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Abstract. This article concerns the existence of the least energy sign-changing

solutions for the Schrödinger-Poisson system

−∆u+ V (x)u+ λφ(x)u = f(u), in R3,

−∆φ = u2, in R3.

Because the so-called nonlocal term λφ(x)u is involved in the system, the vari-

ational functional of the above system has totally different properties from the
case of λ = 0. By constraint variational method and quantitative deformation

lemma, we prove that the above problem has one least energy sign-changing

solution. Moreover, for any λ > 0, we show that the energy of a sign-changing
solution is strictly larger than twice of the ground state energy. Finally, we

consider λ as a parameter and study the convergence property of the least

energy sign-changing solutions as λ↘ 0.

1. Introduction

In this article, we are interested in the existence, energy property of sign-
changing solution uλ and a convergence property of uλ as λ↘ 0 for the nonlinear
Schrödinger-Poisson system

−∆u+ V (x)u+ λφ(x)u = f(u), in R3,

−∆φ = u2, in R3,
(1.1)

where λ > 0 is a parameter. We assume that f ∈ C1(R,R) and satisfies the
following hypotheses:

(H1) f(t) = o(|t|) as t→ 0.
(H2) |f(t)| ≤ C(1 + |t|p) for all t ∈ R and 3 < p < 5.
(H3) limt→∞ F (t)/t4 = +∞, where F (t) =

∫ t
0
f(s)ds.

(H4) f(t)/|t|3 is an increasing function of t on R \ {0}.
We assume the potential V (x), satisfies

(H5) V (x) ∈ C(R3,R), infx∈R3 V (x) > 0 and lim|x|→∞ V (x) = +∞.
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We define the Sobolev space

H =
{
u ∈ H1(R3) :

∫
R3
V (x)u2dx <∞

}
with the norm

‖u‖ =
(∫

R3
(|∇u|2 + V (x)u2)dx

)1/2

, ∀u ∈ H.

By (H5), it follows that for 2 ≤ q < 6, the embedding H ↪→ Lq(R3) is compact, see
[7]. In fact, the condition (H5) may be weaken, for example, we refer to [6, 7] for
more details.

In recent years, there has been a great deal work dealing with problem (1.1),
specially on the existence of positive solutions, ground states and semiclassical
states, see for examples, [2, 3, 4, 11, 12, 13, 18, 19, 21, 22, 25, 28], etc. To the best
of our knowledge, there are very few results about the existence of sign-changing
solutions for problem (1.1). Recently, in [14], the authors study the infinitely many
sign-changing solutions for the nonlinear Schrödinger–Poisson system. And in [26],
the authors studied the existence of sign-changing solutions for a Schrödinger–
Poisson system with pure power nonlinearity |u|p−1u, moreover, only when λ > 0
is small enough, the authors showed that the energy of any sign-changing solution
is strictly larger than the least energy. However, their method strongly depends
on the fact that the nonlinearity is homogeneous, so it is difficult to apply their
method to our problem.

For u ∈ H. Let φu be unique solution of −∆φ = u2 in D1,2(R3), then

φu(x) =
1

4π

∫
R3

u2(y)
|x− y|

dy.

The weak solutions to problem (1.1) are the critical points of the functional defined
by

Iλ(u) =
1
2

∫
R3

(|∇u|2 + V (x)|u|2)dx+
λ

4

∫
R3
φuu

2dx−
∫

R3
F (u)dx.

Then Iλ ∈ C1(H,R) and for any ψ ∈ H,

〈I ′λ(u), ψ〉 =
∫

R3
(∇u∇ψ + V (x)uψ)dx+ λ

∫
R3
φuuψdx−

∫
R3
f(u)ψdx.

We call u a least energy sign-changing solution to problem (1.1) if u is a solution
of problem (1.1) with u± 6= 0 and

Iλ(u) = inf{Iλ(v) : v± 6= 0, I ′λ(v) = 0},
where u+ = max{u(x), 0} and u− = min{u(x), 0}.

