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ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS OF A
SEMILINEAR DIRICHLET PROBLEM IN EXTERIOR DOMAINS

HABIB MÂAGLI, ABDULAH KHAMIS ALZAHRANI, ZAGHARIDE ZINE EL ABIDINE

Communicated by Vicentiu D. Radulescu

Abstract. In this article, we study the existence, uniqueness and the asymp-

totic behavior of a positive classical solution to the semilinear boundary-value
problem

−∆u = a(x)uσ in D,

u|∂D = 0, lim
|x|→∞

u(x) = 0.

Here D is an unbounded regular domain in Rn (n ≥ 3) with compact boundary,

σ < 1 and the function a is a nonnegative function in Cγloc(D), 0 < γ < 1,

satisfying an appropriate assumption related to Karamata regular variation
theory.

1. Introduction

The semilinear elliptic equation

−∆u = a(x)uσ, σ < 1, x ∈ Ω ⊂ Rn, (1.1)

has been extensively studied for both bounded and unbounded domains Ω in Rn
(n ≥ 2). We refer to [1, 3, 4, 5, 6, 13, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28,
32, 38, 39] and the references therein, for various existence and uniqueness results
related to solutions for the above equation with homogeneous Dirichlet boundary
conditions.

Most recently, applying regular variation theory, many authors have studied the
exact asymptotic behavior of solutions of equation (1.1). In fact, the combined
use of regular variation theory and the Karamata theory has been introduced by
Ĉırstea and Rădulescu [10, 11, 12, 13, 14] in the study of various qualitative and
asymptotic properties of solutions of nonlinear differential equations. Then, this
setting becomes a powerful tool in describing the asymptotic behavior of solutions
of large classes of nonlinear equations (see [2, 4, 7, 8, 9, 13, 15, 19, 21, 23, 29, 30,
31, 35, 36, 40]).
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For example, Mâagli [29] considered the problem
−∆u = a(x)uσ in Ω,

u > 0 in Ω,

u
∣∣
∂Ω

= 0,
(1.2)

where Ω is a bounded C1,1-domain, σ < 1 and a satisfies some appropriate condi-
tions with reference to K0, the set of all Karamata functions L regularly varying at
zero, defined on (0, η] by

L(t) := c exp
(∫ η

t

z(s)
s
ds
)
,

for some η > 0, where c > 0 and z is a continuous function on [0, η], with z(0) = 0.
As a typical example of function L ∈ K0, we have

L(t) =
m∏
k=1

(logk(
ω

t
))ξk ,

where m ∈ N∗, logk x = log ◦ log ◦ · · · ◦ log x (k times), ξk ∈ R and ω is a sufficiently
large positive real number such that the function L is defined and positive on (0, η].

Thanks to the sub-supersolution method and using some potential theory tools,
Mâagli showed in [29] that (1.2) has a unique positive classical solution and gave
sharp estimates on the solution. These estimates improve and extend those stated
in [16, 23, 28, 32, 40]. In order to describe the result of [29] in more details, we
need some notations.

For two nonnegative functions f and g defined on a set S, the notation f(x) ≈
g(x), x ∈ S, means that there exists a constant c > 0 such that for each x ∈ S,
1
c g(x) ≤ f(x) ≤ c g(x). Further, for a domain Ω of Rn (n ≥ 2), dΩ(x) denotes the
Euclidean distance from x ∈ Ω to the boundary of Ω. Also for λ ≤ 2, σ < 1 and
L ∈ K0 defined on (0, η], η > 0 such that

∫ η
0
t1−λL(t)dt < ∞, we put ΦL,λ,σ the

function defined on (0, ν], 0 < ν < η, by

ΦL,λ,σ(t) :=


1, if λ < 1 + σ,( ∫ η

t
L(s)
s ds

) 1
1−σ , if λ = 1 + σ,

(L(t))
1

1−σ , if 1 + σ < λ < 2,( ∫ t
0
L(s)
s ds

) 1
1−σ , if λ = 2.

