
Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2005-2

daspps a distributed implementation of the aspps system

Deborah East
Jason High

2005-05-11

daspps a distributed implementation of the aspps system

Deborah East and Jason High

Texas State University–San Marcos

San Marcos, TX

Abstract. We introduce daspps, a distributed general constraint system, based

on the aspps system [1]. We describe the advantages of basing a distributed sys-

tem on the aspps system and distributing only independent sub-theories. The lan-

guage of logic PS+ [2] facilitates the modeling, modifying and programming of

search problems and the grounder psgrnd [1] instantiates the resulting program

with data for a specific instance. During the instantiation, many of the constructs

of the logic PS+ are maintained. The resulting aspps theory is concise and retains

the structure of the original problem. Despite concise theories scalability is still

an issue. As the size of problem instances increase, single processor machines

take too long to find solutions or they exhaust their resources. The distributed im-

plementation, daspps, increases the resources available thus allowing us to solve

problems we otherwise would not be able to solve. We describe how the daspps

implementation minimizes communication overhead and provides robustness and

scalability. We demonstrate the effectiveness of daspps by comparing results of

executions by both aspps and daspps.

1 Introduction

We introduce daspps, a distributed general constraint system based on the aspps sys-
tem [1], which uses a master-client paradigm for distributing independent sub-theories.
Much of the research on general constraint solvers has been focused on satisfiability
(SAT) solvers. One of the most important satisfiability algorithms is the Davis-Putnam
algorithm [3, 4]. The introduction of the Davis-Putnam algorithm drew considerable
interest in developing SAT solvers. However, due to difficulties in scaling, interest in
SAT solvers waned until the development of probabilistic algorithms such as GSAT [5]
and simulated annealing [6–8]. The success of probabilistic algorithms brought about
a renewed interest in SAT solvers as general purpose solvers. The renewed interest in
SAT solvers and increased speed in current computer hardware also led to develop-
ment of new heuristics for Davis-Putnam algorithms. Several fast implementations of
the Davis-Putnam algorithm [9, 10] were also developed.

There are still several issues involved in using SAT solvers as general purpose
solvers. First is the need for a problem to be encoded in conjunctive normal form (CNF).
Second, for each problem a program must be written to encode the problem as a SAT
theory. Even minor changes in the problem could result in the need for major changes in
the encoding program. More importantly, the encoding of a problem into a SAT theory
could entail a polynomial increase in size which would make finding a solution im-
practical. Another important issue is the lack of scalability of SAT solvers, since search

space for SAT increases exponentially as the size of the problem instances increase
linearly.

The aspps system facilitates the modeling, programming, modifying and solving
of search problems. A program in the language of logic PS+ [1, 2] is easy to model
and modify. The grounder for the aspps [1] system, psgrnd [1] instantiates a program
with data for a specific instance. During the instantiation, many of the constructs of the
language of logic PS+ are maintained resulting in a concise theory. Although the mod-
eling and instantiation of the aspps system addresses some of the issues present in SAT
solvers, scalability remains an issue in aspps. As the size of problem instances increase,
single processor machines take too long to find solutions or they exhaust their resources.
Currently there are implementations of distributed SAT solvers which are used as gen-
eral constraint solvers such as NAGSAT [11], //Satz [12], GridSAT [13, 14]. We present
daspps, a distributed implementation based on the aspps system. Distributing processes
increases the resources available thus allowing us to solve problems we otherwise would
not be able to solve. The daspps implementation focuses on minimizing communica-
tion overhead and providing robustness and scalability. Section 2 provides background
information on the aspps system with section 2.3 describing branching heuristics. Sec-
tion 3 discusses current distributed solvers based on SAT solvers. In section 4 we present
daspps and describe the generation of sub-theories, initialization of client nodes and the
assignment of sub-theories to initialized clients. Section 5 presents results of distribut-
ing the n-queens problem and a problem based on VLSI design. Finally, we present
conclusions and discuss future work.

