and emission constraints,
the stochastic multi-objective optimization problem (MOOP)
jointly minimizes the system cost and maximize the power
resilience. Let x represents the DER sizing and siting of the
nodes; and τ stands for the maintenance time of DER units.
The MOOP, denoted as Model P1, is formulated as follows
Model P1:

Min: g1(x, τ )

= Eω
T∑
t=1

(1+ r)1−t

 m∑
i=1

n∑
j=1

(aij + dij)xijtPci

+

m∑
i=1

n∑
j=1

(bij+cij)zijt tai Pijt (ω)+
m∑
i=1

n∑
j=1

zijt tai ui(τi)


(13)

Min: g2(x, τ )

= Eω,ξ max
j

{
max

[
T∑
t=1

Djt (ξ )−
T∑
t=1

t∑
i=1

zijtPijt (ω), 0

]}
(14)

Subject to: Pr{Pt (x) < Dt } ≤ α1, ∀t. (15)

Pr{Vmin ≤ Vjt (x) ≤ Vmax} ≥ α2,

∀j, and ∀t. (16)

Pr{Ilt (x) ≤ Imax
l } ≥ α3, ∀l, and ∀t. (17)

Pr


m∑
i=1

n∑
j=1

zijtPij(ω) ≥ λt
n∑
j=1

Djt (ξ )

≥α4,
∀t. (18)

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λT ≤ 1, ∀t. (19)

zijt=
t∑

k=1

xijk , ∀i, ∀j and ∀t. (20)

xijt ∈ {0, 1}, τi ≥ 0, ∀i, ∀j and ∀t. (21)

In Model P1 the objective functions and the constraints
involve intermittent power Pijt (ω) and uncertain load Djt (ξ ),
where ω represents random wind and solar irradiance, and ξ
is the demand uncertainty. Objective function (13) minimizes
the expected present worth of the DG system. Objective
function (14) maximizes the resilience of the grid by mini-
mizing the maximum nodal power shortage if adjacent links
are destroyed in extreme event. This ensures that the grid
has the ability to withstand extraordinary and high-impact
low-probability events. A typical example is the N-90 failure
in Hurricane Sandy as opposed to the classical N-1 reliability
design criterion [24].

There are seven constraints inModel P1. Constraints (15) is
the reliability criterion defined as the loss-of-load probability
(LOLP). Constraint (16) defines the scope of the voltage vari-
ation, where Vmax and Vmin are the upper and lower voltage
limit, respectively. Constraint (17) states the thermal stress,
i.e. the current in link k , should not exceed the maximum
threshold Imax

l . Constraints (18) and (19) jointly define the
green energy coefficient (GEC) target λt to be achieved in
year t . GEC measures the percentage of energy generated
by WT and PV. The values of αi for i = 1, 2, 3, and 4 are
within [0, 1]. Note that zijt in constraint (20) is the cumu-
lative installation of DER type i at node j from year 1 to t .
Constraints (21) simply states that τi is nonnegative, and up to
one DER unit of type i can be placed at node j in year k . This
constraint, however, can be relaxed if more than oneDER unit
can be installed at the same node each year.

The resilience in Model P1 is manifested as prevention and
survivability. To protect the grid operation against extreme
weather, we rely on DER integration and preventive mainte-
nance strategy. This is reflected by constrain (18) where the
green energy coefficient λt increases with DER installation.
The survivability is explicitly incorporated in objective func-
tion (14) by minimizing the maximum nodal power shortage
in contingency.

B. DETERMINISTIC COUNTERPART
It would be difficult, if not impossible, to directly search for
the optimal x and τ given the random behavior of Pijt (ω)
and Djt (ξ ). To make P1 more tractable, we convert it into a
deterministic counterpart as follows.
Model P2:

Min: g1(x, τ )

= Eω
T∑
t=1

(1+ r)1−t

 m∑
i=1

n∑
j=1

(aij + dij)xijtPci

+

m∑
i=1

n∑
j=1

(bij+cij)zijt tai Pijt (ω)+
m∑
i=1

n∑
j=1

zijt tai ui(τi)


(22)

88426 VOLUME 8, 2020



H. Wang, T. Jin: Prevention and Survivability for Power Distribution Resilience: A Multi-Criteria Renewables Expansion Model

Min: g2(x, τ )

