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MULTIPLE SOLUTIONS OF A FOURTH-ORDER
NONHOMOGENEOUS EQUATION WITH

CRITICAL GROWTH IN R4

ABHISHEK SARKAR

Communicated by Mitsuharu Otani

Abstract. In this article we study the existence of at least two positive weak
solutions of an nonhomogeneous fourth-order Navier boundary-value problem

involving critical exponential growth on a bounded domain in R4, with a pa-

rameter λ > 0. We establish upper and lower bounds for λ, which determine
multiplicity and non-existence of solutions.

1. Introduction

Let Ω ⊂ R4 be a bounded domain with the boundary ∂Ω ∈ C2,σ for some 0 <
σ < 1. In this context, we study the existence of multiple solutions in W 2,2

N (Ω) =
{u ∈W 2,2(Ω) : u = 0 on ∂Ω}, for the following fourth-order Navier boundary value
problem

∆2u = µu|u|peu
2

+ λh(x) in Ω,
u,−∆u > 0 in Ω,
u = ∆u = 0 on ∂Ω,

(1.1)

where h ≥ 0 in Ω, ‖h‖L2(Ω) = 1, λ > 0, µ = 1 if p > 0 and µ ∈ (0, λ1(Ω)) if
p = 0. Where λ1(Ω) and φ1 denote the first eigenvalue and the corresponding
eigenfunction of ∆2 on W 2,2

N (Ω) respectively with respect to the Navier boundary
condition. We note that λ1 > 0 and φ1 is strictly positive (see [4]). The existence of
multiple solutions for analogous problems in higher dimensions with critical expo-
nent, have been studied in [2, 8] for the Dirichlet boundary condition, and in [15] for
Navier boundary condition. The existence of multiple solutions for the fourth-order
nonhomogeneous quasilinear equation has been studied in [3]. The corresponding
problem for second order elliptic equations have been studied in [11] for dimension
two and in [12] for higher dimensions. We note that, the critical growth for the
fourth-order equations is u 7→ |u|8/(N−4)u for N ≥ 5, from the point of view of
the Sobolev imbedding theorem in Rn. In 1971, Moser [10] proved the following
theorem.
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Theorem 1.1. Let Ω ⊂ RN , N ≥ 2 be a bounded domain. There exists a constant
CN > 0 such that for any u ∈W 1,N

0 (Ω), N ≥ 2 with ‖∇u‖LN (Ω) ≤ 1, then∫
Ω

eα|u|
p

dx ≤ CN |Ω|, ∀α ≤ αN , (1.2)

where
p =

N

N − 1
, αN := Nw

1
N−1
N−1,

and wN−1 is the surface measure of the unit sphere SN−1 ⊂ RN . Furthermore, the
integral on the left hand side can be made arbitrarily large if α > αN by appropriate
choice of u with ‖∇u‖LN (Ω) ≤ 1. The embedding

W 1,N
0 (Ω) 3 u 7→ eα|u|

N
N−1 ∈ L1(Ω),

is compact for α < αN and it is not compact for α = αN .

In 1988, Adams [1] extended the above result of Moser to higher order Sobolev
spaces. To state the main theorem by Adams, we denote the m-th order derivatives
of u ∈ Cm(Ω), by

∇mu =

{
∆m/2u, for m even,
∇∆(m−1)/2u, for m odd.

Now denote by Wm,Nm
0 (Ω) the completion of C∞0 (Ω), under the Sobolev norm

‖u‖
Wm,N

m (Ω)
=
(
‖u‖N/mN/m +

m∑
|α|=1

‖Dαu‖N/mN/m

)m/N
. (1.3)

Adams proved the following embedding.

Theorem 1.2. Let Ω ⊂ RN be a bounded domain. If m is a positive integer
and m ≤ N , then there exists a constant C0 = C0(N,m) > 0, such that for any

u ∈Wm,Nm
0 (Ω) with ‖∇mu‖LN/m(Ω) ≤ 1, then

1
|Ω|

∫
Ω

exp
(
β|u(x)|N/(N−m)

)
dx ≤ C0, (1.4)

for all β ≤ βN,m, where

βN,m =


N

wN−1

[πN2 2mΓ(m+1
2 )

Γ(N−m+1
2 )

]N/(N−m)
, when m is odd,

N
wN−1

[πN2 2mΓ(m2 )

Γ(N−m2 )

]N/(N−m)
, when m is even.

Furthermore, for any β > βN,m, the integral can be made as large as possible by
appropriate choice of u with ‖∇mu‖LN/m(Ω) ≤ 1.

Now we define a subspace of Wm,Nm (Ω), by

W
m,Nm
N (Ω) :=

{
u ∈Wm,Nm (Ω) : ∆ju|∂Ω = 0 for 0 ≤ j ≤

[m− 1
2

]}
.

Note that, Wm,Nm
0 (Ω) is strictly contained in W

m,Nm
N (Ω). Therefore, one has

sup
u∈W

m,N
m

0 (Ω),‖∇mu‖
LN/m(Ω)

≤1

∫
Ω

eβN,m|u|
N/(N−m)

dx
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≤ sup
u∈W

m,N
m

N (Ω),‖∇mu‖
LN/m(Ω)

≤1

∫
Ω

eβN,m|u|
N/(N−m)

dx.

In 2012, Tarsi [13] established that the Adams’ inequality is also valid for the

larger space Wm,Nm
N (Ω). The key idea was to embed W

m,Nm
N (Ω) into a Zygmund

space. We state her embedding theorem below.

Theorem 1.3. Let N > 2, m < N and Ω ⊂ RN be a bounded domain. Then, there
is a constant C ′N > 0, such that for all u ∈Wm,Nm

N (Ω) with ‖∇mu‖LN/m(Ω) ≤ 1, we
have ∫

Ω

eβ|u|
N/(N−m)

dx < C ′N |Ω|, ∀β ≤ βN,m, (1.5)

and the constant βN,m appearing in (1.5) is sharp and βN,m is same as in Theorem
1.2.

Remark 1.4. When N = 4 = 2m, we have β4,2 = 32π2.

