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EXISTENCE AND UNIQUENESS OF STRONG SOLUTIONS TO
NONLINEAR NONLOCAL FUNCTIONAL DIFFERENTIAL

EQUATIONS

SHRUTI AGARWAL & DHIRENDRA BAHUGUNA

Abstract. In the present work we consider a nonlinear nonlocal functional

differential equations in a real reflexive Banach space. We apply the method
of lines to establish the existence and uniqueness of a strong solution. We
consider also some applications of the abstract results.

1. Introduction

Consider the following nonlocal nonlinear functional differential equation in a
real reflexive Banach space X,

u′(t) +Au(t) = f(t, u(t), u(b1(t)), u(b2(t)), . . . , u(bm(t))), t ∈ (0, T ],

h(u) = φ0, on [−τ, 0],
(1.1)

where 0 < T < ∞, φ0 ∈ C0 := C([−τ, 0];X), the nonlinear operator A is single-
valued and m-accretive defined from the domain D(A) ⊂ X into X, the nonlinear
map f is defined from [0, T ]×Xm+1 into X and the map h is defined from CT :=
C([−τ, T ];X) into CT . Here Ct := C([−τ, t];X) for t ∈ [0, T ] is the Banach space of
all continuous functions from [−τ, t] into X endowed with the supremum norm

‖φ‖t := sup
−τ≤η≤t

‖φ(η)‖, φ ∈ Ct,

where ‖.‖ is the norm in X. The existence and uniqueness results for (1.1) may
also be applied to the particular case, namely, the retarded functional differential
equation,

u′(t) +Au(t) = f(t, u(t), u(t− τ1), u(t− τ2), . . . , u(t− τm)), t ∈ (0, T ],

u = φ0, on [−τ, 0],
(1.2)

where τi ≥ 0, and τ = max {τ1, τ2, . . . , τm}.
The study of the nonlocal functional differential equation of the type (1.1) is mo-

tivated by the paper of Byszewski and Akca [6]. In [6] the authors have considered
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the nonlocal Cauchy problem,

u′(t) +Au(t) = f(t, u(t), u(a1(t)), u(a2(t)), . . . , u(am(t))), t ∈ (0, T ],

u(0) + g(u) = u0,
(1.3)

where −A is the generator of a compact semigroup in X, g : C([0, T ];X) into X,
u0 ∈ X and ai : [0, T ] → [0, T ]. Although, in this case we may take h(u)(t) ≡
u(0) + g(u) on [−τ, T ], φ0(t) ≡ u0 on [−τ, 0] and bi(t) = ai(t), for t ∈ [0, T ] to
write it as (1.1), but the analysis presented here will not be applicable to (1.3). We
consider here a Volterra type operator h which is assumed to satisfy h(φ1) = h(φ2)
on [−τ, 0] for any φ1 and φ2 in CT with φ1 = φ2 on [−τ, 0] (cf. (A3) stated below).
This condition will not hold in general for the operator h(u)(t) ≡ u(0) + g(u). We
shall treat this case differently in our subsequent work.

For the earlier works on existence, uniqueness and stability of various types of
solutions of differential and functional differential equations with nonlocal condi-
tions, we refer to Byszewski and Lakshmikantham [7], Byszewski [5], Balachandran
and Chandrasekaran [3], Lin and Liu [11] and references cited in these papers.

Our aim is to extend the application of the method of lines to (1.1). For the
applications of the method of lines to nonlinear evolution and nonlinear functional
evolution equations, we refer to Kartsatos and Parrott [9], Kartsatos [8] Bahuguna
and Raghavendra [1] and references cited in these papers.

