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DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC
COMPLEX MONGE-AMPERE EQUATION

SAOUSSEN KALLEL-JALLOULI

ABSTRACT. We consider the Dirichlet problem

02%u
det
¢ (82i87j

where Q is a bounded open set of C" with regular boundary, g and ¢ are

):g(zvu) in 2, u|39:507

sufficiently smooth functions, and g is non-negative. We prove that, under
additional hypotheses on g and ¢, if | det 05— glos« is sufficiently small the
problem has a plurisubharmonic solution.

1. INTRODUCTION

Let Q be a bounded domain in R?" with smooth boundary and let z; = x; +
iZi4n(1 < ¢ < n). We shall also denote by € the set of z = (21, 29,...,2,) sat-
isfying (Re z,Imz) € Q. We study the problem of finding a sufficiently smooth
plurisubharmonic solution to the degenerate problem

Py .
W —9(27@ in Q, (1.1)

¢|aQ:‘P'

det (

In [8,[], the author studies local solutions, while, here we consider global solutions.

This problem has received considerable attention both in the non-degenerate case
(9 > 0) and in the degenerate case (g > 0). In particular, Caffarelli, Kohn, Niren-
berg and Spruck [4] established some existence results in strongly pseudoconvex
domains based on the construction of a subsolution. The recent work of Guan [6],
extends some of these results to arbitrary smooth bounded domains. Guan proved
for the nondegenerate case that a sufficient condition for the classical solvability is
the existence of a subsolution. Here we are concerned with degenerate problems in
an arbitrary smooth bounded domain, which need not be Pseudoconvex.

Counterexamples due to Bedford and Fornaes [2] show that the Dirichlet prob-
lem, in general, does not have a regular solution. This implies that we should place
some restrictions on g and .
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Let us assume that ¢ is a real function defined in €, ¥ is a finite set of points in
Q, and g(z,¢) = K(2)f(Re z,Im z, ¢). We further assume the following hypotheses.
(A1) K>0in Q, and K~1(0) =%
(A2) f(z,u) >0in QxR and 3L > —pin A xR, with0 < p << 1
(A3) 90|§\2 is strictly plurisubharmonic, (¢,7) |2 is of rank (n—1), and the eigen-
values of (¢,;7) on ¥ are distinct.

Our main results are the following theorems:

Theorem 1.1. Let s, > 7+ 2n be an integer, o €]0,1], and T > 1. If p €
C*+29(Q) satisfies the condition (A3), then one can find a constant eg > 0 (de-
pending on s., a, I', Q and @) such that for any g = Kf € C®* satisfying (A1),
(42),

|det o7 — g(p)|c=- < €0 (1.2)
and |g—g|cs* < T, then problem (1.1) has a plurisubharmonic (real valued) solution
¢ € C+=377(Q), which is unique when p = 0.

Let lo(2) denote a-th row the matrix of cofactors of (¢;5), and

D*K (2)(la(2),15(x))™ = DFK (2) (la(2), 15(2); . . . s la(@), 15(2)).

Theorem 1.2. Under the assumptions in Theorem suppose that ¢ € C*(£2)
and for any point xg € ¥ one can find an integer k such that DIK (zq) = 0 for all
§ < k—1 and there ezists a # 3 € {1,...,n} such that D* K (x0)(lo(0),1(z0))*) #
0. Then there exists an integer s, > 0 and a constant €9 > 0 such that for any
function g € C* satisfying (A2), (A3) and , the plurisubharmonic solution ¢
to the problem is in C° ().

In Theorem the assumption concerning Y leads to a-priori estimates and
the assumption on g and ¢ ensures the convergence of an iteration scheme of
Nash-Moser type. It is to be noted that we do not require demonstrating that
a subsolution exists as in [4] and [6].

Under some additional conditions on g, we can prove the smoothness of the
solution, using the works of Xu [I2] and Xu and Zuily [I3].

This paper is organized as follows. In Section 2 we state some preliminary
results. In Section 3, we state fundamental global a-priori estimates for degenerate
linearized operators that are crucial to establish an iteration scheme of Nash-Moser
type. We then prove Theorem in Section 4. We prove Theorem in Section
5. Finally, we prove the a-priori estimates stated in Section 3.

2. PRELIMINARY RESULTS

We shall use the norms

e =1 lleryy T le =1 lar@)y T ler =1 ller-@)
where k € N and 7 €]0, af.
In this work, we need some technical lemmas which play important roles in the

proof of convergence of our iteration scheme.

Lemma 2.1. Let s, be an integer, s, > 7+ 2n. We can find a constant 8 > 2
such that for any 0 < 1i,j,k < 5. +2, n, =n+7 and u € C*+29(Q) we have: The
Sobolev inequality
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The Gagliardo-Nirenberg inequality
J—i

lully < Bllully " Mlully™,  i<j <k (2.2)

The inequality

[ulls. < Bluls. (2.3)
For any A > 1, there exists a family of smoothing linear operators Sy : U;>oH'(Q) —
Nj>0H7(Q), satisfying

[Sxulli < Bllull,, i< (2.4)
[Sxulls < BA I |lully, ifi>j (2.5)
1Sxu = ulli < BN |fully, i i < (2.6)
Lemma 2.2 ([IL[7]). (1) Fort > 0; if u,v € L N H!, then uv € L N H' and
luvlle < Ki(lulollvlle + [[ulle|v]o), (2.7)

where, K1 is a constant > 1 independent of u and v.
(2) Let H : R™ — C be a function C* of its arguments.
For s >0, ifw € (L NH*)™ and |wlp < M, then

[H ()]s < Ka(s, H, M)([|lw|[s + 1), (2.8)

where Ko > 1 and is a constant independent of w.
If w € (C**")™, 11 €]0,1] and i € N, then H(w) € O,
If we suppose that |w|o < M, then we can find a constant K3 = Ks(i, u, H, M) >
1 such that
|H ()i < Ks(|wliyp +1). (2.9)

We shall also need the following technical lemma.

Lemma 2.3 ([§, Lemmal)). Let F(u.z) = det(u.,z;). For 1 <14,j,a,b < n, we

have )
F F F F F
F 4 = 9 9 — 0 9 . (2.10)
8uzaz78uzi7j 8uza5 8uzi7j 6uzizT, 6uza7j
3. A PRIORI ESTIMATES FOR THE LINEARIZED OPERATOR
Defining ¢ = ¢ + ew, (1.1]) becomes
det(¢.,z;) = det(p., +ew.,z) = g. (3.1)
Let )
G(w) = g[det o —g. (3.2)
Then the linearization of G at w is
Lo(w) =Y 670,05 +b, (3.3)

4,J=1

where ® = (¢*/) is the matrix of cofactors of ® = (¢275(2,6,w)) and b = %.