When λ = 0, problem (1.1) does not depend on the nonlocal term φu(x) any
more, that is, it becomes to the following semilinear local equation

−∆u+ V (x)u = f(u), in R3. (1.2)

There are several ways in the literature to obtain sign-changing solutions for equa-
tion (1.2), see for instance [5, 8, 10, 16, 17, 20, 29, 30, 31]. However, all these
methods heavily relay on the following decompositions:

I0(u) = I0(u+) + I0(u−), (1.3)

〈I ′0(u), u+〉 = 〈I ′0(u+), u+〉 and 〈I ′0(u), u−〉 = 〈I ′0(u−), u−〉, (1.4)
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where
I0(u) =

1
2

∫
R3

(|∇u|2 + V (x)|u|2)dx−
∫

R3
F (u)dx.

Furthermore, (1.3) and (1.4) imply that the energy of any sign-changing solution
to (1.2) is larger than two times the least energy in H. However, for the case λ > 0,
due to the effect of the nonlocal term, the functional Iλ no longer possesses the
same decompositions as (1.3), (1.4). Indeed, we have

Iλ(u) = Iλ(u+) + Iλ(u−) +
λ

4

∫
R3
φu−(u+)2dx+

λ

4

∫
R3
φu+(u−)2dx, (1.5)

〈I ′λ(u), u+〉 = 〈I ′λ(u+), u+〉+ λ

∫
R3
φu−(u+)2dx, (1.6)

〈I ′λ(u), u−〉 = 〈I ′λ(u−), u−〉+ λ

∫
R3
φu+(u−)2dx. (1.7)

So the methods to obtain sign-changing solutions of the local problem (1.2) and
to estimate the energy of the sign-changing solutions seem not suitable for our
nonlocal one (1.1).

To obtain a sign-changing solution for problem (1.1), borrowing the idea in [23],
we first try to seek a minimizer of the energy functional Iλ over the following
constraint:

Mλ = {u ∈ H : u± 6= 0, 〈I ′λ(u), u+〉 = 〈I ′λ(u), u−〉 = 0}
and then we show that the minimizer is a sign-changing solution of (1.1). Note that
the paper [8] is concerned with equation (1.2), but in our problem (1.1) the nonlocal
term is involved such that the properties (1.3), (1.4) fail, and it is rather difficult to
show that Mλ 6= ∅. To prove it, in [24], the authors used the parametric method
and implicit function theorem, this makes the problem very complicated, here we
use Miranda’s Theorem in [15], which was first used in [1] for the least energy
sign-changing solution to Schrödinger-Poisson system on bounded domain and can
greatly simplify the proof in [24]. To show that the minimizer of the constrained
problem is a sign-changing solution, we will use the quantitative deformation lemma
and degree theory.

The following are the main results of this article.

Theorem 1.1. Let (H1)–(H5) hold. Then for any λ > 0, problem (1.1) has a least
energy sign-changing solution uλ, which has precisely two nodal domains.

In [26] the authors proved that the energy of any sign-changing solution is strictly
larger than the least energy only when λ > 0 is small enough, here we improve it to
the case for any λ > 0. In order to describe our result, some notations are needed.
Let

Nλ := {u ∈ H \ {0} : 〈I ′λ(u), u〉 = 0}, (1.8)

cλ := inf
u∈Nλ

Iλ(u) (1.9)

Let uλ ∈ H be a sign-changing solution of problem (1.1), it is clear from (1.6) and
(1.7) that u±λ 6∈ Nλ.

Theorem 1.2. Under the assumptions of Theorem 1.1, cλ > 0 is achieved and
Iλ(uλ) > 2cλ, where uλ is the least energy sign-changing solution obtained in Theo-
rem 1.1. In particular, cλ > 0 is achieved either by a positive or a negative function.
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It is evident that the energy of the sign-changing solution uλ obtained in Theorem
1.1 depends on λ. As a by-product of this paper, we give a convergence property of
uλ as λ↘ 0, which reflects some relationship between λ > 0 and λ = 0 in problem
(1.1).

Theorem 1.3. If the assumptions of Theorem 1.1 hold, then for any sequence
λn with λn ↘ 0 as n → ∞, there exists a subsequence, still denoted by λn, such
that uλn → u0 strongly in H as n → ∞, where u0 is a least energy sign-changing
solution of the problem

−∆u+ V (x)u = f(u), in R3,

u ∈ H,
(1.10)

which has precisely two nodal domains.

This paper is organized as follows. In Section2, we present some preliminary
lemmas which are essential for this paper. In Section 3, we give the proofs of
Theorems 1.1–1.3 respectively.