= Eω,ξ max
j

{
max

[
T∑
t=1

Djt (ξ )−
T∑
t=1

t∑
i=1

zijtPijt (ω), 0

]}
(23)

Subject to: µPt (x) ≥ µDt + Z1−α1 (σ
2
Pt (x) + σ

2
Dt )

1/2, ∀t

(24)

Vmin − Z(1−α2)/2σVjt (x) ≤ µVjt (x) ≤ Vmax

+ Z(1−α2)/2σVjt (x), ∀j and ∀t. (25)

µIlt (x) ≤ I
max
l − Zα3σIlt (x), ∀l and ∀t (26)

µPt (x) ≥ λtµDt + Zα4 (σ
2
Pt (x) + λ

2
t σ

2
Dt )

1/2, ∀t

(27)

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λT ≤ 1 (28)

zijt =
t∑

k=1

xijk , ∀i, ∀j and ∀t (29)

xijt ∈ {0, 1}; τi ≥ 0. ∀i, ∀j, and ∀t (30)

Both P2 and P1 have the same objective functions, but
constraints (24)-(27) are now in deterministic forms con-
verted from corresponding chance constraints (15)-(18). The
detailed conversion is provided in Appendix. The transforma-
tions are made based on the normality assumption on system
cost, voltage variation, and thermal stresses that are com-
monly used in existing works [25], [26]. Note that Z-score in
constraint (24) represents the Z-value of the standard normal
distribution. For instance, in constraint (24) Z0.95 = 1.64
given α1 = 0.05. Similar interpretations can be applied to
other constraints. In our case, Pt (x) is the aggregate DER
power of n nodes. According to the central limit theorem,
if nodal power and load have limitedmean and variance,Pt (x)
and Dt tend to be normally distributed if n is large enough.

C. SOLUTION ALGORITHM
Wemodified a newly developed multi-objective optimization
algorithm, called direct zigzag (DZZ) algorithm [27], and use
it to find the Pareto solution for P2. The results are compared
with a popular GA-basedMOOPmethod, i.e. Non-dominated
Sorting Genetic Algorithm or NSGA-II [28].

The key idea of the DZZ method is to search around the
Pareto front efficiently by employing local neighborhood
search procedures. The efficiency of a zigzag search is due to
the expectation that an existing solution path will effectively
pass through the Pareto front. But how to identify such a tight
solution path close to the Pareto front is crucial for the per-
formance of DZZ. Figure 3(a) illustrates that a DZZ search is
performed on a deterministic MOOP minimization problem
(i.e. DMOO) with two objective functions f1 and f2. DZZ first
employs a direct search (derivative-free optimization based
on Hooke Jeeves and neighborhood search) to find the first
Pareto optimum x1 with the minimal f1. DZZ then iteratively
performs zig and zag search to find a sequence of Pareto
solutions x1, x2, . . . , x9.

FIGURE 3. DZZ for Bi-objective optimization on f1 and f2.

As shown in Figure 3(b), for a bi-objective optimization
with two discrete variables, a zig search is simply a neigh-
borhood search around the current Pareto solution, say x,
and returns a new and feasible solution x0. A zag step sub-
sequently searches neighboring points by finding x10 and
x20 around the current candidate point for non-dominated
solutions with smaller f2 values. As shown in Figure 3(a),
a zag search stops when no smaller f2 can be found in the
neighborhood of the current candidate solution.

Since Model P2 belongs to the mixed integer programing
problem, we tailored DZZ to account for mixed type of
decision variables x and τ . Note that the decision variables of
installing DER units at nodes are binary, the pattern search in
the Hooke Jeeves direct search is not applicable; nevertheless,
pattern search for the continuous variables τ is still efficient.
Thus, we apply pattern searches after every Hooke Jeeves
exploration step for continuous variables.

Another enhancement of DZZ in this work is to use
a broader local neighborhood search for Hooke Jeeves
exploration step. The traditional Hooke Jeeves explo-
ration searches the solutions in the smaller neighborhood
N1(x) = {x ′ : |x − x ′|V ≤ 1} around the current candidate
solution x. To find the solutions along the ‘‘valley’’ that is not
necessarily aligned with coordinates, we consider evaluating
a larger neighborhood N2(x) = {x ′ : |x − x ′|V ≤ 2}.
When the decision variables are binary, each solution x ′ ⊂ N2
has exactly one or two elements (coordinates) with 0 or 1.
For example, if x = (0, 1, 1, 0, 0, 1, 0) and x′ = (0, 0, 1,
0, 1, 1, 0) ∈ N1(x) or x′ = (0, 1, 1, 1, 0, 1, 0) ∈ N2(x). Hence
the modified DZZ searches a much larger neighborhood for
each of its Hooke Jeeves exploration step.

