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An elliptic equation with spike solutions

concentrating at local minima of the

Laplacian of the potential ∗

Gregory S. Spradlin

Abstract

We consider the equation −ε2∆u+ V (z)u = f(u) which arises in the
study of nonlinear Schrödinger equations. We seek solutions that are pos-
itive on RN and that vanish at infinity. Under the assumption that f
satisfies super-linear and sub-critical growth conditions, we show that for
small ε there exist solutions that concentrate near local minima of V . The
local minima may occur in unbounded components, as long as the Lapla-
cian of V achieves a strict local minimum along such a component. Our
proofs employ variational mountain-pass and concentration compactness
arguments. A penalization technique developed by Felmer and del Pino
is used to handle the lack of compactness and the absence of the Palais-
Smale condition in the variational framework.

1 Introduction

This paper concerns the equation

−ε2∆u+ V (z)u = f(u) (1.1)

on RN with N ≥ 1, where f(u) is a “superlinear” type function such as f(u) =
up, p > 1. Such an equation arises when searching for standing wave solutions
of the nonlinear Schrödinger equation (see [3]). For small positive ε, we seek
“ground states,” that is, positive solutions u with u(z)→ 0 as |z| → ∞. Floer
and Weinstein ([6]) examined the case N = 1, f(u) = u3 and found that for
small ε, a ground state uε exists which concentrates near a non-degenerate
critical point of V . Similar results for N > 1 were obtained by Oh in [10]-
[12]. In [3], del Pino and Felmer found that if V has a strict local minimum,
then for small ε, (1.1) has a ground state concentrating near that minimum. A
strict local minimum occurs when there exists a bounded, open set Λ ⊂ RN
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2 Spike solutions concentrating at local minima EJDE–2000/32

with infΛ V < inf∂Λ V . They extended their results in [4] to the more general
case where V has a “topologically stable” critical point, that is, a critical point
obtained via a topological linking argument (see [4] for a precise formulation).
Such a critical point persists under small perturbations of V . Examples are a
strict local extremum and a saddle point. This very strong result is notable
because the critical points of V in question need not be non-degenerate or
even isolated. Similar results have been obtained by Li [8], and earlier work
of Rabinowitz [13] is also interesting. The recent results of [1] and [9] also
permit V to have degenerate critical points.
A common feature of all the papers above is that V must have a non-

degenerate, or at least topologically stable, set of critical points. Therefore
it is natural to try to remove this requirement. That we must assume some
conditions on V is shown by Wang’s counterexample [15] - if V is nondecreasing
and nonconstant in one variable (e.g. V (x1, x2, x3) = 2 + tan

−1(x1)), then no
ground states exist. In [14] the author showed that ground states to (1.1) exist
under the assumption that V is almost periodic, together with another mild
assumption. Those assumptions did not guarantee that V had a topologically
stable critical point.

Aside from periodicity or recurrence properties of V , another approach is
to impose conditions on the derivatives of V . That is the approach taken here.
We will assume that V has a (perhaps unbounded) component of local minima,
along which ∆V achieves a strict local minimum. More specifically, assume f
satisfies the following:

(F1) f ∈ C1(R+,R)

(F2) f ′(0) = 0 = f(0).

(F3) limq→∞ f(q)/qs = 0 for some s > 1, with s < (N + 2)/(N − 2) if N ≥ 3.

(F4) For some θ > 2, 0 < θF (q) ≤ f(q)q for all q > 0, where F (ξ) ≡
∫ ξ
0 f(t) dt.

(F5) The function q 7→ f(q)/q is increasing on (0,∞).

Assumptions (F1)-(F5) are the same as in [3] and are satisfied by f(q) = qs,
for example, if 1 < s < (N +2)/(N − 2). Assume that V satisfies the following:

(V1) V ∈ C2(Rn,R)

(V2) DαV is bounded and Lipschitz continuous for |α| = 2.

