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Abstract 

This paper presents a detection algorithm that allows 

automatic classification of  hypermetric and hypometric 

oculomotor plant behavior in cases when saccadic behavior of the 

oculomotor plant is assessed during the course of the step stimulus. 

Such behavior can be classified with a number of oculomotor plant 

metrics represented by the number of  overshoots, undershoots, 

corrected undershoots/overshoots, multi-corrected 

overshoots/undershoots. The algorithm presented in this paper 

allows for the automated classification of nine oculomotor plant 

metrics including dynamic overshoots and  express saccades. Data 

from sixty-five human subjects were used to support this  

experimental study. The performance of the proposed algorithm 

was tested and compared to manual classification methods 

resulting in a  detection accuracy of up to 72% for several of the 

oculomotor plant metrics. 

C R Categories: I.6.4 [Simulation and Modeling]: Model 

Validation and Analysis; J.7 [Computers in Other Systems]: 

Process control, Real time. 

K eywords: classification, algorithm, saccade, oculomotor 

behavior. 

1 Introduction 

The assessment of oculomotor behavior is fundamental to 

clinical examination of visual system pathology. Two primary eye 

movements, fixation and saccadic function, have proven valuable 

in the diagnosis of several psychological, degenerative and 

neurological disorders.  For instance, abnormal saccadic eye 

disease [1], schizophrenia [2], macular degeneration [3-4], 

attentional deficit disorders [5], and persons suffering from 

vestibular-  [6]. Tracking 

changes in eye movement control can provide information about 

patient responses to medication or improvements in functional 

tasks during activities of daily living such as reading [4]. During 

recent years, eye movement classification algorithms have been 

increasingly used in the oculomotor field to aid our understanding 

of normal eye function control in response to external stimuli or 

due to pathology or aging [7]. However, to the best of our 

knowledge an automated classification algorithm for the 

assessment of  oculomotor behavior during saccades does not exist. 

In this paper we describe development of such an algorithm and 

report the performance of the algorithm versus manually classified 

data. 

2 O culomotor Behavior During Saccades 

The oculomotor behavior during saccades can be 

accessed via the amount and magnitude of hypometria 

(undershoot)/hypermetria (overshoot), number of express saccades 

and dynamic overshoots [8]. A practical look at the hypometric 

and hypermetric behavior of the oculomotor plant allows 

assessment of such behavior through a number of simplified cases  

such as simple undershoot, simple overshoot, corrected 

undershoot, corrected overshoot, multi corrected undershoot, multi 

corrected overshoot, and compound saccade. Figure 1 presents 

eight specific examples with descriptions of each case provided in 

the text below. Stimulus saccade is defined as a step in the 

stimulus positional signal. 

Simple Undershoot/Overshoot: the offset position of the stimulus 

induced saccade or eye movement falls below/above a certain 

threshold (>0.5  in our work) from stimulus fixation position. 
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F igure 1. Examples of Oculomotor Plant metrics with eye positional accuracy better than 0.5º.
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Additionally, there is no additional or corrective saccade present 

until the next stimulus evoked saccade. 

Corrected Undershoot/Overshoot: the offset position of the 

stimulus induced saccade falls below/above a certain threshold 

(>0.5  in our work) from stimulus fixation position. The corrective 

saccade following the initial undershoot/overshoot results in an eye 

fixation position within a certain threshold of the fixation stimulus  

(<0.5  in our work). This metric assumes that there is no saccadic 

behavior prior to the next stimulus saccade.  

M ulti-corrected Undershoot/Overshoot: is similar in definition 

to corrected undershoot/overshoot however there are additional 

series of corrective saccades to bring the resulting fixation position 

within a specified distance (<0.5  in our work)  to the fixation 

stimulus.  

Express Saccade: a stimulus induced saccadic behavior where the 

offset location of the initial stimulus induced saccade is located at 

the large distance (>2  in our work). The subsequent saccade has 

an extremely short latency of less than 60ms [8]. With oculomotor 

plant behavior during saccades resembling the behavior during 

fixation.  

Dynamic Overshoot: is the movement of the eye that occurs after 

the offset of the stimulus induced saccade directed in the opposite 

direction from the previous saccade movement [8]. The amplitude 

of such movement usually appears in the range of 0.25-0.5 [8].  

Normal: the offset position of the stimulus induced saccade falls 

within a certain threshold (<0.5  in our work) from stimulus 

fixation position. There is no corrective saccadic behavior prior to 

the next stimulus saccade related events. 

Compound: normal that is broken by two or more small amplitude 

saccades (>0.5  but <1  in our work) that essentially bring the 

positional signal to the original offset position of the stimulus 

induced saccade.  

3 Automated C lassification of O culomotor Behavior 

Definitions provided in the section above seem to be 

theoretically simple and straightforward behaviors to classify. The 

practical challenges come from the fact that the eye position signal 

is noisy, prone to data loss, and interspersed with imperfect 

positional accuracy. Low positional accuracy disrupts the spatial 

relationship between the eye position and stimulus signal leading 

to a high risk of error when the stimulus based classifications 

described in the previous section are employed. The automated 

classification algorithm that we propose addresses the accuracy 

challenge by looking at the spatial behavior of the positional signal 

and considers the amplitudes and directions of the saccades 

following the initial stimulus induced saccade.  Such saccadic 

sequence generated by the Oculomotor Plant can be characterized 

by a sequence of states represented by the Deterministic Finite 

Automation (DFA) model. Figure 2 presents an example of a DFA 

sequence generated for the positive amplitude stimulus. The 

resulting automated classification algorithm is presented by Figure 

3. The stimulus_saccade_list data structure provided as an input to 

the algorithm contains a sequence of entries, where each entry is 

represented by a sequence of saccades recorded in response to each 

corresponding stimulus  saccade. The 

stimulus_saccade_classifie_list represents the data structure where 

all saccades are classified according to the FDA states.  
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State 1:  positive stimulus starting point
State 2:  dynamic overshoot
State 3:  simple undershoot
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State 6:  corrected undershoot
State 7:  corrected overshoot
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State Change Condition(SCC)

