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OSCILLATION OF SECOND-ORDER NONLINEAR IMPULSIVE
DYNAMIC EQUATIONS ON TIME SCALES

MUGEN HUANG, WEIZHEN FENG

Abstract. In this article, we study the oscillation of second-order nonlinear

impulsive dynamic equations on time scales. Using Riccati transformation
techniques, we obtain sufficient conditions for oscillation of all solutions. An

example is given to show that the impulses play a dominant part in oscillations

of dynamic equations on time scales.

1. Introduction

This paper is concerned with the oscillations of second-order nonlinear impulsive
dynamic equations on time scales. We consider the problem

y∆∆(t) + f(t, yσ(t)) = 0, t ∈ JT := [0,∞) ∩ T, t 6= tk, k = 1, 2, . . . ,

y(t+k ) = gk(y(tk)), y∆(t+k ) = hk(y∆(tk)), k = 1, 2, . . . ,

y(t+0 ) = y0, y∆(t+0 ) = y∆
0 ,

(1.1)

where T is a time scale, unbounded-above, with 0 ∈ T, tk ∈ T, 0 ≤ t0 < t1 < t2 <
· · · < tk < . . . , limk→∞ tk = ∞.

y(t+k ) = lim
h→0+

y(tk + h), y∆(t+k ) = lim
h→0+

y∆(tk + h), (1.2)

which represent right and left limits of y(t) at t = tk in the sense of time scales,
and in addition, if tk is right scattered, then y(t+k ) = y(tk), y∆(t+k ) = y∆(tk). We
can defined y(t−k ), y∆(t−k ) similar to (1.2).

We always suppose that the following conditions hold:

(H1) f ∈ Crd(T × R, R), xf(t, x) > 0 (x 6= 0) and f(t,x)
ϕ(x) ≥ p(t) (x 6= 0), where

p(t) ∈ Crd(T, R+) and xϕ(x) > 0 (x 6= 0), ϕ′(x) ≥ 0.
(H2) gk, hk ∈ C(R, R) and there exist positive constants ak, a∗k, bk, b∗k such that

a∗k ≤
gk(x)

x
≤ ak, b∗k ≤

hk(x)
x

≤ bk.

Throughout the remainder of the paper, we assume that, for each k = 1, 2, . . . , the
points of impulses tk are right dense (rd for short). In order to define the solutions
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of the problem (1.1), we introduce the space

ACi =
{
y : JT → Ris i-times ∆-differentiable, whose

i-th delta-derivative y∆(i)
is absolutely continuous

}
.

PC =
{
y : JT → R is right dense continuous at tk, k = 1, 2, . . . for which

y(t−k ), y(t+k ), y∆(t−k ), y∆(t+k ) exist and y(t−k ) = y(tk), y∆(t−k ) = y∆(tk)
}
.

Definition 1.1. A function y ∈ PC
⋂

AC2(JT\{t1, . . . }, R) is said to be a solution
of (1.1), if it satisfies y∆∆(t) + f(t, yσ(t)) = 0 a.e. on JT\{tk}, k = 1, 2, . . . , and for
each k = 1, 2, . . . , y satisfies the impulsive condition y(t+k ) = gk(y(tk)), y∆(t+k ) =
hk(y∆(tk)) and the initial condition y(t+0 ) = y0, y

∆(t+0 ) = y∆
0 .

Definition 1.2. A solution y of (1.1) is called oscillatory if it is neither eventually
positive nor eventually negative; otherwise it is called nonoscillatory. Equation
(1.1) is called oscillatory if all solutions are oscillatory.

In recent years, the theory of dynamic equations on time scales, which provides
powerful new tools for exploring connections between the traditionally separated
fields, has been developing rapidly and has received much attention. We refer the
reader to the book by Bohner and Peterson [4] and to the papers cited therein. The
time scales calculus has a tremendous potential for applications in mathematical
models of real processes, for instance, in biotechnology, chemical technology, eco-
nomic, neural networks, physics, social sciences and so on, see the monographs of
Aulbach and Hilger [2], Bohner and Perterson [4] and the references therein.