(V3) 0 < V− ≡ infRN V < sup
RN

V ≡ V + <∞

(V4) There exists a bounded, nonempty open set Λ ⊂ RN and a point z0 ∈ Λ
with V (z0) = infΛ V ≡ V0, and

∆0 ≡ inf{∆V (z) | z ∈ Λ, V (z) = V0} < inf{∆V (z) | z ∈ ∂Λ, V (z) = V0}
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Note: A special case of (V4) occurs when Λ is bounded and V (z0) < inf∂Λ V ;
this case is treated, under weaker hypotheses, in [3]. A specific example of
(V4) is if N = 2 and V satisfies (V1)-(V4), with V (z1, z2) = 1 + (z

2
1 − z2)

2

for z21 + z
2
2 ≤ 1. Then ∆V (z1, z

2
1) = 8z

2
1 + 2 for z

2
1 + z

2
2 ≤ 1, so we may take

Λ = B1(0, 0) ⊂ R2 and z0 = (0, 0). Then V has a component of local minima
that includes the parabolic arc {z2 = z21} ∩ B1(0, 0), along which ∆V has a
minimum of 2 at (0, 0), with ∆V > 2 at the two endpoints of the arc.

We prove the following:

Theorem 1.1 Let V and f satisfy (V1)-(V4) and (F1)-(F5). Then there exists
ε0 > 0 such that if ε ≤ ε0, then (1.0) has a positive solution uε with uε(z)→ 0 as
|z| → ∞. uε has exactly one local maximum (hence, global maximum) point zε ∈
Λ, where Λ is as in (V4). There exist α, β > 0 with uε(z) ≤ α exp(−

β
ε |z−zε|) for

ε ≤ ε0. Furthermore, with V0 and ∆0 as in (V4), V (zε)→ V0 and ∆V (zε)→ ∆0
as ε→ 0.

For small ε, uε resembles a “spike,” which is sharper for smaller ε. The spike
concentrates near a local minimum of V where ∆V has a strict local minimum.
The proof of Theorem 1.1 employs the techniques of [3], with some refinements
necessary because V does not necessarily achieve a strict local minimum. Sec-
tion 2 introduces the penalization scheme developed by Felmer and del Pino,
and continues with the beginning of the proof of Theorem 1.1. These beginning
arguments are taken practically verbatim from [3], but are included, since the
machinery of the penalization technique is used in the remainder of the proof.
The reader is invited to consult [3] for more complete proofs. Section 3 con-
tains the completion of the proof, which is original. This part contains delicate
computations involving ∆V .

2 The penalization scheme

Extend f to the negative reals by defining f(q) = 0 for q < 0. Let F be the
primitive of f , that is, F (q) =

∫ q
0 f(t) dt. Define the functional Iε on W

1,2(RN )
by

Iε(u) =

∫
RN

1

2
(ε2|∇u|2 + V (z)u2)− F (u) dz.

Iε is a C
1 functional, and there is a one-to-one correspondence between positive

critical points of Iε and ground states of (1.1). It is well known that Iε and
similar functionals in related problems fail the Palais-Smale condition. That is,
a “Palais-Smale sequence,” defined as a sequence (um) with Iε(um) convergent
and I ′ε(um) → 0 as m → ∞, need not have a convergent subsequence. To get
around this difficulty, we formulate a “penalized” problem, with a correspond-
ing “penalized” functional satisfying the Palais-Smale condition, by altering f
outside of Λ.
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Let θ be as in (F4). Choose k so k > θ/(θ − 2). Let V− be as in (V3) and
a > 0 be the value at which f(a)/a = V−/k. Define f̃ by

f̃(s) =

{
f(s) s ≤ a;
sV−/k s > a,

(2.1)

g(· , s) = χΛf(s) + (1 − χΛ)f̃(s), and G(z, ξ) =
∫ ξ
0
g(z, τ) dτ . Although not

continuous, g is a Carathéodory function. For ε > 0, define the penalized
functional Jε on W

1,2(RN ) by

Jε(u) =

∫
RN

1

2
(ε2|∇u|2 + V (z)u2)−G(z, u) dz. (2.2)

A positive critical point of Jε is a weak solution of the “penalized equation”

−ε2∆u+ V (z)u = g(z, u), (2.3)

that is, a C1 function satisfying (2.3) wherever g is continuous. It is proven in
[3] that Jε satisfies all the hypotheses of the Mountain Pass Theorem of Am-
brosetti and Rabinowitz ([2]), including the Palais-Smale condition. Therefore
Jε has a critical point uε, with the mountain pass critical level c(ε) = Jε(uε).
c(ε) is defined by the following minimax: let the set of paths Γε = {γ ∈
C([0, 1],W 1,2(RN )) | γ(0) = 0, Jε(γ(1)) < 0}, and

c(ε) = inf
γ∈Γε

max
θ∈[0,1]

Jε(γ(θ)).