Let T̃ be any number such that 0 < T̃ ≤ T . Any function in CT is also considered
belonging to the space CT̃ as its restriction on the subinterval [−τ, T̃ ], 0 < T̃ ≤ T .
For any φ ∈ CT̃ , we consider the problem,

u′(t) +Au(t) = f(t, u(t), u(b1(t)), u(b2(t)), . . . , u(bm(t))), t ∈ (0, T̃ ],

u = φ, on [−τ, 0].
(1.4)

Suppose that there is ψ0 ∈ CT such that h(ψ0) = φ0 on [−τ, 0] and ψ0(0) ∈ D(A).
Let W(ψ0, T̃ ) := {ψ ∈ CT̃ : ψ = ψ0, on [−τ, 0]}. For any φ ∈ W(ψ0, T̃ ) we
prove the existence and uniqueness of a strong solution u of (1.4) under the same
assumptions of Theorem 2.1, stated in the next section, in the sense that there
exists a unique function u ∈ CT̃ such that u(t) ∈ D(A) for a.e. t ∈ [0, T̃ ], u is
differentiable a.e. on [0, T̃ ] and

u′(t) +Au(t) = f(t, u(t), u(b1(t)), . . . , u(bm(t))), a.e. t ∈ [0, T̃ ],

u = φ, on [−τ, 0].
(1.5)

Let uφ ∈ CT̃ be the strong solution of (1.4) corresponding to φ ∈ W(ψ0, T̃ ). It can
be shown that uφ ∈ W(ψ0, T̃ ). We define a map S from W(ψ0, T̃ ) into W(ψ0, T̃ )
given by

Sφ = uφ, φ ∈ W(ψ0, T̃ ).

We then prove that S is constant on W(ψ0, T̃ ) and hence there exists a unique
χ0 ∈ W(ψ0, T̃ ) such that χ0 = Sχ0 = uχ0 . We then show that uχ0 is a strong
solution of (1.1). Also, we establish that a strong solution u ∈ W(ψ0, T̃ ) of (1.1) can
be continued uniquely to either the whole interval [−τ, T ] or there is the maximal
interval [−τ, tmax), 0 < tmax ≤ T , such that for every 0 < T̃ < tmax, u ∈ W(ψ0, T̃ )
is a strong solution of (1.1) on [−τ, T̃ ] and in the later case either

lim
t→tmax−

‖u(t)‖ = ∞,
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or u(t) goes to the boundary of D(A) as t → tmax−. Finally, we show that u is
unique if and only if ψ0 ∈ CT satisfying h(ψ0) = φ0 is unique up to [−τ, 0]. We also
consider some applications of the abstract results.

2. Preliminaries and Main Result

Let X be a real Banach space such that its dual X∗ is uniformly convex. One of
the consequences of the fact that X∗ is uniformly convex is that the duality map
F : X → 2X

∗
, given by

F (x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2
∗},

is single-valued and is continuous on bounded subsets of X. Here 2X
∗

denotes the
power set of X∗, ‖.‖ and ‖.‖∗ are the norms of X and X∗, respectively, 〈x, x∗〉 is
the value of x∗ ∈ X∗ at x ∈ X. Further, we assume the following conditions:

(A1) The operator A : D(A) ⊂ X → X is m-accretive, i.e., 〈Ax−Ay, F (x−y)〉 ≥
0, for all x, y ∈ D(A) and R(I + A) = X, where R(.) is the range of an
operator.

(A2) The nonlinear map f : [0, T ] × Xm+1 → X satisfies a local Lipschitz-like
condition

‖f(t, u1, u2, . . . um+1)− f(s, v1, v2, . . . , vm+1)‖

≤ Lf (r)[|t− s|+
m+1∑
i=1

‖ui − vi‖],

for all (u1, u2, . . . , um+1), (v1, v2, . . . , vm+1) in Br(Xm+1, (x0, x0, . . . , x0))
and t, s ∈ [0, T ] where Lf : R+ → R+ is a nondecreasing function and for
x0 ∈ X and r > 0

Br(Xm+1, (x0, x0, . . . , x0)) = {(u1, . . . , um+1) ∈ Xm+1 :
m+1∑
i=1

‖ui − x0‖ ≤ r}.

(A3) The nonlinear map h : CT → CT is continuous and for any φ1 and φ2 in CT
with φ1 = φ2 on [−τ, 0], h(φ1) = h(φ2) on [−τ, 0].

(A4) For i = 1, 2, . . . ,m, the maps bi : [0, T ] → [−τ, T ] are continuous and
bi(t) ≤ t for t ∈ [0, T ].