Now we construct linear elliptic operators, maybe degenerate, related to lin-
earized operators. For any smooth real valued function w, the matrix ((bﬁ) is
Hermitian and we can find a unitary matrix T'(z, ) satisfying

T(z,¢) (¢zlz)tT(zv g) = diag(A1,. .-, An)- (3.4)
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Without loss of generality we may assume that ¥ is reduced to one point, the origin.
By means of change of variables we may assume, using (A3), that

0.=(0) =00 i,j=1,....n, (3.5)
where o; >0 fori=1,...,n—1,0,=0and 0; # 0 fori #j. Let 0 <7 < 7.

Lemma 3.1. There exist constants €1 > 0, §1 > 0 and M > 0 depending only on
©, n, Q0 such that when

Vo ={(z,e,w)/]|2| <61,0< e <ey,we C¥(Q), lwl|s - < 1},

we have: (i) The eigenvalues \;, i = 1,...,n of ® are distinct on Vo and of class
Clin Vo Moreover, A\; > 0 in Vg, fori= 1 ,n—1.
(ii) For (z,e,w) € Vy,

n—1
Z los — Ai(z, 8, w)| + |2 (2, €, w) H oil < M(e+ |z2]). (3.6)
i=1
(iii) For (z,aw) eVoandi=1,...,n—1,
n—1
Ao > _inf oj— M —(M+1)ey >0 and @ > [[ o0i— Mé1 — Mey > 0. (3.7)

1<i<n-—1 -
i=1

Proof. Let us consider the function H(z,e,w, \) = det(¢.,z +cw.,z — A67). Then
H € C! and by (3.5)), we have

o0H
OA (
By the implicit function theorem, one can find two constants e; > 0 and §; > 0
such that (i) holds. Moreover by (3.5 we have

H(0,0,0,0;) =0 and —(0,0,0,0;) #0, Vie {l,...,n}.

OF o
Tue (2:7)(0) = @""(0,0,w) H oi >0,

which gives (ii) and (iii). O

Lemma 3.2. There exists a positive constant e2 such that for any 0 < € < &3, any
real valued function w € C*7(Q) satisfying |wls . < 1 and § = max, 5 |G(w)|, the
operator

L=—-Lg(w)—0A (3.8)
is elliptic, maybe degenerate. (Here N =377 | (5= 62 > + ;—;_2))
Proof. Let
n
A=01E7+ > 6768 >0, Y(z,6)eQxCn (3.9)
i,j=1

If z € Q\{0}, as ¢ is strictly plurisubharmonic, then A > 0 for all £ € C™\{0}.
If z = 0, for £ € C", we let £ =' T(7,e)¢. Then we have

A= Qle +1 €BE = 0l¢)* +! ETHTE.
Since @ = det ®1d, by (3.4),
det ®1d = TO'TTP'T = diag(\;)TD'T,
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e ol . T .

Thus,

&2

Ai
g n—1

&P .

| YA
v i=1

n—1 n—1
~ €G+g+9>\i ~
=(0+ H M) I® + Z f\fz‘ﬁ

i=1 i=1

A=0E? +detd )
=1

n—1
=0+ det®
=1

By (38.7), fori=1,...,n—1, e <&y and |w|sr < 1, we have

Therefore, A > 0, which proves the lemma. O

Now we study a boundary-value problem for the degenrate elliptic operator

L=-Lg(w)—0A =Y 70,05+,
i,j=1

where

i
andb:K%. For k,s € N we let

A(k) = max(1, max [b7]y,[b]x)
1sijsn (3.10)
A ={(4,5):0<4,j<s,i+j<s, and i +2 < max(s,2)}
Now from Lemma we have the following statement.

Theorem 3.3. Suppose that 0 < 1 and A(2) < My, for some constant My > 0. One
can find e3 > 0 such that for any € €]0,e3], any real valued function w € C*++27(Q)
satisfying the inequality |wls, < 1 and any real valued function h € H®*, the
problem

Lu=h inQ
(3.11)
“’89 =0
has a unique solution u € H**. Moreover for 0 < s < s,,
|ullo < Collhllo (3.12)
lullr < Cr(l|Rlly + [Jullo) (3.13)

[ulls < CAlRIls + > (+le+ewlipar)lull}, s> 2 (3.14)
j<s—1,(i,j)EAs

for some constant Cs = Cs(p, 5,9, My, e3) independent of w and €.

For v €]0, 1], we denote L, = L — v/A. To solve the Dirichlet problem (3.11)), we
first establish the following proposition.
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Propositon 3.4. Let § < 1 and, for some constant My > 0, A(2) < My. Then
there exists €3 > 0 such that for any €]0,e3], any real valued function w €
C*T27(Q) satisfying the inequality |wl|s, < 1 and any real valued function h €

H5+(Q), the regularized problem
L,u=h 1inQ,
L (3.15)

“’aﬂ

has a unique (real valued) solution u € H**1(€).

Proof. Since Lg(w) is a second order operator with real coefficients, from Lemma
L, is uniformly elliptic with coefficients in C*+7(Q2). Thus by [3, Theorems
6.14 and 8.13] we see that has a real valued solution.

If 7 hold for the regularized problem with an uniform constant
C, independent of v €]0,1], then by letting v tend to zero we get a solution u €
H*+(2) to the original problem which of course satisfies (3.12)—(3.14). O

Using Theorem we prove Theorem by constructing a sequence of approx-
imating solutions and a priori estimates for linearized operators. The hypothesis
will play an important role in the proof of the convergence of our iteration
scheme of Nash-Moser type.

4. PROOF OF THEOREM [I.1]

Part 1: An iteration scheme of Nash-Moser type. In this section, we use
the Nash-Moser procedure [7), [I0] and the results of Section 3 to prove Theorem
[[1] We construct a sequence which converges to a solution to our problem. We
define

Mo =1+ maxKs(2,7, H, (1 + |¢l2))(1 + |¢la,r), (4.1)

where F :{aaTi, g—i/l <i,j <n} and K3 is the constant introduced in (2.9)). (i.e:
|H (u)|j,u < Ks(j, p, H, M)|ul;,). We also define

D = max (Oglszg* Cs, 1). (4.2)

Here C; is the constant (depending only on s, ¢, 2, M) given by Theorem We
let

p=max(3,3Ds2(1+ |¢ls, 42.,),m,27) and fi = Fp, (4.3)
ar = 9Kop®, az = 5aip®t,  az = TKop®, (4.4)

were K is the constant given by Proposition Also, we fix € satisfying
& <min[l, (£:)1<i<a, (3D%ag + 61D?) 72, (4.5)

were ¢; are given in Lemma [3.2] Theorem the proof of Theorem [3.3] and the
proof of (3.13).