As shown in ([3]), because of (F4), c(ε) can be characterized more simply as

c(ε) = inf
u∈W 1,2(RN )\{0}

sup
τ>0

Jε(τu).

The functions g(z, q) and f(q) agree whenever z ∈ Λ or q < a. Therefore if u is
a weak solution of (2.3) with u < a on ΛC ≡ RN \ Λ, then u solves (1.1). Our
plan is to find a positive critical point uε of Jε, which is a weak solution of (2.3),
then show that uε(z) < a for all z ∈ ΛC.
For ε > 0, let uε be a critical point of Jε with Jε(uε) = c(ε). Maximum prin-

ciple arguments show that uε must be positive. Define the “limiting functional”
I0 by

I0(u) =

∫
RN

1

2
(|∇u|2 + V0u

2)− F (u) (2.4)

and
c = inf

u∈W 1,2(RN )\{0}
sup
τ>0

I0(τu). (2.5)

The equation corresponding to (2.4) is

−∆u+ V0u = f(u) (2.6)

We will prove Theorem 1.1 by proving the following proposition:
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Proposition 2.1 Let ε > 0. If uε is a positive solution of (2.3) satisfying
Jε(uε) = c(ε), then

(i) limε→0maxz∈∂Λ uε = 0.

(ii) For all ε sufficiently small, uε has only one local maximum point in Λ (call
it zε), with limε→0 V (zε) = V0

(iii) limε→0∆V (zε) = ∆0.

Proof of Theorem 1.1: Assuming Proposition 2.1, there exists ε0 > 0 such
that for ε < ε0, uε < a on ∂Λ. In [3] it is shown that if we multiply (2.3) by
(uε − a)+ and integrate by parts, it follows that uε < a on ΛC, so uε solves
(1.1). By the definition of a in (2.1), and the maximum principle, uε has no
local maxima outside of Λ, so uε has exactly one local maximum point zε, which
occurs in Λ.
Define vε by translating uε from zε to zero and dilating it by ε, that is,

vε(z) = uε(zε + εz).

Then vε is a weak (C
1) solution of the “translated and dilated” equation

−∆vε + V (zε + εz)vε = g(zε + εz, vε).

Let εj → 0. Along a subsequence (called (zεj )), zεj → z̄ ∈ Λ, with V (z̄) = V0
and ∆V (z̄) = ∆0.
Along a subsequence, vεj converges locally uniformly to a function v

0. Pick
R > 0 so v0 < a on RN \ BR(0). For large enough ε, vε < a on ∂BR(0). By
the maximum principle arguments of [3], for small ε, vε decays exponentially,
uniformly in ε. ♦

The proof of Proposition 2.1 will follow if we can prove the following state-
ment.

Proposition 2.2 If εn → 0 and (zn) ⊂ Λ with uεn(zn) ≥ b > 0, then

(i) limn→∞ V (zn) = V0.

(ii) limn→∞∆V (zn) = ∆0.

It is proven in [3] that uε has exactly one local maximum point zε for small
ε. Since uε solves (2.3), the maximum principle implies that uε(zε) is bounded
away from zero. Thus Proposition 2.2 and (V4) give Proposition 2.1(ii)-(iii).
To prove Proposition 2.2, let b and (zn) be as above. First we repeat the

argument of [3] to show that V (zn)→ V0: suppose this does not happen. Then,
along a subsequence, zn → z̄ ∈ Λ with V (z̄) > V0. Define vn by translating uεn
from zn to 0 and dilating by εn; that is,

vn(z) = uεn(zn + εnz). (2.7)
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vn solves the “translated and dilated” penalized equation

−∆vn + V (zn + εnz)vn = g(zn + εnz, vn) (2.8)

on RN , with vn(z) → 0 and ∇vn(z) → 0 as |z| → ∞. As shown in [3], (vn)
is bounded in W 1,2(RN ), so by elliptic estimates, (vn) converges locally along
a subsequence (also denoted (vn)) to v

0 ∈ W 1,2(RN ). Define χn by χn(z) =
χΛ(zn+ εnz), where χΛ is the characteristic function of Λ. χn converges weakly
in Lp over compact sets to a function χ, for any p > 1, with 0 ≤ χ ≤ 1. Define

ḡ(z, s) = χ(z)f(s) + (1− χ(z))f̃(s)

Then v0 satisfies
−∆v + V (z̄)v = ḡ(z, v) (2.9)

on RN . Define Ḡ(z, s) =
∫ s
0 ḡ(z, t) dt. Associated with (2.9) we have the limiting

functional J̄(u) =
∫
RN

1
2 (|∇u|

2 + V (z̄)u2) − Ḡ(z, u) dz. v0 is a positive critical
point of J̄ .
Define Jn to be the “translated and dilated” penalized functional corre-

sponding to (2.8), that is,

Jn(u) =

∫
RN

1

2
(|∇u|2 + V (zn + εnz)u

2)−G(zn + εnz, u) dz.