Theorem 2.1. Suppose that the conditions (A1)-(A4) are satisfied and there exists
ψ0 ∈ CT such that h(ψ0) = φ0 on [−τ, 0] and ψ0(0) ∈ D(A). Then (1.1) has a strong
solution u on [−τ, T̃ ], for some 0 < T̃ ≤ T , in the sense that there exists a function
u ∈ CT̃ such that u(t) ∈ D(A) for a.e. t ∈ [0, T̃ ], u is differentiable a.e. on [0, T̃ ]
and

u′(t) +Au(t) = f(t, u(t), u(b1(t)), . . . , u(bm(t))), a.e. t ∈ [0, T̃ ],

h(u) = φ0, on [−τ, 0].
(2.1)

Also, u is unique in W(ψ0, T̃ ) and u is Lipschitz continuous on [0, T̃ ]. Furthermore,
u can be continued uniquely either on the whole interval [−τ, T ] or there exists a
maximal interval [0, tmax), 0 < tmax ≤ T , such that u is a strong solution of (1.1)
on every subinterval [−τ, T̃ ], 0 < T̃ < tmax. A strong solution u of (1.1) is unique
on the interval of existence if and only if ψ0 ∈ CT satisfying h(ψ0) = φ0 on [−τ, 0]
is unique up to [−τ, 0].
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3. Discretization Scheme and A Priori Estimates

In this section we establish the existence and uniqueness of a strong solution to
(1.4) for a given φ ∈ W(ψ0, T ). Let φ ∈ W(ψ0, T ). Then x0 := φ(0) = ψ0(0) ∈
D(A). For the application of the method of lines to (1.4), we proceed as follows.
We fix R > 0 and let R0 := R+ supt∈[−τ,T ] ‖φ(t)− x0‖. We choose t0 such that

0 < t0 ≤ T,

t0[‖Ax0‖+ 3Lf (R0)(T + (m+ 1)R0) + ‖f(0, x0, x0, . . . , x0)‖] ≤ R.

For n ∈ N, let hn = t0/n. We set un0 = x0 for all n ∈ N and define each of {unj }nj=1

as the unique solution of the equation
u− unj−1

hn
+Au = f(tnj , u

n
j−1, ũ

n
j−1(b1(t

n
j )), . . . , ũ

n
j−1(bm(tnj ))), (3.1)

where ũn0 (t) = φ(t) for t ∈ [−τ, 0], ũn0 (t) = x0 for t ∈ [0, t0] and for 2 ≤ j ≤ n,

ũnj−1(t) =


φ(t), t ∈ [−τ, 0],
uni−1 + 1

hn
(t− tni−1)(u

n
i − uni−1), t ∈ [tni−1, t

n
i ],

i = 1, 2, . . . , j − 1,
unj−1, t ∈ [tnj−1, t0].

(3.2)

The existence of a unique unj ∈ D(A) satisfying (3.1) is a consequence of the m-
accretivity of A. Using (A2) we first prove that the points {unj }nj=0 lie in a ball
with its radius independent of the discretization parameters j, hn and n. We then
prove a priori estimates on the difference quotients {(unj − unj−1)/hn} using (A2).
We define the sequence {Un} ⊂ Ct0 of polygonal functions

Un(t) =

{
φ(t), t ∈ [−τ, 0],
unj−1 + 1

hn
(t− tnj−1)(u

n
j − unj−1), t ∈ (tnj−1, t

n
j ],

(3.3)

and prove the convergence of {Un} to a unique strong solution u of (1.4) in Ct0 as
n→∞.

Now, we show that {unj }nj=0 lie in a ball in X of radius independent of j, hn and
n.

Lemma 3.1. For n ∈ N, j = 1, 2, . . . , n,

‖unj − x0‖ ≤ R.

Proof. From (3.1) for j = 1 and the accretivity of A, we have

‖un1 − x0‖ ≤ hn[‖Ax0‖+ 3Lf (R0)(T + (m+ 1)R0) + ‖f(0, x0, x0, . . . , x0)‖] ≤ R.