As a consequence of these inequalities, we have 6ep® < 1/4. Let g € C** satisfy

<22,

Sy

| det ;5 — g()

with g in Theorem equal to £2. Let S,, = S,,,, the family of operators given by
Lemma [2.1] with p, = p™ (p is given by (4.3)).
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Using Theorem [3.3] we construct w,,, n =0, 1,..., by induction on n as follows.
We let ug, wo = 0, and assume wy, wy, ..., w, have been chosen and define w11
by

Wn41 = Wp + Un+41, (46)

where u,,41 is the solution to the Dirichlet problem

LG(ﬁ;n)'Uer + HnAun+l =gn, inQ

(4.7)

un+l‘8Q =0,

given by Theorem Here
Wy, = SpWy, (4.8)
0, = |G(ﬁn)|07 .
go = —SOG(O),gn =S,_1R,_1—S,R, + SnflG(O) — SnG(O), (410)
Ry=0, Rn,=> 1 (4.11)
j=1

o = 0, r; = [Lg(wjfl) — Lg(@j,ﬂ]uj‘ + Qj — 9j,1A’LLj, 1 S j S n, (4.12)
Qj = G(w;) — G(wj—1) — La(wj—1)u;, 1<j<n (4.13)

To ensure that the w,,’s are well defined, we prove the following proposition.
Propositon 4.1. Let s e N. If s, > 74 2n and 4+ 2n+ 27 < 0 < s, — 2, we have
llujlls < VEmax(u, pj—1)]*~7, jEN", 0<s < s, (4.14)

lwjlls < {%ij" ;Z:Zii;l o, dew (4.15)
|W;lar <1, j €N, (4.16)

lw; — w;lls < 26VERS, 0<s<s., jeN, (4.17)
I75lls < &ar[max(u, pj-1)]*"7, 0<s<s.—2, jeN, (4.18)
lgills < &agu™", 0<s<s., jeEN, (4.19)

0; <asVEu;? <1, jeN, (4.20)

)

A;j(2) <My, jeN. (4.21

Here, A;(k) is defined by using the definition of A(k) in (3.10), where the coeffi-
cients correspond to W;.

Let us first show how that Proposition implies Theorem The proof of
this proposition will be given later in Appendix 1.

Part 2: Proof of Theorem We prove the convergence of the sequence (w,)
using Proposition Set 0 = s, —2—7and s =0 — 7. By (4.6) and (4.14)), for
any i,k € N* i > k,
hoe—welle < Y uglle AVE S w7 = AVE S ()i
j=k+1 j=k+1 j=k+1

Since p > 2 and 7 > 0, then ||w; —wy||s — 0 as ¢,k — co. Hence, there is a function
w € H**~2727(Q) satisfying w,, — w in H**~2727(Q).
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Since H**~2727(Q) c C*—27"=37(Q), it follows that w € C**~37"(Q). On the
other hand, combining , and -, we obtain
rj = G(w;) = G(wj-1) — gj—1
Taking the sum between j = 1 and j = n, using and , we get
G(w )= —=S-1)Rn—1+ (I — Sn_1)G(0) + ry. (4.22)
For n > 2, using and -, we have
||Tn se—2-27 < a1fEU”
Combining with (| and (| -7 we get
(I - Sn—l)G(O) s—2—2r < B 2T GO)s. < B2 217TE

Combining (2.6)), (£.11) and (4.18)), we can write

227’0

= a10ep, "4

I(1 = Sn—1)Ra-lls.—2-2r < By 23| Ru—1lls, 2 < Bup 2] ZHTJ 5.2
n—1
< Bu, *1Eay Big(p® 2~ ”—&-z:us*f2 7)
j=2

< EBarpy 2y 77 < Parig Ty
These inequalities imply G(w,) — 0 in H*=2727(Q) as n — oo.
Since H*2727(Q) C C*(Q2) and wy,go = 0, we conclude that G(w) = 0 and
w| 90 = 0. That is u = p +ew is a solution to the original Monge-Ampere equation

which is by Lemma [3.1] plurisubharmonic since g is nonnegative. If we suppose that
p =0, in (A2), then the uniqueness of the solution follows immediately from [4].

5. PROOF OF THEOREM

We shall use the result of Xu and Zuily [12] [I3] that we recall briefly. Let us
consider a non linear partial differential equation

F(x,y,u, Vu, D*u) =
where F' is C*°. To any solution u we can associate the vector fields X; =

Zk %6;6 Then

Theorem 5.1 ([12]). Supposeu € Cf (Q) with p > Max(4,7+2) for some constant
r > 0 and that the brackets of the X;, up to the order r, span the tangent space at
each point of ), then u belongs to C*° ().

To prove this theorem, it is sufficient to prove that the solution of Theorem [I.]]
satisfies Theorem at any point in ¥. Suppose ¥ = {0}. Fori=1...n

i O ¢+ ¢ii 0 “ il —igid 9
gl SRS SRt

2 a$j+n

J#i, =1

f DN~ a9 N i gl
Xivn =" —— + Z —_ — Z 5 836 (5.2)
j= J#4, j=1 i

For computing the Lie algebra generated by the X;, we need the following result.
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Lemma 5.2. For any integer 1 < m < k,
(adX )" X, —iXon, Xi — i Xin]

2n
=3 Y [(Cigp)dlg + edyij) 0w, (5.3)
I=1 |B|<m, i#]
+ [An(CPﬁ)]milAi(@i}) [(a;rf,,g + Z‘aglnilamzng) (O, + iafc7z+n)}a
where Cigp and dp;; are C*~™7(Q) (depending on w and ¢ bounded for € small
enough) satisfying for |B] = m, Ciﬂp(O) =0,p=1,...,nifn>3 and Cig1(0) =0
ifn=2. A, = Tﬁ and A; = angu

Proof. We use induction on the size of the brackets. First we calculate D;, =
[Xpn +iXopn, X; +iXi4n], for i <n—1.