Clearly Jn(vn) = ε
−N
n Jεn(uεn). In [3] it is proven that

lim inf
n→∞

Jn(vn) ≥ J̄(v
0). (2.10)

Also, by letting w be a ground state for (2.6) with I0(w) = c (the mountain
pass value for I0, defined in (2.5) and using w as a test function for Jn, it is
proven that c ≥ lim infn→∞ Jn(vn). Thus J̄(v

0) ≤ c. Therefore, as shown in [3],
V (z̄) ≤ V0. This contradicts our assumption. Thus V (zn)→ V0. All the above
is the same as was proven in [3]. Next, we must show that ∆V (zn)→ ∆0. That
is the focus of the next section.

3 The effect of the Laplacian

Proving ∆V (zn) → ∆0 is a subtle and delicate problem. Making εn approach
0 is equivalent to dilating V , which has the effect of making local minima of
V behave more like global minima. This assists in finding solutions to (1.1).
However, making εn small reduces the effect of differences in ∆V . For this rea-
son, Theorem 1.1 is not only difficult to prove, but is not intuitively compelling,
either.
It is known ([7]) that a “least energy solution” of (2.6), that is, a solution w

with I0(w) = c, must be radially symmetric. We will need to exploit this fact. In
order to do this, we will need to work with the maximum points of uεn instead of
merely the (zn) as given in Proposition 2.2. We need the following concentration-
compactness result, which states that the sequence (uεn) of “mountain-pass type
solutions” of (2.3) does not “split”:
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Lemma 3.1 If (zn) ⊂ Λ, (yn) ⊂ RN , and b > 0 with uεn(zn) > b and uεn(yn) >
b for all n, then ((zn − yn)/εn) is bounded.

Proof: define vn(z) = uεn(zn + εnz) as in (2.7). Suppose the lemma is false.
Then, along a subsequence, |yn − zn|/εn → ∞. Let xn = (yn − zn)/εn. (‖vn‖)
is bounded in W 1,2(RN ) and |xn| → ∞, so we may pick a sequence (Rn) ⊂
N with Rn → ∞, |xn| − Rn → ∞, and ‖vn‖W 1,2(BRn+1(0)\BRn−1(0))

→ 0 as

n → ∞. Define cutoff functions ϕ1,2n ∈ C∞(RN , [0, 1]) satisfying ϕ1 ≡ 1 on
BRn−1(0), ϕ1 ≡ 0 on BRn(0)

C, ϕ2 ≡ 1 on BRn+1(0)
C, ϕ2 ≡ 0 on BRn(0), and

‖∇ϕ1‖L∞(RN ) < 2, ‖∇ϕ2‖L∞(RN ) < 2. Set v
1
n = ϕ1nvn and v

2
n = ϕ2nvn, and

v̄n = v
1
n + v

2
n = (ϕ

1
n + ϕ

2
n)vn.

Choose Tn > 0 so Jn(Tnv̄n) = 0. We claim that Tn is well-defined, and
bounded in n. Note that the existence of Tn must be checked for the penalized
functional Jn, because of the replacement of F with G. By elliptic estimates,
there exists an open set U ⊂ RN such that along a subsequence, v1n > b/2 on
U and U ⊂ (Λ− zn)/εn ≡ {z ∈ RN | zn + εnz ∈ Λ}. Let a be as in (2.1). For
t > 2a/b and z ∈ U , tv̄n(z) > tb/2 > a, so G(zn+ εnz, tv̄n) = F (tv̄n) > F (bt/2).
Therefore, for t > 2a/b,

Jn(tv̄n) = t2
∫
RN

1

2
(|∇v̄n|

2 + V (zn + εnz)v̄
2
n) dz −

∫
RN

G(zn + εnz, tv̄n) dz

≤
t2

2
(1 + V +)‖v̄n‖

2
W 1,2(RN ) −

∫
U

F (tv̄n)