Assume that ‖uni − x0‖ ≤ R for i = 1, 2, . . . , j − 1. Now, for 2 ≤ j ≤ n,

‖unj − x0‖ ≤ ‖unj−1 − x0‖+ hn[‖Ax0‖+ 3Lf (R0)(T + (m+ 1)R0)

+ ‖f(0, x0, x0, . . . , x0)‖].
Repeating the above inequality, we obtain

‖unj − x0‖ ≤ jhn[‖Ax0‖+ 3Lf (R0)(T + (m+ 1)R0)

+ ‖f(0, x0, x0, . . . , x0)‖] ≤ R,

as jhn ≤ t0 for 0 ≤ j ≤ n. This completes the proof of the lemma. �

Now, we establish a priori estimates for the difference quotients {u
n
j −u

n
j−1

hn
}.
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Lemma 3.2. There exists a positive constant K independent of the discretization
parameters n, j and hn such that∥∥unj − unj−1

hn

∥∥ ≤ K, j = 1, 2, . . . , n, n = 1, 2, . . . .

Proof. In this proof and subsequently, K will represent a generic constant inde-
pendent of j, hn and n. Subtracting Aun0 = Ax0 from both the sides in (3.1) and
applying F (un1 − un0 ), using accretivity of A, we get∥∥un1 − un0

hn

∥∥ ≤ ‖Ax0‖+ ‖f(0, x0, x0, . . . , x0)‖+ 3Lf (R0)(T + (m+ 1)R0) ≤ K.

Now, for 2 ≤ j ≤ n applying F (unj − unj−1) to (3.1) and using accretivity of A, we
get∥∥unj − unj−1

hn

∥∥ ≤ ∥∥unj−1 − unj−2

hn

∥∥ + ‖f(tnj , u
n
j−1, ũ

n
j−1(b1(t

n
j )), . . . , ũ

n
j−1(bm(tnj )))

− f(tnj−1, u
n
j−2, ũ

n
j−2(b1(t

n
j−1)), . . . , ũ

n
j−2(bm(tnj−1)))‖.

From the above inequality we get∥∥unj − unj−1

hn

∥∥ ≤ (1 + Chn)
∥∥unj−1 − unj−2

hn

∥∥ + Chn,

where C is a positive constant independent of j, hn and n. Repeating the above
inequality, we get ∥∥unj − unj−1

hn

∥∥ ≤ (1 + Chn)j .C1 ≤ C1e
TC ≤ K.

This completes the proof of the lemma. �

We introduce another sequence {Xn} of step functions from [−hn, t0] into X by

Xn(t) =

{
x0, t ∈ [−hn, 0],
unj , t ∈ (tnj−1, t

n
j ].

Remark 3.3. From Lemma 3.2 it follows that the functions Un and ũnr , 0 ≤ r ≤
n− 1, are Lipschitz continuous on [0, t0] with a uniform Lipschitz constant K. The
sequence Un(t) − Xn(t) → 0 in X as n → ∞ uniformly on [0, t0]. Furthermore,
Xn(t) ∈ D(A) for t ∈ [0, t0] and the sequences {Un(t)} and {Xn(t)} are bounded
in X, uniformly in n ∈ N and t ∈ [0, t0]. The sequence {AXn(t)} is bounded
uniformly in n ∈ N and t ∈ [0, t0].

For notational convenience, let

fn(t) = f(tnj , u
n
j−1, ũ

n
j−1(b1(t

n
j )), . . . , ũ

n
j−1(bm(tnj ))),

t ∈ (tnj−1, t
n
j ], 1 ≤ j ≤ n. Then (3.1) may be rewritten as

d−

dt
Un(t) +AXn(t) = fn(t), t ∈ (0, t0], (3.4)

where d−

dt denotes the left derivative in (0, t0]. Also, for t ∈ (0, t0], we have∫ t

0

AXn(s) ds = x0 − Un(t) +
∫ t

0

fn(s) ds. (3.5)

Lemma 3.4. There exists u ∈ Ct0 such that Un → u in Ct0 as n→∞. Moreover,
u is Lipschitz continuous on [0, t0].
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Proof. From (3.4) for t ∈ (0, t0], we have〈d−
dt

(Un(t)− Uk(t)), F (Xn(t)−Xk(t))
〉
≤

〈
fn(t)− fk(t), F (Xn(t)−Xk(t)

〉
.

