
Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2009-13

Automatic test case generation for web service processes using a SAT solver

Karthikeyann Radhakrishnan
 Rodion Podorozhny

2009-02-16

Automatic test case generation for web service processes using a SAT solver

Karthikeyann Radhakrishnan Rodion Podorozhny
Texas State University – San Marcos

Department of Computer Science
{rp31, kr1215}@txstate.edu

Abstract

 Such useful properties of web services as access from
any platform, great interoperability with other web
services, ability to combine several web services into a
larger application relatively quickly have made them an
important category of software systems. One of the
techniques used to increase the quality of software is
testing. The adequacy of test cases and possible
automation of the testing process greatly influence the
quality of the produced software and timeliness of the
software development process. Even though a great deal
of work has been done in adapting test case generation
techniques to the peculiarities of web services (e.g.
[11][12][13]) we believe our work makes a useful
contribution in this area.

This paper proposes a novel approach to generate test
cases based on the process definition model of a web
service. A process definition model defines a sequence of
activities that can be performed by orchestrating the
capabilities of a web service. A SAT solver (such as Alloy
[10]) is used to extract the paths from the process
definition model. These paths are used to generate test
case specifications that will test all web service
capabilities involved in a process.
In our opinion the main contribution of the work is an
application of a static analysis method for generation of
test cases for a web service guided by a goodness metric
of process coverage.

1. Introduction

A great deal of attention has been paid to development
and analysis of web services as they gain widespread use.
Some of the reasons for web services popularity include
their ability to provide access to widely distributed
computational capabilities from any platform and provide
fast and reliable integration of software systems not
originally intended to interoperate with one another as
compared to creation of a dedicated system of the same
purpose.

Some of the high level goals of software engineering

include invention of methods for software analysis that
increase the software system’s quality and increase the

productivity of a software development process. Web
services differ from traditional standalone software
systems. Thus, a direct reapplication of analysis methods
to web services is not always reasonable. At the same
time there is still a great need in development of new web
services and ways to integrate the existing ones. Thus, we
need to find more cost effective methods for web service
design and analysis that deliver highly reliable solutions.

One of the major stages of a software development is
verification and validation. The automation of this step
can bring multiple benefits: it is possible to reduce the
amount of time for this stage and reduce the effect of
human error. In particular, one of common software
analysis methods is testing. Automation of test case
generation can ensure adequacy of test case suits. The
automation of this stage can be made possible due to
systematic methods of test case generation and
application. It is such a novel method that is suggested in
this work.

2. Motivation

One of the common applications of web services that
has a very strong influence on our society lies in the e-
commerce problem domain. We would like to illustrate
the suggested method on the motivating example of
buying a book from an online provider such as
amazon.com borrowed from [1][2]. The book buying
process using web services based on the amazon.com site
is illustrated in Fig. 1.

The figure uses a simple notation to represent the
process. Nodes correspond to process steps and numbered
arcs correspond to functional decomposition. Children of
Choice process steps correspond to alternatives. The
notions of process and process steps are used as in [3][4].
A process step can correspond to an action by a human, a
human assisted with a web service capability or some
(external) software system. Based on these notions, there
are three types of process steps in this model. They are
Choice steps, Sequence steps, and Condition process
steps. Thus, arcs originating from a Choice step
correspond to mutually exclusive outcomes of the Choice
step. Sequence step correspond to sequentially going thru
all the child process steps in a sequence from left to right.
The arcs originating from a Condition step correspond to

mutually exclusive outcomes of this step based on
satisfaction of a condition in the data values in a process.
The data flow in the notation in Figure 1 occurs along

the arcs too. Input flows from a parent step to an
immediate child step and output flows vice versa. Leaf
nodes represent atomic process steps. Atomic process
steps are fundamental units of action in the process
definition that cannot be decomposed any further. Web
service capabilities [5] of the amazon.com book buying
web service are invoked at process steps by going along
various paths in the process definition. A number of
process instances can traverse the same path [3]. A path
can have many process instances going through it because
each process instance can have different data values. The
amazon.com book buying process model shows the
following capabilities of amazon.com book buying web
service: (cf. Figure 1)

1. Search by author: Capable of searching for books by

an author name.
Capability correspond to step: Author Search
Precondition: None
Postcondition:
a. List of books are either found or none are found

Definition of process instances that use this capability:
Set of all process instances that are forced go through the
path that contain Choice step Amazon.com, Choice step
Search, and Atomic step Author Search in that order.

