AN INVESTIGATION OF SOLVENT EFFECTS ON THE SAPONIFICATION RATES OF ALIPHATIC ESTERS

THESIS

Presented to the Graduate Council of

Southwest Texas State College

in Partial Fulfillment of

the Requirements

For the Degree of

MASTER OF ARTS

By

John D. Mastrovich, B.S. (Bartlett, Texas) San Marcos, Texas

May, 1965

ACK NOWLEDGME NTS

For his direction and encouragement, the writer wishes to express his sincere gratitude to Dr. Billy Joe Yager, Assistant Professor of Chemistry, Southwest Texas State College, San Marcos, Texas. Thanks are also due to Dr. A. O. Parks, Professor of Chemistry, and to Dr. W. E. Norris, Jr., Professor of Biology, for their thorough review of this thesis.

The writer also wishes to thank his wife, Rachel, for her help and understanding during the writing of this thesis.

Acknowledgments are also extended to the Physics Department of Southwest Texas State College for the use of their cathode ray oscilloscope, which greatly facilitated this research.

John D. Mastrovich

San Marcos, Texas May, 1965

TABLE OF CONTENTS

Chapte	er	Page
I.	INTRODUCTION	1
II.	EXPERIMENTAL PROCEDURE	12
	A. Method of Analysis	12 14 14
	C. Apparatus	14 17 18 19
III.	RESULTS AND DISCUSSION	25
IV.	SUMMARY	34
	APPENDIX	35
	BIBLIOGRAPHY	72

LIST OF TABLES

Table			Pa	lge
I.	DATA FOR SAMPLE RUN ON METHYL ACETATE IN 5% METHANOL	•	•	22
II.	SAPONIFICATION RATES OF ALIPHATIC ESTERS IN ORGANIC SOLVENT-WATER MIXTURES AT 35° C	٠	٠	24
III.	DIELECTRIC CONSTANTS FOR ORGANIC SOLVENT-WATER MIXTURES AT 35° C	•	•	29

LIST OF FIGURES

Figur	e	Page
1.	SAPONIFICATION OF METHYL ACETATE IN 5% METHA NOL AT 35° C., RUN I	23
2.	RELATIONSHIP OF SAPONIFICATION RATES OF METHYL BUTYRATE TO THE SAPONIFICATION RATES OF METHYL ACETATE	26
3.	RELATIONSHIP OF SAPONIFICATION RATES OF VARIOUS ESTERS TO % ACETONE	28
¥.	RELATIONSHIP OF SAPONIFICATION RATES OF METHYL ACETATE TO THE DIELECTRIC CONSTANT OF VARIOUS ORGANIC SOLVENTS	30
5.	RELATIONSHIP OF SAPONIFICATION RATES OF BUTYL ACETATE TO % MOLE FRACTION OF WATER	32

•

CHAPTER I

INTRODUCTION

The basic hydrolysis of an ordinary ester has long been known to be a second-order reaction.¹ The transition state in this reaction may then be assumed to be formed from one molecule of ester and one hydroxide ion; that is, the reaction is bimolecular. Polanzi and Szabo,² using water enriched with H_20^{18} , determined the site at which <u>n</u>-amyl acetate split during saponification. From the following reaction,

they determined that the acetate resulting from the reaction was enriched in 0^{18} whereas the amyl alcohol was not. They

¹Warder, <u>Ber.</u>, <u>14</u>, 1361 (1881).

²M. Polanzi and A. L. Szabo, <u>Trans. Faraday Soc.</u>, <u>30</u>, 508 (1934).

then concluded that the ester had been split at <u>a</u> rather than at <u>b</u>. Therefore, in this particular case, acyl-oxygen cleavage had occurred. Also, Holmberg³ has shown that alkaline hydrolysis of acetoxysuccinic acid gave malic acid with retention of configuration at the asymmetric carbon atom,

Acetoxysuccinic acid

thus clearly demonstrating acyl-oxygen fission. A mechanism consistent both with the rate law and the observed site of bond-breakage is,

3B. Holmberg, Ber., 45, 1997 (1912).

¹⁴E. S. Gould, "Mechanism and Structure in Organic Chemistry," 1959, p. 316.

$$H0^{-} + \begin{array}{c} 0 \\ H0^{-} + \begin{array}{c} 0 \\ R \end{array} \\ R \end{array} \xrightarrow{fast}{} H0^{-} \begin{array}{c} 0 \\ H0^{-} \\ R \end{array} \xrightarrow{fast}{} \begin{array}{c} R \end{array} \xrightarrow{fast}{} R^{c} \begin{array}{c} 0 \\ H0^{-} \\ R \end{array} \xrightarrow{fast}{} \begin{array}{c} R^{*} \\ R \end{array} \xrightarrow{fast}{} R^{c} \end{array} \xrightarrow{} \begin{array}{c} R^{*} OH \end{array}$$

The first, and probably the second, steps are reversible, but the final step is not. Thus the over-all reaction is irreversible. Bender⁵ found anion I (above) to be an intermediate rather than an activated complex. He demonstrated this by the study of the saponification of a series of various esters, each containing labeled oxygen, in ordinary water. Thus he has shown that ester saponification proceeds through a carbonyl addition mechanism. Alkaline hydrolysis, then, is a type reaction in which a negatively charged mucleophile attacks the carbonyl carbon of a neutral substrate.

Inasmuch as reactions between neutral molecules are often extremely slow and reactions between ions extremely fast (or slow, depending on the charge), one may expect that a reaction between an ion and a neutral molecule will show a

⁵M. L. Bender, J. Am. Chem. Soc., 73, 1626 (1951).

normal (neither extremely fast nor slow) type of behavior.⁶ This can be verified by approximate calculations of the energy of interaction between an ion and the dipole of a neutral polar molecule. The energy is given by equation⁷ (1),

$$\Delta F_{el} = -\frac{|Z_e| \mu \cos \theta}{Dr^2}$$
(1)

where $\underline{Z}_{\underline{e}}$ is the charge on the ion, $\underline{\mu}$ the dipole moment of the molecule, \underline{r} the distance from the center of the ion to the center of the dipole, $\underline{\Theta}$ the angle of approach of the ion to the line of the dipole, and \underline{D} the dielectric constant of the solvent. By calculating $\triangle F_{\underline{el}}$, an estimate of the effect of the solvent on the rate of reaction between an ion and a neutral molecule may be made. Since the attraction will be somewhat greater, the rate of reaction will be larger in a medium of lower dielectric constant.

Born⁸ has formulated an equation (2) for the charging of an ion in a continuous dielectric,

$$\Delta \mathbf{F_{el}}^{\dagger} = \frac{z^2 \mathbf{e}^2}{2 \mathrm{Dr}}$$
(2)

⁶A. A. Frost and R. G. Pearson, "Kinetics and Mechanisms," 1961, p. 148.

7Frost and Pearson, p. 149.

⁸M. Born, <u>Z. Physik</u>, <u>I</u>, 45 (1920).

where <u>e</u> (charge on the electron) is a constant, 4.8 X 10^{-10} e.s.u. Because of the difference in radius <u>r</u> for the reactant ion and <u>r</u> (the activated complex), there is a difference in free energies which adds to the free energy of activation (ΔF_{e1}^{\dagger}).

$$\Delta \mathbf{F}_{e1}^{\dagger} = \frac{z^2 e^2}{2D} (1/r_{t} + 1/r)$$
(3)

Accordingly, the rate constant may be written,

$$\ln k = \ln k_0' - \frac{NZ^2 e^2}{2DRT} (1/r - 1/r_+)$$
(4)
2DRT +

where <u>N</u> is Avogardo's number (6.06 X 10^{23}), <u>R</u> is the gas constant (0.0821), <u>T</u> is temperature (^OK), and <u>ko</u>' is the rate constant in a medium of infinite dielectric constant, Since <u>r</u> will be larger than <u>r</u>, the rate again should be somewhat greater in a medium of lower dielectric constant.⁹ This is an equation of straight line of slope $\frac{NZ^2e^2}{2RT}$ in a plot of ln <u>k</u> vs 1/D if <u>r</u> and <u>r</u> are constant. Agreement would not necessarily be expected if the rate were measured in several completely different solvents. One reason is that the ionic radius is not constant but varies from solvent to solvent.

⁹K. J. Laidler and H. Erying, <u>Ann. N.Y. Acad. Sci., 39</u>, 303 (1940).

In order for a change of solvent (or any other condition) to affect the rate of reaction, it must affect the reactants and transition state differently, <u>i.e.</u>, it must change the energy of activation ($E_{act.}$). This may be accomplished by solvating the reactants more readily than the transition state (or vice versa).

If the solubility of both were affected in the same way by a change in solvent, then there would be no change in the rate.

Hyne and Robertson¹⁰ presented a semiempirical equation (7) relating the solvolysis of some fifty benzenesulfonic esters to physical properties of the solvolyzing medium. They interpreted the activation energies of the solvolyses of benzenesulfonic esters in hydroxylic solvents upon the principle of a continuous spectrum of intermediate mechanisms

^{10&}lt;sub>J.</sub> B. Hyne and R. E. Robertson, <u>Can. J. Chem.</u>, <u>24</u>, 863 (1956).

varying between the two limits of S_nl and S_n^2 . They postulated that energy ($\underline{E}_{\underline{0}}$) is required to bring about charge separation in the ester undergoing scission, and that this energy must be related to dielectric constant of the surrounding medium (equation 5). Furthermore, they recognized that the bulk dielectric constant of the solvent medium is not truly representative of the localized dielectric in the immediate vicinity of the created partial charge. Some measure of success has previously been achieved with relations involving the bulk dielectric constant, however, and in the absence of a better measure of dielectric of the medium, the bulk dielectric constant (\underline{D}) is employed.

$$\mathbf{E}_{\mathbf{p}} = \mathbf{f}(\mathbf{D}) \tag{5}$$

Also, energy $(\underline{E}_{\underline{S}})$ is required to remove solvent molecules from the solvent lattice to be available for their solvating role. The increase in number of solvent molecules in the solvation shell of the transition state will be a relative measure of the solvation energy which, in turn, must be related to the molecular volume (<u>MV</u>) of the solvent species, thus,

$$\mathbf{E}_{\mathbf{S}} \neq \mathbf{f}(\mathbf{MV})_{\mathbf{S}} \tag{6}$$

The activating energy (E_a) may then be expressed as,

$$E_{a} = f(D) + f(MV)_{s}$$
(7)

They conclude that equation (7) is only a generalization and not intended to be applicable in all cases.

Extensive studies of solvent effects in solvolyses have been reported,¹¹ and attempts have been made to correlate the rates with solvent composition or solvent properties such as dielectric constants. Ideally one might prefer a relationship between rates and independently determined properties of the solvent or solution, although this relationship has met with limited success.¹² To a considerable extent the limited data available have followed the generalization that anionneutral molecule reactions proceed faster in solvents of low dielectric constant.¹³

Grunwald and Winstein¹⁴ noticed the parallel effects of solvents on the reaction rates of different compounds. They state that the reaction rates can be predicted (in some cases) by an equation similar to

 $\log (k^{X}/k_{0}^{X}) = (m) \log (k^{S}/k_{0}^{S})$ (8)

where $\underline{k}^{\mathbf{X}}$ is the rate constant of the compound in solvent \underline{x} ,

¹¹A. Streitwieser, Jr., Chem. Revs., 56, 571 (1956).

¹²E. M. Kosower; J. Am. Chem. Soc., <u>80</u>, 3267 (1958).

^{13&}lt;sub>C. K. Ingold, "Structure and Mechanism in Organic Chemistry," 1953, p. 347.</sub>

¹⁴E. Grunwald and S. Winstein, J. Am. Chem. Soc., 70, 846 (1948).

and \underline{k}_0 is the rate constant for that compound in a standard solvent. \underline{k}^S is the rate constant for a standard compound in the solvent \underline{x} and \underline{k}_0^S is the rate constant of the standard compound in the standard solvent. \underline{m} measures the susceptibility of compound \underline{x} to change in the ionizing power of the solvent. This is the equation of a straight line if solvent effects are proportional from compound to compound.

Winstein and Fainberg¹⁵ studied solvent effects on enthalpy and entropy of activation for solvolysis of <u>t</u>-butyl chloride. They compared the change of enthalpy and entropy of activation for <u>t</u>-butyl chloride with that for other substrates, and found that the various substances do not obey generalizations (nature of solvent system, substrate structure, and temperature effects), which are based solely on the nature of the solvent system.

Fuchs and Nisbet¹⁶ studied the reaction rates of substituted <u>alpha</u>-chlorotoluene with thiosulfate in eleven partially aqueous solvents of varying dielectric constants. Their results presented evidence of apparent disagreement with the generalization that reaction velocity increases with

^{158.} Winstein and A. H. Fainberg, J. Am. Chem. Soc., 79, 5937 (1957).

^{16&}lt;sub>R</sub>. Fuchs and A. Nisbet, J. Am. Chem. Soc., 81, 2371 (1959).

decrease in dielectric constant. They found, in most of the reactions they studied, that an increase in reaction velocity did not accompany a decrease in dielectric constant.

Work has been conducted concerning the solvent effects upon ester hydrolysis. Huang and Hsieh¹⁷ found that the reaction rate increased linearly with an increase in molefraction of dioxane, up to 40% dioxane with <u>p</u>-dioxane and water mixtures being used as solvents for saponification reactions. This indicated that the reaction velocity is increased by a decrease in the dielectric constant.

Nair and Anantakrishnan¹⁸ used dioxane-water and acetonewater mixtures as solvents for saponification reactions. They found that the velocity constant began to fall when the organic content of the solvent exceeded a certain value.

Kay¹⁹ determined the saponification rate constants for three aliphatic esters in varying concentrations of dioxane and water. The rate constants varied with the concentration of dioxane, and a maximum was indicated at a concentration of

¹⁷T. C. Huang and H. S. Hsieh, J. Chinese Chem. Soc., 7, 1 (1939).

¹⁸T. C. M. Nair and S. V. Anantakrishnan, <u>Proc. Ind. Acad.</u> <u>Sci., 12A</u>, 187 (1950).

¹⁹C. R. Kay, M.A. Thesis, Southwest Texas State College, August, 1964.

10% dioxene by volume. These data are in agreement with the findings of Nair and Anantakrishnan (above).

Reports in the literature with regard to solvent effects are not conclusive. After a thorough study of the literature, Hine²⁰ stated that while a number of equations have been proposed for the quantitative correlation of the rates of reaction with the nature of the solvent, none appears to have anywhere complete generality.

The saponification rates of several aliphatic esters were studied in varying organic solvent-water mixtures in order to provide more data on the effects of a solvent upon saponification. An interpretation of these data in terms of the physical properties of the solvent-water mixtures was explored.

²⁰J. Hine, "Physical Organic Chemistry," 1956, p. 83.

CHAPTER II

EXPERIMENTAL PROCEDURE

A. Method of Analysis

The classical method¹ for determining saponification rate constants is the volumetric analysis of aliquots of the reaction mixture taken at timed intervals and quenched with excess acid. This method is subject to three distinct disadvantages: (1) the uncertainty in the time of withdrawal and quenching the aliquot, (2) the chance of manipulation errors in taking the aliquot and making the analysis, and (3) the opening of the system to the atmosphere for removal of samples. This third disadvantage is of serious importance because of the reaction of the basic reaction mixture with carbon dioxide from the atmosphere.

High-frequency titrimetry² has been used to determine saponification rates. Although this method is desirable in that the reaction mixture can be completely sealed at all times,

¹F. Daniels, J. H. Matthews, J. W. Williams, P. Bender, and R. A. Alberty, "Experimental Physical Chemistry," 5th ed., 1956, p. 132.

²F. W. Jensen, G. M. Watson, and J. B. Beckhan, <u>Anal</u>. <u>Chem.</u>, <u>23</u>, 1770 (1951).

the lack of stability of the titrimeter over long periods of time makes this method impractical for extended reactions.

The hydrogen electrode has also been used to follow saponification reactions.³ Again the lack of stability of the system over extended periods makes it impractical for use with a wide range of rate constants.

A solution of sodium hydroxide and an ester undergoes a marked decrease in conductance with time because the poorly conducting alkanoate ion is replacing the highly conducting hydroxyl ion during the reaction. Therefore, as first proposed by Walker,⁴ a conductance bridge can be used to study the progress of the reaction. The advantages of this method are as follows: (1) the reaction mixture is sealed in a conductance cell, and (2) conductance measurements immediately reflect any change in the concentration of the reactants.

Conductance determinations were made of each ester in each of the four organic solvents at concentrations of 5, 10, and 15% solvent-water mixtures.

⁴J. Walker, <u>Proc. Rev. Soc</u>. (London), <u>A78</u>, 157 (1906).

³C. A. Krause and R. A. Vingee, J. Am. Chem. Soc., 56, 511 (1934).

B, Materials

1. Esters

Two of the esters used in this study, methyl acetate and <u>n</u>-butyl acetate, were purchased. The third, methyl <u>n</u>-butyrate, was prepared by refluxing the acid and excess alcohol with a trace of sulfuric acid as catalyst. It was then dried over magnesium sulfate and triple distilled.

All of the esters were purified by distillation. Refractive indices and boiling points were used as a criterion of purity.⁵

2. Solvent and Sodium Hydroxide Solutions

Technical-grade acetone was purified in the following manner.⁶ After being allowed to stand over anhydrous potassium carbonate for a long period of time to remove all the water, the decanted solvent was distilled in an all-glass apparatus several times.

Dimethyl sulfoxide was purified in the following manner.⁷ Approximately 1% by weight of potassium hydroxide

⁶P. Walden and E. J. Birr, Z. Physik. Chem. 153A, 1 (1931).

⁵C. D. Hodman, Ed., "Handbook of Chemistry and Physics," 43 ed., 1961.

⁷Correspondence, Crown Zellerbach Corporation, Camas, Washington, 1964.

was added to the dimethyl sulfoxide, and the mixture was heated at 120^o-130^oC. for one to two hours. After this pretreatment the dimethyl sulfoxide was distilled at reduced pressure through a 2-inch-diameter packed column having approximately 8 inches of glass-bead packing.

Methyl alcohol was purified by the method of Lund and Bjerrum.⁸ One-half gram of iodine, 5 g. of magnesium and 50-75 ml. of methyl alcohol were added to a flask provided with a reflux condenser. The flask was warmed until the iodine disappeared. An additional 900 ml. of methyl alcohol was then added, and the mixture was allowed to boil for half an hour under reflux; the product was then distilled with the exclusion of moisture and redistilled over tribromobenzoic acid to remove basic impurities.

Tetrahydrofuran was purified in the same manner⁹ as that described for <u>p</u>-dioxane. After being allowed to stand over sodium hydroxide pellets for 2⁴ hours to remove all water, the decanted solvent was refluxed over metallic sodium for 2⁴ hours to remove peroxides. It was then distilled from sodium, and the constant boiling middle fraction was

⁸H. Lund and J. Bjerrum, <u>Ber. Deut. Chem. Gesell, 64</u>, 210 (1931).

⁹A. Weissberger, "Technique of Organic Chemistry, Vol. VII, Organic Solvents," 2nd ed., 1949, p. 372.

collected. The entire distillation was conducted under a nitrogen-purged system.

The solvent mixtures used in this study were prepared by measuring a volume of solvent sufficient to make one liter of the desired concentration, then diluting to one liter with de-ionized water. This required slightly more than the theoretical amount of water because of the imperfect solution formed.

The water used was prepared by passing laboratory distilled water through a "research-grade" mixed bed ion-exchange column.¹⁰ Hancock, <u>et al.</u>,¹¹ found water prepared by this method to be comparable with water prepared by triple distillation from permanganate solution.

The standard sodium hydroxide solution was prepared by diluting a carbonate-free, saturated solution of sodium hydroxide. The solution was standardized against potassium acid phthalate and stored in a polyethylene bottle. The sodium hydroxide was protected against atmospheric carbon dioxide by means of a frequently changed Ascarite tube. The solution was restandardized every four weeks to check the normality of the solution.

¹⁰Illinois Water Treatment Co., Rockford, Illinois.
¹¹C. K. Hancock, E. A. Meyers, and B. J. Yager, <u>J. Am.</u>
<u>Chem. Soc.</u>, <u>83</u>, 4211 (1961).

C. Apparatus

All saponification rate determinations were made in a constant temperature bath.¹² The bath temperature was regulated with a mercury thermoregulator,¹³ and bath temperature was maintained at 35° C. \pm 0.015° C. A Kahlsico 50° C. thermometer was kept in the bath for periodic checks on temperature variations.

An electric timer¹⁴ was used to follow the course of the reactions.

A Wheatstone bridge consisting of three decade resistance boxes¹⁵ was used to determine the resistance of the reaction mixtures. The null point was determined by the pattern on a cathode ray oscilloscope. This visual method, used in conjunction with the decade resistance boxes, allowed more accurate readings than could be obtained by using a "Magic Eye" conductance apparatus. Alternating current of one thousand cycles-per-second was provided by an oscillator.¹⁶

¹²E. H. Sargent and Co., Chicago, Cat. No. S-84805.
¹³Aloe Scientific, St. Louis, Cat. No. V79902A.
¹⁴Precision Scientific Co., Chicago, Cat. No. 69235.
¹⁵Leeds and Northrup, Philadelphia, Cat. No. 4734.
¹⁶Central Scientific Co., Chicago, Cat. No. 70029.

The conductivity cells¹⁷ used in this study were of the Jones and Bollinger¹⁸ type, <u>i.e.</u>, the electrodes were not close to the filling tube. The cell was approximately 8 cm. in length and 2.5 cm. in diameter, and had cell constants of approximately 1.5 cm.⁻¹. The electrodes of the cell were coated with platinum black by standard procedures.

D. Procedure

Sufficient ester to make 50 ml. of 0.02 <u>M</u> solution was weighed on an analytical balance. To reduce evaporation, volatile esters were weighed into volumetric flasks containing a small amount of the organic solvent solution of the desired concentration. The mixture was then diluted to volume with the proper organic solvent solution. The molarity of the solution was then calculated, and 50 ml. of sodium hydroxide of the same molarity was then prepared by adding the calculated volume of 0.1 <u>M</u> sodium hydroxide to the correct volume of pure organic solvent, and diluting to volume with conductance water. These solutions together with a clean, dry 250-ml. volumetric flask and a conductance cell filled with conductance water were allowed to come to thermal

¹⁷Fisher Scientific Co., New York, Cat. No. 9-367.
¹⁸G. Jones and D. M. Bollinger, J. Am. Chem. Soc., <u>57</u>, 280 (1935).

equilibrium for thirty minutes in the constant temperature bath. The ester solution was then poured into the larger flask, followed by the sodium hydroxide solution. The electric timer was started when one half of the base had been added. The flask was then removed from the bath and shaken quickly to insure thorough mixing of the ester and base solutions. The cell was rinsed several times with the reaction mixture, filled with the solution, replaced in the bath, and sealed with paraffin. Although the entire operation took less than a minute, readings were not started until approximately five minutes had elapsed, since the solution cooled slightly while out of the bath. Conductance readings were taken at various time intervals until 90% of the ester had saponified.

E. Data and Computations

In the study of chemical kinetics, the term rate of reaction refers to the time rate of change, dc/dt, of the concentration of some constituent of interest. The reaction rate constant, \underline{k} , is a proportionality factor which relates the rate of reaction to the reactant concentrations on which it depends. The alkaline hydrolysis of an ester is a second-order reaction, <u>i.e.</u>, the rate is dependent upon the concentration of two reactants. The reaction may be

described¹⁹ by the equation

$$dx/dt = \underline{k}_{0}(a-x)(b-x)$$
(1)

where <u>a</u> and <u>b</u> are the initial concentration of ester and base, <u>x</u> is the decrease in concentration of each after time <u>t</u>, and <u>k</u>₂ is the second-order rate constant. However, in this study, the initial concentration of ester and of base was the same, so that equation (1) can be simplified to

$$dx/dt = \underline{k}_2 (a-x)^2$$
 (2)

Upon integration, the expression becomes

$$\underline{k}_2 = 1/ta(x/a-x)$$
 (3)

As mentioned previously, the saponification of esters was found to be proportional to the concentration of the base and of the ester, and a solution containing both will undergo a decrease in conductance with time. The number of moles per liter, \underline{x} , reacting in time \underline{t} is given in terms of the conductances $y_0 = 1/R_0$, $y_t = 1/R_t$ and $y_{\infty} = 1/R_{\infty}$ at times o, t, and ∞ , respectively, by substituting into equation (3) the values $\underline{x} = y_0 - y_t$ and $\underline{a} = y_0 - y_{\infty}$ to give the following expression

19 Daniels, et al., op. cit., p. 131.

$$\underline{k}_{2} = \frac{1}{ta} \frac{y_{0} - y_{t}}{y_{t} - y_{\infty}} = \frac{1}{ta} \frac{1/R_{0} - 1/R_{t}}{1/R_{t} - 1/R_{\infty}}$$

Rearranging equation (4) gives

$$1/t(1/R_{o} - 1/R_{t}) = \underline{k}_{2}(a/R_{t} - a/R_{\infty})$$
 (5)

the equation of a straight line with a slope \underline{k}_2 and intercept $\underline{k}_2 a/R_{\infty}$. Therefore, R_{∞} is not necessary for estimating the slope. The value of R_0 may be determined either by extrapolation or by using a blank solution of base of the same concentration as the reaction mixture but with no ester present.

The slope of the best straight line was estimated graphically from a plot of $1/R_t$ as abscissa <u>versus</u> $1/t(1/R_o - 1/R_t)$ as ordinate. The value of k_2 was obtained by dividing the slope by the initial concentration of ester, <u>a</u>. As an example, the data for a saponification run on methyl acetate in 5% methanol are listed in Table I and are plotted in Figure 1.

As a general rule, three determinations were made on each ester. However, when good agreement was obtained in the first two runs, only two determinations were made. Complete experimental data from all saponification runs are listed in the Appendix. The average values of the saponification rates are listed in Table II.

DATA FOR SAMPLE RUN ON METHYL ACETATE IN 5% METHANOL

t. Minutes	R, Ohms	$1/R \times 10^4$	$(1/R_{0} - 1/R_{t})$	$\frac{1/t(1R_0 - 1R_t)}{x 10^4}$
0	578	17.30		α,
4	785	12.75	4.68	1.150
6	856	11.69	5.61	0.934
8	9 12	10,96	6.34	0.793
10	963	10,39	6.91	0.691
12	1009	9.93	7.37	0.614
14	1046	9.56	7.74	0.533
16	1078	9.30	8.00	0,500
18	1103	9.06	8.24	0.458
20	1129	8.86	8.54	0.422
22	1152	8,68	8,62	0.392
24	1173	8,52	8.78	0,366

FIGURE 1

SAPONIFICATION OF METHYL ACETATE IN 5% METHANOL AT 35° C., RUN 1

TABLE II

SAPONIFICATION RATES OF ALIPHATIC ESTERS IN ORGANIC SOLVENT-WATER MIXTURES AT 35° C.

Volume % Organic Solvent	kž Methyl Acetate	⁵ (1. mole ⁻¹ min. ⁻¹ <u>n</u> -Butyl Acetate) Methyl <u>n</u> -Butyrate
Water	21.36	7.37	9.97
Acetone			
5 10 15	22.37 23.20 21.03	9.15 8.30 7.91	10.59 9.61 9.11
Dimethyl S	ulfoxide		
5 10 15	22.00 24.42 15.50	8.78 9.36 9.07	12.49 10.60 11.61
Methyl Alc	ohol		
5 10 15	19.94 18.47 17.72		9.73 9.47 8.42
Tetrahydro	furan		
5 10 15	20.36 21.24 22.05	8.15 9.81 7.15	10.72 9.62 8.40
Dioxane ^a			
10	25.80	10.72	8.88

^aC. B. Kay, Unpublished M. A. Thesis, Southwest Texas State College, August, 1964, p. 19.

CHAPTER III

RESULTS AND DISCUSSION

Grunwald and Winstein¹ have stated that there are (in some cases) parallel effects of solvents on the reaction rates of different compounds and these reaction rates can be predicted by the equation

$$\log (k^{X}/k_{0}^{X}) = m \log (k^{S}/k_{0}^{S})$$
 (1)

as described in the introduction. Since this is an equation of a straight line, a plot of log k_x versus log k_s for any type of reaction should give a straight line if solvent effects are proportional from compound to compound. A log plot of the data of Table II is shown in Figure 2, from which it may be noted that a plot of k_2^{35} of methyl <u>n</u>-butyrate as abscissa versus k_2^{35} of methyl acetate as ordinate is not a straight line, but rather shows considerable deviation. Thus there appears to be no proportional solvent effects. A plot was also made of the reaction rates of each of the esters studied and the same results, as in Figure 2, were obtained. The slope of the plot in Figure 2 was calculated by the method of least squares and found to be 1.183.

¹E. Grunwald and S. Winstein, J. Am. Chem. Soc., 70, 846 (1948).

RELATIONSHIP OF SAPONIFICATION RATES OF METHYL BUTYRATE TO THE SAPONIFICATION RATES OF METHYL ACETATE

A plot of the suponification rates of the esters studied as abscissa <u>versus</u> the per cent of acetone as ordinate is shown in Figure 3. The plot indicates a variation in the effects upon suponification rates from ester to ester in the same solvent system. Thus the solvent does not give a uniform effect from ester to ester. The same lack of uniformity was observed upon plotting the suponification rates of the esters against the other solvents studied.

According to the equation formulated by Born,² the rate constant of a reaction may be written

$$\ln \underline{k} = \ln \underline{k}_{0}^{\dagger} + NZ^{2} e^{2} / 2DRT (1/r - 1/r_{+})$$
(2)

as described by equation (4) in Chapter I. This is an equation of a straight line of slope $NZ^2e^2/2RT$ in a plot of ln <u>k</u> <u>versus 1/D if <u>r</u> and <u>r</u> are constant. Figure 4 is a plot of saponification rate of methyl acetate as abscissa <u>versus 1/D</u> of the various organic solvents as the ordinate. The "least squares" regression line is shown by the solid line, but obviously the fit is extremely poor. The dashed line parallel to the regression line fits the points corresponding to the tetrahydrofuran-water mixtures. There is little correlation for the other solvent systems.</u>

²M. Born, <u>Z. Physik</u>, <u>I</u>, 45 (1920).

TABLE III

DIELECTRIC CONSTANTS FOR ORGANIC SOLVENT-WATER MIXTURES AT 35° C.

Volume % Organic Solvent	Dielectric Constant
Water ^a	74.97
Acetoneb	
5 10 15	72.30 69.72 66.20
Dioxane ^a	
5 10 15	71.01 67.10 63.00
Methyl Alcohol ^C	
5 10 15	72.81 70.68 68.60
<u>Tetrahydrofuran</u> d	
5 10 15	71.84 68.68 65.18

^aFrank E. Critchfield, John A. Gibson, Jr., and James L. Hall, J. Am. Chem. Soc., 75, 1991 (1953).

^bGosta Akerlof, <u>J. Am. Chem. Soc.</u>, <u>54</u>, 4125 (1932).

^CPenrose S. Albright and Louis J. Gosting, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>68</u>, 1061 (1946).

dFrank E. Critchfield, John A. Gibson, Jr., and James L. Hall, J. Am. Chem. Soc. 75, 6044 (1953).

RELATIONSHIP OF SAPONIFICATION RATES OF METHYL ACETATE TO THE DIELECTRIC CONSTANT OF VARIOUS ORGANIC SOLVENTS

To a considerable extent the limited data available have followed the generalization that anion-neutral molecule reactions proceed faster in solvents of low dielectric constant.³ The slope of the straight line (obtained by the method of least squares) in Figure 4 is in general in agreement with this generalization. The slope indicates that as dielectric constant decreases, there is an increase in reaction rate. Because of the lack of uniformity of reaction rate increase with dielectric decrease, there are apparently other factors involved in effecting the reaction rate other than dielectric constant.

Bender⁴ has shown by the use of radioactively labeled oxygen that water is a reactant in ester saponification. Thus the mole fraction of water present in saponification reactions would have an influence upon the rate of reaction. A plot of saponification rates of butyl acetate <u>versus</u> per cent mole fraction of water is given in Figure 5. There appears to be no obvious correlation; however, if only acetone mixtures are considered, a straight line is obtained (indicated by a dashed line in Figure 5). Once again it is shown that although one particular ester in a particular

³C. K. Ingold, "Structure and Mechanism in Organic Chemistry," 1953, p. 347.

⁴M. L. Bender, <u>J. Am. Chem. Soc.</u>, <u>73</u>, 1626 (1951).

solvent system may follow a rule, it cannot be expected that all solvent systems will follow this same generalization.

Hine⁵ has stated that although a number of equations have been proposed for the quantitative correlation of the rates of reactions with the nature of the solvent, no simple expression appears to apply in all cases, which is in accord with the results represented here.

In this study, the saponification rates of butyl acetate in methyl alcohol were not determined because of the solvating effect (upon standing) of the methyl alcohol upon the butyl acetate. The methyl alcohol would solvate part of the butyl acetate, forming methyl acetate, thus making it impossible to determine accurately the saponification rates of butyl acetate in methyl alcohol-water mixtures.

5A. Hine, "Physical Organic Chemistry," 1956, p. 83.

CHAPTER IV

SUMMARY

- Saponification rate constants were determined for three aliphatic esters in 0 - 15% organic solvent-water mixtures. Attempts were made to correlate the rate constant with physical properties of the solvent mixtures.
- 2. A comparison of the saponification rate of one ester to the saponification rate of another ester contained in the same organic solvent-water system was made. There appeared to be no obvious correlation, thus indicating a variation in the effects upon saponification rates from ester to ester in the same solvent system.
- 3. There appeared to be no obvious relationship between the mole fraction of water and the saponification rates studied.
- 4. Saponification rates of the esters appeared to increase with a decrease in dielectric constant of the organic solvent-water system, but there was a lack of uniformity in the comparison of dielectric constants with saponification rates. This is partially accounted for by the rather narrow range of dielectric constants exhibited by the organic-water mixtures employed.

34

APPENDIX

TABLE IV

SAPONIFICATION OF METHYL ACETATE IN PURE WATER

Time, Min.	Run 1 Resistance in Ohms	Ru Time, Min.	n 2 Resistance in Ohms	F Time, Min.	tun 3 Resistance in Ohms
0	538	0	497	0	487
4	746	4	707	4	700
б	816	6	776	6	769
8	879	8	834	8	828
10	927	10	882	10	873
12	966	12	92 0	12	9 10
14	1001	14	950	14	944
16	1032	16	980	16	970
18	1058	18	1002	18	996
20	1080	20	1023	20	1016
22	1101	22	1043	22	1034
24	1120	24	1055	24	1053
			Run 1	Run 2	Run 3
Slope	(min. ⁻¹)		0,50000	0.22500	0.22400
Concentration (mole $1.^{-1}$)			0.00943	0.01043	0.01053
<u>k</u> 2 (1.	, mole ⁻¹ min.	1)	21.20	21.56	21.33

_

-

TABLE V

SAPONIFICATION OF METHYL <u>n</u>-butyrate in pure water

	Para 1		Par O		
Time, Min.	Resistance in Ohms	Time, Min.	Resistance in Ohms	Time, Min.	Resistance in Ohms
0	430	0	460	0	460
4	532	4	571	4	572
6	579	6	618	б	618
8	623	8	661	8	662
10	658	10	699	10	699
12	692	12	734	12	734
14	721	14	762	14	763
16	747	16	790	16	789
20	789	20	837	20	836
25	833	25	884	25	88 2
30	8 69	30	921	30	919
35	8 96	35	953	35	95 0
40	920	40	979	40	976
51	960	50	1017	50	1014
60	9 85				
			Run 1	Run 2	Run 3
Slope	(min. ⁻¹)		0.11700	0,11247	0.11060
Concer	stration (mole	11)	0.01257	0.01135	0.01127
<u>k</u> 2 (1.	mole ⁻¹ min.	1)	9.54	9.91	9.81

TABLE	VI
-------	----

SAPONIFICATION OF	<u>n-BUTYL</u>	ACETATE	IN	PURE	WATER
-------------------	----------------	---------	----	------	-------

Time, Min.	Run l Resistance in Ohms		Time, Min.	Run 2 Resistance in Ohms
0	550		0	550
3	609		3	599
5	647		5	63 6
7	6 82		7	675
10	734		10	72 7
12	764		12	757
15	8 03		15	796
18	842		18	834
21	87 3		21	86 3
25	910		25	900
2 8	933		2 8	923
30	946		30	936
36	983		36	973
40	1006		40	995
50	1047		50	1035
60	1078		60	1069
			Run 1	Run 2
Slope	(min. ⁻¹)		0.0720	0.06950
Concer	ntration (mole	11)	0.0095	5 0 .009 67
<u>k</u> 2 (1.	mole ⁻¹ min. ⁻¹)	7.55	7.18

TABLE VII

SAPONIFICATION OF METHYL ACETATE IN 5% METHYL ALCOHOL

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms	R Time, Min.	un 3 Resistance in Ohms
0	578	0	600	0	576
4	785	4	808	4	786
б	856	6	883	6	857
8	912	8	94 8	8	91 8
10	963	10	1003	10	969
12	1009	12	1046	12	1009
14	1046	14	1086	14	1049
16	1078	16	1118	16	1081
18	1103	18	1148	18	1106
20	1129	20	1176	20	1133
22	1152	22	1195	22	1153
24	1173	24	1216	24	1175
			Run 1	Run 2	Run 3
Slope	(min. ⁻¹)		0.17826	0.18696	0.18571
Concer	ntration (mole	11)	0.00902	0.00913	0.00949
<u>k</u> 2 (1.	mole ⁻¹ min.	1)	19.76	20.48	19.57

TABLE VIII

SAPONIFICATION OF METHYL ACETATE IN 10% METHYL ALCOHOL

Time, Min.	Run 1 Resistance in Ohms		Time, Min.	Run 2 Resistance in Ohms
0	540		0	506
4	745		4	736
6	812		6	783
8	874		8	827
10	924		10	8 69
12	963		12	907
14	999		14	940
17	1044		16	966
18	105 8		18	9 89
20	1080		20	1011
22	1100		22	1 02 8
24	1117		24	1044
			Run 1	Run 2
Slope	(min. ⁻¹)		0,193	75 0 .2129 0
Concer	stration (mole	11)	0.010	56 0.01150
<u>k</u> 2 (1.	mole ⁻¹ min. ⁻¹	·)	18 .35	18 .59

TABLE IX

SAPONIFICATION OF METHYL ACETATE IN 15% METHYL ALCOHOL

Time, Min.	Run 1 Resistance in Ohms	, , , , , , , , , , , , , , , , , , ,	Tim Min	Run 2 e, Resistance in Ohms
0	605		0	576
4	810		4	778
б	884		6	8 53
8	944		8	91 1
10	994		10	961
12	1035		12	1003
14	1073		15	105 8
16	1105		16	1072
18	11 3 5		18	1100
20	1159		20	1122
22	1182		22	1142
24	1198		24	1161
			Run	1 Run 2
Slope	(min. ⁻¹)		0.1	7667 0.18276
Concer	stration (mole	11)	0.0	0985 0.01040
<u>k</u> 2 (1,	. mole ⁻¹ min. ^{-:}	L)	17.9	2 17.51

TABLE X

SAPONIFICATION OF METHYL <u>n</u>-BUTYRATE IN 5% METHYL ALCOHOL

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms
0	447	0	456
4	564	4	569
6	607	б	614
8	649	8	654
10	686	10	69 0
12	719	12	723
15	762	15	778
20	819	20	81 9
26	871	25	865
30	900	30	8 96
35	929	35	92 8
44	971	40	951
50	990	50	990
		Run 1	Run 2
Slope	(min. ⁻¹)	0.1187	0.11622
Concer	tration (mole 1.	¹) 0.0122	0.01193
<u>k</u> e (1.	mole ⁻¹ min, ⁻¹)	9.72	9.74

TABLE XI

SAPONIFICATION OF METHYL <u>n-BUTYRATE IN 10% METHYL ALCOHOL</u>

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms
0	467	0	505
4	580	4	625
б	629	6	674
8	671	8	718
10	707	10	756
12	740	12	794
15	785	15	826
20	844	20	904
25	8 9 1	25	953
30	929	30	997
35	95 8	35	1029
40	9 85	40	1060
50	1023	50	1104
		Run 1	Run 2
Slope	(min. ⁻¹)	0.113	33 0.10714
Concer	tration (mole]	u. ⁻¹) 0.012	0,01120
<u>k</u> 2 (1,	mole ⁻¹ min. ⁻¹	9+37	9.56

الان ومعيدة طلبي مرياني المديرية الم يريان مسيدة الأمم معيني من ماريس

TABLE XII

SAPONIFICATION OF METHYL n-BUTYRATE IN 15% METHYL ALCOHOL

Time, Min.	Run 1 Resistance in Ohms		Time, Min.	Run 2 Resistance in Ohms
0	548	an a	O	512
4	656		4	633
6	704		6	679
8	747		8	724
10	789		10	762
12	826		12	799
15	875		15	845
20	94 0		20	9 10
2 5	99 5		25	961
30	1040		31	1012
35	1075		3 5	1040
40	1105		40	1079
50	1157		50	1114
			Run 1	Run 2
Slope	(min. ⁻¹)		0.0921	1 0.10000
Concer	stration (mole	11)	0.0110	8 0.01171
<u>k</u> 2 (1.	mole ⁻¹ min. ⁻¹)	8.30	8.54

TABLE XIII

SAPONIFICATION OF METHYL ACETATE IN 5% TETRAHYDROFURAN

Time, Min.	Run 1 Resistance in Ohms	Tin Min	Run 2 e, Resistance . in Ohms
0	545	0	541
4	760	4	749
б	824	6	8 20
8	88 2	8	88 0
10	935	10	934
12	97 8	12	973
14	1013	14	1008
16	1045	16	1039
18	1073	18	1066
20	1096	20	1088
22	1118	22	1108
24	1136	24	1126
		Run	1 Run 2
Slope	(min. ⁻¹)	0.1	9190 0.19616
Concer	ntration (mole	11) 0.0	0947 0.00959
<u>k</u> 2 (1,	, mole ⁻¹ min. ⁻¹	20.2	7 20.45

TA	BLE	XTV

SAPONIFICATION OF METHYL ACETATE IN 10% TETRAHYDROFURAN

Time, Min.	Run 1 Resistance in Ohms	Ti. Min	Run 2 me, Resistance n. in Ohms
0	595	0	563
4	817	4	786
6	8 9 8	6	8 61
8	959	8	923
10	1015	10	974
12	1062	12	1015
14	1099	14	1054
16	1134	16	1086
18	1158	18	1111
20	1185	20	1132
22	1206	22	1155
24	1227	24	1172
		Rur	al Run 2
Slope	(min. ⁻¹)	0.1	19391 0.20526
Concer	ntration (mole	1. ⁻¹) 0.0	0.00913 0.00966
<u>к</u> с (1,	, mole ⁻¹ min. ⁻¹) 21.1	13 21.35

TABLE XV

SAPONIFICATION OF METHYL ACETATE IN 15% TETRAHYDROFURAN

Time, Min.	Run 1 Resistance in Ohms	Time Min,	Run 2 , Resistance in Ohms
0	540	0	559
5	8 09	4	781
6	846	6	858
8	90 8	8	91 8
10	956	10	971
12	9 9 5	12	1013
14	1030	14	1046
16	1064	16	1076
18	1085	18	1105
20	1105	20	1128
22	1124	22	1140
24	1141	24	1155
		Run	l Run 2
Slope	(min. ⁻¹)	0.22	963 0.20857
Concentration (mole 1. ⁻¹)		1) 0.010	048 0 .00939
\underline{k}_2 (1. mole ⁻¹ min. ⁻¹)		21.91	22.19

TABLE XVI

SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 5% TETRAHYDROFURAN

Time, Min.	Run 1 Resistance in Ohms	Tin Mir	Run 2 ne, Resistance 1. in Ohms
0	576	0	493
3	644	3	555
5	684	5	593
7	723	7	629
11	790	10	672
13	819	12	700
15	845	15	724
18	88 0	18	754
21	914	21	780
25	9 48	25	806
30	<u>9</u> 86	30	835
35	1017	35	860
40	1046	40	88 0
50	1087	50	911
60	1119	60	935
		Run	1 Run 2
S1 ope	(min. ⁻¹)	0.0	7727 0.89474
Concer	ntration (mole	11) 0.0	0953 0.01094
<u>k</u> 2 (1.	mole ⁻¹ min. ⁻¹	¹) 8.1	1 8.18

TABLE XVII

SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 10% TETRAHYDROFURAN

			الم المراقع المراجع والم المستقلة والمستقلة المراجع المستقلة المراجع المستقلة المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع المراجع المراجع المراجع المراجع المراجع
Time, Nin,	Run 1 Resistance in Chms	Time, Min.	Run 2 Resistance in Ohms
0	556	0	549
3	654	4	671
5	69 8	5	695
7	740	7	734
10	795	10	789
12	828	12	834
15	871	15	862
18	907	18	901
22	952	21	933
25	9 80	25	9 70
31	1029	30	1010
40	1084	40	1073
50	1128	50	1116
60	1168	60	1156
		Run 1	Run 2
Slope	(min. ⁻¹)	0,0953	1 0.09706
Conce	$ntration (mole 1.^{-1})$	0.0096	9 0.00 993
<u>k</u> (1	. mole ⁻¹ min. ⁻¹)	9. 83	9.78
-			

TABLE XVIII

SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 15% TETRAHYDROFURAN

Time, Min,	Run l Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms	Time, Min.	Run 3 Resistance in Ohms
0	612	U	662	0	600
3	684	3	719	3	65 9
6	746	5	759	5	705
7	76 8	7	799	7	749
10	823	10	856	9	785
12	856	12	888	12	8 36
15	8 99	15	932	15	8 80
18	942	18	971	18	91 8
21	976	21	1006	21	952
25	1018	25	1047	2 8	1018
30	1060	30	1089	30	1031
35	1095	36	1127	35	1068
40	1127	40	1155	40	1097
50	1176	50	1205	50	1143
60	1211	67	1264	60	1182
			Run 1	Run 2	Run 3
Slope	(min. ⁻¹)		0,72581	0.06666	5 0.073 08
Concer	ntration (mole	11)	0 .009 89	0.0094	в 0,0103б
k_2 (1. mole ⁻¹ min. ⁻¹)			7.34	7.06	7.06

TABLE XIX

SAPONIFICATION OF METHYL <u>n</u>-BUTYRATE IN 5% TETRAHYDROFURAN

Time, Min,	Run 1 Resistance in Ohms			Time, Min.	Run 2 Resistance in Ohms
0	532			0	480
4	666			6	659
б	723			8	708
9	796			10	751
10	81 9			12	780
12	8 60			14	811
14	8 99			17	854
16	932			18	8 6 8
18	964			20	88 9
20	99 1			25	9 40
25	1052			30	9 89
30	1101			35	1012
35	1141			40	1042
40	1176			50	1086
50	1230				
				Run 1	Run 2
Slope	(min. ⁻¹)			0.1071	4 0.12245
Concer	itration (mole	: 1. ⁻¹)		0.0102	0.01119
<u>k</u> 2 (1.	mole ⁻¹ min.	⁻¹)	1	0.4 8	10.94

والمرجابة بمحجودها المأتجوني واستياب المتعابية

TABLE XX

SAPONIFICATION OF METHYL <u>n</u>-BUTYRATE IN 10% TETRAHYDROFURAN

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms
0	500	0	502
4	612	4	6 18
6	663	6	673
8	70 8	8	718
10	740	10	757
12	784	12	796
14	815	14	827
16	843	16	854
18	879	18	8 80
21	903	20	904
25	93 8	25	963
30	97 8	30	99 0
36	1008	35	1026
40	1037	40	1058
50	1083	50	1 09 8
		Run 1	Run 2
Slope	(min. ⁻¹)	0.111	18 0.11176
Concer	ntration (mole 1.	¹) 0.0116	52 0.01157
<u>k</u> 2 (1.	mole ⁻¹ min. ⁻¹)	9.60	9.66

TABLE XXI

SAPONIFICATION OF METHYL <u>n</u>-BUTYRATE IN 15% TETRAHYDROFURAN

Time, Min.	Run 1 Resistance in Ohms	Time, Min,	Run 2 Resistance in Ohms
0	553	0	553
4	654	4	654
6	703	б	708
8	753	8	753
10	794	10	797
12	833	12	8 36
14	8 66	14	8 69
16	8 96	16	8 96
18	924	18	92 6
20	949	20	952
2 8	1028	25	1003
30	1046	31	1056
35	1079	35	1082
40	1109	40	1110
50	1157	50	1158
		Run 1	Run 2
Slope	(min. ⁻¹)	0.0954	0.09714
Concer	ntration (mole 1. ⁻¹)	0.0114	4 0.01139
<u>k</u> 2 (1,	mole ⁻¹ min. ⁻¹)	8.34	8.53

TABLE XXII

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms	R Time, Min.	un 3 Resistance in Ohms
0	500	0	519	0	540
2	646	2	661	2	679
3	688	3	715	3	723
4	727	4	758	4	767
6	799	5	8 09	5	804
8	875	б	8 36	6	841
10	90 8	8	8 99	8	901
12	94 8	10	9 57	10	9 51
14	9 84	12	1005	12	994
16	1019	14	1035	14	1032
18	1041	16	1 06 8	16	106 8
20	1061	18	1099	18	1089
22	1079	20	1121	20	1112
24	1097	22	1141	22	1133
26	1107	24	1161	24	1154
		2 6	1174	26	1164
			Run 1	Run 2	Run 3
Slope (min. ⁻¹)			0.24400	0.22847	0.22350
Concer	tration (mole	11)	0.01072	0.01 0 66	0,01002
k2 (1. mole ⁻¹ min. ⁻¹)			22.78	22.46	22.13

SAPONIFICATION OF METHYL ACETATE IN 5% ACETONE

TABLE XXIII

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms	Ri Time, l Min. :	un 3 Resistance In Ohms
0	568	0	622	0	630
2	725	2	78 9	2	799
3	779	3	848	3	857
4	823	4	8 99	4	912
5	8 69	5	939	5	964
6	903	6	984	6	1009
8	96 8	8	1054	8	1082
10	1019	10	1115	10	1148
12	1069	12	1163	12	1193
14	1103	14	1207	14	1240
18	1167	16	1243	16	1 2 84
20	1189	18	1279	18	1320
22	1211	20	1302	20	1351
24	1231	22	1330	22	1371
2 6	1247	24	1354	24	1390
		26	1373	2 6	1410
			Run 1	Run 2	Run 3
Slope (min. ⁻¹)			0.23761	0.21000	0.21760
Concer	ntration (mole	11)	0.01024	0.00915	0.09355
k_2 (1. mole ⁻¹ min. ⁻¹)			23,20	22.93	23.2 8

SAPONIFICATION OF METHYL ACETATE IN 10% ACETONE

TABLE XXIV

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms	Ri Time, 1 Min, 2	un 3 Resistance In Ohms
0	590	0	550	0	570
2	738	2	710	5	867
3	786	3	753	б	901
4	8 30	4	792	8	9 70
5	870	5	8 33	10	1020
6	907	б	867	12	1060
8	970	8	92 6	14	1095
10	1021	10	974	16	1126
12	1059	12	1017	18	1156
14	1097	14	1051	20	1180
16	1127	16	1080	22	1200
18	1151	18	1105	24	1214
20	1172	20	1125	26	1227
22	1192	22	1144		
24	1210	24	1160		
26	1227	26	1174		
			Ran 1	Run 2	Ran 3
Slope (min. ⁻¹)		0.2239 8	0.2432 8	0.23572	
Concer	ntration (mole	11)	0.01087	0.01153	0.01102
k_2 (1. mole ⁻¹ min. ⁻¹)			20.60	21.10	21.39

SAPONIFICATION OF METHYL ACETATE IN 15% ACETONE

TABLE XXV

SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 5% ACETONE

Time, Min.	Run 1 Resistance in Ohms		Time, Min.	Run 2 Resistance in Ohms
0	567		0	566
2	63 8		2	637
4	674		4	672
б	719		6	718
8	756		8	754
10	790		10	788
15	866		15	864
21	93 8		21	93 5
25	<u>980</u>		25	97 8
30	1021		30	1020
35	1051		35	1049
40	1080		40	1078
45	1109		45	1107
51	1132		51	1130
55	1153		56	1151
60	1170		60	1070
70	1200		70	119 8
			Run 1	Run 2
Slope	(min. ⁻¹)		0.0865	0.09487
Concer	stration (mole	11)	0 .009 4	6 0.00949
<u>k</u> 2 (1.	mole-1 min.	1)	9.11	9.18

TABLE XXVI

SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 10% ACETONE

Time, Min.	Run 1 Resistance in Ohms	T1 M1	Run 2 me, Resistance n. in Ohms
0	578	0	577
3	667	3	668
5	707	5	711
7	747	7	750
10	807	10	809
12	839	12	841
15	883	15	886
20	949	20	951
25	999	25	1001
30	1040	30	1043
35	1073	35	1077
40	1106	40	1110
45	1130	45	1134
50	1153	50	1158
60	1191	б0	1198
		Ru	n 1 Run 2
Slope	$(\min.^{-1})$	0.	08640 0.08650
Concer	itration (mole	11) 0.	01033 0.01049
<u>k</u> 2 (1.	mole ⁻¹ min.	1) 8.	34 8.25

TABLE XXVII

SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 15% ACETONE

-				
Time, Min.	Run 1 Resistance in Ohms		Time, Min.	Run 2 Resistance in Ohms
0	671		0	671
3	766		3	760
5	807		4	804
7	852		7	848
10	910		10	907
12	947		12	943
15	9 96		15	993
18	1061		18	1058
20	1119		20	1116
25	1170		25	116 8
30	1189		30	1187
35	1208		35	1206
40	1240		40	1239
45	1270		45	1269
50	1299		50	1299
62	1346		60	1339
			Run 1	Run 2
Slope	(min. ⁻¹)		0.0756	0.07570
Concer	stration (mole	11)	0.0095	0.00 955
<u>k</u> 2 (1.	, mole ⁻¹ min. ⁻¹)	7.90	7.92

SAPONIFICATION OF METHYL <u>n</u>-BUTYRATE IN 5% ACETONE

Time, Min.	Run 1 Resistance in Ohms		 Time, Min.	Run 2 Resistance in Ohms
0	484		0	501
4	6 18		4	634
6	665		6	687
8	70 8		8	732
10	73 8		10	774
12	7 85		12	812
14	820		14	844
16	849		16	874
20	8 9 8		20	924
25	95 0		25	9 79
30	9 83		30	1019
3 5	1022		35	1059
40	1052		40	10 91
50	1096		50	1135
			Run 1	Run 2
Slope	(min. ⁻¹)		0.120	0.11691
Concentration (mole 1. ⁻¹)		0.0113	0. 011 05	
<u>k</u> 2 (1.	mole ⁻¹ min.	1)	10.60	10.5 8

TABLE XXIX

SAPONIFICATION OF METHYL <u>n-BUTYRATE IN 10% ACETONE</u>

Time, Min.	Rum 1 Resistance in Ohms	Tim Min	Run 2 , Resistance , in Ohms
0	529	0	530
4	657	4	659
6	707	6	709
8	756	8	757
10	79 8	10	79 8
12	836	12	8 39
14	866	14	867
16	900	16	901
20	947	20	95 1
25	999	25	1002
30	1042	30	1046
35	1080	35	1082
40	1111	40	1113
45	1140	50	1162
50	1160		
		Run	1 Run 2
Slope (min. ⁻¹)		0.10	0.10889
Concer	stration (mole	11) 0.01	.136 0.01128
<u>k</u> e (1.	mole ⁻¹ min.	9.57	9.65

TABLE XXX

SAPONIFICATION OF METHYL <u>n-Butyrate</u> in 15% acetone

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms
0	551	0	548
4	686	4	677
б	740	б	730
8	786	8	777
10	825	10	820
12	8 62	12	858
14	8 9 8	14	88 9
16	930	16	921
18	95 5	20	975
26	1046	25	1028
30	1077	30	1070
35	1116	35	1107
40	1146	40	1137
50	1190	55	1207
		Run 1	Run 2
Slope (min. ⁻¹)		0,1117	6 0,10882
Concentration (mole 1. ⁻¹)		0.0119	5 0.01221
\underline{k}_{2} (1. mole ⁻¹ min. ⁻¹)		9.32	8 .9 1

TABLE XXXI

SAPONIFICATION OF METHYL ACETATE IN 5% DIMETHYL SULFOXIDE

Time, Min.	Run 1 Resistance in Chms	Time, Min.	tun 2 Resistance in Ohms
0	512	0	518
4	750	4	752
6	818	6	823
8	877	8	879
10	927	10	930
12	970	12	971
14	1001	14	1004
16	1030	16	1033
18	105 8	18	1059
20	1078	20	1080
22	1094	22	1096
24	1107	24	1110
		Run 1	Run 2
Slope (min. ⁻¹)		0.24060	0.23636
Concentration (mole $1, -1$)		0,01092	2 0,01075
$\frac{k_2}{2}$ (1. mole ⁻¹ min. ⁻¹)		22.03	21.97

TABLE XXXII

SAPONIFICATION OF METHYL ACETATE IN 10% DIMETHYL SULFOXIDE

Time, Min,	Run 1 Resistance in Ohma] Time, Min,	Run 2 Resistance in Chms
0	580	0	550
4	8 53	4	825
б	934	6	8 99
8	99 8	8	9 69
10	1057	10	1020
12	1 099	12	1061
14	1137	14	1099
16	11 6 9	16	1130
18	1197	18	1156
20	1213	20	1176
22	1237	22	11 94
24	1255	24	1213
		Run 1	Run 2
Slope (min. ⁻¹)		0,2608;	0,27222
Concentration (mole $1, -1$)		0,0105	0,01124
<u>k</u> 2 (1.	, mole ⁻¹ min. ⁻¹)	24,63	24,20

TABLE XXXIII

SAPONIFICATION OF METHYL ACETATE IN 15% DIMETHYL SULFOXIDE

Time, Min.	Resistance in Omas	Time, Min,	Run 2 Resistance in Chuss
0	6 8 9	0	629
4	1015	4	946
6	1105	6	1037
8	1184	8	1101
10	1247	10	1170
12	129 8	12	1220
14	1342	14	1260
16	1382	16	1291
18	1411	18	1320
20	1442	20	1341
22	1464	22	1362
24	1478	24	1382
		Run 1	Run 2
Slope (min. ⁻¹) Concentration (mole 1. ⁻¹)		0.25217	0,27727
		0.00992	0.01083
kg (1.	$mole^{-1} min_{*}^{-1})$	25.41	25 *58

TABLE XXXIV

SAPONIFICATION OF n-BUTTL ACETATE IN 5% DIMETHYL SULPOXIDE

Time, Min.	Run 1 Resistance in Chms	Time, Min,	Run 2 Resistance in Onas
0	577	0	525
5	702	5	640
7	739	7	674
10	794	10	721
12	824	12	750
15	863	15	785
18	900	18	816
20	922	50	833
25	9 65	25	872
30	1004	30	904
35	1034	35	928
40	1062	40	950
52	1111	50	983
60	1133	60	1009
		Rum 1	Run 2
Slope (min, -1)		0,8666	7 0,94286
Concentration (mole 11)		0,0987	4 0.01074
k_2 (1. mole ⁻¹ min. ⁻¹)		8.77	8.78

TABLE XXXV

SAPONIFICATION OF R-BUTYL ACETATE IN 10% DIMETHYL SULFOXIDE

Time, Min,	Run 1 Resistance in Chus	Time, Min.	Run 2 Resistance in Chas
0	610	0	610
3	710	3	705
5	757	5	754
7	801	7	79 8
10	860	10	857
12	892	12	8 90
15	93 9	15	93 6
18	976	18	973
21	1009	21	1005
25	1050	25	1048
30	1091	30	1089
35	1121	25	1119
40	1149	40	1148
50	1191	50	1189
60	1227	60	1225
		Run 1	Run 2
Slope (min. ⁻¹)		0,0956	65 0 .953 13
Concentration (mole $1, -1$)		0.0102	0.01020
1 <u>4</u> 2 (1	. mole ^{-1} min. ^{-1})	9.3 8	9.34
SAPONIFICATION OF <u>n</u>-BUTYL ACETATE IN 15% DIMETHYL SULFOXIDE

Time, Min,	Run 1 Resistance in Chus	Time, Min.	Run 2 Resistance in Chms
0	686	0	660
5	821	5	800
7	860	7	844
10	916	10	8 97
12	94 8	12	929
15	9 85	15	972
18	1022	18	1008
20	1043	20	1 02 8
25	1086	26	1079
30	1121	30	1107
35	11 49	35	1135
40	1172	40	11 5 8
50	1208	50	1197
60	1234	60	1225
		Run 1	Run 2
Slope	(min. ⁻¹)	0.0909	0.09483
Concentration (mole 11) 0.01006		0.01042	
<u>k</u> 2 (1	. mole ⁻¹ min. ⁻¹)	9.04	9.10

TABLE XXXVII

SAPONIFICATION OF METHYL <u>n-BUTYRATE IN 5% DIMETHYL SULFOXIDE</u>

Time, Min,	Ram 1 Resistance in Ohms	Time, Min,	Run 2 Resistance in Chans
0	485	0	490
5	664	5	673
7	714	7	724
9	756	9	766
11	796	11	807
13	831	13	842
15	864	15	875
18	903	18	913
20	927	20	936
25	97 8	25	967
30	1017	30	1025
35	1049	35	1057
40	1980	40	1088
50	1122	50	1130
		Run 1	Run 2
Slope (min. ⁻¹)		0.1379	3 0.14048
Concentration (mole $1.^{-1}$)		0.0112	5 0.01105
k_2 (1. mole ⁻¹ min. ⁻¹)		12.26	12.71

.....

TABLE XXXVIII

SAPONIFICATION OF METHYL <u>n</u>-BUTYRATE IN 10% DIMETHYL SULFOXIDE

Time, Min.	Run 1 Resistance in Ohms	Time, Min.	Run 2 Resistance in Ohms	R Time, Min.	un 3 Resistance in Ohms
0	568	0	570	0	570
4	702	4	712	4	710
5	72 8	5	741	5	740
7	785	7	797	7	795
9	8 29	9	854	9	852
11	870	11	8 9 8	11	8 97
13	90 8	13	936	13	935
15	939	15	96 8	15	96 8
18	9 81	18	1014	18	1015
20	1007	20	1040	20	1041
25	1060	25	1106	25	1105
30	1102	30	1144	30	1144
35	1135	35	1185	35	1188
40	1163	40	1212	40	1215
50	1208	50	1262	50	1265
			Run 1	Run 2	Run 3
Slope (min. ⁻¹)			0.11739	0.12162	0.11667
Concentration (mole $1.^{-1}$)			0.01098	0.01072	0.01084
<u>k</u> 2 (1. mole ⁻¹ min. ⁻¹)			10.69	11.34	10.76

TABLE XXXIX

SAPONIFICATION OF METHYL 1-BUTYRATE IN 15% DINETHYL SULPOXIDE

Time, Min,	Rum 1 Resistance in Chuna	Time, Min.	Run 2 Resistence in Chas
0	65 8	0	63 8
4	835	4	799
5	868	5	829
7	930	7	887
9	986	9	935
11	1038	11	979
13	1085	13	1021
15	1125	15	1054
18	1175	18	1098
20	1207	20	1127
25	1272	25	1181
30	1327	30	1228
35	1367	35	1265
40	1409	41	1296
50	1459	50	1339
		Run 1	Run 2
$Slope (min.^{-1})$		0,122	86 0,12105
Concentration (mole 11)		1) 0.010	39 0 ,01062
1 <u>52</u> (1)	, mole ⁻¹ min. ⁻¹)	11,83	11,40

BIBLIOGRAPHY

- Albright, Penrose S., and Louis J. Gosting, J. Am. Chem. Soc., <u>68</u>, 1061 (1946).
- Alkerlof, Gosta, J. Am. Chem. Soc., 54, 4125 (1932).
- Bender, M. L., J. Am. Chem. Soc., 73, 1626 (1951).
- Born, M., Z. Physik, I, 45 (1920).
- Critchfield, Frank E., John A. Gibson, Jr., and James L. Hall, J. <u>Am. Chem. Soc.</u>, <u>75</u>, 1991 and 6044 (1953).
- Daniels, F., J. H. Matthews, J. W. Williams, P. Bender, and P. A. Alberty, "Experimental Physical Chemistry," 5th ed., McGraw-Hill Book Co., Inc., New York, 1956.
- Frost, A. A., and R. G. Pearson, "Kinetics and Mechanism," John Wiley and Sons, Inc., New York, 1961.
- Fuchs, R., and A. Misbet, J. Am. Chem. Soc., 81, 2371 (1959).
- Gould, E. S., "Mechanism and Structure in Organic Chemistry," Henry Holt and Co., New York, 1959.
- Grunwald, E., and S. Winstein, J. Am. Chem. Soc., 70, 846 (1948).
- Hancock, C. K., E. A. Meyers, and B. J. Yager, <u>J. Am. Chem.</u> <u>Soc.</u>, <u>83</u>, 4211 (1961).
- Hine, A., "Physical Organic Chemistry," McGraw-Hill Book Co., Inc., New York, 1956.
- Hodman, C. D., Ed., "Handbook of Chemistry and Physics," 43 ed., Chemical Rubber Publishing Co., Cleveland, 1961.
- Holmberg, B., <u>Ber.</u>, <u>45</u>, 1997 (1912).
- Huang, T. C., and H. S. Hsieh, J. <u>Chinese Chem. Soc.</u>, 7, 1 (1939).
- Hyne, J. B., and R. E. Robertson, <u>Can. J. Chem.</u>, <u>34</u>, 863 (1956).

- Jensen, F. W., G. M. Watson, and J. B. Beckhan, <u>Anal. Chem.</u>, 23, 1770 (1951).
- Jones, G., and D. M. Bollinger, J. <u>Am. Chem. Soc.</u>, <u>57</u>, 280 (1935).
- Ingold, C. K., "Structure and Mechanism in Organic Chemistry," Cornell University Press, Ithaca, N.Y., 1953.
- Kay, C. R., M.A. Thesis, Southwest Texas State College, August, 1964.
- Kosower, E. M., J. Am. Chem. Soc., 80, 3267 (1958).
- Krause, C. A., and R. A. Vingee, J. <u>Am. Chem. Soc.</u>, <u>56</u>, 511 (1934).
- Laidler, K. J., and H. Erying, <u>Ann. N.Y. Acad. Sci., 39</u>, 303 (1940).
- Lund, H., and J. Bjerrum, <u>Ber. Deut. Chem. Gesell</u>, <u>64</u>, 210 (1931).
- Nair, T. C. M., and S. V. Anantakrishnan, <u>Proc. Ind. Acad.</u> Sci., <u>32A</u>, 187 (1950).
- Polanzi, M., and A. L. Szabo, <u>Trans</u>. <u>Faraday Soc</u>., <u>30</u>, 508 (1934).
- Streitwieser, A., Jr., <u>Chem. Revs.</u>, <u>56</u>, 571 (1956).
- Walden, P., and E. J. Birr, Z. Physik Chem. 153A, 1 (1931).
- Walker, J., Proc. Rev. Soc. (London), A78, 157 (1906).
- Warder, Ber., 14, 1361 (1881).
- Weissberger, A., "Technique of Organic Chemistry, Vol. VII, Organic Solvents," 2nd ed., Interscience Pub., Inc., New York, 1949.
- Winstein, S., and A. H. Fainberg, J. Am. Chem. Soc., 79, 5937 (1957).