Dy, = [i Y, +i i "9, . ., En: U9, +i i @ilamﬂ]
j=1 j=1 =1 1=1

= Zn: Zn:{‘l’"j O, (@) = @0, (2™)}0,

1=1 j=1

&)

+iy > {0, (@) — 00, (2")}0y,

=1 j=1

(2

- Z Z{q)njaaijJrn(q)“) - (I)ijaijFTL(cI)nl)}aﬂJHn

1=1 j=1

(2

iy D {0, (1) — 80, (")} Dyytns

=1 j=1

1)

where

}&r; Upg-

HM:

Z oF  0°F OF  O*F
] g OugO0upg au Ou,70uy

p,q

Using -, we get

N~ OF OF OF  OF OF
F.(1) = E E — — Uy
W= 2 50— Buy Bupy ~ D Bu g s

j=1p,qg=1
"<~ OF ,OF OF OF 8F)8
_ U
o o2 Oug Ouyg Ouyg Qg Ouyy” ™ v
n

- OF OF OF  OF 8F)

Ouyg Oa; Q(au fau Bu ou,,

(5)
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8F(8F oF OF OF
8u ou,= 8unq ~ Ou = Ousg

nj

)81’]- Upa.
Jp,q=1

(6)
Using ([2.10)), we have
82
(5) = 0 (F)Fau 70U

Similarly, we prove that
- O*F
2) = Op. . (F)F——
) g j+n( ) aungauﬂ

+z”: OF OF 9F  OF OF
“ 0wy Ouz Oung  Ou,z Ougg

)8$j+n Upg-

We can easily see that (6) +4(7) = 0, so,
) =

1 (2 (F 10y (F
( ) + Z( j:1(813( ) + /Lawj+’!L< ))au 6’&
and
Din = 35 00 () + 100 () e (04, + 5]
m — T Titn au fauﬁ T x+n]-
Since F' is the determinant function, then, % is independent of wu,; and u; for
I =1,...,n. Therefore 5~ 9 aF vanishes unless i # p, j # q. So,
82
Dy, = Z (896J (f) + ia$j+n (f))W[axl + Zaﬂcl-‘rn]

(L,5)#(n), Li<n

We have ¢5(0) = (1 — 610307 Therefore, if n > 3 and (I, 5) # (i,n),

0*F
——(¢,7)(0) = 0.
g ) 0)
If n=2and ! =1, then s =1 and we also have
0’F
—(p.=)(0) = 0.
auQTaUqT (901])( )
So, (5.3)) is proved for m = 1. By a recursion on m, we deduce this lemma. O

On the other hand, we have by ({3.5)
7 (p;7)(0) =0, for (i j) # (n,n),

<le H01>0
Ai(pi5)( H o; > 0.

J#i,i=1
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Or by the hypothesis, 32¢(0) = 0 for all |3| < k, and by (5.4), we can suppose
that 8% g(0) # 0 (9%, g(0) # 0 leads to the same result, just consider (adX2,)™
instead of (adX,)™ ).

So, by taking the real and the imaginary parts of (5.3) at the origin, we obtain

(aan)k_l([Xna Xi] - [X2na Xi+n])

2n
=D > e (00, + [An(pi)O)]F Ai(p5)(0) (05, 90s, — O D 90z, 40
=1 j#i

and

(adX )" ([Xan, Xi] + [Xn, Xign])

2n
=D > edy; (00 — [An(p) (0] Ai(p ) (0)[05, B, 90, + DY, 9Ou, 4n]-
=1 j#i

Suppose now that |w|i4+2 < 1. We will get at the origin for e < £ small enough
the determinant of the vectors

(aan)k_l([Xn7 Xl] - [X2na Xz-i—n]))
(adX,)* 1 ([(Xon, Xi] + [Xn, Xitn))izt,.n—1s (5.5)
X, Xo, is different from zero.

Now, choose s, so big that s, > max(7 4+ 2n,6 + k + n) by means of Theorem
there exists 9 < &2 such that for any g satisfying (1.2) there exists a unique

1
solution u = p+eiw € C*+3(Q) to the problem (T.1). Moreover; by [2.1)), |w|x12 <
Blwllks24ntr. Since o =5, —2—7, 5, >6+k+nand 7<% <1 then

k+2+n+7<s,—4+7=0-2+21<o0-—T.

We have then, using (4.3)), (4.5) and (4.15)),
lwlpre < 28VE< 1.

So, by (5.5), we can conclude that for & sufficiently small, the vector fields at the
origin; [(adX,)* " ([Xsn, Xi])]s=12:i=1.... 2n—1, Xn and X, span all the tangent
space. Theorem [I.2] follows then from Theorem [5.1]

6. APPENDIX 1

To prove proposition .1} we need the following result.

Propositon 6.1. There exists a constant Ko > 1 such that for any function w' €
C*+27(Q), |wie <1,i=1,2,3 and for any ¢ < 1 we have
G(w') = G(w?)o < Kolw' — 0?2 (llllz4n. + 1w 240, + [|w?24n, +1). (6.1)
Also fort €[0,1], s € [0, s4],
|2 Lo + )],
< eKo[(|@llars + ellw! 246 + ellw?l24s + 1)]w? 2w’
+ ([ell2n. +ellwllo4n. +ellw?[l24n. +1)(Jw?l2]w’]l24s + |w3|2|w2||2+s(23]-2)
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Proof. Just write
G(wh) — G(w?)

= [det(pis + cwh) — detlipis + cwl) + glw') — g(w?)]

6F 2 1 2
= / Z (o7 + 5w -+ ta(wg wg))(wﬁ - wﬁ)dt

,Jll

+ / —g(cp + ew? + te(w' — w?))(w' — w?)
0 8'(1;

! dg 2 1 2 1 2
+ (p+ew” +te(w —w))(w; —w;),
0

Opi
and
2 Lo+t
et e
d <~ OF 0g
= a[ ' Bu,; +—(pi5 + 5“’1'13 + tsw%)w% + %(w + ew! +tew)w? + .. ]
i,j= z

n
0*F )
= 8- Z m(@lj + €’LU -+ tsw )wpqw” =+ .

Combining (2.1 , , and ( with the inequalities

o7 + ew? +t€(w*—w )|0<\<ﬂ|2+2|w2|2+|w1|2<3+|90|2

and
|%‘3 + Ewlf + taw%|o < elz +elwt]s + te|w?|s < 2+ ]2,

we deduce and . O

Proof of the proposition[{.1 The proposition is proved by induction We have ug =

0. Let begin by proving ( -0 to (i.e. ) to (4.21)) corresponding to
J=0).

(a) (4.19)0: Using and , we have
1
9o ==5G(0) and  G(0) = =(det(pi;) — g(¢))-

But ¢ € C**T29(Q)), g € C** and S, are smoothing operators, so go € H**(Q).