VI. NUMERICAL EXPERIMENTS
A. NETWORK TOPOLOGY AND LOAD CONDITION
The topology of the radial distribution network is given
in Figure 6 with n = 13 nodes interconnected by 12 links.
This network is an expanded version of the 9-node system
originally in [29], [30]. Note that prior to DER integration,
a 30 MW substation is installed at node 1 with the nominal
voltage VDG = 33 kV.

We plan to expand a DG system for a period of three years
(i.e. T = 3). The demand of 13 nodes is characterized by the
mean and standard deviation, yet no assumptions are made
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TABLE 1. Mean and standard deviation (Stdev) of nodal demands.

TABLE 2. Line load of year 1 and resistance and current limits of links.

regarding the demand distribution. Table 1 lists the mean and
standard deviation of the nodal demands over three years. The
aggregate mean and variance of the distribution system are
also obtained and listed in the last row.

The load profile of 12 links can be estimated based on
the demands of its downstream nodes. Table 2 shows the
mean and standard deviation of the load of twelve links in
Year 1. Similar results can be obtained for Years 2 and 3.
In the table, Rl is the resistance of the link between two
adjacent nodes, and Imax

l is the maximum current that link l
can accommodate. Since Rl and Imax

l represent the physical
properties of the distribution lines, they usually do not change
over the planning horizon.

B. PARAMETERS FOR WT AND PV SYSTEMS
Assume five types of DER units are available for the place-
ment in the 13-node distribution network. These are 1.5 MW
WT, 2 MW WT, 2.5 MW WT, 1 MW PV, and 1.5 MW PV.
Data associated with equipment reliability, maintenance, and
repair are listed in Table 3. These values are obtained based
on theWT and PV reliability analysis reports in [18] and [31].
Note that η and β are the scale and shape parameters of
the Weibull reliability function of DER units. The cost for
a planned and a failure replacement is denoted as cpi and c

f
i ,

respectively, while tpi and t fi are the downtime duration in a
planned and a failure replacement. The expected lifetime of a

TABLE 3. Parameters for Weibull reliability, maintenance and downtime.

TABLE 4. Cost and characteristics of WT and PV n/a=not applicable.

DER unit is assumed to be h = 20 years, and the loan interest
rate is r = 5% compounded annually.
Table 4 summarizes the cost items associated with equip-

ment, operation, carbon credits and subsidies for DER. In this
example, only PV receives carbon credits to compensate the
high installation cost, and no equipment subsidies are given
to WT and PV. All cost items are node-independent, meaning
aij = aik for given i and j 6= k , so do bij and cij. The unit of ai
and di is $/MW, and the unit of bi and ci is $/MWh. The last
three columns define the characteristic wind speeds of WT
power curve. Note that vc is the cut-in speed, vr is the rated
speed, and vs is the cut-off speed. The values of these critical
speed are based on the report from NREL [32].

In Table 5, the nodal wind speed follows theWeibull distri-
bution, and cw and dw are the corresponding scale and shape
parameter, respectively. Solar irradiance at each node follows
the beta distribution where as, bs and smare the distribution
parameters. Given the wind and solar distributions, methods
for computing the mean and the variance of WT and PV
power output are available in [25], [33]. The substation has
zero power variance because the electricity is supplied by
centralized power plants. To maximize the annual energy
throughput, all PV panels are oriented towards the south if
in the northern hemisphere. The PV efficiency is assumed

TABLE 5. Distribution of nodal wind speed and solar irradiance.
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to be ηs = 0.20, and the average operating temperature is
To = 45◦C . Unlike WT that operates in 8,760 hours a year,
the annual operating hours for PV is 4,380 hours on average.
The rated power of PV module is 120 W/m2 under clear sky
with direct sunshine.