Execution constraints: None

Figure 1: Amazon’s book buying process model [1][2]

2. Search by artist: Capable of searching for CD’s by

artist name
Capability correspond to step: Artist Search
Precondition: None
Postcondition:

a. List of CD’s are either found or none are found
Definition of process instances that use this capability:
Set of all process instances that go through the path
that contain Choice step Amazon.com, Choice step
Search, and Atomic step Artist Search in that order.
Execution Constraint: None

3. Add items (books or CD’s) to shopping cart: Capable
of adding items to a user’s shopping cart.
Capability correspond to step: Add
Precondition:
a. The user is signed in.
b. There are sufficient quantities of the item in stock.

Postcondition:
a. The item is added to the cart.
b. The stock counts in amazon.com for the item is

reduced by however many items were added to
the cart.

Definition of process instances that use this capability:
Set of all process instances that go through the path

that contain Choice step Shopping Cart, and Atomic
step Add in that order.
Execution constraints: The Search by Author or Search
by Artist capability must have been invoked at least
once with a result containing non-empty list of items.

4. View shopping cart: Capable of viewing items in the
user’s shopping cart
Capability correspond to step: Look At
Precondition:

a. The user is signed in.
Postcondition:

a. All the items in the shopping cart are displayed
Definition of process instances that use this capability:
Set of all process instances that go through the path
that contain Choice step Amazon.com, Choice step
Shopping Cart, and Atomic step Look At in that order.
Execution Constraints: None

5. Clear shopping cart:: Capable of clearing specific or
all items from the shopping cart
Capability correspond to step: Clear
 Precondition:

a. The user is signed in.
b. The shopping cart is not empty

Postcondition:
a. The items cleared are not in the shopping cart.
b. The stock count of cleared items in amazon.com

is incremented with the number of items that are
cleared from the shopping cart.

Definition of process instances that use this capability:
Set of all process instances that go through the path
that contain Choice step Amazon.com, Choice step
Shopping Cart, and Atomic step Clear in that order.
Execution constraints: The Add items to shopping cart
capability has been invoked at least once before
invoking this capability.

6. Change number of items: Capable of editing items in

the shopping cart.
Capability correspond to step: Change # of items
Precondition:
a. The user is signed in.
b. The shopping cart is not empty

Postcondition:
a. The items cleared are not in the shopping cart.
b. If the count of an item in the cart is increased,

i. There are sufficient quantities of the item in
stock

ii. And, the count of the item in the inventory
decreases by that amount

c. If the count of an item in the cart is decreased,
the count of this item in stock is increased by
that much.

Definition of process instances that use this capability:
Set of all process instances that go through the path
that contain Choice step Amazon.com, Choice step
Shopping Cart, and Atomic step Change # of items in
that order.
Execution constraints: The Add items to shopping cart
capability step has been invoked at least once before
invoking this capability.

7. Shop for books and CD’s (i.e., Search items and

Manage shopping cart): This capability is further
decomposed into capabilities in steps that already
exist. It is a sequence of steps where the first step is a
capability from the capability set {1, 2}, followed by
the Condition step If, followed by a step having a
capability from the capability set {3, 4, 5}. A
capability set is a set containing some or all
capabilities 1 to 6 mentioned above.
Capability correspond to step: Shop
Precondition:
a. The user is signed in.

Postcondition:
a. The post condition of the process instances after

implementing this capability will be the same as
the capability in the last step that was
implemented in the sequence

Definition of process instances that use this capability:
Set of all process instances that traverse through a
sequence of desired capability steps chosen such that
one capability at a step has been picked from
capability set {1, 2}, followed by the Condition step
If, followed by a step containing another capability
picked from the set {3, 4, 5}.
Execution constraint: For a sequence of capabilities
selected, every invocation of capability 5 at a step is
preceded by a step invoking 3; 3 is preceded by a step
invoking 1 or 2.

3. Use scenarios of motivating example

The execution constraints of a process for a capability
described above allow the process to prescribe paths a
user must take to invoke these capabilities. For example,
the following process definition corresponds to given
execution constraints.