23), @4, B2) and (L2) show that
s i _
lgolls < BIIGO)]s < gH det(pi;) — g(@)lls. < ?Idet(%j) —g(p)ls. < B%E

Using ([.4) and § < p, we get [|golls < p?€ < as€

b) (4.2000: (3.2), (4.4), (4.5) and (1.2) give
1 ~ ~
bo =G(0)lo < =|det(pg) — g(p)ls. <E< Véas <1.
(c) (4.21))p: We have

0
A0(2) = max(L,| 57 ()], max| 57—

ou

Then, by (2.9), (4.1)) and (4.20)0, Ao(2) < M.

oF
dor (2ig)l2 + 6o)-
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Assume that ug, uy,...,u,_1 € H*( satlsfy and [4.14) (.21
—(]3.14

for 5 < n — 1. We shall construct u, € H s ( satlsfymg and prove

that (4.14)—(4.21) are satisﬁed for j =n.
Combining (4.16)),,—1—(4.21),—1, we have |Wy 1|4, < 1, 01 < 1, A,1(2) <
My and g,—1 € H**(Q). We can then apply Theorem [3.3] - to get a solutlon Upy €

H*(Q) to the problem (4.7)),, sat1sfy1ng 3 1 (3.1 Then

(a) ([A14),: For n = 1, using (L2), 3), B-2), B-12), and (E2), we have
Jusllo < Dlgollo < DBIG(O)]o < DL Idet(ww) 9(¢)ls. < DB%e.

(4.3), (4.5), and s, > o give

lurllo < Ve~ (6.3)
By (3.13)), we have [Ju1]|1 < D(||goll1 + ||u1llo). Therefore, using (|1.2)), (2.3)), (6.3),

and s, > o, we get
luslls < D(B*E+ Vap=7) < Veu'e.
Suppose that for 0 <1 < s and s > 2 we have
lualls < VEWT. (6.4)
Using (3.14)), we have, for s > 2,

Jur]ls < D(llgolls + S A+ lelivan)uall)-
1<s—1, (i,))EA,

2, @3). @), @3). @10, and s, > o imply
||go|| < BIGO)lls < BIG(0)]s < %€ < fER*~",
which by (6.3]) and gives

fealls < D(ﬂg,ﬁ T+ Z (1+ |<P|i+4,r)\[gﬂl_a)
1<s—1, (i,))EAs

< D(EEp=" + s2(1+ [lipar)n™ Vap =),

which by (4.3) and ( -i shows that ||u1\| < \[Ms o,
Forn>2 -, (4.2), (4.5)), and ( n 1 imply

Junllo < Dllgn-1llo < DZasp,”y < Vau,%;. (6.5)
In the same way; (5.13), (2), @3), (E19),_: and (63) give
unlly < VERLZS

Suppose that, for 0 <1 < s and s > 2, ||u,|l; < \f,u 1- By (3.14)), we have

[unlls < D(llgn-1lls + Z (1+|<P+gan—1|i+4ﬁ)”unul)'
1<s—1, (i,l)EA,

But, , , n—17 and 4 + n, < o — 7 imply that, for 0 <i < s— 2,
| @r—1lia,r < BlBn-1llasn.+i < B2ty [|Tn—1llarn. < 26°VERE_).
Therefore, using n71, we get
unlls < D(Fagus ™5 + > (1 + [¢ls, 42.r +26°Vap, )V, %)
< D(Bagps 7 + 207528057 + (1 + |@ls. 12,752 Vep~ %),
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-
n—1

which combined with (4.4) and (&.5) gives ||u,|s < VEu
(b) (4.15)n: (4.6) shows that w, =3 7, u;. By (4.14);, 1

j=1

n
lwnlls < lluglls < VER7 +

< j < n, we have

n n—1
Z\[guj:ff < Ve + Z\@uj_”
Jj=2 j=1

For s < o — 7, since pu > 21/7 > 9. we have /VLTCr <nu

;7 < 5 and
n—1 n—1 1
lwalle <Y VERT7 < VEY 5 <2VE
j=0 j=0
For s > 0 — 7, we have

wnlls < VL7 + VEE

n(s—o) _ ,us—a
USTT — 1 :
Since p > 21/7 it follows that u*~? > u™ > 2. Therefore, ||w,|s < VEus .
(c) (4.16)),: Combining (2.1)), (2.4), (4.5)), (4.15), and 4 4+ n. < o — 7, we obtain

|Wnla,r < Blwnllatn, < ﬁ2||wn||4+n* < 252\/?§ L
(d) (#I7)n): In the case s < o — 7, using (2.6) and (£.15),, we obtain

lwn — @lls < B T Jwn g rpn < Bugy TITIVERTTIT T < gVEpS
In the case s > o — 7, (2.6) (4.15),) and 8 > 1 give
lwn — Walls < Bllwalls < ﬂ\[g/iqsz_g
(e) (A.18),: By (4.12), we have

1
When n =1, (1) = 0. In the case n > 2, since

(1)/01;1

[LG({En—l + t(wn—l - wn—l))un]dt
by (2.1) and (4.17)),,—1, we get

Tn = [LG(wn—l) - LG(an—l)}un — Op—1Duy + Qn
<~

(2) (3)

Wit — Wn—1]2 < Bllwn—1 — Wn—1]l24n. < 26*VEELT 7.
But 262VZ <1 and 3+ n, < 44 2n, < 0, 50, |wy_1 — Wp_1]> < 1. In the same
way, (2.1), (4.5) and (4.14),, give

lunl2 < Bllunll24n. < B‘fgﬂitq*_a <1
By (4.16),,—1, we also have |w,_1]2 < 1. Hence, we can apply Proposition to
get

[(Wls <eKoflllells+2 + [wn-1lls+2 + [lwn—1ls+2 + wn—1 — Wn—1]2[unl2
+ (lell2+n. + lwWn-1ll24n, + [lwn-1ll24n. +1)
X (Jwp—1 — 'ﬁn71|2uun”s+2 + |lwn—1 — @n71”s+2|un|2)}~
Using and , we get for 0 < s < s,

plls2 < Blols.+2 < Bu < 4.
By (2.2)), it suffices to prove (4.18),, for s =0 and s = s, — 2.
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Case s = 0: combining (2.1), (4.14),,, (4.15)),,—1 and ({£.17)),,—1, we have
I(Wllo < ERof(4* +28VE +2VE + 1)26%8p, T3 %
+ (1?4 28VE 4 2VE + 1)4p%ep k20
which using and 0 > 4+ 2n, > 4+ n, gives ||(1)]jo < EKop, 7.
Case s = s, — 2: (4.5) and s, > o + 7, as in the previous case, imply