Very recently, impulsive dynamic equations on time scales have been investigate
by Agarwal et al.[1], Belarbi et al.[5], Benchohra et al. [6 − 9] and so forth. Ben-
chohra et al [9]. considered the existence of extremal solutions for a class of second
order impulsive dynamic equations on time scales, we can see that the existence of
global solutions can be guaranted by some simple conditions. In [6], M.Benchohra
et al. discuss the existence of oscillatory and nonoscillatory solutions for first or-
der impulsive dynamic equations on time scales using lower and upper solutions
method.

The oscillations of impulsive differential equations have been investigated by
many authors and they gained many classical results. See Chen and Feng [10] and
the papers cited therein. Using the method of Chen and Feng [10], the present
paper is devoted to study the oscillations of a kind of very extensive second order
impulsive nonlinear dynamic equations on time scales. An example is given to show
that though a dynamic equations on time scales is nonoscillatory, it may become
oscillatory if some impulses are added to it. That is, in some cases, impulses play
a dominating part in oscillations of dynamic equations on time scales.

In the following, we always assume the solutions of (1.1) exist in JT. Our at-
tention is restricted to those solution y of (1.1) which exist on half line JT with
sup{|y(t)| : t ≥ t0} 6= 0 for any t0 ≥ ty, where ty is dependent on the solution y
of (1.1). To the best of our knowledge, the question of the oscillations for second
order nonlinear impulsive dynamic equations has not been yet considered. Hence,
these results can be considered as a contribution to this field.
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2. Main results

In this section, we give some new oscillation criteria for (1.1). In order to prove
our main results, we need the following auxiliary result.

Lemma 2.1. Suppose that (H1)–(H2) hold and y(t) > 0, t ≥ t′0 ≥ t0 is a nonoscil-
latory solution of (1.1). If

(H3)

(t1 − t0) +
b∗1
a1

(t2 − t1) +
b∗1b

∗
2

a1a2
(t3 − t2) + · · ·+ b∗1b

∗
2 . . . b∗n

a1a2 . . . an
(tn+1 − tn) + · · · = ∞,

then y∆(t+k ) ≥ 0 and y∆(t) ≥ 0 for t ∈ (tk, tk+1]T, where tk ≥ t′0.

Proof. At first, we prove that y∆(tk) ≥ 0 for tk ≥ t′0, otherwise, there exists some
j such that tj ≥ t′0 and y∆(tj) < 0, hence

y∆(t+j ) = hj(y∆(tj)) ≤ b∗jy
∆(tj) < 0.

Let y∆(t+j ) = −α (α > 0). From (1.1), for t ∈ (tj+i−1, tj+i]T, i = 1, 2, . . . , we
obtain

y∆∆(t) = −f(t, yσ(t)) ≤ −p(t)ϕ(yσ(t)) ≤ 0, (2.1)

i.e. y∆(t) is nonincreasing in (tj+i−1, tj+i]T, i = 1, 2, . . . , then

y∆(tj+1) ≤ y∆(t+j ) = −α < 0,

y∆(tj+2) ≤ y∆(t+j+1) = hj+1(y∆(tj+1)) ≤ b∗j+1y
∆(tj+1) ≤ −b∗j+1α < 0.

(2.2)

It is easy to show that for any positive integer n ≥ 2,

y∆(tj+n) ≤ −b∗j+n−1b
∗
j+n−2 . . . b∗j+1α < 0. (2.3)

Now, we claim that for any positive integer n ≥ 2,

y(tj+n) ≤ aj+n−1aj+n−2 . . . aj+1

[
y(t+j )− α(tj+1 − tj)−

b∗j+1

aj+1
α(tj+2 − tj+1)

− · · · −
b∗j+n−1b

∗
j+n−2 . . . b∗j+1

aj+n−1aj+n−2 . . . aj+1
α(tj+n − tj+n−1)

]
.

(2.4)
Since y∆(t) is nonincreasing in (tj , tj+1]T, hence

y∆(t) ≤ y∆(t+j ) t ∈ (tj , tj+1]T. (2.5)

Integrating (2.5) and using (2.2), we obtain

y(tj+1) ≤ y(t+j ) + y∆(t+j )(tj+1 − tj) = y(t+j )− α(tj+1 − tj). (2.6)

Similarly to (2.6) and using (H2), (2.2) and (2.6), we get

y(tj+2) ≤ y(t+j+1) + y∆(t+j+1)(tj+2 − tj+1)

= gj+1(y(tj+1)) + hj+1(y∆(tj+1))(tj+2 − tj+1)