≤
t2

2
(1 + V +)‖v̄n‖

2
W 1,2(RN ) − λ(U)F (tb/2),

where λ indicates the Lebesgue measure. By (F4), there exists C > 0 such that
for t > 2a/b, F (tb/2) > Ctθ. Therefore, for t > 2a/b,

Jn(tv̄n) ≤
t2

2
(1 + V +)‖v̄n‖

2
W 1,2(RN ) − Ct

θ. (3.1)

Since (v̄n) is bounded in W
1,2(RN ), this gives the existence and boundedness

of (Tn).
Since Jn(Tnv̄n) = Jn(Tnv

1
n) + Jn(Tnv

2
n) = 0, we may pick in ∈ {1, 2} with

Jn(Tnv
in
n ) ≤ 0. By (F5) and (2.1), the map t 7→ Jn(tv

in
n ) increases from zero at

t = 0, achieves a positive maximum, then decreases to −∞. We will see more
of this in a moment. Thus there exists a unique tn ∈ (0, Tn) with Jn(tnvinn ) =
maxt>0 Jn(tv

in
n ). We claim that tn and Tn − tn are both bounded away from

zero for large n: by (f1) − (f4) and (2.1), Jn(w) ≥
1
θ
min(1, V−)‖w‖2W 1,2(RN ) −

o(‖w‖2W 1,2(RN )) uniformly in n, so maxt>0 Jn(tv
in
n ) is bounded away from zero,

uniformly in n. It is easy to show that Jn is Lipschitz on bounded subsets
of W 1,2(RN ), uniformly in n. Since (Tn) is bounded, this implies that tn and
Tn − tn are both bounded away from zero for large n.
By definition of vn as a “mountain-pass type critical point” of Jn, we have

max
t>0

Jn(tv
in
n ) ≥ max

t>0
Jn(tvn).



8 Spike solutions concentrating at local minima EJDE–2000/32

Using the facts that ‖vn − v̄n‖W 1,2(RN ) → 0 as n → ∞, and (Tn) is bounded,
we have

lim inf
n→∞

Jn(tnv
in
n ) = lim inf

n→∞
max
t>0

Jn(tv
in
n )

≥ lim inf
n→∞

max
t>0

Jn(tvn)

= lim inf
n→∞

max
t>0

Jn(tv̄n) (3.2)

= lim inf
n→∞

Jn(tnv̄n)

= lim inf
n→∞

(Jn(tnv
in
n ) + Jn(tnv

3−in
n ))

≥ lim inf
n→∞

Jn(tnv
in
n ) + lim inf

n→∞
Jn(tnv

3−in
n ).

Now Jn(Tnv
3−in
n ) = −Jn(Tnvinn ) ≥ 0 and tn < Tn, so Jn(tnv

3−in
n ) ≥ 0. By

(3.2), lim infn→∞ Jn(tnv
3−in
n ) ≤ 0. Therefore Jn(tnv3−inn )→ 0 as n→∞.

Since Jn(w) ≥
1
θ
min(1, V−)‖w‖2W 1,2(RN ) − o(‖w‖

2
W 1,2(RN )) uniformly in n,

there exists d ∈ (0, lim infn→∞ tn) such that lim infn→∞ Jn(dv
3−in
n ) > 0. Since

d < tn and Jn(dv
3−in
n ) > Jn(tnv

3−in
n ) for large n, the map t 7→ Jn(tv

3−in
n )

achieves a maximum at some t′n ∈ (0, tn), and that maximum is bounded away
from zero.
Summarizing the important facts about the mapping t 7→ Jn(tv

3−in
n ), we

have shown that there exists ρ > 0 such that for large n,

(i) 0 < t′n < tn < Tn

(ii) (Tn) is bounded.

(iii) (Tn − tn) is bounded away from zero.

(iv) Jn(t
′
nv
3−in
n ) > ρ > 0

(v) Jn(tnv
3−in
n )→ 0

(vi) Jn(Tnv
3−in
n ) ≥ 0

From (i)-(vi) it is apparent that at some t∗n > t′n, the mapping t 7→ Jn(tv
3−in
n )

is at once decreasing and concave upward. But this is impossible: let n ∈ N and
w ∈W 1,2(RN ) \ {0}. Define ψ(t) = Jn(tw) for t > 0. Then

ψ′(t) = t

∫
RN

|∇w|2 + V (zn + εnz)w
2 dz −

∫
RN

g(zn + εnz, tw)w dz

= t

[∫
RN

|∇w|2 + V (zn + εnz)w
2 dz −

∫
{w 6=0}

g(zn + εnz, tw)

tw
w2 dz

]
.