Remark 1.5. We note that the bilinear form

(u, v) 7→
∫

Ω

∇mu · ∇mv =

{∫
Ω

∆ku∆kv, if m = 2k,∫
Ω
∇(∆ku) · ∇(∆kv), if m = 2k + 1,

(1.6)

defines a scalar product on both spaces Wm,2
0 (Ω) and Wm,2

N (Ω). Furthermore, if Ω
is bounded, this scalar product induces a norm equivalent to (1.3).

Therefore, the above results imply that the nonlinearity of the problem (1.1) is
of critical type. Now we state our main theorem regarding multiple solutions in
this non-compact situation, given by problem (1.1).

Theorem 1.6. There exist positive real numbers λ∗ ≤ λ∗, with λ∗ independent of
h, such that the problem (1.1) has at least two positive solutions for all λ ∈ (0, λ∗)
and no solution for all λ > λ∗.

Though the Palais-Smale condition fails due to the presence of critical exponent,
first we adapt the method of Tarantello (cf. [12]) to prove the existence of a first
solution by a decomposition of Nehari manifold into three parts. Then, for the
existence of second solution, we rely on a refined version of the Mountain-Pass
Lemma, which was introduced by Ghoussoub and Preiss in [6].

2. Decomposition of the Nehari Manifold

Let f(u) = µ|u|pueu2
. The corresponding energy functional associated with

problem (1.1), is

J(u) =
1
2

∫
Ω

|∆u|2 −
∫

Ω

F (u)− λ
∫

Ω

hu, (2.1)

where F (u) =
∫ u

0
f(s)ds. As the energy functional is not bounded from below on

W 2,2
N (Ω), we need to study J on the Nehari manifold

M := {u ∈W 2,2
N (Ω) : 〈J ′(u), u〉 = 0}, (2.2)

where J ′(u) denotes the Fréchet derivative of J at u and 〈·, ·〉 is the inner product.
Here we note that, M contains every solution of the problem (1.1). For any u ∈
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W 2,2
N (Ω), we note that

〈J ′(u), u〉 =
∫

Ω

|∆u|2 −
∫

Ω

f(u)u− λ
∫

Ω

hu,

〈J ′′(u)u, u〉 =
∫

Ω

|∆u|2 −
∫

Ω

f ′(u)u2.

Similar to the method used by Tarantello [12], we split M into three parts

M0 = {u ∈M : 〈J ′′(u)u, u〉 = 0},
M+ = {u ∈M : 〈J ′′(u)u, u〉 > 0},
M− = {u ∈M : 〈J ′′(u)u, u〉 < 0}.

3. Topological Properties of M0,M+,M−

Our first aim is to show,M0 = {0} for some small λ. For this, let ζ > 0 if p > 0
and ζ < λ1−µ

µ if p = 0. Define, Λ := {u ∈W 2,2
N (Ω) :

∫
Ω
|∆u|2 ≤ (1 + ζ)

∫
Ω
f ′(u)u2}.

Then, Lemma 3.3 implies that Λ 6= {0}. We now assume the following important
hypotheses

λ > 0, ‖h‖L2(Ω) = 1,

inf
u∈Λ\{0}

(
µ

∫
Ω

(p+ 2u2)|u|p+2eu
2
− λ

∫
Ω

hu
)
> 0. (3.1)

Condition (3.1) forces λ to be suitably small. Indeed, we can prove the following
result.

Proposition 3.1. Let

λ < µC
p+3
p+4
0 |Ω|−( p+2

2p+8 ), (3.2)

where C0 = infu∈Λ\{0}
∫

Ω
(p+ 2u2)|u|p+2eu

2
> 0. Then (3.1) holds.

Proof. Step 1: infu∈Λ\{0} ‖u‖W 2,2
N (Ω) > 0. Toward a contradiction, suppose that,

there exists a sequence {un} ⊂ Λ \ {0}, with ‖un‖W 2,2
N (Ω) → 0 as n → ∞. Let

vn = un
‖un‖

W
2,2
N (Ω)

. Then ‖vn‖W 2,2
N (Ω) = 1 and vn satisfies

1 ≤ (1 + ζ)
∫

Ω

f ′(un)v2
n, ∀n. (3.3)

Since un → 0 in W 2,2
N (Ω), by Adams’ inequality for the higher order derivative in

Theorem 1.3, we obtain f ′(un)→ f ′(0) in Lr(Ω) for all r ≥ 1. Since vn is bounded
in W 2,2

N (Ω), vn has a weak limit say v in W 2,2
N (Ω). Certainly ‖v‖W 2,2

N (Ω) ≤ 1 and
up to a subsequence which we still denote by vn which converges strongly to v in
Lr(Ω) for all r ≥ 1. Hence from (3.3), we obtain∫

Ω

|∆v|2 ≤ 1 ≤ (1 + ζ)f ′(0)
∫

Ω

v2. (3.4)

This gives a contradiction for the case p > 0 since f ′(0) = 0 in this case. For the
case p = 0, by the assumption∫

Ω

|∆v|2 ≥ λ1

∫
Ω

v2 > (1 + ζ)µ
∫

Ω

v2,



EJDE-2017/27 FOURTH-ORDER CRITICAL GROWTH PROBLEM 5

which gives a contradiction to (3.3) since f ′(0) = µ. This completes Step 1. Since
infu∈Λ\{0} ‖u‖W 2,2

N (Ω) > 0, from the definition of Λ, we obtain

0 < inf
u∈Λ\{0}

∫
Ω

f ′(u)u2 = inf
u∈Λ\{0}

µ

∫
Ω

(p+ 1 + 2u2)eu
2
|u|p+2. (3.5)

Using (3.5), we can easily check that

C0 = inf
u∈Λ\{0}

∫
Ω

(p+ 2u2)|u|p+2eu
2
> 0. (3.6)

Step 2: Finally, we have

λ
∣∣ ∫

Ω

hu
∣∣ ≤ λ‖u‖L2(Ω) ≤ λ|Ω|

p+2
2p+8

(∫
Ω

|u|p+4
)1/(p+4)

≤ λ|Ω|
p+2
2p+8

(µ
∫

Ω
(p+ 2u2)|u|p+2eu2)

p+3
p+4

(
µ

∫
Ω

(p+ 2u2)|u|p+2eu
2
)

≤
(λ|Ω| p+2

2p+8

µC
p+3
p+4
0

)(
µ

∫
Ω

(p+ 2u2)|u|p+2eu
2
)
.