≤ aj+1y(tj+1) + b∗j+1y
∆(tj+1)(tj+2 − tj+1)

≤ aj+1

[
y(t+j )− α(tj+1 − tj)−

b∗j+1

aj+1
α(tj+2 − tj+1)

]
.
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Then (2.4) holds for n = 2. Now we suppose that (2.4) holds for n = m, i.e.

y(tj+m) ≤ aj+1aj+2 . . . aj+m−1

[
y(t+j )− α(tj+1 − tj)−

b∗j+1

aj+1
α(tj+2 − tj+1)

− · · · −
b∗j+1b

∗
j+2 . . . b∗j+m−1

aj+1aj+2 . . . aj+m−1
α(tj+m − tj+m−1)

]
,

(2.7)

now we prove that (2.4) holds for n = m + 1. Since y∆(t) is nonincreasing in
(tj+m, tj+m+1]T, we have

y∆(t) ≤ y∆(t+j+m) t ∈ (tj+m, tj+m+1]T.

Integrating and using (H2), (2.2), (2.3) and (2.7), we obtain

y(tj+m+1) ≤ y(t+j+m) + y∆(t+j+m)(tj+m+1 − tj+m)

≤ aj+my(tj+m) + b∗j+my∆(tj+m)(tj+m+1 − tj+m)

≤ aj+1aj+2 . . . aj+m

[
y(t+j )− α(tj+1 − tj)−

b∗j+1

aj+1
α(tj+2 − tj+1)

− · · · −
b∗j+1b

∗
j+2 . . . b∗j+m−1

aj+1aj+2 . . . aj+m−1
α(tj+m − tj+m−1)

]
− b∗j+1b

∗
j+2 . . . b∗j+mα(tj+m+1 − tj+m)

= aj+1aj+2 . . . aj+m

[
y(t+j )− α(tj+1 − tj)−

b∗j+1

aj+1
α(tj+2 − tj+1)

− · · · −
b∗j+1b

∗
j+2 . . . b∗j+m−1

aj+1aj+2 . . . aj+m−1
α(tj+m − tj+m−1)

−
b∗j+1b

∗
j+2 . . . b∗j+m

aj+1aj+2 . . . aj+m
α(tj+m+1 − tj+m)

]
.

Then (2.4) holds for n = m + 1. By induction, (2.4) holds for any positive integer
n ≥ 2. (2.4) and (H3) is contrary to y(t) > 0. Therefore, y∆(tk) ≥ 0 (tk ≥ t′0). From
(H2), we get for any tk ≥ t′0, y

∆(t+k ) ≥ b∗ky∆(tk) ≥ 0. Since y∆(t) is nonincreasing
in (tk, tk+1]T, we know y∆(t) ≥ y∆(tk+1) ≥ 0, t ∈ (tk, tk+1]T. The proof of Lemma
2.1 is complete. �

Remark 2.2. In the case of y(t) is eventually negative, under the hypothesis (H1)–
(H3), it can be proved similarly that y∆(t+k ) ≤ 0 and for t ∈ (tk, tk+1]T, y∆(t) ≤ 0
for tk ≥ T .

Theorem 2.3. Suppose that (H1)–(H3) hold and there exists a positive integer k0

such that a∗k ≥ 1 for k ≥ k0. If∫ t1

t0

p(t)∆t +
1
b1

∫ t2

t1

p(t)∆t +
1

b1b2

∫ t3

t2

p(t)∆t

+ · · ·+ 1
b1b2 . . . bn

∫ tn+1

tn

p(t)∆t + · · · = ∞,

(2.8)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that (1.1) has a nonoscillatory solution y(t), without
loss of generality, we may assume that y(t) is eventually positive solution of (1.1),
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i.e. y(t) > 0, t ≥ t0 and k0 = 1. From lemma 2.1, we have y∆(t) ≥ 0, t ∈ (tk, tk+1]T,
k = 1, 2, . . . . Let

w(t) =
y∆(t)

ϕ(y(t))
, (2.9)

then w(t+k ) ≥ 0, k = 1, 2, . . . and w(t) > 0, t ≥ t0. Using (H1) and (1.1), we get
when t 6= tk,

w∆(t) = −f(t, yσ(t))
ϕ(yσ(t))