By (F5) and (2.1), t 7→ g(zn+ εnz, tw)/(tw) is nondecreasing, so if ψ
′(t) ever

becomes negative, ψ′ is increasing for all time t after that, and the graph of ψ
is concave down. Therefore the behavior of Jn(tv

3−in
n ) as described in (i)-(vi)

is impossible, and Lemma 3.1 is proven. ♦
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As mentioned before, it will be advantageous to work with the maxima of
(uεn). Choose (yn) ⊂ R

N with

uεn(yn) = max
RN

uεn .

We will prove

∆V (yn)→ ∆0. (3.3)

By Lemma 3.0, ((yn − zn)/εn) is bounded, so yn − zn → 0. Thus (3.3) gives
Proposition 2.2(ii), completing the proof of Theorem 1.1. ♦

Along a subsequence, yn → ȳ ∈ Λ. By Proposition 2.2(i), V (ȳ) = V0. Since
is not apparent that ȳ ∈ Λ, we must proceed carefully. We will redefine the vn’s
like in (2.7), by translating uεn to 0 and dilating it. That is,

vn(z) = uεn(yn + εnz). (3.4)

Then vn is a positive weak solution, vanishing at infinity, of the “penalized,
dilated, and translated” PDE

−∆v + V (yn + εnz)v = g(yn + εnz, v).

Like before, (vn) converges locally uniformly to a function v0. We claim that v0
is actually a ground state maximizing at 0 of the autonomous limiting equation
(2.6). Proof: As before, define χn by χn(z) = χ(yn + εz). As before, along a
subsequence, χn converges weakly in L

p, for any p > 1, on compact subsets of
R
N to a function χ with 0 ≤ χ ≤ 1. Define ḡ by

ḡ(z, s) = χ(z)f(s) + (1− χ(z))f̃(s).

By the argument of Proposition 2.2, taken from [3], (vn) converges locally along
a subsequence to v0, a ground state of −∆v + V0v = ḡ(z, v). The functional
corresponding to this equation is J̄(u) =

∫
RN

1
2 (|∇u|

2+V0u
2)−Ḡ(z, u) dz, where

Ḡ(z, s) =
∫ s
0 ḡ(z, t) dt. As before, in (2.10), c ≥ lim infn→∞ Jn(vn) ≥ J̄(v0),

where c is from (2.5). J̄ ≥ I0, where I0 is the “autonomous” limiting functional
from (2.4), so

c ≤ max
t>0

I0(tv0) ≤ max
t>0

J̄(tv0) ≤ c,

and v0 is actually a ground state of (2.6). ♦

Not only does (vn) converge locally to v0, but it satisfies the following lemma.

Lemma 3.2 With (vn) as in (3.4), for any subsequence of (vn) there is a ra-
dially symmetric ground state v0 of (2.6) such that vn → v0 uniformly along a
subsequence and the vn’s decay exponentially, uniformly in n.
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Proof: If one establishes uniform convergence, the uniform exponential decay
follows readily, using a standard maximum principle argument found in [3].
Suppose the convergence is not uniform. Then there exist a subsequence of (vn)
(denoted (vn)) and a sequence (xn) ⊂ RN with |xn| → ∞ and limn→∞ vn(xn) >
0. Let d > 0 with d < v0(0) and d < limn→∞ vn(xn). For large n, d < vn(0) =
uεn(zn) and d < vn(xn) = uεn(zn + εnxn). Letting wn = zn + εnxn, we obtain
((wn − zn)/εn) = (xn), which is unbounded, violating Lemma 3.1.
To show ∆V (yn) → ∆0, we again argue indirectly. Suppose otherwise.

Then, along a subsequence, yn → ȳ ∈ Λ with

∆V (ȳ) > ∆0 . (3.5)

For x ∈ RN , define the translation operator τx by τxu(z) = u(z−x), that is, τxu
is u translated by x. Assume for convenience, and without loss of generality,
that

0 ∈ Λ, V (0) = V0, and ∆V (0) = ∆0.