2. Some technical lemmas

In the sequel, we will use constraint minimization on Mλ to look for a critical
point of Iλ. For this, we start with this section by claiming that the set Mλ is
nonempty in H.

Lemma 2.1. Assume that (H1)–(H5) hold, if u ∈ H with u± 6= 0, then there exists
a unique pair (su, tu) ∈ R+ × R+ such that suu+ + tuu

− ∈Mλ.

Proof. Fixed u ∈ H with u± 6= 0. We first establish the existence of su, tu. Let

g(s, t) = 〈I ′λ(su+ + tu−), su+〉

= s2‖u+‖2 + s4λ

∫
R3
φu+(u+)2dx+ s2t2λ

∫
R3
φu−(u+)2dx

−
∫

R3
f(su+)su+dx,

(2.1)

h(s, t) = 〈I ′λ(su+ + tu−), tu−〉

= t2‖u−‖2 + t4λ

∫
R3
φu−(u−)2dx+ s2t2λ

∫
R3
φu+(u−)2dx

−
∫

R3
f(tu−)tu−dx.

(2.2)

From (f1) and (H3), it is easy to obtain that g(s, s) = 0, h(s, s) > 0 for s > 0 small
and g(t, t) < 0, h(t, t) > 0 for t > 0 large. Hence there exist 0 < r < R such that

g(r, r) > 0, h(r, r) > 0, g(R,R) < 0, h(R,R) < 0. (2.3)

From (2.1), (2.2) and (2.3), we have

g(r, β) > 0, g(β,R) < 0, ∀β ∈ [r,R],

h(α, r) > 0, h(R,α) < 0, ∀α ∈ [r,R].

By Miranda’s Theorem [15], there exists some point (su, tu) with α < su, tu < β
such that g(su, tu) = h(su, tu) = 0. So suu+ + tuu

− ∈Mλ.
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Now we show that the pair (su, tu) is unique and consider it in two cases. If
u ∈Mλ, then u+ + u− = u ∈Mλ. It means that

〈I ′λ(u), u+〉 = 〈I ′λ(u), u−〉 = 0;

that is,

‖u+‖2 + λ

∫
R3
φu+(u+)2dx+ λ

∫
R3
φu−(u+)2dx =

∫
R3
f(u+)u+dx, (2.4)

and

‖u−‖2 + λ

∫
R3
φu−(u−)2dx+ λ

∫
R3
φu+(u−)2dx =

∫
R3
f(u−)u−dx. (2.5)

We show that (su, tu) = (1, 1) is the unique pair of numbers such that suu++tuu− ∈
Mλ.

Assume that (s̃u, t̃u) is another pair of numbers such that s̃uu+ + t̃uu
− ∈ Mλ.

By the definition of Mλ, we have

s̃2
u‖u+‖2 + s̃4

uλ

∫
R3
φu+(u+)2dx+ s̃2

ut̃
2
uλ

∫
R3
φu−(u+)2dx

=
∫

R3
f(s̃uu+)s̃uu+dx,

(2.6)

t̃2u‖u−‖2 + t̃4uλ

∫
R3
φu−(u−)2dx+ s̃2

ut̃
2
uλ

∫
R3
φu+(u−)2dx

=
∫

R3
f(t̃uu−)t̃uu−dx.

(2.7)

Without loss of generality, we may assume that 0 < s̃u ≤ t̃u. Then, from (2.6), we
have

s̃2
u‖u+‖2 + s̃4

uλ

∫
R3
φu+(u+)2dx+ s̃4

uλ

∫
R3
φu−(u+)2dx ≤

∫
R3
f(s̃uu+)s̃uu+dx,

Moreover, we have

s̃−2
u ‖u+‖2 + λ

∫
R3
φu+(u+)2dx+ λ

∫
R3
φu−(u+)2dx ≤

∫
R3

f(s̃uu+)s̃u
s̃3
u

u+dx, (2.8)

By (2.8) and (2.4), one has

(s̃−2
u − 1)‖u+‖2 ≤

∫
R3

(f(x, s̃uu+)
(s̃uu+)3

− f(x, u+)
(u+)3

)
(u+)4dx. (2.9)

It follows from (H4) and (2.9) that 1 ≤ α̃u ≤ β̃u. By the same method, we may get
β̃u ≤ 1 by (H4), (2.5) and (2.7), which shows that α̃u = β̃u = 1.