SCC a: undershoot
SCC b: overshoot
SCC c: normal shoot
SCC d: dynamic shoot
SCC e:
    saccade.offset_position_deg <
    last_saccade.offset_position_deg 
SCC f: 
    saccade.offset_position_deg >
    last_saccade.offset_position_deg 

Note: SCC e and SCC f are sign 
sensitive
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F igure 2. Deterministic Finite Automation of Saccadic Oculomotor Behavior
F igure 3. Pseudocode for Oculomotor Automated 
Classification Algorithm

In addition, the nature of automated 

invalid saccade which 

represents saccades that are exhibited in response to the stimulus 

however are directed in an opposite direction, or amplitude with 

less than 1/3 of the stimulus amplitude or out of working range. 

The most frequent reason for an invalid saccadic occurrence was 

data loss during  the positional eye tracking signal. Sacca

classification 

FDA states.  

4 E XPE RI M E N T A L M E T H O D O L O G Y 

Apparatus: The experiments were conducted with a Tobii x120 

eye tracker [9] at 120Hz sampling frequency and connected to a 

24-inch flat panel screen with resolution of 1980x1200 pix. Chin 

rest was employed to provide higher accuracy and stability of eye 

positional data. 

Saccade Invocation Task: The stimulus was presented as a 

e 

screen. The first point was presented at the middle of the screen 

while subsequent points moved horizontally to the left and right of 

. The jumping 

sequence consisted of 15 points including the original center point, 

yielding 14 stimulus saccades for each test trial. After each jump, 

the point remained stationary for 1.5s 

before the next jump was initiated. The 

size of the point was approximately 1  of 

the visual angle with the center marked 

as a black dot.  Each point consisted of 

white pixels (except for the central black 

dot) on a black screen background.  

Participants & Positional Data 

Quality: The test data was collected 

from 65 student volunteers (24 males/ 

44 females) with an average age of 

21.22 (± 3.23). All were with normal or 

corrected-to-normal vision. None of 

the participants had prior experience with eye 

tracking.  Advanced accuracy test procedure was  employed to 

monitor the quality of the corrected data [10]. The average 

calibration error was 1.53º (±1.08 ) and average data loss was 15% 

(±18%). 

Eye movement classification algorithm: Specific values of the 

oculomotor plant metrics depends on the choice of the eye 

movement classification algorithm. In our work we have employed 

the Velocity Threshold Identification (I-VT) algorithm (Salvucci 

and Goldberg 2000) with a velocity threshold of 10º/s. 

Data pre-processing: 1) The eye position trace was interspersed 

with missing coordinates of the positional samples due to eye 

tracking failures. Prior to classification of an eye movement, the 

data recovery was employed where in case of one missing samples, 

the coordinates of the sample were linearly interpolated. 2) Due to 

ion task some 

subjects exhibited anticipatory saccades prior to the actual jump of 

the stimulus dot. Addressing such cases, the Oculomotor 

Automated Classification algorithm was employed 0.75s prior to 

the onset of stimulus saccade. This number thus defined the 

working range for each classification.  3) Dynamic overshoot 

behavior was sometimes broken into  an initial large amplitude 

saccade followed by  very short fixation like behavior (<60ms), 



 

 

T able 1. Manual and automated oculomotor metric classification results. 
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and then another corrective saccade. In these situations, the three 

movements were merged into a single complex signal logical 

saccade.  

M anual C lassification: a trained research assistant manually 

classified all oculomotor data tracings for participants described in 

Section 2 under the guidance of an oculomotor rehabilitation 

specialist.    

5 Results 

Classification results for the Oculomotor Automated 

Classification algorithm are reported vs. manual classification. 

Table 1 presents the results. The numbers in  italics represent the 

results of the manual classification done by a human. Grey color 

represents automated detection accuracy. Highlighted percentages 

in bold represent the amount of correctly identified oculomotor 

plant metrics. Other percentages represent the amount of 

oculomotor plant metrics misclassified in a specific category. The 

best result was achieved for simple undershoots (72%) and express 

saccades (67%). The worst result of 0% was achieved for multi-

corrected undershoot and compound saccades. This can be 

explained by the fact that just one actual saccade was presented in 

each category.   

6 Discussion, Conclusions and Further Work 

Our preliminary results are promising in that we have been 

able to demonstrate a useful automatic classification system to 

address nine (8) oculomotor behaviors in humans.  Although we 

several challenging areas which deserve continued work as 

follows: 1) It was difficult to identify saccade properties in the 

midst of ocular drift. We expect that if information about 

surrounding fixations is added it would improve classification 

accuracy. 2) 

is quite challenging. Further research is needed to improve the 

definition provided in Section 2. 3) Robust eye position recovery 

algorithms are needed to improve the accuracy of classification. 

Despite the above challenges, our results still present an 

automated system to sufficiently classify nine possible oculomotor 

saccadic behaviors which can be of great value to accurately 

diagnose and track treatment response in many patient populations. 

Further work will continue to optimize the algorithm to develop a 

practical yet accurate assessment tool for clinical applications. 
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