We will prove that for large n,

sup
t>0

Jεn(tτ−yn/εnuεn) < Jεn(uεn) = sup
t>0

Jεn(tuεn), (3.6)

recalling the definition of Jε in (2.2), and how vn is defined from uεn in (3.4).
That is, translating tuεn back to the origin reduces the value of Jεn(tvn) because
V has lesser concavity at the origin. This occurs even though shrinking ε reduces
the difference in concavity. (3.6) contradicts the definition of uεn .
Pick T > 1 large enough so that for large n, Jn(Tvn) = ε−Nn Jεn(Tuεn) < 0.

This is possible by the argument of (3.1). Now (3.6) is equivalent to

sup
0≤t≤T

Jεn(tτ−ynuεn) < sup
0≤t≤T

Jεn(tuεn).

To prove the above, it will suffice to prove the stronger fact that for large n,
for all t ∈ (0, T ),

Jεn(tuεn) > Jεn(tτ−ynuεn).

Now, along a subsequence, vn → v0 uniformly, so by the definition of vn as a di-
lation of τ−ynuεn ((3.4)), uεn → 0 uniformly on R

N \Λ as n→∞. Thus for large
n and 0 ≤ t ≤ T , the definition of G gives G(z, tτ−ynuεn(z)) = F (tτ−ynuεn(z)
for all z ∈ RN , so

Jεn(tuεn)− Jεn(tτ−ynuεn)

=

∫
RN

1

2
t2
(
|∇uεn(z)|

2 + V (z)uεn(z)
2
)
−G(z, tuεn(z)) dz

−
[ ∫
RN

1

2
t2
(
|∇τ−ynuεn(z)|

2 + V (z)τ−ynuεn(z)
2
)
− F (tτ−ynuεn(z)) dz

]
≥
1

2
t2
∫
RN

V (z)(uεn(z)
2 − uεn(z + yn)

2) dz
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+

∫
RN

F (tuεn(z + yn)− F (tuεn(z)) dz

=
1

2
t2
∫
RN

(V (z + yn)− V (z))uεn(z + yn)
2 dz

=
1

2
t2εNn

∫
RN

(V (yn + εnz)− V (εnz))uεn(εnz + yn)
2 dz

=
1

2
t2εNn

∫
RN

(V (yn + εnz)− V (εnz))vn(z)
2 dz .

For n = 1, 2, . . ., define hn : R→ R by

hn(t) =

∫
RN

(V (yn + tz)− V (tz))v
2
n dz.

Since hn(εn) =
∫
RN
(V (yn + εnz)− V (εnz))v2n, we must prove that for large n,

hn(εn) > 0 . (3.7)

Assume without loss of generality that Λ was chosen so that there exists
ρ > 0 with

inf
Nρ(Λ)

V = V0, (3.8)

where Nρ(Λ) = {x ∈ RN | ∃y ∈ Λ with |y−x| < ρ}. We will prove the following
facts about hn:

Lemma 3.3 For some β > 0, for large n,

(i) hn ∈ C2(R+,R)

(ii) hn(0) ≥ 0

(iii) |h′n(0)|
2 ≤ o(1)hn(0)

(iv) h′′n(0) > β

(v) h′′n is locally Lipschitz on R
+, uniformly in n.

Here o(1) → 0 as n → ∞. Before proving Lemma 3.3, let us prove how it
gives (3.7). By (iv)-(v), there exists d > 0 such that for large n and 0 ≤ t ≤ d,
h′′n(t) > β/2. For t ∈ [0, d], a Taylor’s series expansion shows that for large n,

hn(t) ≥ hn(0) + h
′
n(0)t+

β

4
t2 ≡ ln(t). (3.9)

If hn(0) = 0, then by Lemma 3.3(iii), h
′
n(0) = 0, so (3.9) implies that hn(t) > 0

for all t ∈ (0, d), giving (3.7) if n is large enough that εn < d. If hn(0) > 0, then
by elementary calculus, ln attains a minimum value at t = −2h′n(0)/β, and the
minimum value is

min
R

ln = ln(−2h
′
n(0)/β) = hn(0)− h

′
n(0)

2/β ≥ (1− o(1))hn(0),

where o(1)→ 0 as n→∞. For large n, if hn(0) > 0 then ln(t) > 0 for all t ∈ R,
so hn(t) > 0 for all t ∈ (0, d) for large n, implying (3.7) if n is large enough so
that εn < d.
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Proof of Lemma 3.3 Statement (ii) is trivial, since hn(0) = (V (yn) −
V0)
∫
RN

v2n, and since zn ∈ Λ and yn − zn → 0, (3.8) implies V (yn) ≥ V0
for large n. (i) and (v) follow from Leibniz’s Rule, (V1)− (V2), and the fact that
the vn’s decay exponentially, uniformly in n. For j = 1, 2,

h(j)n (t) =

∫
RN

∑
|α|=j

(DαV (yn + tz)−D
αV (tz))zαvn(z)

2 dz.