− y∆(t)
ϕ(y(t))ϕ(yσ(t))

∫ 1

0

ϕ′(y(t) + hµ(t)y∆(t))dhy∆(t)

≤ −p(t)− ϕ(y(t))
ϕ(yσ(t))

(
y∆(t)

ϕ(y(t))
)2

∫ 1

0

ϕ′(y(t) + hµ(t)y∆(t))dh

≤ −p(t),

(2.10)

since ϕ′(y(t)) ≥ 0 and ϕ(y(t)) > 0. From (H2) and a∗k ≥ 1, we obtain

w(t+k ) =
y∆(t+k )

ϕ(y(t+k ))
≤ bky∆(tk)

ϕ(a∗ky(tk))
≤ bky∆(tk)

ϕ(y(tk))
= bkw(tk), k = 1, 2, . . . . (2.11)

Integrating (2.10), we have

w(t1) ≤ w(t+0 )−
∫ t1

t0

p(t)∆t. (2.12)

Using (2.11) and (2.12), we obtain

w(t+1 ) ≤ b1w(t1) ≤ b1w(t+0 )− b1

∫ t1

t0

p(t)∆t.

Similarly, we get

w(t+2 ) ≤ b2w(t2) ≤ b2

[
w(t+1 )−

∫ t2

t1

p(t)∆t
]

≤ b1b2w(t+0 )− b1b2

∫ t1

t0

p(t)∆t− b2

∫ t2

t1

p(t)∆t.

(2.13)

By induction, for any positive integer n, we have

w(t+n ) ≤ b1b2 . . . bnw(t+0 )− b1b2 . . . bn

∫ t1

t0

p(t)∆t− b2 . . . bn

∫ t2

t1

p(t)∆t

− · · · − bn−1bn

∫ tn−1

tn−2

p(t)∆t− bn

∫ tn

tn−1

p(t)∆t

= b1b2 . . . bn

[
w(t+0 )−

∫ t1

t0

p(t)∆t− 1
b1

∫ t2

t1

p(t)∆t− . . .

− 1
b1b2 . . . bn−2

∫ tn−1

tn−2

p(t)∆t− 1
b1b2 . . . bn−1

∫ tn

tn−1

p(t)∆t
]
.

(2.14)

Using (2.8) and bk > 0, k = 1, 2, . . . , we obtain w(t+n ) < 0, n → ∞, which
contradicts to w(t+n ) ≥ 0. �
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Theorem 2.4. Assume that (H1)–(H3) hold and ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0.
If ∫ t1

t0

p(t)∆t +
ϕ(a∗1)

b1

∫ t2

t1

p(t)∆t +
ϕ(a∗1)ϕ(a∗2)

b1b2

∫ t3

t2

p(t)∆t

+ · · ·+ ϕ(a∗1)ϕ(a∗2) . . . ϕ(a∗n)
b1b2 . . . bn

∫ tn+1

tn

p(t)∆t + · · · = ∞,

(2.15)

then (1.1) is oscillatory.

Proof. As before, we may suppose y(t) > 0, t ≥ t0 be a nonoscillatory solution
of (1.1), Lemma 2.1 yields y∆(t) ≥ 0, t ≥ t0, define w(t) as in (2.9) and we get
w(tk) ≥ 0, t ≥ t0, w(t+k ) ≥ 0, k = 1, 2, . . . and (2.10) holds for t 6= tk and

w(t+k ) =
y∆(t+k )

ϕ(y(t+k ))
≤ bky∆(tk)

ϕ(a∗ky(tk))
≤ bky∆(tk)

ϕ(a∗k)ϕ(y(tk))
=

bk

ϕ(a∗k)
w(tk). (2.16)

As in the proof of (2.14), by induction, for any positive integer n,

w(t+n )

≤ b1b2 . . . bn

ϕ(a∗1)ϕ(a∗2) . . . ϕ(a∗n)

[
w(t+0 )−

∫ t1

t0

p(t)∆t− ϕ(a∗1)
b1

∫ t2

t1

p(t)∆t− . . .

−
ϕ(a∗1)ϕ(a∗2) . . . ϕ(a∗n−2)

b1b2 . . . bn−2

∫ tn−1

tn−2

p(t)∆t−
ϕ(a∗1)ϕ(a∗2) . . . ϕ(a∗n−1)

b1b2 . . . bn−1

∫ tn

tn−1

p(t)∆t
]
.

Let n →∞ and use (2.15), we obtain the desired contradiction. �

In the following , we will use the hypothesis

(H4)
∫ ±∞
±ε

∆u
ϕ(u) < ∞, for any ε > 0, where

∫ ±∞
±ε

∆u
ϕ(u) < ∞ denotes

∫∞
ε

∆u
ϕ(u) < ∞

and
∫ −∞
−ε

∆u
ϕ(u) < ∞.

Theorem 2.5. Assume that (H1)–(H4) hold and there exists a positive integer k0

such that a∗k ≥ 1 for k ≥ k0. If
∞∑

k=0

∫ tk+1

tk

[ ∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t

+ · · ·+ 1
bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .
]
∆s = ∞,

(2.17)

then (1.1) is oscillatory.

Proof. As before, we may assume y(t) > 0, t ≥ t0 be a nonoscillatory solution of
(1.1) and k0 = 1, Lemma 2.1 shows that y∆(t+k ) ≥ 0, k = 1, 2, . . . and y∆(t) ≥
0, t ≥ t0. Since a∗k ≥ 1, k = 1, 2, . . . , we get

y(t+0 ) ≤ y(t1) ≤ y(t+1 ) ≤ y(t2) ≤ y(t+2 ) ≤ . . . , (2.18)

its easy to see that y(t) is nondecreasing in [t0,∞), hence (1.1) yields

y∆∆(t) = −f(t, yσ(t)) ≤ −p(t)ϕ(yσ(t)), t 6= tk; (2.19)

hence, y∆(t1)− y∆(t+0 ) ≤ −
∫ t1

t0
p(t)ϕ(yσ(t))∆t. Using (H2), we obtain

y∆(t+0 ) ≥ y∆(t1) +
∫ t1

t0

p(t)ϕ(yσ(t))∆t ≥ y∆(t+1 )
b1

+
∫ t1

t0

p(t)ϕ(yσ(t))∆t.
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Similarly,

y∆(t+1 ) ≥ y∆(t+2 )
b2

+
∫ t2

t1

p(t)ϕ(yσ(t))∆t.

Generally, for any positive integer n, we get

y∆(t+n ) ≥ y∆(tn+1) +
∫ tn+1

tn

p(t)ϕ(yσ(t))∆t ≥
y∆(t+n+1)

bn+1
+

∫ tn+1

tn

p(t)ϕ(yσ(t))∆t.

From this inequality and (2.19), noting that y∆(t+k ) ≥ 0, k = 1, 2, . . . , we have for
s ∈ (tk, tk+1]T,

y∆(s) ≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t + y∆(tk+1)

≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
y∆(t+k+1)

bk+1

≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
1

bk+1

[ ∫ tk+2

tk+1

p(t)ϕ(yσ(t))∆t +
y∆(t+k+2)

bk+2

]
≥

∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
1

bk+1

∫ tk+2

tk+1

p(t)ϕ(yσ(t))∆t

+
1

bk+1bk+2

∫ tk+3

tk+2

p(t)ϕ(yσ(t))∆t +
y∆(t+k+3)

bk+1bk+2bk+3

≥ · · · ≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
1

bk+1

∫ tk+2

tk+1

p(t)ϕ(yσ(t))∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)ϕ(yσ(t))∆t +
y∆(t+k+n+1)

bk+1bk+2 . . . bk+n+1
.

Noting that bk > 0 and y∆(t+k ) ≥ 0, k = 1, 2, . . . , the above inequality yields

y∆(s) ≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
1

bk+1

∫ tk+2

tk+1

p(t)ϕ(yσ(t))∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)ϕ(yσ(t))∆t,

(2.20)

holds for any positive integer n, then

y∆(s) ≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
1

bk+1

∫ tk+2

tk+1

p(t)ϕ(yσ(t))∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)ϕ(yσ(t))∆t + . . . .

(2.21)
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Using (H1) and the above inequality, we obtain that for s ∈ (tk, tk+1]T,

y∆(s)
ϕ(y(s))

≥
∫ tk+1

s

p(t)
ϕ(yσ(t))
ϕ(y(s))

∆t +
1

bk+1

∫ tk+2

tk+1

p(t)
ϕ(yσ(t))
ϕ(y(s))

∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)
ϕ(yσ(t))
ϕ(y(s))

∆t + . . .

≥
∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t

+ · · ·+ 1
bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . . .

Integrating it from tk to tk+1 and using (2.3), we have∫ tk+1

tk

[ ∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .
]
∆s

≤
∫ tk+1

tk

y∆(s)
ϕ(y(s))

∆s

=
∫ y(tk+1)

y(t+k )

1
ϕ(u)

∆u.

Using (2.18), and (H4), the above inequality yields
∞∑

k=0

∫ tk+1

tk

[ ∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .
]

≤
∞∑

k=0

∫ y(tk+1)

y(t+k )

1
ϕ(u)

∆u

≤
∫ ∞

y(t+0 )

1
ϕ(u)

∆u < ∞,

which contradicts (2.17). �

Theorem 2.6. Suppose that (H1)–(H4) hold and there exists a positive integer k0

such that a∗k ≥ 1 for k ≥ k0. Assume, furthermore, that ϕ(ab) ≥ ϕ(a)ϕ(b) for any
ab > 0 and

∞∑
k=0

∫ tk+1

tk

[ ∫ tk+1

s

p(t)∆t +
ϕ(a∗k+1)

bk+1

∫ tk+2

tk+1

p(t)∆t

+
ϕ(a∗k+1)ϕ(a∗k+2)

bk+1bk+2

∫ tk+3

tk+2

p(t)∆t + . . .

+
ϕ(a∗k+1)ϕ(a∗k+2) . . . ϕ(a∗k+n)

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .
]
∆s = ∞.

(2.22)

Then (1.1) is oscillatory.
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Proof. As before, we may assume that y(t) > 0, t ≥ t0, is a nonoscillatory solution
of (1.1) and k0 = 1. According to the proof of Theorem 2.5, (2.18) and (2.21)
hold. Furthermore, from (H1) and Lemma 2.1, we obtain ϕ(y) is nondecreasing
and y(t) is also nondecreasing in (tk, tk+1]T, k = 0, 1, 2, . . . . Therefore, ϕ(y(t)) is
nondecreasing in (tk, tk+1]T. Hence,

ϕ(y(t+k+1)) ≥ ϕ(a∗k+1y(tk+1)) ≥ ϕ(a∗k+1)ϕ(y(tk+1)),

and

ϕ(y(t+k+2)) ≥ ϕ(a∗k+2y(tk+2)) ≥ ϕ(a∗k+2)ϕ(y(t+k+1)) ≥ ϕ(a∗k+1)ϕ(a∗k+2)ϕ(y(tk+1)).

By induction, it can be proved that for any positive integer n,

ϕ(y(t+k+n)) ≥ ϕ(a∗k+1)ϕ(a∗k+2) . . . ϕ(a∗k+n)ϕ(y(tk+1)). (2.23)

From this inequality, (2.21), and using the fact that ϕ(y(t)) is nondecreasing, we
obtain, for s ∈ (tk, tk+1]T,

y∆(s) ≥
∫ tk+1

s

p(t)ϕ(yσ(t))∆t +
1

bk+1

∫ tk+2

tk+1

p(t)ϕ(yσ(t))∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)ϕ(yσ(t))∆t + . . .

≥ ϕ(y(s))
∫ tk+1

s

p(t)∆t +
ϕ(y(t+k+1))

bk+1

∫ tk+2

tk+1

p(t)∆t + . . .

+
ϕ(y(t+k+n))

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .

≥ ϕ(y(s))
∫ tk+1

s

p(t)∆t +
ϕ(a∗k+1)ϕ(y(tk+1))

bk+1

∫ tk+2

tk+1

p(t)∆t + . . .

+
ϕ(a∗k+1)ϕ(a∗k+2) . . . ϕ(a∗k+n)ϕ(y(tk+1))

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . . .

Hence,

y∆(s)
ϕ(y(s))

≥
∫ tk+1

s

p(t)∆t +
ϕ(a∗k+1)

bk+1

ϕ(y(tk+1))
ϕ(y(s))

∫ tk+2

tk+1

p(t)∆t + . . .

+
ϕ(a∗k+1)ϕ(a∗k+2) . . . ϕ(a∗k+n)

bk+1bk+2 . . . bk+n

ϕ(y(tk+1))
ϕ(y(s))

∫ tk+n+1

tk+n

p(t)∆t + . . .