Other parameters associated with the planning model are
specified as follows: α1 = 0.001, α2 = 0.9, α3 = 0.9,
and α4 = 0.9. In addition, we set Vmin = 0.95 VDG and
Vmax = 1.05 VDG, meaning nodal voltage varies within±5%
of its nominal value. The GEC target is λ1 = 0.1, λ2 = 0.2,
and λ3 = 0.3 over three years, respectively. To mimic
the elimination of conventional generation, we sequentially
reduce the substation capacity from 30 MW to 25 MW in
t = 2 years, and to 20 MW in t = 3 years.

We solve the example problem using DZZ and NSGA-II
algorithm, respectively. We choose NSGA-II as the bench-
mark out of two reasons. First, there are only very few
methods suitable for solving discrete MOOP problems, and
NSGA-II is generally available and applicable for MOOP
problems with binary variables and stochastic constraints.
In fact NSGA-II is often used to solve MOOP problems
arising from many different fields including power engi-
neering [34]–[36]. Second, we do not consider other MOOP
methods because, as studied in [27] and [37], a zigzag
search algorithm has been compared to a few other MOOP
methods including pareto front approximation [38] and
the normal-boundary intersection method [39]. The results
in [37] show that the zigzag search is more efficient than
some recently developedmethods, includingMO-COMPASS
algorithm, standing for multi-objective convergent optimiza-
tion via most-promising-area stochastic search [40]. Though
there are other bio-inspired evolutionary algorithms, such as
particle swarm optimization [41], they are mostly developed
for continuous problems and typically slow in convergence.

The total number of design variables for the 3-year plan-
ning model is 200, including 195 binary variables and 5 con-
tinuous variables. DZZ algorithm and NSGA-II method are
both implemented in Matlab computing environment. The
numerical experiments are carried out on a PC workstation
with 8G RAM and a 3.4GH CPU. We investigate two cases.
In the first case, all nodes are assumed to be fully discon-
nected under catastrophic weather event. In the second case,
only certain distribution lines are damaged post the extreme
weather. We run four independent replications of each algo-
rithm on the 13-node distribution network in Figure 6. The
optimization results are compared and analyzed in detail
below.

C. RESULTS FOR A FULLY DISCONNECTED NETWORK
In this case, it is assumed that all distribution lines are
damaged post disastrous weather event. Figure 4 shows the
NSGA-II optimization result for this case over a 3-year
horizon of renewables integration. The Pareto front
of 24 non-dominated solutions appears to be aligning along a
smooth curve. The population size is 500 and the number of
generation is 50 for NSGA-II.

Pareto solution

Dominated solution

FIGURE 4. NSGA-II optimization for model P2.

FIGURE 5. DZZ optimization for model P2.

Figure 5 depicts the optimization result of 55 Pareto solu-
tions based on DZZ. In DZZ a local search is applied to find
the first Pareto solution with the minimum cost of $62M.
Starting from this solution, DZZ applies a series of zigzag
search to identify a solution path that is closely along the
Pareto front. In that way DZZ can avoid evaluating many
feasible solutions that are far from the Pareto front region. The
optimal solutions cover a wide range of cost from $62M to
$230M, larger than the NSGA-II frontier. Both figures show
the maximum power shortage post extreme events decreases
from 10 MW to zero with the increasing system investment.
Table 6 summarizes the performance comparisons between
DZZ and NSGA-II.

TABLE 6. Performance comparison between NSGA-II and DZZ.

Figure 6 shows the detailed power generation and demand
at every node for a particular Pareto solution found by DZZ.
Optimal sizing, siting and maintenance of WT and solar PV
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FIGURE 6. Nodal voltage and power flow for a pareto solution in Year 3.

TABLE 7. A Pareto solution obtained by DZZ.

are listed in Table 7 with the bi-objective values (g1, g2) =
($125M, 3.88 MW). It shows that some nodes can pro-
duce more power than their demand, and the surplus power
indeed flows to their neighboring nodes, either downstream
or upstream. For instance, the DER units at Node 10 generate
4.1244 MWwhile its demand is only 2.1840 MW. Therefore,
an amount of power 1.9404 MW flows along the upstream
power line (i.e. reversely) to Node 9. Node 3 is another case of
which the surplus power goes to the downstream Node 4 and
to the upstream Node 2. For Node 3, the power line between
Nodes 2 and 4 has bidirectional power flow.

The power resilience in Figure 6 is manifested as preven-
tion and the survivability which are reflected in the allocated
DER power at each node. Take example of Table 7, the opti-
mal allocation of WT and PV capacity to each node is listed
along with the equipment maintenance interval. The nodal
mean power shown in Figure 6 actually demonstrates the
degree of survivability of the network. For instance, the mean
power of Node 2 is 3.2882 MW. If Node 2 is isolated because
its adjacent distribution lines are damaged, the local power
shortage is only 3.644-3.2882=0.3558 MW.
A main advantage of the non-dominant solution set over

a single objective optimization lies in the fact that the
decision-maker can choose a best comprised solution by
trading the cost with the network survivability. In Model
P2, the capability of network survivability is manifested by
the Pareto optimality front in Figure 5. If the network plan-
ner is willing to invest more budget on distributed power

FIGURE 7. Comparison between DZZ and NSGA-II based on four runs.

capacity, the maximum nodal power shortage can be further
reduced.

Figure 7 compares the optimization performance of
NSGA-II and DZZ algorithms applied for this example case
withmultiple replications. The plotted solutions (in the objec-
tive function space) from both algorithms are non-dominated
solutions among all the evaluated solutions. For comparison
purpose, we run both algorithms four times independently
with different initial solutions. For all the four runs of DZZ,
2,500 to 3,000 solutions are evaluated, while NSGA-II evalu-
ates about 25,000 solutions for each of its four runs. From the
results, we see that all four DZZ runs outperformNSGA-II by
locating better trade-off solutions and larger coverage of the
Pareto front.

Based on our numerical experiments, the total computing
times for both algorithms are approximately proportional to
the number of feasible solutions evaluated. The computing
time in addition to function evaluations in DZZ algorithm is
negligible because it employs neighborhood search. In other
words, both DZZ and NSGA-II spend the computing time
mainly in evaluating the objective functions. Since a much
small amount of feasible solutions are evaluated by DZZ
compared to NSGA-II, the DZZ requires less amount of
computational time.

D. PV COST AND CONFIDENCE LEVEL
Note that the solution listed in Table 7 indicates that PV is
not favorable compared to WT. This is because the capacity
cost of PV is much higher than those of WT. Suppose that PV
cost is reduced to $1.5M/MW and $1.0M/MW, respectively,
for 1 MW and 1.5 MW PV systems, optimal solutions show
that more PV units will be chosen and installed. Table 8 shows
a Pareto solution obtained under the reduced PV costs. There
are 14 PV1 and 17 PV2 units are now installed as opposed to
only 1 PV1 and 1 PV2 in Table 7.

Since the confidence levels in Equations (15)-(18) also
influence the system cost and the nodal power shortage.
By referring to Model P1, α1 represents the LOLP, and the
benchmark value in our numerical study is α1 = 0.001.
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TABLE 8. A solution obtained by DZZ under reduced PV capacity cost.

FIGURE 8. The pareto front under different value of α1.

A smaller α1 is always preferred as it results in a lower
probability of power shortage. By looking at Equation (15),
reducing α1 requires more installation of WT and PV units
locally, hence the system cost g1(x, τ ) will increase. We solve
Model P2 by reducing α1 to 0.00075 and 0.0005, respectively,
whereas other conditions remain unchanged. The correspond-
ing non-dominant solution sets are presented in Figure 8
along with the Pareto front of the benchmark solution.
Other confidence levels like α2, α3 and α4, represent the
nodal voltage, thermal stress, and renewables penetration,
respectively. If one increases any of these confidence value,
it is anticipated similar pareto frontiers like the case of α1 will
be obtained.

E. RESULTS OF PARTIALLY DISCONNECTED LINES
Extreme events breaking down all the distribution lines
are among the worse-case scenarios, but the probability of
such occurrence is very rare in reality. We consider several
realistic disruptive events due to severe weather or other
natural disasters that may cause some lines or components
to fail. To account for varying levels of potential disruptions,
for the studied 13-node network in Figure 6, we choose
three representative damaging events corresponding to catas-
trophic, disruptive, and low disruptive scenarios respectively.
More specifically, we consider three arbitrary scenarios under
different levels of disruptions: s1 = {(1, 2), (3, 4), (1, 5),
(5, 6), (1, 9), (1, 11)} has six links broken with probability

p1 = 0.1; s2 = {(1, 2), (1, 5), (6, 7), (1, 11)} has four links
broken with probability p2 = 0.3; and s3 = {(1, 5), (1, 9)}
has two links broken with probability p3 = 0.6. Note a
nodal pair in sk for k = 1, 2, and 3 represents a particular
link. Overall, we want to minimize the expected total power
shortage for all the network nodes. In this setting, the second
objective function g2 in Model P2 becomes:

g2(x, τ )