2 Aspps

The aspps system is an answer-set programming system based on the extended logic
of propositional schemata (PS+) [15], which allows variables but not function symbols
(disallowing function symbols ensures that the theories will be finite) in the language.
The aspps system consists of psgrnd and the aspps solver. The psgrnd module uses as
input a program written in logic PS+ and data for a specific instance of the problem and
outputs an aspps theory. The aspps solver is a complete solver which takes an aspps

theory as input.

2.1 PS+

A theory in the logic PS+ is a pair (D,P), where D is a set of ground atoms (only con-
stant symbols as arguments) representing an instance of a problem (input data), and P

is a set of PS+-clauses representing a program (an abstraction of a problem). Predicates
in a PS+ theory are classified as data and program predicates. Ground atoms built of
data predicates represent a problem instance. The program P consists of clauses built of
atoms involving both data and program predicates. Clauses are written as implications
and explicit negation of atoms is not allowed (the implication symbol is omitted if a
clause has an empty conjunction of atoms as the antecedent). The program is written to
capture all the relevant constraints specifying the problem to be solved. The meaning of
a PS+-theory T = (D,P) is given by a family of PS+-models [15].

The essential difference between the logic PS+ and the logic of propositional schemata
is in the definition of a model. Following the intuition that computation must not mod-
ify the data set, a set of ground atoms M is a model of a PS+ theory (D,P) if M is a
propositional model of the grounding of (D,P) and if it coincides with D on the part of
the Herbrand Universe given by data predicates.

In some cases, the consequent of a clause must be a disjunction of a set of atoms
that depends on a particular data instance. To build such disjunctions, we introduced in
the language of the logic PS+ the notion of an e-atom. An example of an e-atom (in
the context of a graph-coloring setting) is color(X ,). It stands for the disjunction of
all atoms of the form color(X ,c), where c is a constant from the extension of the data
predicate clr. The current version of logic PS+ allows also for more complex variants
of e-atoms.

Another powerful modeling concept in the language of logic PS+ is that of a c-
atom. An example of a c-atom is k{color(X ,)}m. We interpret the expression within
the braces as a specification of the set of all ground atoms of the form color(X ,c), where
c is a constant from the extension of the data predicate clr. The meaning of the atom
k{color(X ,)}m is: at least k and no more than m atoms of the form color(X ,c) are true.

In addition to the program and data predicates, the aspps implementation includes
predefined predicates and function symbols such as the equality operator ==, arith-
metic operators <=, >=, < and >, and arithmetic operations +, −, ∗ ,/, abs() (ab-
solute value), mod(N,b), max(X ,Y) and min(X ,Y). These symbols are assigned their
standard interpretation. It is necessary to emphasize that the domains are restricted only
to those constants that appear in a theory.

2.2 psgrnd

The grounding of logic PS+ programs is performed by the psgrnd module. When
grounding, we first evaluate all expressions built of predefined operators. We then form
ground instantiations of all program clauses. Next, we evaluate and simplify away all
atoms built of predefined predicates. We also simplify away all atoms built of data pred-
icates (as they are fully determined by the data part). Therefore, the ground PS+-theory
contains only ground atoms built of program predicates. The structure of c-atoms is
preserved in ground theories and the aspps solver takes advantage of the structure of
the c-atom.

2.3 Branching heuristics

The aspps solver uses a depth first backtracking algorithm similar to [3, 4] but extends
unit propagation and branching heuristics. The aspps solver has branching heuristics
which were developed to take advantage of the constructs maintained in the ground
theories of the logic PS+. In the aspps solver, as in SAT complete solvers, branching
heuristics are designed to choose the most constrained literal. For SAT solvers using
theories in CNF the most constrained literal heuristic is typically computed or estimated
based on the number of occurrences of the literal in the shortest clauses. This works
very well for many problems such as color-ability or random 3-SAT but less well for
structured problems where the CNF encoding distorts the structure of the problem. The

constructs in aspps theories enable the branching heuristics in the aspps solver to be
more accurate.