1(1)
By (2.2), we obtain for 0 < s < s, — 2,

(Dl < BeEK o7

Sy—2—0
n—1

Sx—2 < gKO:U'

Next,
12)ls < On—1llunllst2-
If n = 1 combining (4.5)), (4.9) and (4.14)),,, we obtain
12)ls < 1G(O)olluallsg2 < EVELT2T7 < Epse.
In the case n > 2: (4.14),, and (4.20),,—1 imply
12)]ls < asépy 2 p5t77 = aseps, 5.
Finally, since by (4.13)),
(3) = Qn = G(’U}n,1 + un) - G(wnfl) - LG(w’rLfl)un

1 t d
- /O ( /0 Lo + hun)un)dh)de.

Then, using (2.1)), (4.5) and (4.15)),—1, we obtain
lwn—1lo < Bllwn1ll2+n, <28VE <1
Since we proved that |u,|s < 1, we can apply proposition to have
I3)ls < EKo[(llellst2 + lunllst2 + wn—1llst2 + 1lual3
+ 2[unl2llunlls+2([ll24n. + lunllz4n. + [lwn-1ll24n. + 1))

Combining (2.1), (4.14),, and (4.15)),—1, we get
For s = 0:

13)llo
< EKo{ (1 + VEmax(p, pin—1)]* 7 + 2VE + 1) BEmax(p, pin 1) 727
+8(” + VEBmax(p, 1)) + 2VE + D)EBmax(u, )],
which combined with and o > 4 + 2n, gives
130 < eRo[max(p, pin—1)] 7
For s = s, — 2; since ¢ > 4 + 2n,, we also get
[B)ls.—2 < EKo[max (s, in—1)]
Then shows that, for 0 < s < s, — 2,
IB)]ls < BeKo[max(p, pn—1)]""7,

Sx—2—0

and we conclude that

||Tn||s S (QBKO + G/S)g[max(luﬂﬂnfl)]s_o
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< 9Kop Elmax(p, fin—1)]* "7
= ar€[max(p, tin—1)""7.
(f) @19),.): By (E10) and (L),
In = Snfanfl - San + (Snfl - Sn)G(O)
= (Snfanfl - Sanfl) - Sn'rn + (Snfl - Sn)G(O)
(4) (5) (6)
Case s =0: (2.6), (4.11) and (4.18);, j <n —1, imply
1(4)lo < (7 = Sut) Ruillo + (T = Su) Rt o
< /3||Rn71||s*72;“n o+ B[R

Se—2
< (BarEpi— + Barpl ) (p™ 2" "+Zus* 7).

Since s, —2 > ¢ and 3 < u, then
I(Dllo < Bar&(py =T + pi* 277 < 2a1p°p,
On the other hand, combining (2.4 , -n, 0 < s, —2 and # < u, we obtain
15)llo < Blirallo < BarElmax(p, pn-1)]"7 < arp®Epy,”
We also have by , , . and o < s, — 2,
16)llo < [(T = Sn-1)G(0)]lo + [[(I = 5n)G(0)l[o
< Bun 211G (0)lo + Bry, 7 |G(0) o
< BPpn 21 |G0)]s, + B2, 7 |G(0)]s,
< B8, (07 4+ 1) < 2% Ep,”

We finally get
lgnllo < (2 + 3ar)p*ep,”

Case s = s,: (2.5)), (4.11)), (4.18 -J, 1<j<n,and o < s, — 2 show that

1(4) + (5)]]s.

S ||Sn—1Rn—1 Sk

< /BI‘I/’IQ’LleRn71| s.—2 T ﬁﬂiHRan*fQ
n—1

< Bpk e @t T Y P TO) 4 ButanE(pt T + Zus*_2 %)
Jj=2 j=2

< Bar&(pn i 277+ po

< 2Barepy % < 2uaiEpy 7.
Next, by (1.2 -, -, -, and 3 < u, we have
16)1ls. < 152G (O)|s, + [1Sn-1G(O)][s
< Buy~NIG(O)]o + Bry "IIG( Mo
< 232%Eus T < 2utEus O,

Sx—2— 0)

Therefore,

llgnlls. <2u(ar + p)eu, 7.
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We can finally conclude using (4.4) and p < aq, that
lgnlls. < 4a1p® Sy 7 < anEpy
(2) (£20), : By (E3), we have
O = |G(Wn)|o < |G(wn) — G(wn)|o + |G (wn)lo
Using :
Glwp)={U = Sp—1)Rp—1+ (I —5,-1)G(0) + rp.
Then
On < |G(wn) — G(wn)]o + [(I = Sp—1)Rn—1lo + [({ = Sn—1)G(0)|o + [rn]o-
—~—
(7) (8) (9) (10)
Since we proved that |w,|o < 1 and |@,|s < 1, we can apply Proposition [6.1] to get

(7) < ﬁKonn - @n\\2+n*(||<ﬁ||2+n* + llwnll24n. + [@nll24n. +1).
Equations , n, n, and 34+ n, <4+ 2n, —7 <o — 7 imply
(7) < 282 KoVEpu2t™ 7 (u® + 2V + 268VE + 1).
Since € < W,,@Suand4+n*70§4+2m — o0 <0 then
(7) < 4P KoVep,”.

In the case n = 1, (8) = 0. For n > 2, since § < p, ny — o < —2 and pta; Ve <
aaVz < 1, combining (2.1), (2-6), (&11), and (&18);, j <n — 1, we obtain

(8) S 6“(1_ Sn—l) n—lHn*
</32,un* 9*+2 s* —2— U+Z“s*_2 a

< [3? arepy 7 < \fu
Equations , , , , , and 0 < p imply
(9) < B = Sue)GO) . < B2 |GLO)] .
< Bup?iE < BPuten,? < Veu, .
Finally, by (2.1) and ( -n,

(10) < Bljrz|

—0

n. < Parglmax(p, pp—1)]"
< parEmax(p, pn—1)] "% < VEp, >
Thus, we conclude that
0, < 7Kou5\/g~u;2 = 043\/?#;2 <1
(h) (4.21)): We have

F
An(2) < max (1192 (o + )]s, mas | G (P 8Bl + 0n).