From the above inequality, we obtain
1
2
d−

dt
‖Un(t)− Uk(t)‖2

≤
〈d−
dt

(Un(t)− Uk(t))− fn(t) + fk(t), F (Un(t)− Uk(t))− F (Xn(t)−Xk(t))
〉

+
〈
fn(t)− fk(t), F (Un(t)− Uk(t))

〉
.

Now,
‖fn(t)− fk(t)‖ ≤ εnk(t) +K‖Un − Uk‖t,

where

εnk(t) = K[|tnj − tkl |+ (hn + hk) + ‖Xn(t− hn)− Un(t)‖+ ‖Xk(t− hk)− Un(t)‖

+
m∑
i=1

(|bi(tnj )− bi(t)|+ |bi(tkl )− bi(t)|),

for t ∈ (tnj−1, t
n
j ] and t ∈ (tkl−1, t

k
l ], 1 ≤ j ≤ n, 1 ≤ l ≤ k. Therefore, εnk(t) → 0 as

n, k →∞ uniformly on [0, t0]. This implies that for a.e. t ∈ [0, t0],

d−

dt
‖Un(t)− Uk(t)‖2 ≤ K[ε1nk + ‖Un − Uk‖2

t ],

where ε1nk is a sequence of numbers such that ε1nk → 0 as n, k → ∞. Integrating
the above inequality over (0, s), 0 < s ≤ t ≤ t0, taking the supremum over (0, t)
and using the fact that Un = φ on [−τ, 0] for all n, we get

‖Un − Uk‖2
t ≤ K[Tε1nk +

∫ t

0

‖Un − Uk‖2
s ds].

Applying Gronwall’s inequality we conclude that there exists u ∈ Ct0 such that
Un → u in Ct0 . Clearly, u = φ on [−τ, 0] and from Remark 3.3 it follows that u is
Lipschitz continuous on [0, t0]. This completes the proof of the lemma. �

Proof of Theorem 2.1. First, we prove the existence on [−τ, t0] and then prove the
unique continuation of the solution on [−τ, T ]. Proceeding similarly as in [2], we
may show that u(t) ∈ D(A) for t ∈ [0, t0], AXn(t) ⇀ Au(t) on [0, t0] and Au(t)
is weakly continuous on [0, t0]. Here ⇀ denotes the weak convergence in X. For
every x∗ ∈ X∗ and t ∈ (0, t0], we have∫ t

0

〈AXn(s), x∗〉 ds = 〈x0, x
∗〉 − 〈Un(t), x∗〉+

∫ t

0

< fn(s), x∗〉 ds.

Using Lemma 3.4 and the bounded convergence theorem, we obtain as n→∞,∫ t

0

〈Au(s), x∗〉 ds = 〈x0, x
∗〉 − 〈u(t), x∗〉

+
∫ t

0

〈f(s, u(s), u(b1(s)), . . . , u(bm(s))), x∗〉 ds.
(3.6)

Since Au(t) is Bochner integrable (cf. [2]) on [0, t0], from (3.6) we get
d

dt
u(t) +Au(t) = f(t, u(t), u(b1(t)), . . . , u(bm(t))), a.e. t ∈ [0, t0]. (3.7)
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Clearly, u is Lipschitz continuous on [0, t0] and u(t) ∈ D(A) for t ∈ [0, t0]. Now we
prove the uniqueness of a function u ∈ Ct0 which is differentiable a.e. on [0, t0] with
u(t) ∈ D(A) a.e. on [0, t0] and u = φ on [−τ, 0] satisfying (3.7). Let u1, u2 ∈ Ct0 be
two such functions. Let R = max {‖u1‖t0 , ‖u2‖t0}. Then for u = u1 − u2, we have

d

dt
‖u(t)‖2 ≤ C1(R)‖u‖2

t , a.e. t ∈ [0, t0],

where C1 : R+ → R+ is a nondecreasing function. Integrating over (0, s) for
0 < s ≤ t ≤ t0, taking supremum over (0, t) and using the fact that u ≡ 0 on
[−τ, 0], we get

‖u‖2
t ≤ C1(R)

∫ t

0

‖u‖2
s ds.