Let’s look at two examples. First, the color-ability problem where the CNF theory
is similar to the aspps theory. Assume we have the set of colors C = {red,blue,green}
and a graph G(V,E) where V = {1,2,3} and E = {(1,2),(2,3)}. The structure of the
problem results from the edges in the graph since the clauses which require each vertex
to be assigned exactly one color are symmetrical. Branching heuristics for both the
aspps solver and SAT solvers will find as equally constrained the following atoms:
{color(2,red), color(2,green),color(2,blue)}.
Although aspps theory has fewer clauses than the CNF theory, the key issue is that the
branching heuristics in both cases will find the same set of atoms and consequently SAT
solvers perform as well or better on culpability instances as does the aspps solver.

Q Q

Q Q

Q Q

Q Q

a.

Q Q

Q Q

Q

Q Q

Q Q

b.

Fig. 1. Diagonal conflict for queens.

In contrast to the color ability problem, SAT solvers perform much worse on the n-
queens problem than the aspps solvers. This is partly due to the increase in size for
the CNF theory; however, it is our contention that the key difference is the branch-
ing heuristic in the aspps solver which takes advantage of the c-atoms. The branching
heuristic in the aspps chooses branching points based upon weights assigned to atoms
and c-atoms. Each atom in the aspps theory is assigned a weight which is the sum of the
constraint weight for each clause or c-atom in which it occurs. The constraint weight is
maximum for a clause or a c-atom of length two and decreases as the length increases.
Weights are also placed on c-atoms which are the sums of the weights of its base atoms
(the set of atoms making up the c-atom). A c-atom is branchable if it is forced true and
it is satisfiable only if exactly one of the unassigned base atoms is assigned true. The
aspps branching heuristic finds a c-atom which is branchable, has minimum length and
maximum weight. The aspps theory for the 5-queens problem contains clauses with c-
atoms which are row, column symmetric. These c-atoms are forced atoms and exactly
one atom within the c-atom must be true thus they are branchable atoms. Since they are

symmetric, without additional clauses or c-atoms they would all have the same weight.
For 5-queens problem the row and column clauses are:

1{queen(1,1) queen(1,2) queen(1,3) queen(1,4) queen(1,5)}1
1{queen(2,1) queen(2,2) queen(2,3) queen(2,4) queen(2,5)}1

...
1{queen(1,1) queen(2,1) queen(3,1) queen(4,1) queen(5,1)}1
1{queen(1,2) queen(2,2) queen(3,2) queen(4,2) queen(5,2)}1

...

The meaning is that each row and each column must have exactly one queen assigned
true. The diagonal constraints consist of clauses with forced c-atoms which are only
partially symmetric and are not branchable; however, these c-atoms still they play an
important role in the branching heuristics of aspps. The clauses with c-atoms to prohibit
the queen placements for Fig. 1 a. are:

{queen(1,2) queen(2,1)}1
{queen(1,4) queen(2,5)}1
{queen(4,1) queen(5,2)}1
{queen(4,5) queen(5,4)}1

The meaning for the c-atoms for the diagonal constraints is that each diagonal can have
at most one queen. The c-atoms for the diagonals shown in Fig. 1 a. are not branchable
because they do not have a lower bound; however, due to their short length they provide
a maximum increase to the sum of the individual atom weights. The c-atom chosen
by the aspps heuristic would contain some of the individual atoms which are in the
two–atom c-atoms. Clauses with c-atoms to prohibit the longer diagonal constraints
represented by queen placements for Fig. 1 b. are:

{queen(1,1) queen(2,2) queen(3,3) queen(4,4) queen(5,5)}1
{queen(1,5) queen(2,4) queen(3,3) queen(4,2) queen(5,1)}1

These c-atoms are not branchable either because they have no lower bound and in ad-
dition they provide less weight to their base atoms due to their relatively long length.
There are eight c-atoms representing row 1, 2, 4 and 5 and column 1, 2, 4 and 5 con-
straints with base atoms which are also base atoms of the c-atoms representing the
constraints for Fig 1 a. The aspps branching heuristic will choose randomly one of
these eight c-atoms for branching. After choosing a c-atom the heuristics order the base
atoms by their weight.