≥
∫ tk+1

s

p(t)∆t +
ϕ(a∗k+1)

bk+1

∫ tk+2

tk+1

p(t)∆t + . . .

+
ϕ(a∗k+1)ϕ(a∗k+2) . . . ϕ(a∗k+n)

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . . .
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Integrating the above inequality and using (2.18), (2.8), we obtain
∞∑

k=0

∫ tk+1

tk

[ ∫ tk+1

s

p(t)∆t +
ϕ(a∗k+1)

bk+1

∫ tk+2

tk+1

p(t)∆t + . . .

+
ϕ(a∗k+1)ϕ(a∗k+2) . . . ϕ(a∗k+n)

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .
]

≤
∞∑

k=0

∫ tk+1

tk

y∆(s)
ϕ(y(s))

=
∞∑

k=0

∫ y(tk+1)

y(t+k )

1
ϕ(u)

∆u

≤
∫ ∞

y(t+0 )

1
ϕ(u)

∆u < ∞,

�

which contradicts (2.22).
From Theorems 2.3–2.6, we have the following corollaries.

Corollary 2.7. Suppose that (H1)–(H3) hold and there exists a positive integer k0

such that a∗k ≥ 1, bk ≤ 1 for k ≥ k0. If
∫∞

p(t)∆t = ∞, then (1.1) is oscillatory.

Proof. Without loss of generality, let k0 = 1. By bk ≤ 1, we get∫ t1

t0

p(t)∆t +
1
b1

∫ t2

t1

p(t)∆t +
1

b1b2

∫ t3

t2

p(t)∆t + · · ·+ 1
b1b2 . . . bn

∫ tn+1

tn

p(t)∆t

≥
∫ t1

t0

p(t)∆t +
∫ t2

t1

p(t)∆t +
∫ t3

t2

p(t)∆t + · · ·+
∫ tn+1

tn

p(t)∆t

=
∫ tn+1

t0

p(t)∆t.

Let n → ∞, from
∫∞

p(t)∆t = ∞, the above inequality yields (2.8). By Theorem
2.3, we conclude that (1.1) is oscillatory. �

Corollary 2.8. Assume that (H1)–(H4) hold and there exists a positive integer k0

such that a∗k ≥ 1, bk ≤ 1 for k ≥ k0. If
∫∞ ∫∞

s
p(t)∆t∆s = ∞, then (1.1) is

oscillatory.

The proof of the above result is similar to the proof of Corollary 2.7 and using
Theorem 2.5.

Corollary 2.9. Suppose that (H1)–(H3) hold and there exist a positive integer k0

and a constant α > 0 such that

a∗k ≥ 1,
1
bk

≥ (
tk+1

tk
)α, for k ≥ k0. (2.24)

If ∫ ∞
tαp(t)∆t = ∞. (2.25)

Then (1.1) is oscillatory.
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Proof. As before, let k0 = 1. Then (2.24) yields∫ t1

t0

p(t)∆t +
1
b1

∫ t2

t1

p(t)∆t +
1

b1b2

∫ t3

t2

p(t)∆t · · ·+ 1
b1b2 . . . bn

∫ tn+1

tn

p(t)∆t

≥ 1
tα1

[∫ t2

t1

tα2 p(t)∆t +
∫ t3

t2

tα3 p(t)∆t + · · ·+
∫ tn+1

tn

tαn+1p(t)∆t

]
≥ 1

tα1

[∫ t2

t1

tαp(t)∆t +
∫ t3

t2

tαp(t)∆t + · · ·+
∫ tn+1

tn

tαp(t)∆t

]
=

1
tα1

∫ tn+1

t1

tαp(t)∆t.

Let n →∞. Then using (2.25), the above inequality yields (2.8). By Theorem 2.3,
we obtain that (1.1) is oscillatory. �

Corollary 2.10. Assume that (H1)–(H3) hold and ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab >
0. Suppose there exist a positive integer k0 and a constant α > 0 such that

ϕ(a∗k)
bk

≥ (
tk+1

tk
)α, for k ≥ k0.

If
∫∞

tαp(t)∆t = ∞, then (1.1) is oscillatory.

The above corollary follows from Theorem 2.4, and its proof is similar to that of
Corollary 2.9.

Corollary 2.11. Suppose that (H1)–(H4) hold and there exist a positive integer k0

and a constant α > 0 such that

a∗k ≥ 1,
1
bk

≥ tαk+1, for k ≥ k0. (2.26)

If
∞∑

k=0

(tk+1 − tk)
∫ ∞

tk+1

tαp(t)∆t = ∞. (2.27)

Then (1.1) is oscillatory.

Proof. As before, we assume k0 = 1, t1 ≥ 1. From (2.26), we get
1

bk+1
≥ tαk+2,

1
bk+1bk+2

≥ tαk+2t
α
k+3, . . . ,

1
bk+1bk+2 . . . bk+n

≥ tαk+2t
α
k+3 . . . tαk+n+1, . . . .

Similar to the proof of Corollary 2.9, we have∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t +
1

bk+1bk+2

∫ tk+3

tk+2

p(t)∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t

≥
∫ tk+n+1

tk+1

tαp(t)∆t.
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Let n →∞, we have∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t +
1

bk+1bk+2

∫ tk+3

tk+2

p(t)∆t + . . .

+
1

bk+1bk+2 . . . bk+n

∫ tk+n+1

tk+n

p(t)∆t + . . .

≥
∫ ∞

tk+1

tαp(t)∆t.

Using (2.27) and the above inequality, we get

∞∑
k=0

∫ tk+1

tk

[ ∫ tk+1

s

p(t)∆t +
1

bk+1

∫ tk+2

tk+1

p(t)∆t +
1

bk+1bk+2

∫ tk+3

tk+2

p(t)∆t + . . .
]
∆s

≥
∞∑

k=0

∫ tk+1

tk

∫ ∞

tk+1

tαp(t)∆t∆s

=
∞∑

k=0

(tk+1 − tk)
∫ ∞

tk+1

tαp(t)∆t = ∞.

By Theorem 2.5, we obtain that (1.1) is oscillatory. �

Corollary 2.12. Suppose that (H1)–(H4) hold and there exists a positive integer
k0 and a constant α > 0 such that

a∗k ≥ 1,
ϕ(a∗k)

bk
≥ tαk+1, for k ≥ k0.

Suppose that ϕ(ab) ≥ ϕ(a)ϕ(b) for any ab > 0 and

∞∑
k=0

(tk+1 − tk)
∫ ∞

tk+1

p(t)∆t = ∞.

Then (1.1) is oscillatory.

The proof of the above corollary is similar to that of Corollary 2.11, so we omit
it.

3. Example

Consider the the second-order impulsive dynamic equation

y∆∆(t) +
1

tσ2(t)
yγ(σ(t)) = 0, t ≥ 1, t 6= k, k = 1, 2, . . . ,

y(k+) =
k + 1

k
y(k), y∆(k+) = y∆(k), k = 1, 2, . . . ,

y(1) = y0, y∆(1) = y∆
0 .

(3.1)

where γ ≥ 3 and µ(t) ≤ Kt, and K is a positive constant. Since ak = a∗k = k+1
k ,

bk = b∗k = 1, p(t) = 1
tσ2(t) , tk = k and ϕ(y) = yγ . it is easy to see that (H1)–(H3)
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hold. Let k0 = 1, α = 3, hence
ϕ(a∗k)

bk
= (

k + 1
k

)γ = (
tk+1

tk
)γ ≥ (

tk+1

tk
)3,∫ ∞

tαp(t)∆t =
∫ ∞

t3
1

tσ2(t)
∆t =

∫ ∞
(

t

σ(t)
)2∆t.

Since µ(t) ≤ Kt, we get
t

σ(t)
=

t

t + µ(t)
≥ 1

1 + K
,

hence ∫ ∞
(

t

σ(t)
)2∆t ≥ 1

(1 + K)2

∫ ∞
∆t = ∞.

By Corollary 2.9, we obtain that (3.1) is oscillatory. But by [3] we know that the
dynamic equation y∆∆(t) + 1

tσ2(t)y
γ(σ(t)) = 0 is nonoscillatory.

Note that in the above example, the dynamic equation without impulses is
nonoscillatory. However, when some impulses are added, it become oscillatory.
Therefore, this example shows that impulses play an important part in oscillations
of dynamic equations on time scales.
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