Application of Gronwall’s inequality implies that u ≡ 0 on [−τ, t0].
Now, we prove the unique continuation of the solution u on [−τ, T ]. Suppose

t0 < T and consider the problem

w′(t) +Aw(t) = f̃(t, w(t), w(b̃1(t)), w(b̃2(t)), . . . , w(b̃m(t))), 0 < t ≤ T − t0,

w = φ̃0, on [−τ − t0, 0],
(3.8)

where f̃(t, u1, u2, . . . , um+1) = f(t+ t0, u1, u2, . . . , um+1), 0 ≤ t ≤ T − t0,

φ̃0(t) =

{
φ(t+ t0), t ∈ [−τ − t0,−t0],
u(t+ t0), t ∈ [−t0, 0],

b̃i(t) = bi(t+ t0)− t0, t ∈ [0, T − t0] i = 1, 2, . . . ,m.
Since φ̃0(0) = u(t0) ∈ D(A) and f̃ satisfies (A2) and b̃i, i = 1, 2, . . . ,m satisfy

(A4) on [0, T − t0], we may proceed as before and prove the existence of a unique
w ∈ C([−τ − t0, t1];X), 0 < t1 ≤ T − t0, such that w is Lipschitz continuous on
[0, t1], w(t) ∈ D(A) for t ∈ [0, t1] and w satisfies

w′(t) +Aw(t) = f̃(t, w(t), w(b̃1(t)), w(b̃2(t)), . . . , w(b̃m(t))), a.e. t ∈ [0, t1],

w = φ̃0, on [−τ − t0, 0].
(3.9)

Then the function

ū(t) =

{
u(t), t ∈ [−τ, t0],
w(t− t0), t ∈ [t0, t0 + t1],

is Lipschitz continuous on [0, t0 + t1], ū(t) ∈ D(A) for t ∈ [0, t0 + t1] and satisfies
(1.5) a.e. on [0, t0 + t1]. Continuing this way we may prove the existence on the
whole interval [−τ, T ] or there is the maximal interval [−τ, tmax), 0 < tmax ≤ T ,
such that u is a strong solution of (1.1) on every subinterval [−τ, T̃ ], 0 < T̃ < tmax.
In the later case, if limt→tmax−

‖u(t)‖ < ∞ and limt→tmax− u(t) ∈ D(A), then we
may continue the solution beyond tmax but this will contradict the definition of
maximal interval of existence. Therefore, either limt→tmax−

‖u(t)‖ = ∞ or u(t)
goes to the boundary of D(A) as t→ tmax− .

Thus, for each φ ∈ W(ψ0, T̃ ), we have proved the existence and uniqueness of a
strong solution of (1.4).

Now, let uφ be the strong solution of (1.4) corresponding to φ ∈ W(ψ0, T̃ ). Since
uφ = φ on [−τ, 0], it follows that uφ ∈ W(ψ0, T̃ ). We define a map S : W(ψ0, T̃ ) →
W(ψ0, T̃ ) given by Sφ = uφ for φ ∈ W(ψ0, T̃ ). Using similar arguments as used
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above in the proof of uniqueness and the fact that uφ = uψ = ψ0 on [−τ, 0], we
obtain

‖Sφ− Sψ‖2
t = ‖uφ − uψ‖2

t ≤ C2(Rφψ)
∫ t

0

‖uφ − uψ‖2
s ds,

where Rφψ = max {‖uφ‖T̃ , ‖uψ‖T̃ } and C2 : R+ → R+ is a nondecreasing function.
Applying Gronwall’s inequality we obtain that S is constant on W(ψ0, T̃ ) and
therefore there exists a unique χ0 ∈ W(ψ0, T̃ ) such that Sχ0 = χ0 = uχ0 . It is easy
to verify that uχ0 (= χ0) is a strong solution to (1.1). Clearly, if ψ0 ∈ CT satisfying
h(ψ0) = φ0 on [−τ, 0] is unique up to [−τ, 0] then u is unique. If there are two ψ0

and ψ̃0 in CT satisfying h(ψ0) = h(ψ̃0) = φ0 on [−τ, 0], with ψ0 6= ψ̃0 on [−τ, 0],
then W(ψ0, T̃ ) ∩W(ψ̃0, T̃ ) = ∅ and hence the solutions u and ũ of (1.1) belonging
to W(ψ0, T̃ ) and W(ψ̃0, T̃ ), respectively, are different. This completes the proof of
Theorem 2.1. �

4. Applications

Theorem 2.1 may be applied to get the existence and uniqueness results for (1.1)
in the case when the operator A, with the domain D(A) = H2m(Ω) ∩Hm

0 (Ω) into
X := L2(Ω), is associated with the nonlinear partial differential operator

Au =
∑
|α|≤m

(−1)|α|DαAα(x, u(x), Du, . . . ,Dαu),

in a bounded domain Ω in Rn with sufficiently smooth boundary ∂Ω, where Aα(x, ξ)
are real functions defined on Ω×RN for some N ∈ N and satisfying Caratheodory
condition of measurability and certain growth conditions (cf. Barbu [4] page 48).

In (1.1), we may take f as the function f : [0, T ]× (L2(Ω))m+1 → L2(Ω), given
by

f(t, u1, u2, . . . , um+1) = f0(t) + a(t)
m+1∑
i=1

‖ui‖L2(Ω)ui,

where f0 : [0, T ] → L2(Ω), and a : [0, T ] → R are Lipschitz continuous functions on
[0, T ] and ‖.‖L2(Ω) denotes the norm in L2(Ω). For the functions bi, i = 1, 2, . . . , n
and h we may have any of the following.
(b1) Let τi ≥ 0. For i = 1, 2, . . . ,m, let bi(t) = t− τi, t ∈ [0, T ].
(b2) Let τi, i = 1, 2, . . . ,m be such that 0 < τi < T . For t ∈ [0, T ], let

bi(t) =

{
0, t ≤ τi,

t− τi, t > τi.

(b3) For i = 1, 2, . . . ,m, let bi(t) = kit, t ∈ [0, T ], 0 < ki ≤ 1.
(b4) Let N ∈ N. Let 0 < ki ≤ 1/(NTN ), i = 1, 2, . . . ,m. For i = 1, 2, . . . ,m, let

bi(t) = kit
N , t ∈ [0, T ].

Let −τ ≤ a1 < a2 < · · · < ar ≤ 0, ci with C :=
∑r
i=1 ci 6= 0 and εi > 0, for

i = 1, . . . , r. Let x ∈ D(A). Consider the conditions:

(h1) g1(χ) :=
∫ 0

−τ k(θ)χ(θ)dθ = x for χ ∈ C([−τ, 0];X), where k is in L1(−τ, 0)

with κ :=
∫ 0

−τ k(s)ds 6= 0
(h2) g2(χ) :=

∑r
i=1 ciχ(ai) = x for χ ∈ C([−τ, 0];X);

(h3) g3(χ) :=
∑r
i=1

ci

εi

∫ ai

ai−εi χ(s)ds = x for χ ∈ C([−τ, 0];X).
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Clearly, gi : C([−τ, 0];X) → X, i = 1, 2, 3. For i = 1, 2, 3, define hi(ψ)(t) ≡
gi(ψ|[−τ,0]) on [−τ, T ] for ψ ∈ C([−τ, T ];X) where ψ|[−τ,0] is the restriction of ψ on
[−τ, 0]. Let φ0(t) ≡ x on [−τ, 0]. Then conditions (h1), (h2) and (h3) are equivalent
to hi(ψ) = φ0 on [−τ, 0], i = 1, 2, 3, respectively. For (h1), we may take ψ0(t) ≡ x/κ
and for (h2) as well as for (h3), we may take ψ0(t) ≡ x/C on [−τ, T ].
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