If u 6∈ Mλ, then there exists a pair of positive numbers (αu, βu) such that αuu++
βuu

− ∈ Mλ. Suppose that there exists another pair of positive numbers (α′u, β
′
u)

such that α′uu
+ + β′uu

− ∈Mλ. Set v := αuu
+ + βuu

− and v′ := α′uu
+ + β′uu

−, we
have

α′u
αu
v+ +

β′u
βu
v− = α′uu

+ + β′uu
− = v′ ∈Mλ.

Since v ∈Mλ, we obtain that αu = α′u and βu = β′u, which implies that (αu, βu) is
the unique pair of numbers such that αuu+ + βuu

− ∈Mλ. The proof is complete.
�
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Lemma 2.2. Assume that (H1)–(H5) hold. For a fixed u ∈ H with u± 6= 0. If
g1(1, 1) ≤ 0 and h1(1, 1) ≤ 0, then there exists a unique pair (su, tu) ∈ (0, 1]× (0, 1]
such that g1(su, tu) = h1(su, tu) = 0.

Proof. Suppose that su ≥ tu > 0. By Lemma 2.1, we know that suu++tuu− ∈Mλ,
then

s2
u‖u+‖2 + s4

uλ

∫
R3
φu+(u+)2dx+ s4

uλ

∫
R3
φu−(u+)2dx

≥ s2
u‖u+‖2 + s4

uλ

∫
R3
φu+(u+)2dx+ s2

ut
2
uλ

∫
R3
φu−(u+)2dx

=
∫

R3
f(suu+)suu+dx.

(2.10)

Moreover, g1(1, 1) ≤ 0 implies that

‖u+‖2 + λ

∫
R3
φu+(u+)2dx+ λ

∫
R3
φu−(u+)2dx ≤

∫
R3
f(u+)u+dx. (2.11)

Combining (2.4) with (2.5), we have( 1
s2
u

− 1
)
‖u+‖2 ≥

∫
R3

(f(suu+)
(suu+)3

− f(u+)
(u+)3

)
|u+|4dx.

If su > 1, the left-hand side of this inequality is negative. But from (H4), the
right-hand side of this inequality is positive, so we have su ≤ 1. The proof is thus
complete. �

Lemma 2.3. For a fixed u ∈ H with u± 6= 0, then (su, tu) obtained in Lemma
2.1 is the unique maximum point of the function φ : R+ × R+ → R defined as
φ(s, t) = Iλ(su+ + tu−).

Proof. From the proof of Lemma 2.1, we know that (su, tu) is the unique critical
point of φ in R+ × R+. By (H3), we conclude that φ(s, t) → −∞ uniformly as
|(s, t)| → ∞, so it is sufficient to show that a maximum point cannot be achieved
on the boundary of (R+,R+). If we assume that (0, t̄) is a maximum point of φ.
Then since

φ(s, t̄) = Iλ(su+ + t̄u−)

=
s2

2
‖u+‖2 +

λ

4
s4

∫
R3
φu+(u+)2dx−

∫
R3
F (su+)dx

+
λ

4

(
s2t̄2

∫
R3
φu−(u+)2dx+ s2t̄2

∫
R3
φu+(u−)2dx

)
+
t̄2

2
‖u−‖2 +

λ

4
t̄4
∫

R3
φu−(u−)2dx−

∫
R3
F (t̄u−)dx

is an increasing function with respect to s if s is small enough, the pair (0, t̄) is not
a maximum point of φ in R+ × R+. The proof is now finished. �

By Lemma 2.1, we define the minimization problem

mλ := inf
{
Iλ(u) : u ∈Mλ

}
.

Lemma 2.4. Assume that (H1)–(H5) hold, then mλ > 0 can be achieved for any
λ > 0.
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Proof. For every u ∈ Mλ, we have 〈I ′λ(u), u〉 = 0. From (f1), (f2), for any ε > 0,
there exists Cε > 0 such that

f(s)s ≤ εs2 + Cε|s|p+1 for all s ∈ R. (2.12)

By Sobolev embedding theorem, we obtain

‖u‖2 ≤
∫

R3
(|∇u|2 + V (x)|u|2)dx+ λ

∫
R3
φuu

2dx =
∫

R3
f(u)udx

≤ ε
∫

R3
|u|2dx+ Cε

∫
R3
|u|p+1dx

≤ C2ε‖u‖2 + C ′ε‖u‖p+1.