First, a user invokes the Choice Amazon.com. Next,
the process prescribes the execution of Choice Search
which has two alternatives; either by Author Search or
Artist Search. One possible process definition that
satisfies the execution constraints for this capability is
search by author as depicted in Figure 1. Let us say, a
user intends to search for a book by author. The user has
to do a series of steps to perform this search. The actor in
a step is a user who is a human assisted with a web

service capability. First, the user goes to the Amazon.com
website. The user at this step is assisted by a web service
capability Choice Amazon.com. Then, the user chooses to
do a search and reaches a step containing Choice Search
web service capability. At this step, the step prescribes a
list of alternatives to the user to choose. The alternatives
are search by author or search by artist. The user chooses
search by author from the list. The user is directed to a
step containing the capability Atomic Author Search
where he provides the name of the author to search and
executes the search. The user is returned with a non-
empty list of books if there are books associated with the
author or an empty list if no books exist for the given
author.

Since a possibly infinite number of process instances
can go through a single path even a large number of test
cases do not guarantee that various capabilities of a web
service are tested. To achieve a greater confidence in the
assurance level of testing, the test cases should be
selected in a systematic way. There also must be a way to
evaluate the “goodness” of the selected set of test cases.
One possible approach to achieve this for web services is
to select test cases based on the coverage of the process
that orchestrates application of web service capabilities to
accomplish a certain goal. The internal details of web
service are quite often unavailable so direct approach of
coverage criteria to source code is not reasonable. In
addition the sheer size of web service implementations
can make such a direct approach infeasible. Process
definitions for web services are usually rather small
(under 20 activities). Thus application of coverage criteria
to them to derive test cases is feasible. Also, such testing
is beneficial because it can detect critical failures of a web
service.

It even might be feasible to test all paths in the process
definition, but it may not be useful to test all paths
because some paths may be impractical. For example,
generating test cases that try to test the negative outcomes
of a search might be meaningless. If there is no systematic
way to test the paths in the web service process model, a
great number of test cases can hit the same path and never
exercise the capabilities that occur in other paths. For
example, we might have test cases that test clearing the
cart capability or adding to a cart capability. These test
cases might show that both adding to cart and clearing the
cart work as expected when the capabilities are tested
independently. But, we might never have generated a test
case that would try to test a sequence of capability
invocations corresponding to clearing the shopping cart
and adding items into the shopping cart and clearing them
again. In the absence of such a test case, we will not be
able to check the correctness of clearing the cart in
different use scenarios where adding items to the cart in
some other path might affect the way a cart is cleared.

Hence, we need a more systematic way to select test cases
that can be targeted along specific paths to test a set of
functionalities in an organized way. The benefits of
systematically generating test cases are:

1. Higher level of assurance that all the web service
capabilities and the combinations of their invocations
that correspond to typical usage patterns are exercised.

2. Higher level of automation in both creation and
application of test cases.

The higher level of automation is especially useful in
systems that mash-up and/or compose web services
dynamically in response to user queries. Such an
automated test case generation method can be used to
evaluate functional correctness of a web service
composition promptly.

4. Test case generation using SAT solver

The approach for generating test cases to test web
service capability processes is as shown in Figure 2. The
steps of this approach for manually generating test cases
for amazon.com book buying process model is as
explained below. The test cases may then be used in a
keyword-driven based web service testing framework
based applications for book buying web services.

Let us describe an example of application of this
approach for searching a book on Amazon’s book buying
model. A set of test cases is generated using a pair of
execution constraint and a path constraint. Execution
constraints specify the constraints on all process instances
along a path. The path constraint mentions the start and
end process steps along a path. The steps for generating
test cases using a set of execution constraints and path
constraints are as follows:
Step 1: The amazon.com book buying web service
capability process definition is obtained in a well known
specification format like OWL-S or WSMO [5].
Example of a pre-condition for using the process
definition is that the user must be authenticated/ to buy a
book.
Step 2: The following are some execution constraints and
the start and end of paths that we desire to examine:
Execution constraint (EC1): Choice step Search precedes
Atomic step Author Search. Choice step Amazon.com
precedes Choice step Search.
Path constraint (PC1): Start at process step Amazon.com.
End at process step Search book
We will generate test cases using the pair EC1 and PC1.
Step 3: Model the execution constraint EC1 using Alloy
tool.