Now, let us present the result by Mâagli [29].

Theorem 1.1. Let a ∈ Cγloc(Ω), 0 < γ < 1, satisfying for x ∈ Ω,

a(x) ≈ (dΩ(x))−λL(dΩ(x)),

where λ ≤ 2, L ∈ K0 defined on (0, η], (η > diam(Ω)) such that
∫ η

0
t1−λ L(t)dt <∞.

Then problem (1.2) has a unique positive classical solution u satisfying for each
x ∈ Ω,

u(x) ≈ (dΩ(x))min( 2−λ
1−σ ,1)ΦL,λ,σ(dΩ(x)).

On the other hand, Chemmam et al. [8] were concerned with K∞ the set of
Karamta functions regularly varying at infinity consisting of functions L defined on
[1,∞) by

L(t) := c exp
(∫ t

1

z(s)
s
ds
)
,
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where c > 0 and z is a continuous function on [1,∞) such that limt→∞ z(t) = 0.
As a standard example of functions belonging to the class K∞, we have

L(t) = exp
( m∏
k=1

(logk(ωt))τk
)
,

where m ∈ N∗, τk ∈ (0, 1) and ω is a sufficiently large positive real number such
that the function L is defined and positive on [1,∞).

By using properties of functions in K∞, the authors in [8] studied the asymptotic
behavior of the unique classical solution of the problem

−∆u = a(x)uσ in Rn,
u > 0 in Rn,
lim
|x|→∞

u(x) = 0,
(1.3)

where n ≥ 3 and σ < 1. The existence of a unique classical solution of (1.3) has
been proved in [5, 27]. Namely, Chemmam et al. [8] proved the following result.

Theorem 1.2. Let a ∈ Cγloc(Rn), 0 < γ < 1, satisfying for x ∈ Rn,

a(x) ≈ (1 + |x|)−µL(1 + |x|),

where µ ≥ 2, L ∈ K∞ such that
∫∞

1
t1−µ L(t)dt < ∞. Then the solution u of

problem (1.3) satisfies for each x ∈ Rn,

u(x) ≈ (1 + |x|)−min(µ−2
1−σ ,n−2)ΨL,µ,σ(1 + |x|).

Here and always, for µ ≥ 2, σ < 1 and L ∈ K∞ such that
∫∞

1
t1−µ L(t)dt < ∞,

the function ΨL,µ,σ is defined on [1,∞) by

ΨL,µ,σ(t) :=



(∫∞
t

L(s)
s ds

) 1
1−σ , if µ = 2,

(L(t))
1

1−σ , if 2 < µ < n− σ(n− 2),( ∫ t+1

1
L(s)
s ds

) 1
1−σ , if µ = n− σ(n− 2),

1, if µ > n− σ(n− 2).

In [31], the authors were concerned with the existence, uniqueness and estimates
of positive classical solutions to the following semilinear Dirichlet problem

−∆u = a(x)uσ in Ω,
u > 0 in Ω,

lim
|x|→1

u(x) = lim
|x|→∞

u(x) = 0,
(1.4)

where Ω = {x ∈ Rn : |x| > 1} is the complementary of the closed unit ball of
Rn (n ≥ 3), σ < 1. Since problem (1.4) involves homogeneous Dirichlet boundary
conditions which combine those of [8] and [29], the authors in [31] imposed on the
weight a an appropriate assumption related to K0 and K∞. By means of sub-
supersolution method, the authors proved that problem (1.4) has a unique positive
classical solution which satisfies a specific asymptotic behavior.

Motivated by all the works above, the purpose of this paper is to establish the
existence, uniqueness and the asymptotic behavior of a positive classical solution
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to the following semilinear boundary value problem
−∆u = a(x)uσ in D,

u > 0 in D,

u
∣∣
∂D

= 0,

lim
|x|→∞

u(x) = 0,

(1.5)

where σ < 1 and D is an unbounded regular domain in Rn (n ≥ 3), with compact
boundary. The nonlinearity a is required to satisfy an appropriate condition related
to Karamata classes K0 and K∞. The characteristic of problem (1.5) that unlike
[31], the domain D is not necessarily radial. This fact makes problem (1.5) more
difficult and complicated and this work attempts to deal exactly with this case.