(2.13)

Pick ε = 1/(2C2). So there exists a constant α > 0 such that ‖u‖2 > α. By (2.3),
we have

f(s)s− 4F (s) ≥ 0.

Then

Iλ(u) = Iλ(u)− 1
4
〈I ′λ(u), u〉 ≥ ‖u‖

2

4
≥ α

4
.

This implies that Iλ(u) is coercive in Mλ and mλ ≥ α
4 > 0.

Let {un}n ⊂Mλ be such that Iλ(un)→ mλ. Then {un}n is bounded in H and
there exists uλ ∈ H such that u±n ⇀ u±λ weakly in H. Since un ∈ Mλ, we have
〈I ′λ(un), u±n 〉 = 0, that is

‖u±n ‖2 + λ

∫
R3
φu±n (u±n )2dx+ λ

∫
R3
φu∓n (u±n )2dx−

∫
R3
f(u±n )u±n dx = 0.

Similar as (2.7) we also have ‖u±n ‖2 ≥ β for all n ∈ N , where β is a constant.
Since un ∈Mλ, by (2.6) again, we have

β ≤ ‖u±n ‖2 <
∫

R3
f(u±n )u±n dx ≤ ε

∫
R3
|u±n |2dx+ Cε

∫
R3
|u±n |p+1dx.

In view of the boundedness of {un}n, there is C2 > 0 such that

β ≤ εC2 + Cε

∫
R3
|u±n |p+1dx.

Choosing ε = β/(2C2), we obtain∫
R3
|u±n |p+1dx ≥ β

2C̄
. (2.14)

where C̄ is a positive constant, in fact, C̄ = C β
2C2

.

By (2.8) and the compact embedding H ↪→ Lq(R3) for 2 ≤ q < 6, we obtain∫
R3
|u±λ |

p+1dx ≥ β

2C̄
.

Thus, u±λ 6= 0. By (f1), (f2), the compact embedding and [27, Theorem A.4],

lim
n→∞

∫
R3
f(u±n )u±n dx =

∫
R3
f(u±λ )u±λ dx,

lim
n→∞

∫
R3
F (u±n )dx =

∫
R3
F (u±λ )dx.

(2.15)



8 C. JI, F. FANG, B. ZHANG EJDE-2017/282

By the weak semicontinuity of norm and Fatou’s Lemma, we have

‖u±λ ‖
2 + λ

∫
R3
φu±λ

(u±λ )2dx+ λ

∫
R3
φu∓λ

(u±λ )2dx

≤ lim inf
n→∞

{
‖u±n ‖2 + λ

∫
R3
φu±n (u±n )2dx+ λ

∫
R3
φu∓n (u±n )2dx

}
.

From (2.9), we have

‖u±λ ‖
2 + λ

∫
R3
φu±λ

(u±λ )2dx+ λ

∫
R3
φu∓λ

(u±λ )2dx ≤
∫

R3
f(u±λ )u±λ dx (2.16)

From (2.10) and Lemma 2.2, there exists (suλ , tuλ) ∈ (0, 1]× (0, 1] such that

ūλ := suλu
+
λ + tuλu

−
λ ∈Mλ.

Condition (H4) implies that H(s) := sf(s) − 4F (s) is a non-negative function,
increasing in |s|, so we have

mλ ≤ Iλ(ūλ) = Iλ(ūλ)− 1
4
〈I ′λ(ūλ), ūλ〉

=
1
4
‖ūλ‖2 +

1
4

∫
R3

(
f(ūλ)ūλ − 4F (ūλ)

)
dx

=
1
4
‖suλu

+
λ ‖

2 +
1
4

∫
R3

(
f(suλu

+
λ )suλu

+
λ − 4F (suλu

+
λ )
)
dx

+
1
4
‖tuλu

−
λ ‖

2 +
1
4

∫
R3

(
f(tuλu

−
λ )tuλu

−
λ − 4F (tuλu

−
λ )
)
dx

≤ 1
4
‖uλ‖2 +

1
4

∫
R3

(
f(uλ)uλ − 4F (uλ)

)
dx

≤ lim inf
n→∞

[
Iλ(un)− 1

4
〈I ′λ(un), un〉

]
= mλ.