The CNF encoding for the 5-queens requires the representation of row and column
restrictions as five-literal clauses:

queen(1,1)∨queen(1,2)∨queen(1,3)∨queen(1,4)∨queen(1,5)
queen(2,1)∨queen(2,2)∨queen(2,3)∨queen(2,4)∨queen(2,5)

...
queen(1,1)∨queen(2,1)∨queen(3,1)∨queen(4,1)∨queen(5,1)
queen(1,2)∨queen(2,2)∨queen(3,2)∨queen(4,2)∨queen(5,2)

...

and two-literal clauses:

¬queen(1,1)∨¬queen(1,2)
¬queen(1,1)∨¬queen(1,3)

...
¬queen(2,1)∨¬queen(2,2)
¬queen(2,1)∨¬queen(2,3)

...
¬queen(1,1)∨¬queen(2,1)
¬queen(1,1)∨¬queen(3,1)

...
¬queen(1,2)∨¬queen(2,2)
¬queen(1,2)∨¬queen(3,2)

...

and the diagonal constraints as two-literal clauses:

¬queen(1,1)∨¬queen(2,2)
¬queen(1,1)∨¬queen(3,3)

...

The limitations imposed by CNF may result in less constrained literals being chosen
for branching. In the 5-queen example the literal ¬queen(3,3) occurs most frequently
in the two-literal CNF clauses and queen(3,3) occurs with equal frequency in the five-
literal CNF clauses. Thus the first branch point will be on queen(3,3) for the SAT solver
in contrast to the more constrained atoms chosen by the aspps branching heuristic.

The choice of branch points is critical to the efficiency of a solver, either a SAT
solver or the aspps solver. Maintaining the structure of the underlying problem in the
aspps theory allows the aspps branching heuristics to make choices based on the struc-
ture of the problem and not on a structure imposed by the theory format.

3 Current distributed solvers

Recent research into the incorporation of parallel/distributed paradigms into SAT solvers
has resulted in several successful systems. We discuss only complete distributed solvers.

GridSAT [13, 14] is a complete distributed solver based on the zChaff [16] sequen-
tial SAT solver. It is the successor of the GradSAT distributed solver. GridSAT is de-
signed and implemented for Computational Grid environments. Source code for the
GridSAT system, or that of the GradSAT system, is not publicly available at this time.
The GridSAT system employs a master-client communication model. Communication
between nodes is facilitated by the EveryWare [17] communication framework. Be-
cause GridSAT uses zChaff as its core solver system the exchange of learned clauses

among registered client nodes is required. The process of search-space splitting and
learned-clause exchange continues for the duration of the problem processing as moni-
tored by the master node. The following four cases will cause the master node to termi-
nate: 1) all registered clients are idle, 2) a registered client finds a solution, 3) the master
node times out or 4) a registered client node exceeds allowed resources or becomes oth-
erwise unavailable. The first 3 cases are standard among distributed solvers. The last
case, however, is illustrative of GridSAT’s lack of fault-tolerance. Consequently, failure
of a registered client node results in failure of the master node.

Another complete distributed SAT solver is Parallel Satz [12], based upon the se-
quential solver Satz [10]. Parallel Satz is designed for distributed problem solving
within a clustered environment, i.e. a tightly coupled pool of independent systems on a
local-area network. Source code for Parallel Satz is publicly available. A simple master-
slave communication model is used, employing RPC as a message passing framework.
Process invocation and termination is facilitated using the Berkeley RSH protocol. All
work is begun on the master node. The master node will halt on the following cases:
1) all slaves are idle, 2) a solution is found. Similar to the GridSAT solver, the load-
balancing mechanism of Parallel Satz insures that if all slave nodes are in an idle state,
then there is no more processing to be done, indicating unsatisfiability of the search
problem. Unlike GridSAT, a client node failure does not terminate the master process,
indicating a degree of fault-tolerance in Parallel Satz.

The last complete distributed solver we discuss is NAGSAT which is limited to 3-
SAT problems. Nagging [18, 11] is a general-purpose, asynchronous, parallel search
technique where a single master node, or processor, performs a standard DPLL search
procedure which is not derived from a current SAT solver. The technique of nagging
has several inherent benefits that can be exploited by a distributed framework. First,
nagging does not require any explicit load balancing mechanisms to be implemented.
Second, nagging is, by its definition, fault-tolerant.

4 Distributed Aspps

The design of the daspps system was motivated by three primary goals. The first is that
the system must be scalable. Resource utilization would not be inherently limited to
a particular subset of clients or local area network. Second, the system must be fault-
tolerant, so that failure of one client node does not affect the search of other client
nodes. Third, the system must be as transparent as possible, i.e.. details of distribution
do not introduce unnecessary complexity.

The daspps consists of a communication sub-system and a modified version of
the aspps sequential solver. The communication sub-system implements a simple mas-
ter/client communication model, using the Berkeley sockets and POSIX thread APIs.
The master node runs a modified version of the aspps solver designed to partition the
problem search space and assign the resulting sub-theories to available client nodes
(Figure 2). The master node does not perform explicit search-space processing, how-
ever it is possible for the master node to find a solution during partitioning.

Master

Data

PS+ program

psgrnd
aspps theory

.

.

.

Sub−theory n

Sub−theory 2

Sub−theory 1

Client 1

Client 2

Client m

.

.

.

generate sub−theories

initialize clients

Sub−theory j

Client i

result

set of clients

set of sub−theories

set of assignments

.

.

.

Fig. 2. Flow control of daspps

4.1 Initialization of Client nodes

A list or lists of possible clients nodes are maintained as files on the master node. The
client nodes are identified either by a host name or an ip address. The clients are not
restricted to a local area network. In fact, there is no restrictions on either the number
or location of client nodes maintained in the list. At the beginning of a session, the
master node initializes client nodes from a client list. If a client node is available when
the initialization attempt is made then the client node is placed in a queue of initialized
nodes, otherwise, the client node is ignored for this session.

4.2 Partitioning

The primary task of employing a distributed framework within an existing sequential
solver is the development of an efficient partitioning mechanism. The daspps system
employs a distributed search technique where the search space is partitioned into in-
dependent sub-theories. Each of these sub-theories is then processed by a client node.
This technique is called search-space partitioning and is used by the majority of ex-
isting solvers. Search-space partitioning within the daspps system differs significantly
from other solvers (see Section 3). Rather than initializing a client with the complete
search problem, and partitioning based upon a specified criteria, the master node in the
daspps system partitions the search space dynamically. Each client node receives only

1{a b } 1

1{a c }1

1{c d } 1

1{b f g } 1

1 { a b } 1

1 { f g } 1 Sub−theory

b=f

a=f
b=t

a=t

f=t

g=f g=t
f=f

c=f

d=t d=f

c=t f=f

g=f
forced atoms forced atoms

assigned atoms assigned atoms

assigned atoms assigned atoms

Sub−theorySub−theory

Fig. 3. Partitioning of sub-theories in daspps

its assigned sub-theory. Client nodes perform no further partitioning, i.e., the sub-theory
is solved sequentially by the client node.

As discussed in the Section 2, the aspps system benefits from the direct representa-
tion of c-atoms. In the aspps system, the grounded PS+ theories maintain the structure
of the c-atom. A grounded PS+ theory T such that,

T = (ζ1 ∧ζ2∧ ...∧ζn)

where each clause ζi has the form

ζi = a1∧a2∧ ...∧am → b1∨b2∨ ...∨br(m,r ≥ 0)

and each a j and bk is either a c-atoms or ground atom. A c-atom is a collection of
ground atoms such that if at least p and at most q of the ground atoms are true then the
c-atoms is true. Otherwise, the c-atom is false. Thus the value of a c-atom is determined
by the assignment of values to the ground atoms making up the c-atom. If a c-atom is
forced during propagation its cardinality requirements must be enforced. If the c-atom
must be true then the collection of ground atoms not already assigned must be assigned
values in such a way that the cardinality requirements are met. Likewise, if the c-atom
must be false, then the collection of ground atoms must be assigned values which do
not satisfy the constraints. A forced c-atom can be used to partition the search-space
into multiple independent sub-theories. As an example, consider the following c-atom:

1{ a b c d e }1

where the set {a,b,c,d,e} are ground atoms and the partial assignment of values consists
of {a=false,b=false}. If the c-atom is forced to true, then the theory may be split into
three sub-theories with the following partial assignments:
a=false,b=false,c=true,d=false,e=false
a=false,b=false,c=false,d=true,e=false
a=false,b=false,c=false,d=false,e=true
Similarly, if the c-atom is forced to false, then we have five sub-theories with the fol-
lowing partial assignments:
a=false,b=false,c=false,d=false,e=false
a=false,b=false,c=false,d=true,e=true
a=false,b=false,c=true,d=false,e=true
a=false,b=false,c=true,d=true,e=false
a=false,b=false,c=true,d=true,e=true

Sub-theories resulting from either c-atoms or ground atoms are used by daspps to
split the theory into independent sub-theories. Currently, we use the ratio of assigned
atoms/number of atoms to determine a split. If the ratio is 0.01 (the value determined
through testing), then the current assignment stack is sent to a pending client node. Note
that sub-theory partitioning is not, therefore, determined by the depth of the search, but
by the percentage of atoms assigned. The actual depth of the search at which sub-
theories are generated may vary greatly because atoms may be forced. Consider, for
example, Figure 3. If we branch on the c-atom 1{ a b }1, we have the two partial
assignment lists { a = true, b = f alse } and { a = f alse, b = true }. In the case of
the assignment { a = true, b = f alse }, the atoms c and d are forced (to satisfy the
cardinality constraints). Atoms f and g are not forced, and we only have sub-theories
following the assignments of f and g. On the other hand, in the case of the partial
assignment { a = f alse, b = true }, atoms c, d, f , and g are all forced (to satisfy the
cardinality constraints), thus producing a sub-theory.

4.3 Assignment of sub-theories to initialized client nodes

Each sub-theory is assigned to one or more available client nodes for processing. We
say processing of a sub-theory is complete if a solution is found or no solutions is found
after exhausting the search space. Sub-theory assignment is performed as follows. Let
N be a set of available clients, S be the set of sub-theories to be processed, and A be the
set of existing assignments. While S is not empty, for each available client we create the
pair an = (ni,sk), where ni ∈ N, sk ∈ S, and an ∈ A. Note that multiple clients may be
assigned the same sub-theory, such that the pairs (ni,sk) and (n j,sk) exist. Assignments
continue to be made until all sub-theories have been processed. If all clauses are satisfied
in any of the sub-theories, then the entire theory is satisfied. If a contradiction is found in
a sub-theory, then that sub-theory does not contain a solution and the client can request
an additional sub-theory.

The master node initializes the session, partitions the theory into sub-theories, as-
signs sub-theories to client nodes, receives results from the client nodes and terminates
the session. The client node performs a complete, sequential search on the assigned
sub-theory. If a solution is found within the assigned sub-problem, the client will notify

the master node. Otherwise, after determining that the sub-theory does not contain a
solution the client will request additional work from the master. Each client node, once
initialized, will work on behalf of the master until it is released.

5 Results

We show the results of testing daspps on two problems. The first problem is the n-
queens problem. The second problem comes from VLSI design. The test cases for both
aspps and daspps were executed on Sun Blade 2000 UltraSPARC III+ workstations
running at 900 MHz with 1GB of RAM. For all of the daspps executions four nodes
were initialized and the actual number used is given in each table.

For a comparison of execution times for aspps, SAT solvers and stable model se-
mantics solver smodels on a number of different problems see [1] and for more infor-
mation on modeling in the language of logic PS+ see [2].

5.1 n-queens

The n-queens problem consists of determining the position of n queens on an n× n

chess board such that no queen remove another queen. In other words, we cannot have
more than one queen on a row, or on a column or on the same diagonal. The n-queens
program in the language of PS+ follows:

1. pred queen(number, number).