=Eω,ξ
T∑
t=1

∑
s∈S

max

∑
j∈s

[
Djt (ξ )−

m∑
i=1

zijtPijt (ω)

]
, 0

×ps.
(31)

where S ={s1, s2, s3} represents the set of three disruptive
scenarios being considered, and each scenario represents a
damaged network of disconnected clusters of nodes.

FIGURE 9. Pareto front for the three distructive scenarios.

We runModel P2 on the example problem with the consid-
eration of three disruption scenarios. Figure 9 shows the solu-
tions evaluated using both optimization algorithms. Note that
NSGA-II needs to evaluate much more solutions (∼20,000)
that are all inferior to those evaluated (∼2,000-3,000) in DZZ.
The results for this case also indicate that DZZ outperforms
NSGA-II again in terms of computational speed and solution
quality.

VII. CONCLUSION
This paper proposes a multi-year, multi-criteria distributed
generation expansion model to minimize the cost and max-
imize the power resilience against disastrous weather events.
A modified direct zigzag algorithm is adopted to search
for the optimal sizing, siting, and maintenance of DER
units. We enhance the distribution resilience in terms of grid
prevention and generation survivability in contingency. The
prevention is achieved by increasing the distributed genera-
tion power, reducing the substation capacity, and implement-
ing preventive maintenance program. The survivability is
achieved by minimizing the maximum nodal power shortage
across the entire distribution system. The proposed planning
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model is applicable to distribution networks where lines are
either fully or partially destroyed. In either case, wind- and
solar-based DER units are split into island microgrid systems
to power the critical loads. Since wind and solar genera-
tion does not rely on fossil fuels, this is advantageous over
fuel-based generating units as the fuel lifeline is likely to
be damaged in the aftermath of catastrophic events. Hence
the risk of cascading failures could be largely mitigated or
avoided using onsite renewable energy. The variations of
load, voltage and thermal stresses are characterized by chance
constraints through the central limit theorem.

Two observations are obtained from the numerical
example. First, the direct zigzag search is able to explore
a wider frontier and returns a set of non-dominant solu-
tions with higher quality compared with NSGA-II. Second,
the testing network indicates that 30 percent of renewable
penetration can be achieved sequentially in three years by
concurrently injecting WT and PV units, and reducing the
substation capacity. There are several potential extensions
of this work. For instance, the model can be formulated
and solved in a large AC network and the results could
be compared with the DC circuit. Another direction is to
expand themodel by incorporating fuel-basedDG or batteries
and analyze the tradeoff between the cost and the resilience
performance in various operating scenarios.

APPENDIX
Loss of load probability (LOLP) is defined as the probability
that the power supply drops below the load. We rewrite the
chance constraint (15) as follows

Pr{Pt (x) < Dt } ≤ α1, ∀t. (A1)

where, α1 is the acceptable LOLP limit. Define Y = Pt (x)−
Dt , then we have

Pr{Y < 0} ≤ α1, ∀t. (A2)

and the mean and variance of Y is

E[Y ] = E[Pt (x)]− E[Dt ] = µPt (x) − µDt (A3)

σ 2
Y = Var(Pt (x))− Var(Dt ) = σ 2

Pt (x) + µ
2
Dt (A4)

According to central limit theorem, Pt (x) and Dt follows
the normal distribution, so does Y . Therefore, the determin-
istic counterpart of constraint (A1) or (A2) is obtained as

E[Y ] ≥ 0+ Z1−α1σY , ∀t (A5)

where Z1−α1 is the z-score at (1-α1)×100% confidence for a
standard normal distribution. By substituting Equations (A3)
and (A4) into (A5), we have

µPt (x) ≥ µDt + Z1−α1 (σ
2
Pt (x) + σ

2
Dt )

1/2, ∀t (A6)

Similarly, under the normality condition the deterministic
constraints (25) and (26) for voltage variation and thermal
stress control are derived based on the corresponding chance
constraints (16) and (17), respectively.
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