Since (V2) holds, vn decays exponentially, uniformly in n, yn → ȳ, and v0 is
radially symmetric, we have

h′′n(0) =

∫
RN

∑
|α|=2

(DαV (yn)−D
αV (0))zαvn(z)

2 dz

→

∫
RN

∑
|α|=2

(DαV (ȳ)−DαV (0))zαv0(z)
2 dz

=

∫
RN

N∑
i=1

(DiiV (ȳ)−DiiV (0))z2i v0(z)
2 dz

=

∫
RN

N∑
i=1

(DiiV (ȳ)−DiiV (0))
1

N
|z|2v0(z)

2 dz

=
1

N
(∆V (ȳ)−∆V (0))

∫
RN

|z|2v0(z)
2 dz > 0

by assumption (3.5). Since Lemma 3.3(v) holds, we have Lemma 3.3(iv).

To prove Lemma 3.3(iii), we will need the following calculus lemma:

Lemma 3.4 Let U ⊂ RN and r > 0. Let V ∈ C2(Nr(U),R) with infNr(U) V ≡
V0 > −∞, |∇V | bounded on Nr(U), and D2V Lipschitz on Nr(U). Then there
exists C > 0 with

|∇V (z)|2 ≤ C(V (z)− V0) (3.10)

for all z ∈ U .

Proof: let B > 0 with |D2V (z)ξ · ξ| ≤ B for all ξ ∈ RN with |ξ| = 1. Also let
B be big enough so

B > |∇V (z)|/r

for all z ∈ U . Pick z ∈ U . If |∇V (z)| = 0, then (3.10) is obvious. Otherwise,
let d = |∇V (z)|/B < r. Define ϕ(t) = V (z − t∇V (z)/|∇V (z)|) for t ∈ [0, d]. ϕ
is C2, ϕ(0) = V (z), and ϕ′(0) = −|∇V (z)|. By choice of B and the fact that
Bd(z) ⊂ Nr(U), |ϕ′′(t)| ≤ B for all t ∈ [0, d]. Taylor’s theorem gives

ϕ(d)− ϕ(0) = ϕ′(0)d+ ϕ′′(ξ)
d2

2
≤ −|∇V (z)|d+Bd2/2 = −

|∇V (z)|2

2B
.
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Also ϕ(d) ≥ V0 because Bd(z) ⊂ Nr(U). Therefore,

|∇V (z)|2

2B
≤ ϕ(0)− ϕ(d) ≤ V (z)− V0 .

Lemma 3.4 is proven. ♦

To prove Lemma 3.3(iii), first note that, by the radial symmetry of v0, the
uniform exponential decay of vn, and the uniform convergence vn → v0,

|h′n(0)| = |(∇V (yn)−∇V (0)) ·

∫
RN

zv2n dz|

= |∇V (yn) ·

∫
RN

zv2n dz|

= |∇V (yn) ·

∫
RN

zv20 dz + ∇V (yn) ·

∫
RN

z(v2n − v
2
0) dz|

= |∇V (yn) ·

∫
RN

z(v2n − v
2
0) dz|

≤ |∇V (yn)| |

∫
RN

z(v2n − v
2
0) dz|

≤ o(1)|∇V (yn)|,

so Lemma 3.4 implies

|h′n(0)|
2 ≤ o(1)|∇V (yn)|

2 ≤ o(1)(V (yn)− V0)

≤ o(1)(V (yn)− V0)

∫
RN

v2n

= o(1)hn(0),

since
∫
RN

v2n is bounded away from zero. Lemma 3.3(iii) is proven. Thence
follow (3.7), (3.3), Proposition 2.2, and Theorem 1.1.

Remarks: Besides the results cited in the introduction, many important re-
sults for equations of type (1.1) have been found recently. For instance, the
work in [3]-[5] suggests that Theorem 1.1 could be strengthened by working on
a smaller domain than RN , or by weakening the hypotheses on V . It is natural
to try to extend Theorem 1.1 to cases where V is not C2, or to the case where the
second derivatives of V do not provide a condition like (V4), but higher-order
derivatives do.
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