2. var number C, R, I.

3. 1{queen(_,C)}1.

4. 1{queen(R,_)}1.

5 {queen(R+I-1,I)[I]}1 .

6. {queen(I,C+I-1)[I]}1 .

7. {queen(R-I+1,I)[I]}1 .

8. {queen(q - I + 1,R+I-1)[I]}1 .

The Line 1 defines queen as a program predicate with arity of two. Both arguments
must be of type number where number is a data predicate. The second line declares
program variables C,R, I of type number. The following lines are clauses where each
clause contains one cardinality atom. Because there is no implication symbol in the
clauses the c-atom is assumed by the psgrnd to be the consequent and thus must be true.
The Line 3 clause maintains row restrictions and the Line 4 clause maintains column
restrictions. The Line 5-8 clauses provide for diagonal restrictions.

We tested daspps on the n-queens problem using 32, 64 and 128 queens and stop-
ping upon finding the first solution. We show results from executing the program se-
quentially, distributed, and the speedup.

As can be seen from Table 1 for the smallest theory, 32-queens, the overhead result-
ing for daspps distributing the theory causes an increase in time rather than a speed up
which can be expected. For larger theories, 64 and 128 queens the speed up is dramatic.

Problem aspps daspps Speed up Number

secs secs ratio of nodes

32-queens 0.06 0.51 0.12 3

64-queens 6.24 0.76 8.21 2

128-queens *** 1.88 ** 4

*** time out after 10 minutes

** not calculated due to time out of aspps

Table 1. Results of n-queen executions.

5.2 VLSI design

VLSI design has several steps. In this paper we are only looking at the physical layout
of components on the chip on in particular the placement of components without par-
titioning. Traditionally, specifications are given as a mesh or hyper graph and the first
step in layout is to partition each mesh, the next step is to determine a configuration for
the graph, layout is the next step and the last step is connecting the components through
wire routing. Here we are modeling the layout without performing partitioning thus we
can require all the components in a mesh to be near one another. We believe this will
reduce total distance during wire routing and help prevent skews where the distance
between components in a mesh can vary enough to cause timing problems. This is a
simplification of VLSI layout and is used to illustrate the speedup of daspps.

1. pred placement(component,xcoord,ycoord).

2. var xcoord I,J.

3. var ycoord M,P.

4. var component A,B,C.

5. var mesh X.

6. {placement(_,I,M)}1.

7. 1{placement(A,_,_)}1.

8. meshsize(X,C), inmesh(X,A), inmesh(X,B),

A < B, (abs(I-J) + abs(M-P)) > C ,

placement(A,I,M), placement(B,J,P) ->.

The program or problem definition for component placement is given above. The
line numbers are not part of the program but are added for explanation purposes. Line
1 defines the single program predicate used for placement. The arguments are the com-
ponent label and the x and y grid coordinates. The coordinates are different allowing
for a rectangular chip configuration. Lines 2 - 5 are variable declarations using the data
predicates for the problem. Line 6 is a clause with a single cardinality constraint which
restricts each coordinate position on the chip to having a most one component. Line 7
requires that each component be placed in exactly one coordinate position. Line 8 is a
constraint which is used to ensure that components are near each other.

The chip specifications are randomly generated where the size of the chip and the
number of components and meshes are input. The results reflect ten randomly generated
8× 8 chips with 64 components and 32 meshes. We stopped execution when the first
solution was found.

Instance aspps daspps Speed up Number

secs secs ratio nodes

chip0 14.94 6.61 2.26 2

chip1 *** 7.95 ** 3

chip2 4206.20 8.88 473.67 4

chip3 *** 7.08 ** 3

chip4 6239.63 11.93 523.02 4

chip5 *** 11.15 ** 4

chip6 *** 26.64 ** 4

chip7 *** 305.89 ** 4

chip8 *** 7.03 ** 3

chip9 *** 315.36 ** 4

*** time out after 10 minutes

** not calculated due to time out of aspps

Table 2. Results of executions of the component placement problem.