Then we conclude that suλ = tuλ = 1. Thus, ūλ = uλ and Iλ(uλ) = mλ. �

3. Proof of main results

Proof of Theorem 1.1. We first prove that the minimizer uλ for the minimization
problem is indeed a sign-changing solution of problem (1.1); that is, I ′λ(uλ) = 0.
For it, we will use the quantitative deformation lemma.

It is obvious that I ′λ(uλ)u+
λ = 0 = I ′λ(uλ)u−λ . From Lemma 2.3, for any (s, t) ∈

R+ × R+ and (s, t) 6= (1, 1),

Iλ(su+
λ + tu−λ ) < Iλ(u+

λ + u−λ ) = mλ.

If I ′λ(uλ) 6= 0, then there exist δ > 0 and κ > 0 such that

‖I ′λ(v)‖ ≥ κ for all ‖v − uλ‖ ≤ 3δ.

Let D := ( 1
2 ,

3
2 )× ( 1

2 ,
3
2 ) and g(s, t) := su+

λ + tu−λ . From Lemma 2.3, we also have

m̄λ := max
∂D

Iλ ◦ g < mλ.

For ε := min{(mλ− m̄λ)/2, κδ/8} and S := B(uλ, δ), there is a deformation η such
that

(a) η(1, u) = u if u 6∈ I−1
λ ([mλ − 2ε,mλ + 2ε]) ∩ S2δ;

(b) η(1, Imλ+ε
λ ∩ S) ⊂ Imλ−ελ ;

(c) Iλ(η(1, u))) ≤ Iλ(u) for all u ∈ H.
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See [27] for more details. It is clear that

max
(s,t)∈D̄

Iλ(η(1, g(s, t)))) < mλ.

Now we prove that η(1, g(D))∩Mλ 6= ∅ which contradicts to the definition of mλ.
Let us define h(s, t) = η(1, g(s, t))) and

Ψ0(s, t) :=
(
I ′λ(g(s, t))u+

λ , I
′
λ(g(s, t))u−λ

)
=
(
I ′λ(su+

λ + tu−λ )u+
λ , I

′
λ(su+

λ + tu−λ )u−λ
)
,

Ψ1(s, t) :=
(1
s
I ′λ(h(s, t))h+(s, t),

1
t
I ′λ(h(s, t))h−(s, t)

)
.

Lemma 2.1 and the degree theory imply that deg(Ψ0, D, 0) = 1. It follows from
that g = h on ∂D. Consequently, we obtain

deg(Ψ1, D, 0) = deg(Ψ0, D, 0) = 1.

Thus, Ψ1(s0, t0) = 0 for some (s0, t0) ∈ D, so that

η(1, g(s0, t0))) = h(s0, t0) ∈Mλ,

which is a contradiction. From this, uλ is a critical point of Iλ, moreover, it is a
sign-changing solution for problem (1.1).

Now we prove that uλ has exactly two nodal domains. By contradiction, we as-
sume that uλ has at least three nodal domains Ω1, Ω2, Ω3. Without loss generality,
we may assume that uλ > 0 a.e. in Ω1 and uλ < 0 a.e. in Ω2. Set

uλi := χΩiuλ, i = 1, 2, 3,

where

χΩi =

{
1 x ∈ Ωi,
0 x ∈ RN \ Ωi.

Then uλi 6= 0 and 〈I ′(uλ), uλi〉 = 0 for i = 1, 2, 3, so we have

〈I ′(uλ1 + uλ2), (uλ1 + uλ2)±〉 < 0.

By Lemma 2.2, there exists (sv, tv) ∈ (0, 1]× (0, 1] such that svuλ1 + tvuλ2 ∈Mλ.
Since

0 =
1
4
〈I ′λ(uλ), uλ3〉

=
1
4
‖uλ3‖2 +

λ

4

∫
R3
φuλuλ3

2dx− 1
4

∫
R3
f(uλ3)uλ3dx

≤ 1
4
‖uλ3‖2 +

λ

4

∫
R3
φuλuλ3

2dx− 1
4

∫
R3
F (uλ3)dx

< Iλ(uλ3) +
λ

4

∫
R3
φuλ1

uλ3
2dx+

λ

4

∫
R3
φuλ2

uλ3
2dx.