Throughout this paper, we denote by GΩ(x, y) the Green function of the Dirichlet
Laplacian in a domain Ω of Rn. We recall that dΩ(x) denotes the Euclidean distance
from x ∈ Ω to the boundary of Ω.

Let x0 ∈ Rn\D and r > 0 such that B(x0, r) := {x ∈ Rn : |x−x0| ≤ r} ⊂ Rn\D.
Then we have

GD(x, y) = r2−nGD−x0
r

(
x− x0

r
,
y − x0

r
), for x, y ∈ D,

dD(x) = rdD−x0
r

(
x− x0

r
), for x ∈ D.

So, without loss of generality, we may assume that B(0, 1) ⊂ Rn\D. Form here on,
for x ∈ D, we denote by δ(x) = dD(x) and ρ(x) = δ(x)

1+δ(x) .
To study problem (1.5), we suppose that the function a satisfies the following

hypothesis:
(H1) a is a nonnegative function in Cγloc(D), 0 < γ < 1, such that for x ∈ D,

a(x) ≈ (ρ(x))−λM(ρ(x))|x|−µN(|x|),
where λ ≤ 2 ≤ µ, M ∈ K0 defined on (0, η], (η > 1), N ∈ K∞ satisfying∫ η

0

t1−λM(t)dt <∞,
∫ ∞

1

t1−µN(t)dt <∞.

Our main result in this paper is the following.

Theorem 1.3. Assume (H1), then problem (1.5) has a unique classical solution u
satisfying

u(x) ≈ θ(x), x ∈ D, (1.6)
where

θ(x) :=
(ρ(x))min( 2−λ

1−σ ,1)

|x|min(µ−2
1−σ ,n−2)

ΦM,λ,σ(ρ(x))ΨN,µ,σ(|x|). (1.7)

The techniques used for proving Theorem 1.3 are based on the sub-supersolution
method. For the convenience of the readers, we shall recall the following definitions.
A positive function v ∈ C2,γ(D), 0 < γ < 1, is called a subsolution of problem (1.5)
if

−∆v ≤ a(x) vσ in D,

v
∣∣
∂D

= 0,

lim
|x|→∞

v(x) = 0.



EJDE-2018/137 ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS 5

If the inequality is reversed, v is called a supersolution of problem (1.5).
Since our approach is based on potential theory tools, we lay out some basic

arguments that we are mainly concerned with in this work. For a nonnegative
measurable function f defined on D, we denote by V f the potential of f defined
on D by

V f(x) =
∫
D

GD(x, y)f(y) dy.

Recall that for each nonnegative function f in Cγloc(D), 0 < γ < 1, such that
V f ∈ L∞(D), we have V f ∈ C2,γ

loc (D) and satisfies −∆(V f) = f in D; see [34,
Theorem 6.6 page 119].

The outline of this article is as follows. In Section 2, we state and prove some
preliminary lemmas, involving some already known results on functions in K0 and
K∞. In Section 3, we give estimates on some potential functions. Section 4 is
devoted to the proof of our main result stated in Theorem 1.3.

2. Properties of the Karamata classes K0 and K∞
We collect in this paragraph some fundamental properties of functions belonging

to the Karamata classes K0 and K∞. It is easy to verify the following results.

Proposition 2.1. (i) A function L is in K0 defined on (0, η], η > 0, if and
only if L is a positive function in C1((0, η]), such that

lim
t→0+

tL′(t)
L(t)

= 0.

(ii) A function L is in K∞ if and only if L is a positive function in C1([1,∞)),
such that

lim
t→∞

tL′(t)
L(t)

= 0.

Remark 2.2. Using Proposition 2.1, we deduce that the map t 7→ L(t) belongs to
K∞ if and only if the map t 7→ L( 1

t ), defined on (0, 1], belongs to K0.

Lemma 2.3 ([8, 9, 37]). (i) Let p ∈ R and L1, L2 ∈ K0 (resp. K∞). Then
the functions L1 + L2, L1L2 and Lp1 belong to the class K0 (resp. K∞).

(ii) Let ε > 0 and L ∈ K0 (resp. K∞). Then we have

lim
t→0+

tεL(t) = 0 (resp. lim
t→∞

t−εL(t) = 0).

Lemma 2.4 (Karamata’s Theorem [8, 37]). (a) Let γ ∈ R and L ∈ K0 defined
on (0, η], η > 0. Then we have the following assertions:
(i) If γ > −1, then the integral

∫ η
0
tγL(t)dt converges and∫ t

0

sγL(s)ds
∼

t→ 0+ t1+γL(t)
1 + γ

.

(ii) If γ < −1, then
∫ η

0
tγL(t)dt diverges and∫ η

t

sγL(s)ds
∼

t→ 0+ − t
1+γL(t)
1 + γ

.

(b) Let L ∈ K∞ and γ ∈ R. Then we have the following:
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(i) If γ < −1, then
∫∞

1
tγL(t)dt converges and∫ ∞

t

sγL(s)ds
∼

t→∞ − t
1+γL(t)
1 + γ

.

(ii) If γ > −1, then
∫∞

1
tγL(t)dt diverges and∫ t

1

sγL(s)ds
∼

t→∞ t1+γL(t)
1 + γ

.

Lemma 2.5 ([9, 37]). Let L ∈ K0 defined on (0, η], η > 0, then we have

lim
t→0+

L(t)∫ η
t
L(s)
s ds

= 0.

In particular, t 7→
∫ η
t
L(s)
s ds ∈ K0. If further,

∫ η
0
L(s)
s ds converges, then

lim
t→0+

L(t)∫ t
0
L(s)
s ds

= 0 and t 7→
∫ t

0

L(s)
s

ds ∈ K0.

Lemma 2.6. Let L ∈ K0 defined on (0, η], η > 1, and a, b ∈ (0, 1), α ≥ 1 such that

1
α
b ≤ a ≤ α b. (2.1)

Then there exists m ≥ 0 such that

α−mL(b) ≤ L(a) ≤ αmL(b).

Proof. Let L ∈ K0. There exists c > 0 and z ∈ C([0, η]) such that z(0) = 0 and
satisfying for each t ∈ (0, η]

L(t) = c exp
(∫ η

t

z(s)
s
ds
)
.

Let m := sups∈[0,η] |z(s)|, then for each s ∈ [0, η], −m ≤ z(s) ≤ m. This together
with (2.1) imply

−m ln(α) ≤
∫ b

a

z(s)
s

ds ≤ m ln(α).

It follows that
α−mL(b) ≤ L(a) ≤ αmL(b).

�

Lemma 2.7 ([8]). (i) Let L ∈ K∞. Then we have

lim
t→∞

L(t)∫ t
1
L(s)
s ds

= 0 and t 7→
∫ t+1

1

L(s)
s

ds ∈ K∞.

If further,
∫∞

1
L(s)
s ds converges, then

lim
t→∞

L(t)∫∞
t

L(s)
s ds

= 0 and t 7→
∫ ∞
t

L(s)
s

ds ∈ K∞.

(ii) If L ∈ K∞ then there exists m ≥ 0 such that for every α > 0 and t ≥ 1, we
have

(1 + α)−mL(t) ≤ L(α+ t) ≤ (1 + α)mL(t).
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3. Asymptotic behavior of some potential functions

In what follows, we are going to give estimates on the potential functions V a
and V (a θσ), where a is a function satisfying (H1) and θ is the function given in
(1.7). These estimates will be useful in the proof of our main result. The next
lemma which is due to [2], plays a capital role to establish our estimates.

Lemma 3.1. Let Ω be a bounded regular domain in Rn (n ≥ 3) containing 0.
We recall that GΩ(x, y) is the Green function of the Dirichlet Laplacian in Ω and
dΩ(x) is the Euclidean distance from x ∈ Ω to the boundary of Ω. If p is a positive
continuous function in Ω\{0} such that for x ∈ Ω\{0},

p(x) ≈ (dΩ(x))−ν1L1(dΩ(x))|x|−ν2L2(|x|),
where ν1 ≤ 2, ν2 ≤ n, L1, L2 ∈ K0 defined on (0, η], (η > diam(Ω)) satisfying the
following conditions of integrability

∫ η
0
t1−ν1 L1(t)dt <∞ and

∫ η
0
tn−1−ν2 L2(t)dt <

∞, then for x ∈ Ω\{0},

GΩp(x) :=
∫

Ω

GΩ(x, y)p(y)dy ≈ (dΩ(x))min(2−ν1,1)L̃1(dΩ(x))|x|min(2−ν2,0)L̃2(|x|),

where

L̃1(t) =


1, if ν1 < 1,∫ η
t
L1(s)
s ds, if ν1 = 1,

L1(t), if 1 < ν1 < 2,∫ t
0
L1(s)
s ds, if ν1 = 2

and

L̃2(t) =


∫ t

0
L2(s)
s ds, if ν2 = n,

L2(t), if 2 < ν2 < n,∫ η
t
L2(s)
s ds, if ν2 = 2,

1, if ν2 < 2.

In the sequel, we denote by D∗ the open set D∗ = {x∗ ∈ B(O, 1), x ∈ D∪{∞}},
where x∗ = x

|x|2 is the Kelvin transformation from D∪{∞} onto D∗. We note that
D∗ is a bounded regular domain which contains 0. Moreover, from [3], we have for
each x ∈ D,

ρ(x) ≈ δD∗(x∗), (3.1)
where δD∗(x∗) = dist(x, ∂D∗).

Proposition 3.2. Let a be a function satisfying (H1). Then for x ∈ D, we have

V a(x) ≈ (ρ(x))min(2−λ,1)

|x|min(µ−2,n−2)
ΦM,λ,0(ρ(x)) ΨN,µ,0(|x|).

Proof. Let a be a function satisfying (H1). For x ∈ D, we have

V a(x) ≈
∫
D

GD(x, y) (ρ(y))−λM(ρ(y))|y|−µN(|y|)dy.

From (3.1) and Lemma 2.6, we obtain that for x ∈ D,

M(ρ(x)) ≈M(δD∗(x∗)). (3.2)

Combining (3.1), (3.2) with the fact that for x, y ∈ D,

GD(x, y) = |x|2−n|y|2−nGD∗(x∗, y∗),
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we obtain

V a(x) ≈ |x|2−n
∫
D∗

GD∗(x∗, z)(δD∗(z))−λM(δD∗(z))|z|µ−n−2N(
1
|z|

)dz.

Using (H1), Remark 2.2 and applying Lemma 3.1 with ν1 = λ, ν2 = −µ + n + 2,
L1(t) = M(t) and L2(t) = N( 1

t ), we get

V a(x) ≈ |x|2−n(δD∗(x∗))min(2−λ,1)L̃1(δD∗(x∗))|x∗|min(0,µ−n)L̃2(|x∗|),
where for t ∈ (0, 1],

L̃1(t) =


1, if λ < 1,∫ η
t
M(s)
s ds, if λ = 1,

M(t), if 1 < λ < 2,∫ t
0
M(s)
s ds, if λ = 2

(3.3)

and

L̃2(t) =



∫ t
0

N( 1
s )

s ds, if µ = 2,
N( 1

t ), if 2 < µ < n,∫ η
t

N( 1
s )

s ds, if µ = n,

1, if µ > n.

(3.4)

It is obvious to see from (3.3) that on (0, 1], L̃1 = ΦM,λ,0. Furthermore, by Propo-
sition 2.1 and Lemma 2.5, we get that ΦM,λ,0 ∈ K0. Which gives by using (3.1)
and Lemma 2.6 that for x ∈ D,

(δD∗(x∗))min(2−λ,1)L̃1(δD∗(x∗)) ≈ (ρ(x))min(2−λ,1) ΦM,λ,0(ρ(x)). (3.5)

On the other hand, from (3.4), we obtain that for t ∈ (0, 1],

L̃2(t) =



∫∞
1/t

N(s)
s ds, if µ = 2,

N( 1
t ), if 2 < µ < n,∫ 1

t

1/η
N(s)
s ds, if µ = n,

1, if µ > n.

By Proposition 2.1 and Lemma 2.7, we deduce that the function t 7→ L̃2( 1
t ) is in

K∞ and for t ∈ [1,∞),

L̃2(
1
t
) ≈ ΨN,µ,0(t).

This with the fact that for x ∈ D, |x∗| = 1
|x| implies that

|x|2−n|x∗|min(0,µ−n)L̃2(|x∗|) = |x|2−n−min(0,µ−n)L̃2(
1
|x|

)

≈ |x|2−n−min(0,µ−n)ΨN,µ,0(|x|).
(3.6)

Since 2− n−min(0, µ− n) = −min(µ− 2, n− 2), we finally obtain by combining
(3.5) and (3.6) that for x ∈ D,

V a(x) ≈ (ρ(x))min(2−λ,1)

|x|min(µ−2,n−2)
ΦM,λ,0(ρ(x)) ΨN,µ,0(|x|).

This completes the proof. �

The following proposition plays a crucial role in the proof of Theorem 1.3.
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Proposition 3.3. Let a be a function satisfying (H1) and let θ be the function
given by (1.7). Then for x ∈ D, we have

V (aθσ)(x) ≈ θ(x).

Proof. Let a be a function satisfying (H1). Then for x ∈ D,

a(x)θσ(x)

≈ (ρ(x))−λ+σmin( 2−λ
1−σ ,1)|x|−µ−σmin(µ−2

1−σ ,n−2)(MΦσM,λ,σ)(ρ(x))(NΨσ
N,µ,σ)(|x|)

:= (ρ(x))−λ1 |x|−µ1M̃(ρ(x))Ñ(|x|).

Here λ1 = λ − σmin( 2−λ
1−σ , 1) and µ1 = µ + σmin(µ−2

1−σ , n − 2). We can easily see
that λ1 ≤ 2 ≤ µ1. By Proposition 2.1 and Lemmas 2.3 and 2.5, the function
M̃ := MΦσM,λ,σ is in K0. Besides, from Lemma 2.4 and hypothesis (H1), we
reach the condition of integrability

∫ η
0
t1−λ1 M̃(t)dt < ∞. On the other hand,

applying Proposition 2.1 and Lemmas 2.3 and 2.7, we deduce that the function
Ñ := NΨσ

N,µ,σ belongs to K∞. By Lemma 2.4 and hypothesis (H1), we obtain that∫∞
1
t1−µ1 Ñ(t)dt converges. Hence, it follows from Proposition 3.2, that for x ∈ D

V (aθσ)(x) ≈ (ρ(x))min(2−λ1,1)

|x|min(µ1−2,n−2)
ΦfM,λ1,0

(ρ(x))Ψ eN,µ1,0
(|x|).

Now, by computation we have

min(2− λ1, 1) = min
(2− λ

1− σ
, 1
)
, min

(
µ1 − 2, n− 2

)
= min

(µ− 2
1− σ

, n− 2
)
.

Furthermore, we obtain by elementary calculus that for x ∈ D,

ΦfM,λ1,0
(ρ(x)) = ΦM,λ,σ(ρ(x)) and Ψ eN,µ1,0

(|x|) = ΨN,µ,σ(|x|).

This completes the proof. �

4. Proof of Theorem 1.3

4.1. Existence and asymptotic behavior. Let a be a function satisfying (H1).
We look now at the existence of positive solution of problem (1.5) satisfying (1.6).
The main idea is to find a subsolution and a supersolution to problem (1.5) of
the form cV (aωσ), where c > 0 and ω(x) = (ρ(x))α|x|βL(ρ(x))K(|x|), which will
satisfy

V (aωσ) ≈ ω. (4.1)
So the choice of the real numbers α, β and the functions L in K0 and K in K∞
is such that (4.1) is satisfied. Setting ω(x) = θ(x), where θ is the function given
by (1.7), we have by Proposition 3.3, that the function θ satisfies (4.1). Hence, let
v = V (aθσ) and let m ≥ 1 be such that

1
m
θ ≤ v ≤ mθ. (4.2)

This implies that for σ < 1, we have
1

m|σ|
θσ ≤ vσ ≤ m|σ|θσ.

Put c = m
|σ|
1−σ , then it is easy to show that u = 1

cv and u = cv are respectively a
subsolution and a supersolution of problem (1.5).
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Now, since c ≥ 1, we get u ≤ u on D. Thanks to the method of sub-supersolution
(see [33]), we deduce that problem (1.5) has a classical solution u such that u ≤
u ≤ u in D. By using (4.2), we conclude that u satisfies (1.6). This completes the
proof.

4.2. Uniqueness. Let a be a function satisfying (H1) and θ be the function defined
in (1.7). We aim to show that problem (1.5) has a unique positive solution in the
cone

Γ = {u ∈ C2,γ(D) : u(x) ≈ θ(x)}.

To this end, we need the following lemma.

Lemma 4.1. Let a be a function satisfying (H1). If u ∈ Γ is a solution of problem
(1.5), then u satisfies the integral equation

u = V (auσ). (4.3)

Proof. Let u ∈ Γ be a solution of problem (1.5). It is obvious that the function auσ

is in Cγloc(D), 0 < γ < 1. Since u ≈ θ, then by Proposition 3.3, we have V (auσ) ≈ θ.
So using (1.7) and by the virtue of Proposition 2.1 and Lemmas 2.3, 2.5 and 2.7,
we obtain that V (auσ) is in L∞(D) and satisfies

V (auσ)
∣∣
∂D

= 0 and lim
|x|→∞

V (auσ)(x) = 0.

So, we deduce that V (auσ) is a classical solution of problem (1.5). Therefore, we
conclude that the function v = u − V (auσ) is a classical solution of the following
Dirichlet problem

−∆h = 0 in D,

h
∣∣
∂D

= 0,

lim
|x|→∞

h(x) = 0.

Which implies that v = 0 and so u satisfies (4.3). �

Now to prove the uniqueness, we consider the following cases.

4.2.1. Case σ < 0. Let u and v be two solutions of (1.5) in Γ and put w = u− v.
Then by applying Lemma 4.1, we get that the function w satisfies

w + V (hw) = 0 in D,

where h is the nonnegative measurable function defined in D by

h(x) =

{
a(x) (v(x))σ−(u(x))σ

u(x)−v(x) if u(x) 6= v(x),

0 if u(x) = v(x).

Furthermore, it is clear to see that V (h|w|) <∞. Then, by [3, lemma 4.1] it follows
that w = 0. This proves the uniqueness.
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4.2.2. Case 0 ≤ σ < 1. Let us now assume that u and v are arbitrary solutions of
problem (1.5) in Γ. Since u, v ∈ Γ, then there exists a constant m ≥ 1 such that

1
m
≤ u

v
≤ m, in D.

This implies that the set

J := {t ∈ (0, 1] : tu ≤ v}

is not empty. Now put c := sup J . It is easy to see that 0 < c ≤ 1. On the other
hand, we have

−∆(v − cσu) = a(x)(vσ − cσuσ) ≥ 0 in D,

(v − cσu)
∣∣
∂D

= 0,

lim
|x|→∞

(v − cσu)(x) = 0.

Then, by the maximum principle, we deduce that cσu ≤ v. Which implies that
cσ ≤ c. Using the fact that σ < 1, we get that c ≥ 1. Hence, we arrive at u ≤ v
and by symmetry, we obtain that u = v. This completes the proof.

As applications of Theorem 1.3, we give the following examples.

Example 4.2. Let σ < 1 and a be a nonnegative function in Cγloc(D), 0 < γ < 1,
such that for x ∈ D,

a(x) ≈ (ρ(x))−λ(log(
4

ρ(x)
))−α(1 + |x|)−µ(log(2(1 + |x|)))−β ,

where λ ≤ 2 ≤ µ, α > 1 and β > 1. Then by Theorem 1.3, problem (1.5) has a
unique positive classical solution u satisfying, for x ∈ D,

u(x) ≈ Φ(ρ(x))Ψ(|x|),

where

Φ(ρ(x)) =


ρ(x), if λ ≤ 1 + σ,

(ρ(x))
2−λ
1−σ (log( 4

ρ(x) ))
−α
1−σ , if 1 + σ < λ < 2,

(log( 4
ρ(x) ))

1−α
1−σ , if λ = 2

and

Ψ(|x|) =


(log(2|x|))

1−β
1−σ , if µ = 2,

|x|
2−µ
1−σ (log(2|x|))

−β
1−σ , if 2 < µ < n− σ(n− 2),

|x|2−n, if µ ≥ n− σ(n− 2).

Example 4.3. Let σ < 1 and a be a nonnegative function in Cγloc(D), 0 < γ < 1,
such that for x ∈ D,

a(x) ≈ (ρ(x))−λ(log(
4

ρ(x)
))−α(1 + |x|)−2(log(2(1 + |x|)))−2,

where λ < 2 and α ∈ R. Then by Theorem 1.3, problem (1.5) has a unique positive
classical solution u satisfying the following estimates.

(i) If λ < 1 + σ and α ∈ R or λ = 1 + σ and α > 1, then for x ∈ D,

u(x) ≈ ρ(x)(log(2|x|))
−1
1−σ .



12 H. MÂAGLI, A. K. ALZAHRANI, Z. Z. EL ABIDINE EJDE-2018/137

(ii) If λ = 1 + σ and α = 1, then for x ∈ D,

u(x) ≈ ρ(x)(log2(
4

ρ(x)
))

1
1−σ (log(2|x|))

−1
1−σ .

(iii) If λ = 1 + σ and α < 1, then for x ∈ D,

u(x) ≈ ρ(x)(log(
4

ρ(x)
))

1−α
1−σ (log(2|x|))

−1
1−σ .

(iv) If 1 + σ < λ < 2 and α ∈ R, then for x ∈ D,

u(x) ≈ (ρ(x))
2−λ
1−σ (log(

4
ρ(x)

))
−α
1−σ (log(2|x|))

−1
1−σ .
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[10] F. Ĉırstea, V. D. Rădulescu; Existence and uniqueness of blow-up solutions for a class of

logistic equations, Commun. Contem. Math., 4 (2002), 559–585.
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[36] D. Repovš; Asymptotics for singular solutions of quasilinear elliptic equations with an ab-
sorption term, J. Math. Anal. Appl., 395 (2012), no. 1, 78–85.

[37] R. Seneta; Regular varying functions, Lectures Notes in Math. 508 Springer-Verlag, Berlin

1976.
[38] A. W. Shaker; On singular semilinear elliptic equations, J. Math. Anal. Appl., 173 (1993),

222–228.
[39] J. S. Wong; On the generalized Emden-Fowler equation, SIAM Rev., 17 (1975), 339–360.

[40] Z. Zhang; The asymptotic behavior of the unique solution for the singular Lane-Emden-

Fowler equation, J. Math. Anal. Appl., 312 (2005), 33–43.

Habib Mâagli
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