All instances demonstrate a reduction in time for finding solutions.

6 Conclusions

The daspps system is scalable. We can increase the number of sub-theories generated
by the master node by increasing the ratio of assigned atoms to total atoms with that the
number or location of client nodes which can be initialized is not restricted to a local
area network or specific network. Communication overhead is minimized since there
is no communication between client nodes and communication between master nodes
and client nodes is minimal.

The daspps system is robust since the failure of any client node does not cause
the session to fail. In addition, a sub-theory can be sent to multiple client nodes until
it is processed. Thus if a client node fails during processing of a sub-theory that sub-
theory will still be processed by another client node. This results in a minimal amount
of redundancy.

The daspps system uses the language of PS+ with no additional information or
control needed by the programmer. The user of the daspps system must only have a list
of clients and an aspps theory to execute a distributed session.

There are several additional issues related to the efficiency of daspps. First, model-
ing problems with PS+ and grounding instances with psgrnd results in aspps theories
which are concise. Second, aspps branching heuristic uses the underlying structure of
the original problem. Finally, as is well known, in depth first searches early decisions

on branching greatly impact the total number of branches. By distributing sub-theories
from relatively high branch points, the problem of a bad choice of which branch to take
first is minimized.

References

1. East, D., Truszczyński, M.: Predicate–Calculus based logics for modeling and solving search

problems. ACM Transactions on Computational Logic (2004)

2. East, D., Iakhiaev, M., Mikitiuk, A., Truszczyński, M.: Tools for modeling and solving search

problems. In: Third International Workshop on Modelling and Reformulating Constraint

Satisfaction Problems, Toronto (2004)

3. Davis, M., Logemann, G., Loveland, D.: A machine learning for theorem-proving. Comm.

Assoc. for Computing Machines 5 (1962)

4. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of Associ-

ation for Computing Machines 7 (1960)

5. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability prob-

lems. In: Proccedings of the Tenth National Conference on Artificial Intelligence(AAAI-92).

(1992)

6. Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing:

An experimental evaluation; Part II, graph coloring and number partitioning. Operations

Research 39 (1991)

7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science

(1983)

8. Spears, W.M.: Simulated annealing for hard satisfiability problems. DIMACS Cliques,

Coloring and Satisfiability 26 (1996)

9. Dubois, O., Andre, P., Boufkhad, Y., Carlier, J.: SAT versus UNSAT. DIMACS Cliques,

Coloring and Satisfiability 26 (1996)

10. Li, C., Anbulagan: Heuristics based on unit propagation for satisfiability problems. In:

Proceedings of IJCAI-97. (1997) 366–371

11. Forman, S.L., Segre, A.M.: Nagsat: A randomized, complete, parallel solver for 3-sat. In:

Fifth International Symposium on the Theory and Applications of Satisfiability Testing.

(2002)

12. Jurkowiak, B., Li, C.M., Utard, G.: Parallelizing Satz Using Dynamic Workload Balancing.

In Kautz, H., Selman, B., eds.: Electronic Notes in Discrete Mathematics. Volume 9., Elsevier

Science Publishers (2001)

13. Chrabakh, W., Wolski, R.: Gradsat: A parallel sat solver for the grid. In: In Proceedings of

IEEE SC03, November 2003. (2003)

14. Chrabakh, W., Wolski, R.: GridSAT: A chaff-based distributed SAT solver for the grid (2003)

15. East, D., Truszczyński, M.: Propositional satisfiability in answer set programming. In:

Proccedings of KI-2001), Springer Verlag (2001)

16. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

Efficient SAT Solver. In: Proceedings of the 38th Design Automation Conference (DAC’01).

(2001)

17. Wolski, R., Brevik, J., Krintz, C., Obertelli, G., Spring, N., Su, A.: Running EveryWare on

the computational grid (1999)

18. Segre, A.M., Forman, S., Resta, G., Wildenberg, A.: Nagging: a scalable fault-tolerant

paradigm for distributed search. Artif. Intell. 140 (2002) 71–106