Step 4: Model the path constraint PC1 as constraints in
Alloy tool
Step 5: With the above constraints, Alloy will generate
solutions within the scope of the constraints where a
solution is a path that satisfies constraints EC1 and PC1.
Step 6: We obtain the test cases from this set of solutions
because a number of test cases can force a process
instance to traverse the same path

In the case of testing a web service process, a test case
is a sequence of interactions between a user and web
service capabilities rather than an input to the first step of
a path. These interactions correspond to a series of
request/response between the user and process instance
steps along the generated paths. For example, a test case
Testcase1 generated for searching a book capability from
a solution for EC1 and PC1 based on Figure 1 might
correspond to a set of request/response between the user
and the web service as below:

1. The user performs a request to access Amazon.com

web service.
2. The process instance step Choice Amazon.com

responds by granting access to the user.
3. The user performs a request to make a search. The

process instance directs the user to step Choice
Search along arc 1.

4. The process instance step Choice Search responds
by prescribing a list of search options.

5. The user performs a request to search by an author.

T

6. he process instance responds by directing the user to
step Atomic Author Search along arc 6.

Figure 2: Test case generation for web service capability process using Alloy SAT solver

7. The user makes a search request by entering a
particular query bookByAuthorQuery1. Assuming
that the website’s database does contain entries that
correspond to that query (i.e. books by the author
whose name was entered), the process instance step
Author Search responds with a result containing a
non-empty list of books published by the author.

In the above interaction, the process steps

Amazon.com, Search, and Author Search along a path is
defined according to PC-EC1 constraint. The query
bookByAuthorQuery1 is a designation given to a set of
entries into the fields of the Author Search webpage. The
user interacts at each process instance step before
reaching the next process instance step in the path. The
interaction proceeds to the next step only if the current
interaction resulted in a successful response. The test
cases can be annotated with the expected results before
using them in a testing application. Below, we have two
more test cases Testcase2 and Testcase3 that test the
manipulation of the shopping cart and their expected
results.

We make the following assumptions:

1. Only one book can be selected and added to the

shopping cart at a time.
2. The books for the authors we are looking for already

exist in Amazon.com stock and will be always found
in the search. We assume the results of the search
queries will contain these 3 books: Book1 with ISBN

1234, Book2 with ISBN 5678 and Book3 with ISBN
8765.

Expected results for Testcase2 and Testcase3:
We expect Book1 with ISBN 1234 and Book3 with

ISBN 8765 to be in the shopping cart after executing
these test cases. This expectation is based on the intended
behavior of the website capabilities.

Testcase2 for checking cart manipulation capabilities
is presented below (cf. Figure 1 for a process definition):

1. The user performs a request to access Amazon.com

web service.
2. The process instance step Choice Amazon.com

responds by granting access to shopping options and
cart manipulation to the user.

3. The user performs a request to start shopping. The
process instance directs the user to step Sequence
Shop along arc 2.

4. The process instance step Sequence Shop responds by
directing the user to step Choice Search along arc 4.

5. The user performs a request to make a search.
6. The process instance step Choice Search responds by

prescribing a list of search options.
7. The user performs a request to search by an author.

The process instance responds by directing the user to
step Atomic Author Search along arc 6.

8. The user makes a search request by querying for
books by an author name (bookByAuthorQuery1).
The process instance step Author Search responds
with a result containing a list of books (Book1,
Book2, Book3) published by the author.

9. The user requests to select a particular book, book1
with ISBN 1234.

10. The process instance step Author Search selects
book1 and the process instance directs the user to
step Choice Shopping Cart.

 [The process instance directs the user by returning to
step Sequence Shop by traversing along arc’s 6 and
4. Then, process instance traverses to step If book
found. Since, the user found a book, process instance
traverses to step Choice Shopping Cart along arc 9.]

11. The process instance step Choice Shopping Cart
responds by prescribing a list of options to
manipulate the shopping cart.

12. The user requests to add book1 with ISBN 1234 to
shopping cart.

13. The process instance step Choice Shopping Cart
responds by directing the user to step Atomic Add
along arc 11.

14. The user submits a request to add book1 to shopping
cart.

15. The process instance step Atomic Add responds by
adding book1 to the shopping cart. The process

instance returns to step Choice Amazon.com by
traversing along arc’s 11 and 3.

Steps 1 thru 14 are repeated to add another book , book3
with ISBN 8765, to the shopping cart. A different query
is used this time, bookByAuthorQuery3. We can add a
few more interactions to this test case to lookup the
shopping cart.