Hence, from the above inequality together with (3.2) and (3.6), we can complete
the proof. �

Lemma 3.2. Suppose λ > 0 be such that (3.1) holds. Then M0 = {0}.

Proof. For the sake of contradiction, suppose there exists u ∈M0 and u 6≡ 0. Then,
we have ∫

Ω

|∆u|2 =
∫

Ω

f(u)u+ λ

∫
Ω

hu, (3.7)∫
Ω

|∆u|2 =
∫

Ω

f ′(u)u2. (3.8)

It follows from (3.8), that∫
Ω

|∆u|2 =
∫

Ω

f ′(u)u2 < (1 + ζ)
∫

Ω

f ′(u)u2,

therefore, u ∈ Λ \ {0}. From (3.7) and (3.8), we obtain

λ

∫
Ω

hu =
∫

Ω

(f ′(u)u− f(u))u = µ

∫
Ω

(p+ 2u2)|u|p+2eu
2
,

which violates the condition (3.1). Therefore, M0 = {0}. �

Now we discuss the topological properties ofM+ andM−. The study of Nehari
manifold is closely related to the behaviour of the map s 7→ J(su). This technique
was first introduced in [5] by Drábek and Pohozaev. Given u ∈ W 2,2

N (Ω) \ {0}, we
define a map, ξu : R+ → R by

ξu(s) = s

∫
Ω

|∆u|2 −
∫

Ω

f(su)u. (3.9)

The choice of the above function is a consequence of the following expression

〈J ′(su), su〉 = s
(
s

∫
Ω

|∆u|2 −
∫

Ω

f(su)u− λ
∫

Ω

hu
)
.
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So, ξu(s) = λ
∫

Ω
hu if and only if su ∈M for s > 0.

Now we are ready to prove the following lemma.

Lemma 3.3. For every u ∈W 2,2
N (Ω)\{0}, there exists unique s∗ = s∗(u) > 0, such

that ξu(·) has its maximum at s∗ with ξu(s∗) > 0. Also there holds, s∗u ∈ Λ \ {0}.

Proof. Differentiating (3.9), we have

ξ′u(s) =
∫

Ω

|∆u|2 −
∫

Ω

f ′(su)u2. (3.10)

Therefore,

s2ξ′u(s) =
∫

Ω

|∆(su)|2 −
∫

Ω

f ′(su)(su)2 = 〈J ′′(su)su, su〉. (3.11)

Now we observe that, ξu(·) is a concave function on R+ since

ξ′′u(s) = −
∫

Ω

f ′′(su)u3 < 0. (3.12)

Also from the range of µ, we obtain

lim
s→0+

ξ′u(s) > 0, lim
s→∞

ξu(s) = −∞.

Hence there exists a unique s∗ = s∗(u) > 0, such that ξu is increasing on (0, s∗),
decreasing on (s∗,∞) and ξ′u(s∗) = 0. Now using (3.10) and ξ′u(s∗) = 0, we deduce

ξu(s∗) = s∗

∫
Ω

f ′(s∗u)u2 −
∫

Ω

f(s∗u)u

=
1
s∗

∫
Ω

(f ′(s∗u)s∗u− f(s∗u))s∗u

=
µ

s∗

∫
Ω

(p+ 2(s∗u)2)|s∗u|p+2e(s∗u)2
> 0.

(3.13)

Here we note that, f ′(s)s− f(s) = µ(p+ 2s2)|s|pses2 . Finally

s∗ξ
′
u(s∗) =

∫
Ω

|∆(s∗u)|2 −
∫

Ω

f ′(s∗u)(s∗u)2 = 0,

which implies, s∗u ∈ Λ \ {0}. �

Lemma 3.4. Let λ be such that (3.1) holds. Then, for every u ∈ W 2,2
N (Ω) \ {0},

there exists a unique s− = s−(u) > 0 such that s−u ∈M−, s− > s∗ and J(s−u) =
maxs≥s∗ J(su) ∀s ∈ [s∗,∞). Furthermore, if

∫
Ω
hu > 0, then there exists a unique

s+ = s+(u) > 0 such that s+u ∈M+. In particular, s+ < s∗ and

J(s+u) ≤ J(su) for all s ∈ [0, s−]. (3.14)

Proof. Define the functional, ρu : [0,∞)→ R by ρu(s) = J(su). Then it is easy to
verify that ρu ∈ C2((0,∞),R) ∩ C([0,∞),R). Now we have

ρ′u(s) = ξu(s)− λ
∫

Ω

hu, ρ′′u(s) = ξ′u(s), ∀s > 0.

Next from (3.1) and (3.13), we obtain

ξu(s∗)− λ
∫

Ω

hu =
1
s∗

{
µ

∫
Ω

(p+ 2(s∗u)2)|s∗u|p+2e(s∗u)2
− λ

∫
Ω

h(s∗u)
}
> 0.
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Since ξu(·) is strictly decreasing in (s∗,∞) and lims→∞ ξu(s) = −∞, there exists a
unique s− = s−(u) > s∗, such that ξu(s−) = λ

∫
Ω
hu. That is s−u ∈ M. One has

s− > s∗ and ρ′u(s) < 0, we obtain s−u ∈M−.
On the other hand, when

∫
Ω
hu > 0, we have lims→0+ ξu(s) < 0, which implies,

ξu(s)−λ
∫

Ω
hu < 0 for s near 0. Hence there exists a unique s+, such that ξu(s+) =

λ
∫

Ω
hu which implies s+u ∈ M. From the graph, we see that ξu(·) is strictly

increasing in (0, s∗). Hence we have, s+u ∈M+.
And the remaining properties of s−, s+ can be proved by analyzing the identity

ρu(s) = ξu(s)− λ
∫

Ω
hu. �

Remark 3.5. If we define the positive cone P = {u ∈ W 2,2
N (Ω) :

∫
Ω
hu > 0} in

W 2,2
N (Ω). Then, we obtain M+ ⊂ P.

The next corollary shows some topological properties of M+,M−.

Corollary 3.6. Let SW 2,2
N (Ω) = {u ∈ W 2,2

N (Ω) : ‖u‖Wm,2
N (Ω) = 1}. Then there

exists a homeomorphism S− : SW 2,2
N (Ω) → M− defined by S−(u) = s−(u)u. Also

M+ is homeomorphic to SW 2,2
N (Ω) ∩ P.

Proof. The function S− is continuous, because s− is continuous as an application
of implicit function theorem applied to the map, (s, u) 7→ ξu(s)− λ

∫
Ω
hu. Also we

deduce the continuity of (S−)−1 by the fact that (S−)−1(w) = w/‖w‖. In a similar
manner, we can prove that M+ is homeomorphic to SWm,2

N (Ω) ∩ P. �

We set, θ0 = inf{J(u) : u ∈M}. Relying on the embedding of W 2,2
N (Ω) ↪→ Lq(Ω)

for all 1 ≤ q < ∞ and using the estimate, F (s) ≤ µ|s|p
2 (es

2 − 1) for all s ∈ R, we
have the following two lemmas on the lower bound and upper bound of θ0 in terms
of λ, µ.

Lemma 3.7. There exists C1 = C1(p) > 0, such that

θ0 ≥ −C1λ
p+4
p+3 .

Proof. Let u ∈M. Then

J(u) =
1
2

∫
Ω

|∆u|2 −
∫

Ω

F (u)− λ
∫

Ω

hu

=
∫

Ω

[1
2
f(u)u− F (u)

]
− λ

2

∫
Ω

hu.

We note that a simple calculation gives

F (s) ≤ µ|s|p

2
(es

2
− 1), ∀s ∈ R. (3.15)

Using (3.15), we deduce

J(u) ≥ µ

2

∫
Ω

((u2 − 1)eu
2

+ 1)|u|p − λ

2

∫
Ω

hu

≥ cµ

2

∫
Ω

|u|p+4 − λ

2

∫
Ω

hu,

(3.16)
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since (s2 − 1)es
2

+ 1 ≥ cs4 for some c > 0 and for all s ∈ R. By applying Hölder
inequality, we obtain ∫

Ω

hu ≤ |Ω|
p+2

2(p+4) ‖u‖Lp+4(Ω). (3.17)

From (3.16) and (3.17), we obtain

J(u) ≥ cµ

2
‖u‖p+4

Lp+4(Ω) −
(λ|Ω| p+2

2(p+4)

2

)
‖u‖Lp+4(Ω). (3.18)

By considering the global minimum of the function

ω(x) = (
cµ

2
)xp+4 −

(λ|Ω| p+2
2(p+4)

2

)
x,

we deduce θ0 ≥ −C1λ
p+4
p+3 . �

Lemma 3.8. There exists C2 > 0, such that

θ0 ≤ −
µ(p+ 1)p
2(p+ 2)

C2.

Proof. Choose v ∈ W 2,2
N (Ω) \ {0}, such that

∫
Ω
hv > 0. Therefore, by Lemma 3.4,

there exists s+ = s+(v) > 0, such that s+v ∈M+. Hence

J(s+v) = −
s2

+

2

∫
Ω

|∆u|2 +
∫

Ω

[f(s+v)s+v − F (s+v)]

≤
∫

Ω

[
f(s+v)s+v − F (s+v)− 1

2
f ′(s+v)(s+v)2

]
,

(3.19)

since s+v ∈M. Now we consider the function

γ(s) = f(s)s− F (s)− 1
2
f ′(s)s2.

We note that γ′(s) = − 1
2f
′′(s)s2. Since γ(0) = 0, it follows that γ(s) ≤ 0 for all

s ∈ R. Also we can verify the following limits

lim
s→0

γ(s)
|s|p+2

= −µp(p+ 1)
2(p+ 2)

if p > 0,

lim
s→0

γ(s)
s4

= −3
4
µ if p = 0,

lim
s→∞

γ(s)
|s|p+4es2

= −µ ∀p ≥ 0.

From these two estimates, we obtain

γ(s) ≤ −µp(p+ 1)
(p+ 2)

(p+ 2s2)|s|2(p+2)es
2
, ∀s ∈ R. (3.20)

Therefore, using (3.19) and (3.20) we obtain

J(s+v) ≤ −µp(p+ 1)
2(p+ 2)

∫
Ω

(p+ 2|s+v|2)|s+v|p+2e|s+v|
2

≤ −µp(p+ 1)
2(p+ 2)

∫
Ω

|s+v|p+4.

(3.21)

Hence

θ0 ≤ −
µp(p+ 1)
2(p+ 2)

C2, where C2 =
∫

Ω

|s+v|p+4.
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�

As a consequence of Lemma 3.2, we have the following lemma.

Lemma 3.9. Let λ and h satisfy (3.1). Given u ∈M\{0}, there exists δ > 0 and
a differentiable function s : {w ∈W 2,2

N (Ω) : ‖w‖W 2,2
N (Ω) < δ} → R, with

s(0) = 1, s(w)(u− w) ∈M, ∀‖w‖W 2,2
N (Ω) < δ

and

〈s′(0), v〉 =
2
∫

Ω
∆u∆v −

∫
Ω

(f ′(u)u+ f(u))v − λ
∫

Ω
hv∫

Ω
|∆u|2 −

∫
Ω
f ′(u)u2

. (3.22)

Proof. Define a function G : R×W 2,2
N (Ω)→ R by

G(s, w) = s

∫
Ω

|∆(u− w)|2 −
∫

Ω

f(s(u− w))(u− w)− λ
∫

Ω

h(u− w).

Then G ∈ C1(R×W 2,2
N (Ω); R) and since u ∈M it implies

G(1, 0) =
∫

Ω

|∆u|2 −
∫

Ω

f(u)u− λ
∫

Ω

hu = 0.

Also Gs(1, 0) 6= 0, indeed

Gs(1, 0) =
∫

Ω

|∆u|2 −
∫

Ω

f ′(u)u2 6= 0,

thanks to Lemma 3.2. Then by the Implicit Function Theorem, there exists δ > 0
and a map s : {w ∈W 2,2

N (Ω) : ‖w‖ < δ} → R of class C1 that satisfies

G(s(w), w) = 0, if ‖w‖W 2,2
N (Ω) < δ,

s(0) = 1.

Then

0 = s(w)G(s(w), w)

=
∫

Ω

(s(w)|∆(u− w)|)2 −
∫

Ω

f(s(w)(u− w))s(w)(u− w)

− λ
∫

Ω

hs(w)(u− w),

that is s(w)(u−w) ∈M for all w ∈W 2,2
N (Ω) with ‖w‖ < δ. Now if we differentiate

the identity G(s(w), w) = 0 with respect to w, we obtain

0 = 〈Gs(s(w), w)s′(w) +Gw(s(w), w), v〉, ∀v ∈W 2,2
N (Ω).

Put w = 0 in the above identity and we obtain

0 = 〈Gs(1, 0)s′(0) +Gw(1, 0), v〉 = Gs(1, 0)〈s′(0), v〉+ 〈Gw(1, 0), v〉.

Therefore,

〈s′(0), v〉 = −〈Gw(1, 0), v〉
Gs(1, 0)

=
2
∫

Ω
∆u∆v −

∫
Ω

(f ′(u)u+ f(u))v − λ
∫

Ω
hv∫

Ω
|∆u|2 −

∫
Ω
f ′(u)u2

.

�
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4. Local minimum of J in W 2,2
N (Ω)

We are now in a position to prove the existence of a local minimizer for J ,
which ensures the existence of a first solution. Note that, M⊂ W 2,2

N (Ω) is closed,
hence a complete metric space. Now J is bounded below on M. By the Ekeland’s
Variational Principle, there exists a sequence {un} ⊂ M \ {0}, satisfying

J(un) < θ0 +
1
n
, J(v) ≥ J(un)− 1

n
‖v − un‖W 2,2

N (Ω), ∀v ∈M. (4.1)

Proposition 4.1. Let λ and h satisfy (3.1). Then, we have

lim
n→∞

‖J ′(un)‖(W 2,2
N (Ω))−1 = 0.

Proof. We proceed in three steps.
Claim 1: lim infn→∞ ‖un‖W 2,2

N (Ω) > 0. Suppose this claim is false. Then, there ex-
ists a subsequence of {un}, which we still denote by {un}, such that ‖un‖W 2,2

N (Ω) →
0 as n → ∞. Therefore, J(un) → 0 as n → ∞ by continuity of the functional J .
Which contradicts Lemma 3.8.
Claim 2: lim infn→∞

∫
Ω

(p + 2u2
n)|un|p+2eu

2
n > 0. We argue by contradiction.

Assume there exists a subsequence of {un}, which is still denoted by {un}, satisfying

lim
n→∞

∫
Ω

(p+ 2u2
n)|un|p+2eu

2
n → 0 as n→∞. (4.2)

Here we note that, un → 0 in Lq(Ω) for all q ∈ [1,∞), by using (4.2), and for the
case p > 0, we obtain∫

Ω

f(un)un = µ

∫
Ω

|un|p+2eu
2
n → 0 as n→∞.

Therefore, we have
∫

Ω
f(un)un → 0 and

∫
Ω
hun → 0 as n→∞. Since {un} ⊂ M,

we deduce ‖un‖W 2,2
N
→ 0 as n → ∞, hence a contradiction to Claim 1. Similar

argument also holds for p = 0.
Claim 3: lim infn→∞ |

∫
Ω
|∆un|2 −

∫
Ω
f ′(un)u2

n| > 0. Suppose the claim does not
hold. Then for a subsequence {un}, we have∫

Ω

|∆un|2 −
∫

Ω

f ′(un)u2
n = on(1). (4.3)

From (4.3) and using Claim 1, we infer that

lim inf
n→∞

f ′(un)u2
n > 0.

Therefore, we have un ∈ Λ \ {0} for large n. Since {un} ⊂ M, we obtain

on(1) = λ

∫
Ω

hun +
∫

Ω

(f(un)− f ′(un)un)un

= −µ
∫

Ω

(p+ 2u2
n)|un|p+2eu

2
n + λ

∫
Ω

hun,

which contradicts (3.1). This completes the proof of the claim.
Now we complete the proof of the proposition. Suppose the statement of the

proposition is false, i.e., ‖J ′(un)‖(W 2,2
N (Ω))−1 > 0, for all large n (otherwise obvious).

Now we set, u = un ∈M and w = δ J′(un)
‖J′(un)‖ for δ > 0 small (by Riesz representation
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theorem, we identify J ′(un) as an element in W 2,2
N (Ω)). Applying Lemma 3.9, we

obtain sn(δ) := s[δ J′(un)
‖J′(un)‖ ] > 0, such that

wδ = sn(δ)
[
un − δ

J ′(un)
‖J ′(un)‖

]
∈M.

Now from (4.1) and with the help of Taylor expansion, we have

1
n
‖wδ − un‖ ≥ J(un)− J(wδ)

= (1− sn(δ))〈J ′(wδ), un〉+ δsn(δ)
〈
J ′(wδ),

J ′(un)
‖J ′(un)‖

〉
+ o(δ).

Dividing by δ > 0 and taking limit as δ → 0, we obtain
1
n

(1 + |s′n(0)|‖un‖) ≥ −s′n(0)〈J ′(un), un〉+ ‖J ′(un)‖ = ‖J ′(un)‖.

Hence

‖J ′(un)‖ ≤ 1
n

(1 + |s′n(0)|‖un‖).

We complete the proof by noticing that, |s′n(0)| is uniformly bounded on n by (3.22)
and using the Claim 2. �

Theorem 4.2. Let λ and h satisfy (3.1). Then there exists a nonnegative function
u0 ∈ M+, such that J(u0) = infu∈M\{0} J(u). Moreover, u0 is a local minimum
for J in W 2,2

N (Ω).

Proof. Let {un} be a sequence which minimizes J on M\ {0} as in (4.1).
Step 1: lim infn→∞

∫
Ω
hun > 0 and hence un ∈ M+. Indeed, un ∈ M and by

using Lemma 3.8, there exists C > 0, such that

J(un) =
p

2(p+ 2)

∫
Ω

|∆un|2 +
∫

Ω

(
1

p+ 2
f(un)un − F (un))

− λp+ 1
p+ 2

∫
Ω

hun < −C.
(4.4)

Now we note that, F (s) < 1
p+2f(s)s for all s ∈ R. Using (4.4), we conclude

lim inf
n→∞

∫
Ω

hun > 0.

Step 2: lim supn→∞ ‖u‖W 2,2
N (Ω) <∞.

Case 1. If p > 0, then by using (4.4), we obtain directly∫
Ω

|∆un|2 ≤ λ
∫

Ω

hun,

and then with the help of Sobolev embedding we derive {un} is bounded in W 2,2
N (Ω).

Case 2. If p = 0, by using the fact that 1
2f(s)s− F (s) ≥ Cs4 for all s ∈ R and for

some C > 0, we deduce that {un} is a bounded sequence in L2(Ω). It implies that
{F (un)} is a bounded sequence in L1(Ω) using (4.4) and hence {un} is a bounded
sequence in W 2,2

N (Ω).
Step 3: Existence of u0 ∈ M+. From the previous step up to a subsequence,
un ⇀ u0 weakly in W 2,2

N (Ω). Now from the Proposition 4.1, we note that {f(un)un}
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is a bounded sequence in L1(Ω). Therefore, by recalling Vitali convergence theorem
(for details see Lemma 5.3), we obtain∫

Ω

f(un)φ→
∫

Ω

f(u0)φ, for all φ ∈W 2,2
N (Ω).

Hence, u0 will solve (1.1). It is obvious that u0 6= 0 as h 6= 0, that is u0 ∈ M.
We see that θ0 ≤ J(u0). From (4.1) we obtain by using Fatou’s Lemma that
θ0 = lim infn→∞ J(un) ≥ J(u0). Therefore, u0 minimizes J on M\ {0}. Now we
have to show u0 ∈M+. Since u0 satisfies

∫
Ω
hu0 > 0, by Lemma 3.14, there exists

s+(u0) such that s+(u0)u0 ∈ M+. We claim s+(u0) = 1. Suppose s+(u0) < 1,
then s−(u0) = 1 and hence u0 ∈M−. By using Lemma 3.14, we obtain

J(s+(u0)u0) < J(u0) = θ0,

which is impossible since s+(u0)u0 ∈M \ {0}.
Step 4: u0 is a local minimum for for J in W 2,2

N (Ω). We see that s+(u0) = 1, since
u0 ∈M+ (from Step 3). Also from (3.14), we have

s+(u0) = 1 < s∗(u0).

Now by the continuity of s∗(u0), for sufficiently small δ > 0, we have

1 < s∗(u0 − w), ∀‖w‖W 2,2
N (Ω) < δ. (4.5)

By Lemma 3.9, for δ > 0 small enough if necessary, there exists s : {w ∈W 2,2
N (Ω) :

‖w‖ < δ} → R, such that s(w)(u0 −w) ∈M and s(0) = 1. Whenever s(w)→ 1 as
‖w‖ → 0, we have

s(w) < s∗(u0 − w), ∀w ∈W 2,2
N (Ω) with ‖w‖ < δ.

Hence, we obtain s(w)(u0−w) ∈M+, using the above inequality and Lemma 3.14.
Again by using the Lemma 3.14, we see that

J(u0 − w) ≥ J(s(w)(u0 − w)) ≥ J(u0), ∀s ∈ [0, s∗(u0 − w)].

Therefore, from (4.5), we observe that J(u0−w) ≥ J(u0) for every ‖w‖W 2,2
N (Ω) < δ.

Consequently, u0 is a local minimizer.
Step 5: A positive local minimum for J . When u0,−∆u0 > 0, we are done.
Otherwise, we obtain positive solution by the following procedure (cf. [3]). Since
−∆u0 ∈ L2(Ω) (also we note that −∆u0 6≡ 0, as u0 ∈ M+), by standard elliptic
PDE theory (see e.g [14, Theorem 9.1.4]), the boundary-value problem

−∆v = | −∆u0| in Ω,
v = 0 on ∂Ω,

has a strong solution in W 2,2
N (Ω). Note that, ‖v‖W 2,2

N
= ‖u0‖W 2,2

N
and also by

maximum principle, we obtain v > |u0| in Ω. Hence, we obtain

‖v‖ = ‖u0‖, |v|p+1 ≥ |u0|p+1,

∫
Ω

hv > 0. (4.6)

From (4.6), we have

1 = s+(u0) ≤ s+(v) ≤ s−(v) ≤ s−(u0).

Then Lemma 3.4 implies

J(s+(v)v) = min
s∈[0,s−(v)]

J(sv) ≤ J(v) ≤ J(u0), (4.7)
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where the first inequality is not strict if and only if s+(v) = 1.
Since J(s+(v)v) ≥ θ0 and J(u0) = θ0, we obtain s+(v) = 1 from (4.7), which

implies v ∈ M+ and J(v) = J(u0) = θ0. Then v is also a local minimum for J .
When u0 does not satisfy u0,−∆u0 > 0 a.e in Ω, we replace u0 by v. �

5. Existence of a second solution

The existence of a second solution for (1.1), depends on whether we can apply
some version of Mountain Pass Lemma. We wish to look for a solution of the form
u1 = v + u0, where u0 is the local minimum for the functional (2.1). Then, we see
that u1 will solve (1.1), whenever v solves the equation

∆2v = f(v + u0)− f(u0) in Ω,
v,−∆v > 0 in Ω,
v = ∆v = 0 on ∂Ω.

(5.1)

We can write the above problem as

∆2v = f̃(x, v) in Ω,
v,−∆v > 0 in Ω,
v = ∆v = 0 on ∂Ω,

(5.2)

when we define the map f̃ : Ω× R→ R by

f̃(x, s) =

{
f(s+ u0(x))− f(u0(x)) if s ≥ 0,
0 if s < 0.

