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Riemann-Lebesgue properties of Green’s

functions with applications to inverse scattering ∗

Richard Ford

Abstract

Saitō’s method has been applied successfully for measuring potentials
with compact support in three dimensions. Also potentials have been
reconstructed in the sense of distributions using a weak version of the
method. Saitō’s method does not depend on the decay of the boundary
value of the resolvent operator, but instead on certain Reimann-Lebesgue
type properties of convolutions of the kernel of the unperturbed resolvent.
In this paper these properties are extended from three to higher dimen-
sions. We also provide an important application to inverse scattering by
extending reconstruction results to measure potentials with unbounded
support.

1 Introduction

The field of inverse potential scattering has matured over the last decade result-
ing in the emergence of a variety of effective techniques. Early work by Faddeev
[7] uses a high energy limit of the scattering amplitude which he shows con-
verges to the Fourier Transform of the potential for a certain class of potentials.
A different method that also utilizes the high energy data from the scattering
amplitude has been developed by Saitō and applied to general short-range po-
tentials in R3 [17], [18] and subsequently to Rn, n ≥ 2 [19]. Newton’s method
[14] exploits the reciprocity relations to reduce the inverse problem in R3 to the
Marchenko equation, which is subsequently shown to be uniquely solvable un-
der a variety of conditions on the potential. Newton’s method has subsequently
been generalized from R3 to R2 by Cheney [4] and to Rn by Weder [22]. Other
authors have been successful in generalizing the class of admissible potentials
to include certain types of singularities (see Päivärinta, Serov, and Somersalo
[15], Serov [20], [21]). Our interest lies specifically in Schrödinger operators
associated with measure potentials. Delta potentials and other highly singular
measure potentials have captured the interest of many authors, (e.g. [1], [3], [6]
and the references therein). The direct scattering problem has been solved in
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R
n for a broad class of measure potentials [8], [9], [10]. Inverse scattering for
measure potentials is not so well developed and few results are currently avail-
able. One approach that has produced results is that of Saitō, but modified
to accommodate reconstruction of the measure potential in the sense of dis-
tributions [11]. The results only apply in 3 dimensions and to potentials with
bounded support. Most of the inversion methods we have mentioned above de-
pend on the decay properties of the boundary value of the resolvent operator
in operator norm when viewed as an operator from weighted to unweighted Lp

spaces (usually p = 2). In stark contrast, the modified Saitō method relies on
certain Riemann-Lebesgue like properties of convolutions of the kernel of the
unperturbed resolvent operator. Essentially, the vibrations of the convolutions
annihilate the Born remainder shedding additional light on the importance of
the Born approximation. It has long been known that the Born approximation
to the scattering amplitude carries all of the essential information for recon-
struction for a wide variety of potentials. The kernel convolutions and their
properties provide evidence that this variety may be substantially wider than
results to date indicate. This paper shall address extending the results of [11]
regarding the kernel convolutions from 3 to n ≥ 3 dimensions. Applications
to the inverse scattering problem shall be illustrated by obtaining new recon-
struction results for measure potentials with unbounded support. An explicit
example is provided showing that even highly singular delta potentials can be
recovered through the modified Saitō’s method.

2 Results

Let H be the standard self-adjoint realization of the Laplacian on Rn and let
R(z) denote the associated resolvent operator, (z−H)−1. It is well known that
R(z) is an integral operator with kernel given by G(x, y;κ) = G(|x−y|, κ) where

G(r, κ) = i
4 (

κ
2πr )

n−1
2 H1n−1

2

(rκ), κ2 = z, imκ > 0 and H1ν is the Hankel function

of the first kind. Now let

J(r) =

∫
Sn−1

eirω·ω
′

dω′ . (2.1)

By Alsholm and Schmidt [2] we have that 4πi
(
2π
k

)n−2
(G(x, k) − G(x,−k)) =

J(k|x|) where k > 0. The primary result of this work is the following.

Theorem 2.1 Let ψ(x) ∈ C∞0 (R
n). Then for all x 6= y we have

lim
k→∞

kn−1
∫
Rn

J(k|x− ξ|)J(k|ξ − y|)ψ(ξ) dξ = 0 . (2.2)

The impact of this theorem on the inverse scattering problem lies in the
following observations. In the case of ordinary Schrödinger Operator scattering
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with short range potentials and valid generalized eigenfunctions, φ±(x, kω), the
scattering matrix, S(k), is given by

[S(k)f ](ω) = f(ω)−

∫ ∫
eikω·xφ+(x, kω

′)f(ω′)V (x) dx dω′ . (2.3)

When one views the the potential, |V (x)| as a weight defining a Hilbert space,
K = L2(Rn, |V (x)|), this operator takes the form,

S(k) = 1− γ(k)(1−Q+(k2))−1γ(k)∗ ,

where γ(k) is a mapping from K to L2(Sn−1) where Sn−1 denotes the unit
sphere in Rn. This mapping is sometimes referred to as a trace operator and is
given by

γ(k)f(ω) =

∫
Rn

e−ikω·xf(x)V (x) dx (2.4)

and Q+(k2) is the boundary value of the modified unperturbed resolvent oper-
ator mapping K to K given by

Q+(k2)f(x) =

∫
Rn

G(x− y; k)f(y)V (y) dy (2.5)

Under various limiting absorbtion principles the perturbed resolvent admits a
boundary value of its associated Green’s function, G+1 (x, y : k). The associated
modified resolvent operator is then given by

Q+1 (k
2)f(x) =

∫
Rn

G+1 (x, y; k)f(y)V (y) dy. (2.6)

The Marchenko-Newton, Saitō, and other inverse scattering methods essentially
require that this modified perturbed resolvent vanish in some sense as k →
∞. The Riemann-Lebesgue properties established in Theorem 2.1 can weakly
annihilate the Born remainder terms in the inner product between the scattered
and unscattered plane waves. This remainder is given in weak formulation by

−π

(
k

2π

)n−1 ∫
Rn

〈[γ(k)Q+1 (k
2)γ(k)∗e−ik(·)·x](ω), e−ikω·x〉ωψ(x) dx , (2.7)

with ψ(x) in C∞0 (R
n), and where the integration 〈·, ·〉ω is taken over the surface

of the unit sphere. As we will show in our application to measure potentials,
this remainder will reduce to

const.× kn−1
∫ ∫

G1(x, y; k)J(k|ξ − y|)J(k|x− y|)ψ(x)V (dξ)V (dy) dx (2.8)

which will vanish as k → ∞ under appropriate conditions on G1 due to the
Riemann-Lebesgue properties of J (which is independent of the potential) rather
than the decay of modified perturbed resolvent. The potential can therefore be
reconstructed weakly through the knowledge of the high energy scattering data
with the Saitō method. We will first carry out the details of this process in the
next section. The proof of Theorem 2.1 will then be carried out in section 4.
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3 Application to Inverse Scattering

Theorem 2.1 shall now be applied to the inverse scattering problem for a broad
class of measure potentials. This section will conclude with an explicit example,
the delta function on a sphere. Let us consider the Schrödinger equation with
real potential in Rn (n > 2). Throughout this section our measure potentials,
V (dx), will satisfy the following:

Assumption 1.

supy>M
∫
|x−y|>1 |x− y|

1−n
2 |V |(dx)→ 0 as M →∞ , (3.1)

supy>M
∫
|x−y|≤1 |x− y|

2−n|V |(dx)→ 0 as M →∞ , (3.2)

supy
∫
|x−y|<δ |x− y|

2−n|V |(dx)→ 0 as δ → 0 . (3.3)

Our conditions in Assumption 1 will allow for the possibility of highly sin-
gular measure potentials, V (dx), such as the delta function on a manifold. We
denote by K the space of square integrable functions under the measure, |V |(dx)
with norm and inner product given respectively by

‖f‖K =

{∫
|f(x)|2|V |(dx)

}1/2
, 〈f, g〉K =

∫
f(x)g(x)|V |(dx) . (3.4)

Let S be the Schwartz space of rapidly decreasing functions on Rn and S′ the
corresponding set of tempered distributions. Let K be the space of C∞0 (R

n)-
functions with the usual “test function” topology, i.e. fk → 0 in K if and only
if some bounded set contains all of their supports and the ∞-norm of fk and
all of its derivatives vanish. Let K′ be the set of continuous linear functionals
on K. We shall define A as the identification operator, Af(x) = f(x), from K
to K. It is shown in [8] that under Assumption 1, AR(z) extends to a bounded
operator from L2(Rn) to K. An important operator on the space, K is the
modified resolvent given by Q(z) = A[AR(z)]∗ so that for z = κ2, imκ > 0,

Q(z)f(x) =

∫
G(x, y;κ)f(y)V (dy) . (3.5)

It is also shown in [8] that there is a self-adjoint operator H1 satisfying

(H1u, v) = (u,Hv) +

∫
u(x)v(x)V (dx) u ∈ D(H1), v ∈ D(H) . (3.6)

We denote by R1(z) the associated resolvent operator, [z−H1]−1 and letQ1(z) =
A[AR1(z)]

∗. Under Assumption 1 the wave operators

W±(H1, H) = s− lim
t→±∞

eitH1e−itH

exist and are strongly complete and the scattering operator, S =W ∗
+W− exists

and is unitary. It is shown in [10] that there exists a family of unitary operators,
{S(k)}k>0 on L2(Sn−1) such that

[S(k)f(k, ·)](ω) = Ŝf(kω) f ∈ K (3.7)
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where Ŝ = FSF∗, F is the unitary Fourier Transform and kω are polar coordi-
nates in Rn. Modified trace operators, γ(k) and γ±(k) are defined by:

γ(k)f(ω) =

∫
e−ikω·xf(x)V (dx) (3.8)

γ±(k)f(ω) =

∫
φ±(x, kω)f(x)V (dx) , (3.9)

where φ± are the generalized eigenfunctions associated with H1. It is known
[10] that these are bounded operators from K to L2(Sn−1) under the conditions
in Assumption 1. Furthermore, we have the following representation of the
scattering matrix.

1− S(k) =
i

4π

(
k

2π

)n−2
γ+(k)γ(k)

∗. (3.10)

We will denote by V the linear functional associated with V (dx),

(V, u) =

∫
u(x)V (dx), u ∈ S. (3.11)

We denote by ν the linear functional defined by ,

(ν, f) =

∫ ∫
|x− y|1−nf(x)V (dy) dx, u ∈ S. (3.12)

Finally, we define the function, h(k, x) on (R+ × Rn) by

h(k, x) = 2πik〈(1− S(k))e−ikω·x, e−ikω·x〉ω (3.13)

where 〈·, ·〉ω is the inner product in L2(Sn−1). Noting that h(k, x) is bounded
for each fixed k, we consider h(k) as the associated distribution in S ′ given by

(h(k), u) =

∫
h(k, x)u(x) dx (3.14)

Assumption 2A. There exists some positive k0 such that Q1(k
2 + iε) ad-

mits a boundary value, Q+1 (k
2) = limε↘0Q1(k

2 + iε) with integral kernel,
G+1 (x, y; k) for all k > k0. Furthermore, there exists a function F (x, y) on R

2n

with F (x, y) > |G+1 (x, y; k)| for all k > k0 and
∫ ∫

F (x, y)|V |(dx)|V |(dy) < ∞.
G+1 (x, y; k) is the Green’s function and is known to exist under a variety of con-
ditions and is described as the response at x to a point source at y (see [5] and
the references provided). As an alternative to Assumption 2A, we can offer

Assumption 2B. There exists a positive number, α < 1, some k0, and a
function, F (x, y) on R2n such that for all k > k0, F (x, y) ≥ |G(|x− y|; k)| and

sup
y

∫
F (x, y)|V |(dx) ≤ α (3.15)

We define ΩV =
∫
|V |(dx) and assume it is finite. We now provide;
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Theorem 3.1 If V satisfies Assumption 1 above, then the following holds:
1. V and ν as given above are both continuous linear functionals on S, hence
in S′.
2. The linear functional, Λν, defined on K by

(Λν, ψ) = (ν,F∗(|ξ|Fψ)) (3.16)

extends to a well-defined element of S′.
If, in addition V satisfies either of assumptions 2A or 2B then we also have

3. limk→∞h(k) = −2πν in S′ and
4. V can be recovered in the sense of distributions through:

〈V, ψ〉 = (2π)−
n
2 α−1(Λν, ψ) ψ ∈ S , (3.17)

where α = 2
2−n
2
√
πΓ(n−12 )

−1.

Proof: To show that V is in S ′ we let ψk(x) be a sequence of functions van-
ishing in S. We therefore have for any α > 0 a vanishing sequence Cαk such
that

|xαψk(x)| ≤ C
α
k ∀x ∈ Rn (3.18)

We now have that

|(V, ψk)| ≤

∫
|x|≥1

|ψk(x)||V |(dx) +

∫
|x|<1

|ψk(x)|V |(dx)

≤ Cαk

∫
|x|≥1

|x|−α|V |(dx) + C0k

∫
|x|<1

|V |(dx).

Taking α = (n−1)/2 and applying (3.1) and (3.2) we see this vanishes as k →∞
showing that V is in S ′. Turning our attention to ν we write

(ν, ψk) =

∫ ∫
|x−y|≤1

|x− y|1−nψk(x) dxV (dy)

+

∫ ∫
|x−y|>1

|x− y|1−nψk(x) dxV (dy)

= I1(k) + I2(k)

Since ψk vanishes in S we also have for each α ≥ 0 vanishing sequences of
constants, cαk such that

|ψk(x)| ≤ c
α
k (2 + |x|)

α ∀x ∈ Rn. (3.19)

Thus we have that

|I1| ≤

∫ {
sup

x:|x−y|≤1
cαk (2 + |x|)

−α

}∫
|x−y|≤1

|x− y|1−n dx|V |(dy)

≤ cαkΩ
n

∫
(1 + |y|)−α|V |(dy) ,
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where Ωn is the surface area of Sn−1. Again by (3.1) and (3.2) we see by
taking α ≥ n−1

2 that I1(k) vanishes as k → ∞. The verification that I2(k)
vanishes is similar and follows from the observation that for |x−y| > 1, we have
|x− y|1−n ≤ |x− y|(1−n)/2. This completes the proof of item 1 of Theorem 3.1.
Item 2 requires that we show that Λν ∈ S′. Here we will borrow some ideas
from Saitō [19]. We define for s ≥ 0 a norm ‖ · ‖s on S by

‖ψ‖s =
∑
|β|≤n

∑
α≤β

∫
|ξ|s−|β|+|α| |Dαψ(ξ)| dξ (3.20)

where α and β are multi-indices. As noted by Saitō the topology induced by
this norm is weaker than the proper topology on S. Furthermore, it follows
from the proof of lemma A.1 in [19] that for any ψ ∈ S

|F∗(|ξ|ψ)(x)| ≤ Cs(2 + |x|)
−n‖ψ‖s (3.21)

where Cs is a constant depending on s. With ψk as before, we have

|(Λν, ψk)| ≤ Cs‖Fψk‖s

∣∣∣∣
∫ ∫

|x− y|1−n(2 + |x|)−nV (dy) dx

∣∣∣∣ (3.22)

By the method of proof applied to V and ν one can verify the integral remaining
is finite, hence the right hand side will vanish as k → ∞ proving item 2 of the
theorem.