16. The user requests to manipulate the shopping cart.

(Note that at this point, the user is at process instance
step Choice Amazon.com). The process instance step
Choice Amazon.com directs the user to step Choice
Shopping Cart along arc 3.

17. The process instance step Choice Shopping Cart
responds by prescribing a list of options to
manipulate shopping cart.

18. The user requests to look at the shopping cart. The
process instance step Choice Shopping Cart directs
the user to process step Atomic Look at along arc 10.

19. The process step Atomic Look at responds by
showing the list of books in the shopping cart.

We expect to see book1 with ISBN 1234 and book3 with
ISBN 8765 in the shopping cart as expected result for this
test case.

Similarly, we can get the same expected result by a
different sequence of manipulations of the shopping cart
using another test case, Testcase3:

Include steps 1 to 15 from Testcase2 (we do not repeat
them here for space concerns). Repeat steps 1 to 15 three
times to add Book1 with ISBN 1234, Book2 with ISBN
5678 and Book3 with 8765 to the shopping cart using the
corresponding search queries for different authors (named
bookByAuthorQuery1, bookByAuthorQuery2,
bookByAuthorQuery3). Include these steps:

16. The user requests to manipulate the shopping cart.

(Note that at this point, the user is at process
instance step Choice Amazon.com). The process
instance step Choice Amazon.com directs the user to
step Choice Shopping Cart along arc 3.

17. The process instance step Choice Shopping Cart
responds by prescribing a list of options to
manipulate shopping cart.

18. The user requests to clear items in the shopping
cart. The process instance step Choice Shopping
Cart directs the user to process step Atomic Clear
along arc 12.

19. The process step Atomic Clear responds by
showing the list of books in the shopping cart.

20. The user requests to clear Book2 with ISBN 5678
from the cart. The process instance step Atomic

Clear responds by clearing Book2 from the
shopping cart and return to the process step Choice
Shopping Cart along arc 12.

21. The process instance step Choice Shopping Cart
responds by prescribing a list of options to
manipulate shopping cart.

22. The user requests to look at the shopping cart. The
process instance step Choice Shopping Cart directs
the user to process step Atomic Look at along arc
10.

23. The process step Atomic Look at responds by
showing the list of books in the shopping cart.

We expect to see book1 with ISBN 1234 and book3 with
ISBN 8765 in the shopping cart as expected result for this
test case which is the same as the expected result of
Testcase2.

5. Related work

While previously there have been attempts to generate
test cases for webservices automatically [7][8][9], to our
knowledge it is the first approach that suggests the use of
a SAT solver. In [7], Tsai et. al proposes test case
generation based on web service specifications only,
while their focus has been in establishing trustworthiness
of webservices using Boolean expression analysis. Hanna
& Munro in [8] generate test cases based on XML schema
data types found in input data parameters in WSDL
specifications of webservices. They do this by performing
boundary value analysis on the data ranges of data types
in WSDL specifications. In [9], Deutsch et al claim to
show the effectiveness of verifying properties like
soundness of specifications (like what web page should
be displayed next) and semantic properties (like payment
cannot be made when cart is empty) of data-driven web
applications in general by combining model checking and
database optimization techniques.

From a review of a number of approaches to the
problem of webservice verification ([2][7][8][9]) it is
possible to summarize that these approaches range from
static analysis techniques such as model checking to
automatic generation of test cases either based on
specification or webservice definition. The goodness
metrics usually fall into categories of coverage of
behavior or coverage of specification. The technical
feasibility of the reviewed static analysis methods is
achieved by bounding the sets of values assigned to
variables of the corresponding webservices definitions.
The feasibility of the dynamic analysis methods is
achieved by using constraints on input values as
described in the requirements. Quite often constraints are
derived from boundary value analysis.

6. Conclusion

Thus, we have illustrated an example of generating test
cases according to the suggested method. The paths for
the test cases to traverse can be determined automatically
by a SAT-solver such as Alloy. A coverage metric can be
calculated to show the “goodness” of the set of paths.
Initially, the test cases can be generated manually in a
systematic manner based on these paths. One of the future
work directions can focus on automated techniques such
as symbolic execution so that to generate test cases
automatically (based on the paths). Even without
automatic generation of test cases based on a path, this
approach is beneficial because it delivers paths satisfying
a certain coverage criterion. The benefit of automation,
even at the stage of path generation, is likely to reduce
testing time and make this approach useful for testing
webservice compositions. Furthermore, we suggest
combining this approach with an existing automatic
webservice testing framework. This framework generates
test cases based on the key word approach [16] that is not
guided by a coverage metric. A prototype of this
framework was developed during summer 2008
internship at Akamai Technologies.