From (H4), we have

mλ ≤ Iλ(svuλ1 + tvuλ2)

= Iλ(svuλ1 + tvuλ2)− 1
4
〈I ′λ(svuλ1 + tvuλ2), svuλ1 + tvuλ2〉

=
s2
v‖uλ1‖2 + t2v‖uλ2‖2

4
+
∫

R3

(1
4
f(svuλ1)svuλ1 − F (svuλ1)

)
dx

+
∫

R3

(1
4
f(tvuλ2)tvuλ2 − F (tvuλ2)

)
dx
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≤ ‖uλ1‖2 + ‖uλ2‖2

4
+
∫

R3

(1
4
f(uλ1)uλ1 − F (uλ1)

)
dx

+
∫

R3

(1
4
f(uλ2)uλ2 − F (uλ2)

)
dx

= Iλ(uλ1) + Iλ(uλ2) +
λ

4

∫
R3
φuλ2

uλ1
2dx+

λ

4

∫
R3
φuλ3

uλ1
2dx

+
λ

4

∫
R3
φuλ1

uλ2
2dx+

λ

4

∫
R3
φuλ3

uλ2
2dx

< Iλ(uλ1) + Iλ(uλ2) + Iλ(uλ3) +
λ

4

∫
R3
φuλ2

uλ1
2dx

+
λ

4

∫
R3
φuλ3

uλ1
2dx +

λ

4

∫
R3
φuλ1

uλ2
2dx+

λ

4

∫
R3
φuλ3

uλ2
2dx

+
λ

4

∫
R3
φuλ1

uλ3
2dx+

λ

4

∫
R3
φuλ2

uλ3
2dx

= Iλ(uλ) = mλ,

which is impossible, so uλ has exactly two nodal domains. �

Proof of Theorem 1.2. As in the proof of Lemma 2.4, for each λ > 0, we can get
a vλ ∈ Nλ such that Iλ(vλ) = cλ > 0, where Nλ and cλ are defined by (1.8) and
(1.9), respectively. Moreover, the critical points of Iλ on Nλ are the critical points
of Iλ in H. Thus, vλ is a ground state solution of problem (1.1).

From Theorem 1.1, we know that problem (1.1) has a least energy sign-changing
solution uλ which changes sign only once. Suppose that uλ = u+

λ + u−λ . As the
proof of Step 1 in Lemma 2.1, there exist unique su+

λ
> 0 and tu−λ

> 0 such that

su+
λ
u+
λ ∈ Nλ, tu−λ

u−λ ∈ Nλ.

From (1.6) and (1.7), we have

〈I ′λ(u+
λ ), u+

λ 〉 < 0, 〈I ′λ(u−λ ), u−λ 〉 < 0.

So, by (H1)–(H4), one has su+
λ
∈ (0, 1) and tu−λ

∈ (0, 1). Then, by Lemma 2.3, we
obtain

2cλ ≤ Iλ(su+
λ
u+
λ ) + Iλ(tu−λ u

−
λ ) ≤ Iλ(su+

λ
u+
λ + tu−λ

u−λ ) < Iλ(u+
λ + u−λ ) = mλ,

that is Iλ(uλ) > 2cλ, which implies that cλ > 0 can not be achieved by a sign-
changing function. This completes the proof. �

Now we prove Theorem 1.3. In the following, we regard λ > 0 as a parameter in
problem (1.1). We shall study the convergence property of uλ as λ↘ 0.

Proof of Theorem 1.3. For any λ > 0, let uλ ∈ H be the least energy sign-changing
solution of problem (1.1) obtained in Theorem 1.1, which has exactly two nodal
domains.

Step 1. We show that, for any sequence {λn}n with λn ↘ 0 as n → ∞, {uλn}n
is bounded in H. Choose a nonzero function ϕ ∈ C∞0 (R3) with ϕ± 6= 0. From
f(s)s− 4F (s) ≥ 0, for s 6= 0, we have f(s)s > 4F (s). Then, (H3) implies that, for
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any λ ∈ [0, 1], there exists a pair (θ1, θ2) ∈ (R+ × R+), which does not depend on
λ, such that

θ2
1‖ϕ+‖2 + θ4

1λ

∫
R3
φϕ+(ϕ+)2dx+ θ2

1θ
2
2λ

∫
R3
φϕ−(ϕ+)2dx

−
∫

R3
f(θ1ϕ

+)θ1ϕ
+dx < 0,

θ2
2‖ϕ−‖2 + θ4

2λ

∫
R3
φϕ−(ϕ−)2dx+ θ2

2θ
2
1λ

∫
R3
φϕ+(ϕ−)2dx

−
∫

R3
f(θ2ϕ

−)θ2ϕ
−dx < 0.

In view of Lemmas 2.1 and 2.2, for any λ ∈ [0, 1], there is a unique pair (sϕ(λ), tϕ(λ)) ∈
(0, 1]× (0, 1] such that ϕ̄ := sϕ(λ)θ1ϕ

+ + tϕ(λ)θ2ϕ
− ∈Mλ. Thus, for all λ ∈ [0, 1],

we have

Iλ(uλ) ≤ Iλ(ϕ̄) = Iλ(ϕ̄)− 1
4
〈I ′λ(ϕ̄), ϕ̄〉

=
‖ϕ̄‖2

4
+
∫

R3

(1
4
f(ϕ̄)ϕ̄− F (ϕ̄)

)
dx

≤ ‖ϕ̄‖
2

4
+
∫

R3

(
C3ϕ̄

2 + C4|ϕ̄|p+1
)
dx

≤ ‖θ1ϕ
+‖2

4
+
‖θ2ϕ

−‖2

4
+
∫

R3

(
C3(θ1ϕ

+)2 + C4|θ1ϕ
+|p+1

+ C3(θ2ϕ
−)2 + C4|θ2ϕ

−|p+1
)
dx

= C0.

Moreover, for n large enough, we obtain

C0 + 1 ≥ Iλn(uλn) = Iλn(uλn)− 1
4
〈I ′λn(uλn), uλn〉 ≥

1
4
‖uλn‖2.

So {uλn}n is bounded in H.

Step 2. There exists a subsequence of {λn}n, still denoted by {λn}n, such that
uλn ⇀ u0 weakly in H. Then, u0 is a weak solution of (1.10). Since uλn is the
least energy sign-changing solution of (1.1) with λ = λn, then by the compactness
of the embedding H ↪→ Lq(R3) for 2 ≤ q < 2∗, we obtain that uλn → u0 strongly
in H as n→∞. In fact,

‖uλn − u0‖2 = 〈I ′λn(uλn)− I ′0(u0), uλn − u0〉 − λn
∫

R3
φuλnuλn(uλn − u0)dx

+
∫

R3
f(uλn)(uλn − u0)dx−

∫
R3
f(u0)(uλn − u0)dx.

Then u0 6= 0 and u0 has exactly two nodal domains.

Step 3. Suppose that v0 is a least energy sign-changing solution of (1.10), we may
refer to [9] for the existence of v0. By Lemma 2.1, for each λn > 0, there is a unique
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pair (sλn , tλn) ∈ R+ × R+ such that sλnv
+
0 + tλnv

−
0 ∈Mλn . So we have

s2
λn‖v

+
0 ‖2 + s4

λnλn

∫
R3
φv+0

(v+
0 )2dx+ s2

λnt
2
λnλn

∫
R3
φv−0

(v+
0 )2dx

=
∫

R3
f(sλnv

+
0 )sλnv

+
0 dx,

t2λn‖v
−
0 ‖2 + t4λnλn

∫
R3
φv−0

(v−0 )2dx+ s2
λnt

2
λnλn

∫
R3
φu+(u−)2dx

=
∫

R3
f(tλnv

−
0 )tλnv

−
0 dx.

We know that v±0 satisfies ‖v±0 ‖2 =
∫

R3 f(v±0 )v±0 dx. It is easy to check that

(sλn , tλn)→ (1, 1), as n→∞. (3.1)

From this limit and Lemma 2.3, we have

I0(v0) ≤ I0(u0) = lim
n→∞

Iλn(uλn) = lim
n→∞

Iλn(u+
λn

+ u−λn)

≤ lim
n→∞

Iλn(sλnu
+
λn

+ tλnu
−
λn

)

= I0(v0).

This means that u0 is a least energy sign-changing solution of (1.10) which has
precisely two nodal domains. The proof is complete. �
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