The energy functional corresponding to (5.2) is Ju0 : W 2,2
N (Ω)→ R, defined by

Ju0(v) =
1
2

∫
Ω

|∆v|2 −
∫

Ω

F̃ (x, v),

where F̃ (x, s) =
∫ s

0
f̃(x, t)dt. Now onwards, we denote Ju0 by J0. These type of

functionals were studied in many articles, for example see [16, 2]. We now state the
Generalized Mountain Pass Lemma that was introduced by Ghoussoub and Preiss
[6].

Definition 5.1. Let H be a closed subset of the Banach Space W 2,2
N (Ω). We say

that a sequence {vn} ⊂ W 2,2
N (Ω) is a Palais-Smale sequence for J0 at the level c

around H, if
(i) limn→∞ dist(vn, H) = 0,

(ii) limn→∞ J0(vn) = c,
(iii) limn→∞ ‖J ′0(vn)‖(W 2,2

N (Ω))−1 = 0.

In short, we say such a sequence is a (PS)H,c sequence.

Remark 5.2. In case H = W 2,2
N (Ω), the above definition coincides with the usual

Palais-Smale sequence at the level c.

Lemma 5.3. Let H ⊂ W 2,2
N (Ω) be a closed set, c ∈ R. Assume, {vn} ⊂ W 2,2

N (Ω)
be a (PS)H,c sequence. Then (up to a subsequence), vn ⇀ v0 weakly in W 2,2

N (Ω),
and

lim
n→∞

∫
Ω

f̃(x, vn) =
∫

Ω

f̃(x, v0), lim
n→∞

∫
Ω

F̃ (x, vn) =
∫

Ω

F̃ (x, v0). (5.3)
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Proof. From the fact that {vn} is a (PS)H,c sequence, we have

1
2

∫
Ω

|∆vn|2 −
∫

Ω

F̃ (x, vn) = c+ on(1), (5.4)∣∣ ∫
Ω

∆vn∆φ−
∫

Ω

f̃(x, vn)φ
∣∣ ≤ on(1)‖φ‖W 2,2

N (Ω), ∀φ ∈W 2,2
N (Ω). (5.5)

Now we make the following claim.

Claim: supn ‖vn‖W 2,2
N (Ω) <∞ and supn

∫
Ω
f̃(x, vn) <∞.

Given any ε > 0, there exists sε > 0, such that∫
Ω

F̃ (x, s) ≤ ε
∫

Ω

sf̃(x, s), ∀|s| ≥ sε. (5.6)

Using (5.4) and (5.6), we have

1
2

∫
Ω

|∆vn|2 ≤
∫

Ω∩{|vn|≤sε}
F̃ (x, vn) +

∫
Ω∩{|vn|≥sε}

F̃ (x, vn) + c+ on(1)

≤
∫

Ω∩{|vn|≤sε}
F̃ (x, vn) + ε

∫
Ω

f̃(x, vn)vn + c+ on(1)

≤ Cε + ε

∫
Ω

f̃(x, vn)vn.

(5.7)

Now from (5.7) and by substituting φ = vn in (5.5), we obtain∫
Ω

f̃(x, vn)vn ≤
∫

Ω

|∆vn|2 + on(1)‖vn‖W 2,2
N (Ω)

≤ 2Cε + 2ε
∫

Ω

f̃(x, vn)vn + on(1)‖vn‖W 2,2
N (Ω),

Hence, by choosing ε small enough if needed, we obtain∫
Ω

f̃(x, vn)vn ≤
2Cε

1− 2ε
+ on(1)‖vn‖W 2,2

N (Ω). (5.8)

We conclude the claim by using (5.5) and (5.8). Also note that, supn
∫

Ω
f̃(x, vn)vn <

∞. Since {vn} ⊂ W 2,2
N (Ω) is bounded, up to a subsequence vn ⇀ v0 weakly in

W 2,2
N (Ω), for some v0 ∈W 2,2

N (Ω).
Let |A| denote the Lebesgue measure of A ⊂ R4. Now we set

C := sup
n

∫
Ω

|f̃(x, vn)vn|,

and notice that C <∞, from the above claim. Given ε > 0, we define

µε = max
x∈Ω̄,|s|≤ 2C

ε

|f̃(x, s)|.

Then, for any A ⊂ Ω with |A| ≤ ε
2µε

, we have∫
A

|f̃(x, vn)| ≤
∫
A∩{|vn|≥ 2C

ε }

|f̃(x, vn)vn|
|vn|

+
∫
A∩{|vn|≤ 2C

ε }
|f̃(x, vn)|

≤ ε

2
+ µε|A| ≤ ε.
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Therefore, {f̃(x, vn)} is an equi-integrable family in L1(Ω) and so is {F̃ (x, vn)} (we
note that, |F̃ (x, t)| ≤ C1|t||f̃(x, t)| for all (x, t) ∈ Ω̄× R and for some C1 > 0). By
applying the Vitali convergence theorem, we complete the proof. �

Certainly, J0(0) = 0 and v = 0 is a local minimum for J0. Also, we have

lim
s→∞

J0(sv) = −∞, ∀v ∈W 2,2
N (Ω) \ {0}.

Hence, we can fix e ∈ W 2,2
N (Ω) \ {0}, such that J0(e) < 0. Now, we define the

mountain pass level
c0 = inf

γ∈Γ
sup
s∈[0,1]

J0(γ(s)),

where Γ = {γ ∈ C([0, 1],W 2,2
N (Ω)) : γ(0) = 0, γ(1) = e}. Note that, from the

definition, we have c0 ≥ 0. Define, R0 = ‖e‖W 2,2
N (Ω). We note that, inf{J0(v) :

‖v‖W 2,2
N (Ω) = R} = 0 for all R ∈ (0, R0). We consider, H = W 2,2

N (Ω) if c0 > 0 and

H = {‖v‖W 2,2
N (Ω) = R0

2 } if c0 = 0. We now present an upper bound for c0.

Lemma 5.4. The upper bound c0 for the Mountain Pass level satisfies

c0 < 16π2. (5.9)

Proof. Without loss of generality, we can assume that the unit ball B0(1) ⊂ Ω. For
any ε > 0, we define

τ̃n(x) :=


√

1
16π2 log n+ 1√

16π2 logn
(1− n|x|2), if |x| ∈ [0, 1√

n
),

−
√

1
4π2 logn log |x|, if |x| ∈ [ 1√

n
, 1),

χn(x), if |x| ∈ [1,∞),

(5.10)

where
χn ∈ C∞0 (Ω), χn

∣∣
∂B1(0)

= χn|∂Ω = 0.

Furthermore, ∆χn|∂Ω = 0 and χn, |∇χn|,∆χn are of O( 1√
2 logn

) as n→∞. Then,

τ̃n ∈W 2,2
N (Ω). Now we normalize τ̃n, by setting

τn :=
τ̃n

‖τ̃n‖W 2,2
N (Ω)

∈W 2,2
N (Ω).

Suppose (5.9) is not true. This implies for all n, there is sn > 0 (see [7]), such that

J0(snτn) = sup
s>0

J0(sτn) ≥ 16π2, ∀n.

Hence
s2
n

2
−
∫

Ω

F̃ (x, snτn) ≥ 16π2, ∀n. (5.11)

In particular
s2
n ≥ 32π2, ∀n. (5.12)

It follows that, d
dsJ0(sτn) = 0 at the point of maximum s = sn for J0, we obtain

s2
n =

∫
Ω

f̃(x, snτn)(snτn). (5.13)
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Now, from the definition of f̃ , we have infx∈Ω̄ f̃(x, s) ≥ es2 for |s| large. Then, from
(5.12) for sufficiently large n, we obtain

s2
n ≥

∫
{|x|≤ 1√

n
}
f̃(x, snτn)(snτn)

≥
∫
{|x|≤ 1√

n
}
es

2
nτ

2
n(snτn)

≥ es
2
n

logn
16π2

sn√
16π2

√
log n

π2

2
1
n2

=
π

8
e(

s2n
16π2−2) lognsn(log n)

1
2 .

(5.14)

Using (5.12) and (5.14), it follows that sn is bounded and also s2
n → 32π2. Also

from (5.14), we have sn ≥ π
8 (log n)

1
2 for all large n, which gives a contradiction. �

We now prove the theorem regarding the existence of a second solution.

Theorem 5.5. Given a local minimum u0 of J in W 2,2
N (Ω), there exists an element

v0 ∈W 2,2
N (Ω) with v0 > 0 in Ω, such that J ′0(v0) = 0.

Proof. From Lemma 5.4, we have c0 ∈ [0, 16π2). Consider {vn} be a Palais-Smale
sequence for J0 at the level c0 around H (such a (PS)H,c0 sequence exists [6]).
Then, up to a subsequence, vn ⇀ v0 weakly in W 2,2

N (Ω) for some v0 ∈ W 2,2
N (Ω) by

Lemma 5.3 and (5.3) holds. We can easily check that, v0 is a solution of (5.2) and
therefore a critical point of J0. It remains to show that v0 is not a trivial solution.
We prove this by contradiction.
Case I. c0 = 0, v0 = 0. We note that, H = {‖v‖W 2,2

N (Ω) = R0
2 } in this case. Also,

on(1) = J0(vn) =
1
2

∫
Ω

|∆vn|2 −
∫

Ω

F̃ (x, vn) =
1
2

∫
Ω

|∆vn|2 + on(1),

which contradicts that dist(vn, H)→ 0 as n→∞.
Case II. c0 ∈ (0, 16π2), v0 = 0. Using the fact that J0(vn) → c0, we see that for
given any ε > 0, ‖vn‖2W 2,2

N (Ω)
≤ 32π2 − ε for all large n. Let, 0 < δ < ε

32π2 and

q = 32π2

(1+δ)(32π2−ε) > 1. We have∫
Ω

|f̃(x, vn)vn|q ≤ C
∫

Ω

e
((1+δ)q‖vn‖2)(

v2
n

‖vn‖2
)2

,

since, supx∈Ω̄ |f̃(x, s)s| ≤ Ce(1+δ)s2 for all s ∈ R and for some C > 0. Now
using Tarsi’s embedding (1.5), we obtain supx∈Ω̄

∫
Ω
|f̃(x, vn)vn|q < ∞ since (1 +

δ)q‖vn‖2 ≤ 32π2. Since vn → 0 pointwise almost everywhere in Ω, by recalling
Vitali convergence theorem, one obtains

∫
Ω
f̃(x, vn)vn → 0 as n→∞. Therefore,

on(1)‖vn‖W 2,2
N (Ω) = 〈J ′0(vn), vn〉 =

1
2

∫
Ω

|∆vn|2 −
∫

Ω

f̃(x, vn)vn

=
1
2

∫
Ω

|∆vn|2 + on(1),

which contradicts, 1
2

∫
Ω
|∆vn|2 → c0 as n→∞.

Therefore, v0 6≡ 0 in Ω and the positivity of v0 and −∆v0 follows from the fact
that, f̃(x, s) ≥ 0 for all (x, s) ∈ Ω× R and using the maximum principle. �
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6. Proof of Theorem 1.6

Define, λ∗ := µC
p+3
p+4
0 |Ω|−

p+2
2p+8 where C0 is same as in the Proposition (3.1). Then,

condition (3.1) is true whenever 0 < λ < λ∗. From the Theorem 4.2 and 5.5, we
show the existence of at least two positive solutions for (1.1). Also, we define

λ∗ := pµ−1/p
( λ1

p+ 1

) p+1
p
( ∫

Ω
φ1∫

Ω
hφ1

)
.

We prove, there is no solution of (1.1) when λ > λ∗. Assume, uλ be a solution of
(1.1). Now multiply (1.1) by φ1 and then integrating by parts over Ω, we obtain∫

Ω

φ1(∆2uλ) =
∫

Ω

f(uλ)φ1 + λ

∫
Ω

hφ1,

which implies

λ

∫
Ω

hφ1 =
∫

Ω

(λ1uλ − f(uλ))φ1. (6.1)

We see that, λ1t−f(t) ≤ λ1t−µtp+1 = Θ(t) for all t > 0. The global maximum for
the function Θ is pµ−1/p( λ1

p+1 )
p+1
p on (0,∞). Then, from (6.1) and the definition of

λ∗, we obtain λ ≤ λ∗. This completes the proof of Theorem 1.6.
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