Using (2.9), (4.1), (4.16)),, and (4.20),,, we get An ) < M. 0
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7. APPENDIX 2

In the rest of this paper, we prove estimates - for L,. We shall need
the following result.

Propositon 7.1. The operator

n

P=Y 0.0

ig=1 O
where u € C3(Q), is formally self-adjoint.
Proof. Let ¥ = {z € Q/F(u.,z)(2) = 0}. Since
PSS ) - S0
2iZ5 ij=1 zlzj

it is sufficient to prove that for j = 1,...,n and z € Q,

Aj(z> Zazl 8uzz “%Z)(Z))

= Z (uzq',T)uzqzsz(z) =0.
i 18uz zJ@uszq ’
Using the relation (2.10]), we get A;(z) = 0 for any z ¢ X. The continuity of the
determinant function allow as to have the conclusion when z € X. O

2n
7.1. Estimates in the elliptic Zone of L. Let Q = ) 0 D;,D,, +b be a
i,j=1
degenerate elliptic operator with real coefficients b, b = bt e C7(Q). Assume
that there is a continuous function A\(x) > 0 defined in € such that

2n

> bEE = M)l

ij=1
Let S be a subset of Q satisfying {x € Q: A\(z) =0} C S.
Lemma 7.2. Assume that Q is uniformly elliptic in Q; that is A(x) > Ao, Ao is
a positive constant Then for any integer 1 < s < s, there exists a constant C!,

depending only on s, \g and A(0) such that for any real function u € C*7(2) N
Hy(Q),
[ully < C1(I1Qullo + A(2)[ullo), (7.1)
Julls < CL(1Qulls—1 + > A+ uly), s> 2. (7.2)
i<s—2,i4+75<s—1

It is not difficult to prove (7.1)). In fact, we need only to apply well-known stan-
dard techniques to the linear elliptic operator ) and to calculate several constants
precisely. By induction with respect to s and patient calculation, ([7.2)) follows from

(7.1).
For § > 0, we define the set S5 by

Ss = {r € Q,d(x,S) < d}.
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Lemma 7.3. Assume that S is a compact C submanifold of Q and Q\S is con-
nected. Then there exists a function p € L>(Q) and a constant C > 0 such that
p=0o0onS, mg= infﬁ\s(; 1> 0 for any sufficiently small § and

1 i
/ pid < C{||Qulollullo + 5 suplb] — 20]lull3}, (7.3)
Q

foruw e C*7(Q) N HL(Q).

Proof. Standard techniques of elliptic operators give
2 1 Z]
MDudz < C{|Qulollullo + 5 suplbid — 26 ul3).

Hence, it suffices to show that [ pu?dx < [A|Du|?dz. First, let us fix a point
pE Qi\S arbitrarily.

By virtue of the fundamental theorem of ordinary differential equations, we can
construct a family of curves c(t, z) € C*°([0, Tp] xU,) such that ¢(0, z) = z, c(t,z) ¢
S for 0 <t < T, when x € Q\S, c(Tp,z) & Q, |é(t,z)] = 1, SUPgey, To < 00, and
c(t,.) is a local C*° diffeomorphism defined in U, for any fixed ¢.

Here, T}, is a positive constant, U, is a sufficiently small open neighborhood of
p, and, 7, = inf{t > 0: c(t,z) ¢ Q } We define a function p,(x) by

pp(x) = inf{A\(c(t,z)) : 0 <t < 7.}

For u € C1() satisfying u|aQ = 0, since

u(x) = u(e(0,z)) — u(c(re, © / Du(c(t,x)).¢(t, x)dt,
we have
w(x)|? ’ u(e(t, )| dt.
@) < C [ IDutett.a)) P

Multiplying this inequality by 1, and using its definition, we obtain

pp (@) u(@)]* < C/OTI Ae(t, z))| Du(c(t, ) *dt,

/ pplul? §C/ A Dul?dt.
U Q

p

which implies

Secondly, we note that the above argument ensures the existence of a finite number
of points py,...,pn such that Q\S C Uij\élUPi and

/ pp: |ul? < C'/ A Dul?dt.
U, Q

Pj

Therefore, we have only to define u by

(2) min{py, (z) 1z € Up,,1 <i<n}, ifzeQ\S,
1) =
a 0, if x € S.
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Lemma 7.4. For u € C}(Q),
D10k, Qlullf < CAR)Qullrllully + A2)* ull?), (7.4)
k

D 0k, QUullz < CAR)IQull s llullsr + D Al +2)[|ul) s> 1. (7.5)

k (4,5) €Ns+1
Proof. [11], Lemma 1.7.1] shows that
(b?uij)Q S CA(Q)bijuliulj,

which implies

S 0w, QUul < €3 [ (B usy + (bu?)
k k

< CA(2) Z/b”’uuuu + CA1)? ||l
k
Integrating by parts

/buu”ulj = —((Qu)y, ) + ([0, Qlu, ug) + %((bg — 2b)uy, up),

which implies
/b”uziwj < C(1Qullllully + > NIk, Qullollull + A)ul})-
k

From these inequalities, and using the inequality a8 < sa? + éﬁQ it follows that

D0k, Qlullf < CAR)Qullsrallullssr + A2)*|lullF).
k

For s > 1, (6.5) is proved by recursion on s using (6.4]). a

Lemma 7.5. Let x € C'* satisfy supp Vx C Q. For any integer 0 < s < s,, there
exists a constant Cs > 0 such that for all u € C*=7 (),

1D Qlull? < Cs(ARNQullsllulls + D Al +2)%|lul)3). (7.6)
(i.d)€A.

Proof. Let us consider a cut-off function ¥ € C§°(Q) satisfying 0 < ¥ < 1 and
X = 1 on U;supp &;x, and define an operator Q = b D,, D, +b by Q@ = XQ. Since

[x; Qlu = [x, Qu and [|Qulls < C||Qul|s, it will suffice to prove (7.6) for Q.
For s = 0: The corollary to Lemma 1.7.1 in [I1] shows that

(ZgijUj)z S 2A(0),5”UZ'U/J
(2%
which gives
I QJully < €A©) [ Fousus + CAOulf,
Integrating by parts we have

~ ~ 1~ o~ ~
/b”uiuj = —(Qu,u) + (b — 2b)u, u) < [|Qullollullo + CAR)|ull5,

which implies ([7.6)o.
Note that (7.6)s>1 follows from (7.6))¢ by induction with respect to s O
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7.2. Estimates near the degenerate points of L. For ¢t >ty > 1, we define
1
V:(0) = {x € Q, |z,| < E} N B(0,41).

Propositon 7.6. For any integer 0 < s < s, and any function v € C5*" (V;(0)),
there exists a constant CI) = CY(n,Q, ¢, 01) > 0 such that

lullo < Cot~* || Lyullo, (7.7)
lulls < CYTH (ILpulls + D AG+2)ully), s>1, (7.8)
(1,5)€As

where 81 is as in Lemmal3. 1]

Proof. Let v = (T — e!*)~ 1y, and T > 5e a constant. A direct computation gives

Qu = (T — e"™)Qu — te!™ {2b™v; + th""v},

/(T e ) Quw = ~T1 + 1T — 11T — 1V,

y 1 y
I= /ijivj, II = 5/{@? —2b}0?,

III:t2/etx"b"”(T—etI")7lv2, IV:Qt/em”(T—em")flvb”jvj.

where

Using the Cauchy-Schwartz inequality, we get
[IV| < /bijvivj + 4t2/62t”’“ (T — et*n) =22,
Since
eta:n (T _ eta:n)—l o 462txn (T o emn)—2 _ eta;n (T _ eta;n)—2(T o 56”0"),
it follows that
t2/62tmn(T _ €m")74(T— 5etmn)bnnu2 < —/(T _ tmn) 2Qu w—1TII.
Also

e t<e™ <e, (T—e ) '<(T—e") < (T—e)™Y

therefore,

Cot? Jnf (b"”)IIUIlo < c{llQullollullo + *Slzp (b7 — 2b]ull3 }- (7.9)

To prove , we apply (7.8). So, for u € C5*7(V;(0)), we can write

t{tCy inf (b"™) —
{ 0&30)( )

C oy
5 sup (b5 = 26l |5 < ClQullollulo,
Vi(0)

with @ = L, and b"" = (" +4(6 +v)). If |w|s, < 1, 2] < and € < &1, we

have
n—1

" > [[oi — Moy — Mey = a > 0.
i=1
Taking t > tg = max(M 1), (7.7)) is proved. To prove , we use .
and recursion on s. We now estimate || XU||S~
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Propositon 7.7. For any cut-off function x € C§°(V,(0)), u € C*=7(Q) N Hy ()
and 1 < s < s,,

Ixulls < 2CY (| Lyulls + Il Lolulls + D~ (I + ewlivar + flull). (7.10)
J<s, (i.5) €A

Proof. Let us consider a cut-off function x € C§°(V;(0)). For u € C*=™ N H}(Q),
since supp x C V;(0), we have by (7.9) for any 1 < s < s,,

Ixulls < CL (I Loulls + D6 Lolulls + D AGi+2)|lully)
j<s, EA)EN.
+ O AR) Ixulls

We have A(2) < My. We fix t > to such that for 1 < s <s,, C/t71A(2) < 1. On
the other hand,

. dg oF
A(i + 2) = max (1, |%(go +ew)|it2, 1%2,?;71'%(@’“7 + ewy)|ipe +6).

But, for k € {0,1,2}, [0%¢ + c0%w|o < |p|2 + 1, then by ([2.9), since § < 1, we get,
for 0 <i<s, —2,

A(i+2) < C(@) (o + ewlita,r +1). (7.11)
and we deduce ([7.10)). O

7.3. Proof of the estimates (3.12)—(3.14)) for L,. . Since [Julls < ||(1 —x)u|ls +
[lxulls, it will suffice to estimate ||(1 — x)ul|s and ||xu/|s.

Proof of . Since x = 1 in a neighborhood of zero in V, then, there exists
0 > 0 such that Supp(1 — x) C Q\B(0,0).

Let us consider the cut-off functions: ¥, y € Ce(Q\S), 0 < ¥,¥ < 1 and such
that ¥ = 1 on suppd;x and ):( = 1 on supp). Let p be the function given by

Lemma (ms depends only on ¢, Q,n).
By (7.3), there exists Cy = Co (¢, 2, n) > 0 such that

1
lG-wuli= [ wde< o [ ids < Coulol Loulo + Blul),

Q\B(0,5) ms
where B = %sup[bg — 2b]. By proposition > i bg = 0, and the hypothesis
(A2) imply that —2b < p. So, B < ¢ and we have

11 = x)ulls < Crllullol|Luullo + ellull3)-
Since Supp§ C Q\{0}, we also have by the same way,

Ixullg < Cr(llullol|Luullo + ellullf).
On the other hand, by (7.8]),
Ixulls < Caoll Luxully < Co(llLoulls + 1l[x; LuJull3),

but %Ly%u =XxL,u and [x, L,Ju = [X,)ZLV]‘X;U. Since A(2) < My and v < 1, using
Lemma [7.5] we get

1D LoJullg = llix, XLoIxullg < C[IXLy XullolXullo + (Mo + 1) [ Xullg]
< C'(ILvullolixullo + [Ixul3).
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Combining these inequalities with the fact that ¢ << 1, and using the inequality
af <ea? + 562, we get (3.12)) O

Proof of (3.13). We have supp(1 — x) C Q\B(0,5). Or ¢ is strictly plurisubhar-
monic on F = supp(l — x), then for £ < g4 small enough, L is uniformly elliptic on
E. Using ([7.1) and the estimation A(2) < My, we have

(1 =x)ullr < CL([Luullo + (Mo + D|ullo + || [x; Lo ]ullo)-
Applying Lemma[7.5] we get
D Lulullo < Co(l[Lvullo + (Mo + 1)|ullo),

therefore,
11 = x)ully < Cr(Mo) (|| Lvullo + [lullo)-
On the other hand, since A(2) < My, we get using ([7.10)),

Ixull < CL(Mo)([| Loully + l[[x; LuJully + [luflo) -

But YL,yu = YL,u and [x, Ly]u = [X7)ZLV]§U, so, since A(2) < My, Lemma [7.5
gives

1D LoJully < CL(lIXLoXullr + (1 + Mo)|[Xull1)
< Ci([[Lyully + (1 + Mo)|[Xull)-
Since L, is uniformly elliptic on suppf{ and A(2) < My, then we have by (7.1)),
IXullr < Ci(l[Lvullo + (Mo + Dlullo + | [X LuJullo),
which using (|7.6]) gives
Ixull < C1(Mo) (I Ly ully + [lullo)-
Combining these inequalities, we get (3.13)). |

The proof of (3.14]) is identical to that of (3.13)) using the inequalities (7.1]), (7.2),
[75), and (710).
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