Moving on to item 3, we let ψ(x) ∈ K. By the definition of h(k, x) above
and (3.10) we have that

(h(k), ψ) = −π

(
k

2π

)n−1 ∫
〈γ+(k)γ(k)

∗e−ikω·x, e−ikω·x〉ωψ(x) dx . (3.23)

By Assumption 1 and the results of [8] we know that 1−Q(κ2) has a bounded
inverse given by 1 + Q1(κ

2) for im κ2 sufficiently large and where Q1(κ
2) is

defined by,

Q1(κ
2)f(x) =

∫
G1(x, y;κ)f(y)V (dy) , (3.24)

where G1(x, y;κ) is the kernel of the perturbed resolvent operator. By Assump-
tion 2A, analytic continuation, and continuity we have that[

1−Q+(k2)
]−1
= 1 +Q+1 (k

2) for k > k0 . (3.25)

By [10] (Eqn. 4.23) we have that γ+(k) = γ(k)(1 +Q
+
1 (k

2)). Inserting this into
(3.23) we obtain,

(h(k), ψ(x)) = (h1(k), ψ(x)) + (h2(k), ψ(x)) (3.26)

where

(h1(k), ψ(x)) = −π

(
k

2π

)n−1 ∫
〈γ(k)γ(k)∗e−ikω·x, e−ikω·x〉ωψ(x) dx (3.27)
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and

(h2(k), ψ(x)) = −π

(
k

2π

)n−1 ∫
〈γ(k)Q+1 (k

2)γ(k)∗e−ikω·x, e−ikω·x〉ωψ(x) dx

(3.28)
The first term, h1, corresponds to the Born approximation while the second
term, h2 is the Born remainder. We will look at h2 first to illustrate how
Theorem 2.1 applies. By writing all of the integrals involved including the
integral form of Q1(k), and employing Assumption 2A and Fubini’s theorem we
arrive at

(h2(k), ψ(x)) = Ck
n−1

∫
G1(x, y; k)J

ψ
k (x, y)V (dx)V (dy) , (3.29)

where C is a constant and

Jψk (x, y) =

∫
J(k|x − ξ|)J(k|ξ − y|)ψ(ξ) dξ. (3.30)

By Assumption 2A we can apply the Lebesque dominated convergence theorem
and Theorem 2.1 to conclude this term vanishes as k → ∞. If Assumption 2B
holds instead of Assumption 2A, then the Neumann series for [1 − Q+(k2)]−1

will converge uniformly for k > k0. In this case, we have the expansion

(h2(k), ψ(x)) (3.31)

= −π

(
k

2π

)n−1 ∞∑
N=1

∫
〈γ(k)Q+(k)Nγ(k)∗e−ik(·)·x(ω), e−ikω·x〉ωψ(x) dx .

For each fixed N , we can construct the iterated kernel, QN (x, y, k) for Q+(k)N

given by

Q0(x, y, k) = G(|x− y|; k), QN(x, y; k) =

∫
QN−1(x, ξ, k)G(|ξ − y|; k)V (dξ) .

(3.32)
We next define FN (x, y) similarly by replacing G with F in (3.32). By induction
we can see that FN (x, y) ≥ |QN(x, y; k)| for all k and furthermore,∫

FN (x, y)|V |(dx)|V |(dy) ≤ ΩV α
N+1. (3.33)

We therefore have∣∣∣∣∣−π
(
k

2π

)n−1 ∫
〈γ(k)Q+(k)Nγ(k)∗(k), e−ik(·)·x(ω), e−ikω·x〉ωψ(x) dx

∣∣∣∣∣
=

∣∣∣∣∣π
(
k

2π

)n−1 ∫
QN (x, y, k)Jψk (x, y)V (dx)V (dy)

∣∣∣∣∣
≤ π

(
k

2π

)n−1 ∫ ∣∣∣FN (x, y)Jψk (x, y)∣∣∣ |V |(dx)|V |(dy) .
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The last integral will vanish as k → ∞ by dominated convergence and the
fact that Jψk (x, y) vanishes for all x 6= y by Theorem 2.1. Furthermore, by
the uniform convergence of the Neumann series for k > k0 we see that the
infinite sum yielding h2(k) will vanish as well. We now turn our attention to
the Born approximation, h1(k). By again writing out the integrals involved and
employing Fubini’s theorem we obtain,

(h1(k), ψ(x)) = −π

(
k

2π

)n−1 ∫ ∫
|J(k|x− y|)|2 ψ(x)V (dy) dx. (3.34)

Setting ∆(k) = J(k)−2( k2π )
1−n
2 cos(k− (n−1)π4 ) we have by [19] equation (2.17)

|∆(k)| ≤ Cmin{k−
(n−1)
2 , k−

(n+1)
2 } , (3.35)

where C is a constant. We can now write,

−(h1(k), ψ(x))

= π

(
k

2π

)n−1 ∫ ∫ ∣∣2( k

2π

) 1−n
2

cos

(
k −
(n− 1)π

4

)
+∆(k|x − y|)

∣∣2
×ψ(x)V (dy) dx

= π

(
k

2π

)n−1 ∫ ∫
|∆(k|x − y|)|2ψ(x)V (dy) dx

+4π

(
k

2π

)n−1
2

Re

∫ ∫
∆(k|x− y|) cos

(
k −
(n− 1)π

4

)
ψ(x)V (dy) dx

+4π

∫ ∫
|x− y|1−n cos

(
k −
(n− 1)π

4

)
ψ(x)V (dy) dx .

We set these three terms equal to L1(k), L2(k), and L3(k) respectively. Our
proof of item 3 of Theorem 3.1 will be completed by showing that L1(k) and
L2(k) vanish as k → ∞ and that limk→∞ L3(k) = 2π(ν, ψ). Regarding L2(k),

by using (3.3), (3.35) and the fact that for |x− y| < 1, |x− y|
1−n
2 | ≤ |x− y|2−n

we see that

4π

(
k

2π

)n−1
2
∫ ∫

|x−y|≤δ

∣∣∣∣∆(k|x − y|) cos
(
k −
(n− 1)π

4

)
ψ(x)

∣∣∣∣ |V |(dy) dx
≤ constant×

∫ ∫
|x−y|<δ

|x− y|2−n|ψ(x)||V |(dy) dx→ 0 as δ → 0

Furthermore, for fixed δ > 0 we also have that

4π

(
k

2π

)n−1
2
∫ ∫

|x−y|>δ

∣∣∣∣∆(k|x− y|) cos
(
k −
(n− 1)π

4

)
ψ(x)

∣∣∣∣ |V |(dy) dx
≤ constant× k−1

∫ ∫
|x−y|>δ

|x− y|
1−n
2 |ψ(x)||V |(dy) dx

≤ constant× k−1||ψ||L2

{
sup
x

∫
|x−y|>δ

|x− y|
1−n
2 |ψ(x)||V |(dy)

}
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which vanishes as k → ∞. This shows that limk→∞ L2(k) = 0. A similar
approach can be applied to show that limk→∞ L1(k) = 0. Considering L3(k)
we first note that applying an elementary trig identity we have

L3(k) = 2π

∫ ∫
|x− y|1−n

(
1 + cos(2k|x− y| −

(n− 1)π

2
)

)
ψ(x)V (dy) dx

= 2π(ν, ψ) + L4(k) + L5(k) ,

where

L4(k) = 2π

∫ ∫
|x−y|≤1

|x− y|1−n cos

(
2k|x− y| −

(n− 1)π

2

)
ψ(x)V (dy) dx

L5(k) = 2π

∫ ∫
|x−y|>1

|x− y|1−n cos

(
2k|x− y| −

(n− 1)π

2

)
ψ(x)V (dy) dx

Concerning L4(k) we set

F1(k, y) =

∫
|x−y|≤1

|x− y|1−n cos(2k|x− y| −
(n− 1)π

2
)ψ(x) dx (3.36)

It is easy to see that there is a bounded set containing the supports of F1(k, y)
for all k, for if the support of ψ is contained in BR = {x ∈ Rn : |x| < R}
then for any k, F1(k, y) = 0 for |y| > R + 1 It is also easy to see that F1(k, y)
is uniformly bounded on R+ × Rn. Furthermore, by the Riemann-Lebesgue
lemma, for each fixed y, F1(k, y) vanishes as k → ∞. Applying the bounded
convergence theorem we have limk→∞ L4(k) = 0. Turning our attention to
L5(k) we have

|L5(k)| ≤

∫ ∫
|x−y|>1

|x− y|1−n|ψ(x)||V |(dy) dx

≤

{
sup
x

∫
|x−y|>1

|x− y|
1−n
2 |V |(dy)

}
||ψ(x)||L1 ,

which is finite by (3.1). We can conclude by Fubini-Tonelli that if F (y) =∫
|x−y|>1 |x − y|

1−n|ψ(x)| dx then F (y) is in L1(Rn;V (dy)). Since ψ is in K we

can conclude that for all y, |x− y|1−nψ(x) is in L1(Rn; dx). Setting

F2(k, y) =

∫
|x−y|>1

|x− y|1−n cos(2k|x− y| −
(n− 1)π

2
)ψ(x) dx (3.37)

we can conclude by the Riemann-Lebesque lemma that F2(k, y) vanishes as k →
∞ for almost all y. Since F (y) ≥ F (k, y) we can apply dominated convergence
to conclude

|L5(k)| = 2π

∣∣∣∣
∫
F (k, y)V (dy)

∣∣∣∣ → 0 as k →∞ . (3.38)
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Since K is dense in S, this completes the verification that h1(k)→ −2πν proving
item 3 of Theorem 3.1.
To verify item 4 of the theorem we let ψ ∈ S and set ϕ(ξ) = α−1(2π)−

n
2 |ξ|Fψ(ξ)

where α = 2
2−n
2
√
πΓ(n−12 )

−1. We claim that[
|x|1−n ∗ F∗ϕ

]
(x) = ψ(x) ∀x ∈ Rn. (3.39)

By using the fact that F(|x|1−n)(ξ) = α|ξ|−1 (e.g. see [12]) we have for any
φ ∈ K,

〈φ, |x|1−n ∗ F∗ϕ〉 = α−1(2π)−
n
2 〈|x|1−n ∗ φ,F∗|ξ|Fψ(ξ)〉

= α−1(2π)−
n
2 〈F [|x|1−n ∗ φ], |ξ|Fψ(ξ)〉

= 〈|ξ|−1Fφ, |ξ|Fψ(ξ)〉

= 〈φ, ψ〉

This together with the fact that both sides of (3.39) are continuous proves our
claim. We now have;

〈ν,F∗ϕ〉 = 〈|x|1−n ∗ V,F∗ϕ〉

= 〈V, |x|1−n ∗ F∗ϕ〉

= 〈V, ψ〉

Thus in the sense of distributions, α−1(2π)−
n
2F∗|ξ|Fν = V completing the

proof of item 4. Note that once V is recovered, it is a simple matter to recon-
struct the associated measure potential, V (dx) (see [11] for details).

A Singular Example

We now provide a concrete example illustrating the use of these results. We will
let n = 3 and define V (dx) as the measure, βδ(|x| − R), the delta function of
the sphere of radius R and strength parameter β. For any ψ ∈ K we have

〈V, ψ〉 =

∫
SR

βψ(x) dω(x) , (3.40)

where SR is the sphere of radius R and dω(x) is the inherited surface measure.
The verification that Assumption 1 of Theorem 3.1 holds is straightforward. In

this explicit example G(x, k) = − 1
4π

eiκ|x|

|x| and so Q(z) is given by;

Q(κ2)f(x) = −
β

4π

∫
SR

eiκ|x−y|

|x− y|
f(y) dω(x) . (3.41)

Taking F (x, y) = 1
4π|x−y| = |G(x− y; k)| we note that the supy

∫
F (x, y)|V |(dx)

occurs when |y| = R, and therefore

sup
y

∫
F (x, y)|V |(dx) =

β

4π

∫
SR

1

|x− y|
dω(x) = β R . (3.42)
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In addition we have
∫
|V |(dx) =

∫
S2
dω = Ω3. Thus we see that Assumption

2B holds whenever β < R. Theorem 3.1 then provides us the following:

lim
k→∞

(
−2πik〈(1− S(k))e−ikω·x, e−ikω·x〉, ψ(x)

)
=

∫
SR

βψ(y)

|x− y|
dω(y) (3.43)

Furthermore, (3.17) holds as well giving

lim
k→∞

(
−(2π)−

n
2 ikα−1〈(1− S(k))e−ikω·x, e−ikω·x〉ω,F

∗(|ξ|Fψ(x)
)

=

∫
SR

βψ(x) dω(x) . (3.44)

We summarize this example by stating the following:

Theorem 3.2 Fix R > 0 and let 0 < β < R. Let H be the self-adjoint realiza-
tion of the Laplacian in R3. Then the following hold:

1. There exists a self-adjoint operator, H1, satisfying

(H1u, v) = (u,Hv) + β

∫
SR

u(x)v(x) dω(x)

for all u in D(H1) and v in D(H).

2. The associated wave operators, W±(H1, H) exist and are strongly complete.

3. There exist generalized eigenfunctions, φ±(x, ξ) satisfying

φ±(x, ξ) = e
−ix·ξ − 4πβ

∫
SR

φ±(y, ξ)e
±i|ξ||x−y|

|x− y|
dω(y).

4. The scattering matrix, S(k), exists as a unitary operator on L2(S2) satisfying

[S(k)f(k, ·)](ω) =
[
FW ∗

+W−F
∗f
]
(kω) ∀ f ∈ C∞0 (R

3) .

5. The scattering matrix admits the representation,

S(k) = 1−
ik

8π2
γ+(k)γ(k) ,

where γ and γ+ are given by (3.8) and (3.9).

6. The inverse scattering results, equations (3.43) and (3.44) hold.

The remainder of this work is devoted to the proof of main theorem.

4 Proof of Theorem 2.1

We will prove the theorem through a series of lemmas.
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Lemma 4.1 Fix z 6= 0 in Rn. Let (ρ, θ1, θ2, . . . , θn−1) be spherical coordinates
with θ1 the polar angle measured from the positive z direction. Let Ω be an open
n-rectangle in Rn, i.e.

Ω = {(ρ, θ1, θ2, . . . , θn−1)|ρ ∈ (a0, b0), θ1 ∈ (a1, b1), . . . , θn−1 ∈ (an−1, bn−1)} ,

where 0 ≤ a0 < b0 ≤ ∞, 0 ≤ an−1 < bn−1 ≤ 2π, and 0 ≤ ai < bi ≤ π,
i = 1, 2, . . . , n− 2. Let XΩ(x) be the characteristic function for Ω ⊂ Rn. Set

c(k, r) = cos(kr −
(n− 1)π

4
) k, r ∈ R, (4.1)

and set

I(k, z) =

∫
Rn

c(k, |x|)

|x|n−2
c(k, |z − x|)

|z − x|
(sin θ1)

3−nXΩ(x) dx . (4.2)

Then for all z 6= 0

lim
k→∞

I(k, z) = 0 . (4.3)

Proof: Noting that the integrand in (4.2) is dependent only on ρ and θ1, and
calculating the integral in spherical coordinates, we have that

I(k, z) = C

∫ b0

a0

∫ b1

a1

c(k, ρ)

ρn−2
c(k, u)

u
ρn−1 sin θ1 dθ1 dρ , (4.4)

where C is the constant obtained by integrating over the angular variables, θi,
i ≥ 2 and where u = |z−x|. We make a change of coordinates in the θ1-variable
by setting

u = |z − x| = (|z|2 + |x|2 − 2|z||x| cos θ1)
1/2

to obtain

I(k, z) = C

∫ b0

a0

∫ ub

ua

c(k, ρ)c(k, u)

|z|
dθ1 dρ

=
C

k|z|

∫ b0

a0

c(k, ρ) (s(k, ub)− s(k, ua)) dρ , (4.5)

where ua and ub are the appropriate new limits of integration in the u-variable.
And where

s(k, ρ) = sin(kρ−
(n− 1)π

4
)

We now can see that the final integral in (4.5) is uniformly bounded in k, hence
|I(k, z)| ≤ constant /k which vanishes as k →∞. �
The following corollary is immediate.
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Corollary 4.2 Let φ(x) be any step function on Rn of the form
∑m

j=1 ajXΩj (x)
where each Ωj(x) is an open n-rectangle as in lemma (4.1). Then for all z 6= 0∫

Rn

c(k, |x|)

|x|n−2
c(k, |z − x|)

|z − x|
(sin θ1)

3−nφ(x) dx→ 0 as k →∞ . (4.6)

Lemma 4.3 Let z 6= 0 be fixed in Rn and set Ψ(x, k) = c(k,|x|)
|x|n−2

c(k,|z−x|)
|z−x| (sin θ1)

3−n

where θ1 and c(k, r) are as in Lemma 4.1. Then for 0 < p < n
n−2 , and any

bounded, measurable set, Ω ⊂ Rn, Ψ(x, k) ∈ Lp(Ω) for each k. Furthermore,
there exists a constant, C(Ω, z, p) depending on Ω, z, and p but independent of
k such that ||Ψ(x, k)||p < C(Ω, z, p).

Proof: If we fix, Ω ⊂ Rn, and let M = sup{|x| : x ∈ Ω}. We have∫
Ω

|Ψ(x, k)|p dx = I1 + I2 + I3 , (4.7)

where

I1 =

∫
Ω1

|Ψ(x, k)|p dx , Ω1 = Ω ∩

{
x : |x| <

|z|

2
,

}

I2 =

∫
Ω2

|Ψ(x)|p dx , Ω2 = Ω ∩

{
x : |x− z| <

|z|

2

}
,

and I3 is the integral over the remaining region. Considering I1 we switch to
spherical coordinates taking the z direction as the polar axis and letting θ1 be
as before. We obtain

|I1| ≤

∫
|x|< |z|2

|x|(2−n)p
(
2

|z|

)p
(sin θ1)

(3−n)p dx (4.8)

≤ C

(
2

|z|

)p ∫ |z|
2

ρ=0

∫ π

θ1=0

ρ(2−n)p+n−1(sin θ1)
(3−n)p+n−2 dθ1 dρ ,

where C is as in Lemma 4.1 with ai = 0 for each i = 1, 2, . . . , n− 1 and bi = π
for i = 1, 2, . . . , n− 2 and bn−1 = 2π. The singularities at ρ = 0 and θ1 = 0 are
integrable provided that

(2− n)p+ n− 1 > −1 and (3− n)p+ n− 2 > −1 (4.9)

both of which are satisfied when p < n
n−2 . Note that for such p we have that |I1|

is bounded by a constant depending only on z. Looking at I2 we make a change
of variable and let w = z − x. We will again switch to spherical coordinates
taking the z direction as the polar axis, but setting θ̃1 to be the angle between

z and w. By the law of sines we have that sin θ1 =
|w|
|x| sin θ̃1 and so we obtain

|I2| ≤

∫
|w|< |z|2

|x|p(2−n)|w|−p(
|w|

|x|
sin θ̃1)

(3−n)p dx
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=

∫
|w|< |z|2

|x|−1|w|(2−n)p(sin θ1)
(3−n)p dx (4.10)

≤ C

∫ |z|
2

ρ=0

∫ π

θ̃1=0

(
2

|z|

)
ρ(2−n)p+n−1(sin θ̃1)

(3−n)p+n−2 dθ̃1 dρ .

Note that the integrability conditions on p are identical with those found in I1.
Thus for p < n

n−2 , |I2| is also bounded by a constant depending only on z.
Finally, considering I3 we note that over the remaining region we have

|Ψ(x, k)|p ≤

(
2

|z|

)(n−1)p
(4.11)

and so |I3| is bounded by this constant times the volume of the sphere of radius
M in Rn Combining these results for I1, I2, and I3 we have that

∫
Ω
|Ψ(x, k)|p dx

is bounded by a constant depending only on z and Ω. �

Lemma 4.4 Let z be fixed in Rn, n ≥ 3 and let ψ(x) ∈ C∞0 (R
n). Let θ1 be

the angle between z and x as in Lemma 4.3. Then F (x, ψ) = (sin θ1)
n−3|z −

x|
3−n
2 |x|

n−3
2 ψ(x) is a bounded function with compact support and hence is in

Lp(Rn) for all p ≥ 1.

Proof: To prove the lemma it is enough to verify that |z−x|
3−n
2 (sin θ1)

n−3 is
bounded. To see this we first set for r > 0,

Θ(r) = sup{θ1 : |z − x| = r} .

By elementary geometric considerations we have for any x such that |z−x| <
|z| that |z − x| = |z| sinΘ(|z − x|). This fact in turn implies that

|z − x| ≥ |z| sin θ1 whenever |z − x| < |z| . (4.12)

From this we see that for x such that |z − x| < |z| we have,

|z − x|
3−n
2 | sin θ1|

n−3 ≤ |z|
3−n
2 | sin θ1|

n−3
2 ≤ |z|

3−n
2 (4.13)

and trivially for x such that |z − x| ≥ |z|, we have

|z − x|
3−n
2 | sin θ1|

n−3 ≤ |z|
3−n
2 . (4.14)

�

Lemma 4.5 Let ψ(x) ∈ C∞0 (R
n) and c(k, r) be defined as in Lemma 4.1 and

set

J(x, y, k, ψ) =

∫
Rn

c(k, |x− ξ|)

|x− ξ|
n−1
2

c(k, |ξ − y|)

|ξ − y|
n−1
2

ψ(ξ) dξ . (4.15)

Then for all x 6= y, limk→∞ J(x, y, k, ψ) = 0.
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Proof: Setting w = x− ξ and z = x− y we obtain

J(x, y, k, ψ) =

∫
Rn

c(k, |w|)

|w|
n−1
2

c(k, |z − w|)

|z − w|
n−1
2

ψx(w)dw

=

∫
Rn

Ψ(k, w)F (w,ψx) dw , (4.16)

where Ψ is as defined in Lemma 4.3 and F (w,ψx) is as defined in Lemma 4.4
with ψx(w) = ψ(x− w). We now fix p ∈ (1, n

n−2 ) and let p
′ satisfy 1

p
+ 1

p′
= 1.

Let ε > 0 be arbitrary but fixed. Let C(Ωx, z, p) be the uniform bound from
Lemma 4.3 on the p-norm of Ψ(k, w) and a step function, φ(w) such that

||F (w,ψx)− φ(w)||Lp(Ωx) < ε .

Then by Lemmas 4.3 and 4.4, we have

lim
k→∞

|J(x, y, k, ψ)|

≤ lim
k→∞

∣∣∣∣
∫
Rn

Ψ(k, w)F (w,ψx) dw

∣∣∣∣
≤ lim

k→∞

∣∣∣∣
∫
Rn

Ψ(k, w)φ(w)dw

∣∣∣∣ +
∣∣∣∣
∫
Rn

Ψ(k, w)(F (w,ψx)− φ(w))dw

∣∣∣∣
≤ C(Ωx, z, p)||F (w,ψx)− φ(w)||Lp′ (Ωx) (4.17)

≤ C(Ωx, z, p)ε .

The present proof follows from the fact that ε was arbitrary. �

Proof of Theorem 2.1 With the aid of this last lemma we now now provide
the proof of the main theorem. We begin by setting

C(r) = 2
(
2π
r

)n−1
2 cos

(
r − (n−1)π4

)
,

∆(r) = J(r) − C(r) ,

where J(r) is defined by (2.1). The asymptotic behavior of J(r) is given (see
Saitō [19]) by

|∆(r)| = |J(r) − C(r)| ≤ Ar−
(n+1)
2 ,

where A is a constant. With this notation, we have that

kn−1
∫
Rn

J(k|x− ξ|)J(k|ξ − y|)ψ(ξ)dξ

= kn−1
∫
Rn

(C(k|x− ξ|) + ∆(k|x− ξ|)) (C(k|ξ − y|) + ∆(k|ξ − y|))ψ(ξ) dξ

= kn−1
∫
Rn

C(k|x − ξ)C(k|ξ − y|)ψ(ξ) dξ
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+kn−1
∫
Rn

∆(k|x− ξ|)C(k|ξ − y|)ψ(ξ) dξ

+kn−1
∫
Rn

C(k|x− ξ|)∆(k|ξ − y|)ψ(ξ) dξ

+kn−1
∫
Rn

∆(k|x− ξ|)∆(k|ξ − y|)ψ(ξ) dξ

= I1 + I2 + I3 + I4 .

We have that I1 vanishes by Lemma 4.5. Looking at I2 we have

|I2| ≤ kn−1
∫
Rn

A(k|x − ξ|)−
(n+1)
2 |C(k|ξ − y|)||ψ(ξ)| dξ

≤ kn−1
∫
Rn

A(k|x − ξ|)−
(n+1)
2 2

(
2π

k|ξ − y|

)n−1
2

|ψ(ξ)| dξ

≤
A

k

∫
Rn

|ψ(ξ)|

|x− ξ|
n+1
2 |ξ − y|

n−1
2

dξ

Clearly the last integral is finite and independent of k, hence I2 vanishes as
k→∞. I3 behaves just like I2, hence it vanishes as k →∞. For the final term,
we have

|I4| ≤ kn−1
∣∣∣∣
∫
Rn

∆(k|x− ξ|)∆(k|ξ − y|)ψ(ξ) dξ

∣∣∣∣
≤
A2

k2

∫
Rn

|x− ξ|−
(n+1)
2 |ξ − y|−

(n+1)
2 |ψ(ξ)| dξ

This integral is also finite and independent of k, hence I4 vanishes as k → ∞.
This completes the proof of our theorem.
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