The main contribution of the work compared to the
related approaches described in the related work is an
application of a static analysis method for generation of
test cases for a webservice guided by a goodness metric
of process coverage. We believe this work is the first
application of such a test case generation approach to
webservices even though similar approaches have been
used for other kinds of software systems [14][15].

7. References

[1] DAML Services:
 http://www.daml.org/services/swsl/straw-
proposals/OWL-S-Straw-Amazon.ppt .
Retrieved: November 25, 2008.

[2] Ankolekar, A., Paolucci, M., Sycara, K. (2004).
Spinning the OWL-S Process Model: Toward
the Verification of the OWL-S Process Models.
In Proc. of ISWC 2004 Workshop on Semantic
Web Services: Preparing to Meet the World of
BusinessApplications, 2004.
 http://www.ai.sri.com/SWS2004/final-
versions/SWS2004-Ankolekar-Final.pdf .
Retrieved: November 25, 2008.

[3] L. Osterweil. (1987). Software Processes are
Software Too. ICSE.

[4] Cass, Aaron G., Lerner, Barbara S., McCall, Eric
K., Osterweil, Leon J., Sutton, Stanley M., Wise,
Alexander. (2000). Little-JIL/Juliette: A process
definition language and interpreter. ICSE.

http://www.daml.org/services/swsl/straw-proposals/OWL-S-Straw-Amazon.ppt
http://www.daml.org/services/swsl/straw-proposals/OWL-S-Straw-Amazon.ppt
http://www.ai.sri.com/SWS2004/final-versions/SWS2004-Ankolekar-Final.pdf
http://www.ai.sri.com/SWS2004/final-versions/SWS2004-Ankolekar-Final.pdf

[5] Dumitru Roman et. al. (2005). Web Service
Modeling Ontology. Applied Ontology archive,
Volume 1 , Issue 1, pp 77-106.

[6] The ASTOOT approach to testing object-
oriented programs, 1994.

[7] Tsai, Wei-Tek., Chen, Yinong., Paul, R. (2005).
Specification-based verification and validation
of Web services and service-oriented operating
systems. International Workshop on Object-
Oriented Real-Time Dependable Systems. pp.
139- 147.

[8] Hanna, S., Munro, M. (2007). An approach for
specification-based test case generation for Web
Services. International conference on Computer
Systems and Applications. pp. 16-23.

[9] Deutsch, Alin., Marcus, Monica., Sui, Liying.,
Vianu, Victor., Zhou, Dayou. (2005). A verifier
for interactive, data-driven web applications.
International Conference on Management of
Data. pp539-550.

[10] Alloy Analyzer: http://alloy.mit.edu/community/
Retrieved: February 2nd 2009.

[11] Tsai, W.T., Wei, Y. Chen., Xiao, B., Paul, R.
2005. Developing and assuring trustworthy web
services. International Symposium on

Autonomous Decentralized Systems, 2005. pp
43-50.

[12] Tsai, W.T., Wei, Y. Chen., Paul, R., Xiao, B.
2005. Swiss Cheese Test Case Generation for
Web Services Testing. IEICE - Transactions on
Information and Systems. pp 2691 – 2698.

[13] Tsai, W.T., Yu, L., Zhu, F., Paul, R. 2003. Rapid
Verification of Embedded Systems Using
Patterns. COMPSAC. pp 466 – 471

[14] Cyrille Artho et al., 2005. Combining test case
generation with runtime verification. The
Journal of Theoretical Computer Science 336
(2005) pp. 209-234

[15] Sarfraz Khurshid and Darko Marinov, 2004.
TestEra: Specification-based Testing of Java
programs using SAT. The Journal of Automated
Software Engineering, vol. 11, issue 4 (October
2004) pp. 403-434

[16] Nagle, Carl. Software Automation Framework
Support:
http://safsdev.sourceforge.net/FRAMESDataDri
venTestAutomationFrameworks.htm
Retrieved: February 13th 2009.

http://alloy.mit.edu/community/
http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm
http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm

