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Local existence and stability for a

hyperbolic–elliptic system

modeling two–phase reservoir flow ∗

H. J. Schroll & A. Tveito

Abstract

A system arising in the modeling of oil–recovery processes is analyzed.
It consists of a hyperbolic conservation law governing the saturation and
an elliptic equation for the pressure. By an operator splitting approach, an
approximate solution is constructed. For this approximation appropriate
a–priori bounds are derived. Applying the Arzela–Ascoli theorem, local
existence and uniqueness of a classical solution for the original hyperbolic–
elliptic system is proved. Furthermore, convergence of the approximation
generated by operator splitting towards the unique solution follows. It is
also proved that the unique solution is stable with respect to perturbations
of the initial data.

1 Introduction

The purpose of this paper is to study the system of partial differential equations

st +∇ · [f(s)v] = g ,

−∇ · [λ(s)∇p] = q , (1)

v = −λ(s)∇p .

This system is a prototypical model of incompressible two–phase flow in an
oil reservoir. Here s denotes the water–saturation and 1−s is the oil–saturation.
The function f = f(s) is referred to as the fractional–flow function and λ = λ(s)
denotes the sum of the phase mobilities. The pressure and the total velocity
are denoted by p and v respectively, and g, q denote source/sink terms of the
model.
The system (1) is a vital part of virtually any reservoir simulator. The

first equation is usually referred to as the saturation equation and the second is
correspondingly referred to as the pressure equation. The saturation equation is
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of hyperbolic nature whereas the pressure equation is elliptic; thus we consider
a coupled hyperbolic–elliptic system. The basic properties of the system are
derived by e.g. Peaceman [18] and Ewing [8]. Variants of the system have
been analyzed by a series of authors; Alt and DiBenedetto [2] and Kruzkov and
Sukorjanskii [16] proved existence and uniqueness results for smooth solutions of
this system in the presence of capillary forces. In this case there is an additional
viscous term in the saturation equation. For miscible flow, Feng [9] and recently
Chen and Ewing [4] obtained similar results. In all these cases the system is
a coupled parabolic–elliptic system whereas the system considered here is a
coupled hyperbolic–elliptic problem. The latter problem was analyzed by Frid
[10] who used a regularization of the velocity field to obtain smooth solutions.

The question related to viscous fingering has been addressed by e.g. Chorin
[5], Christie [6], Glimm, Marchesin and McBryan [13] and others. Also the ques-
tions related to numerical solution of this system have gained a lot of interest;
cf. e.g. Glimm, Isaacson, Marchesin and McBryan [12] or Bratvedt, Bratvedt,
Buchholz, Gimse, Holden, Holden, and Risebro [3].

In the present paper our aim is to analyze the hyperbolic–elliptic model
above, i.e. the case of immiscible, incompressible two–phase flow in a porous
medium. We will prove that this system, for a finite time, possesses a unique
and stable smooth solution. The existence is proved by a constructive argu-
ment relying on an application of the Arzela–Ascoli theorem to obtain the limit
of a family of approximate solutions. Uniform bounds, in the discretization
parameter, on derivatives of the approximate solutions are derived in proper
Hölder–norms. These bounds blow up in finite time as should be expected since
the solutions are known to develop discontinuities as time evolves. Thus, our
results are only valid for a limited time. After blow–up of the derivatives, the
solutions may continue to exist in a weaker topology. However, an existence
result of the system (1) allowing shocks in the saturations are not known to
the authors. The main contribution of the present paper is that the system is
analyzed without any regularization and without smoothing diffusion terms.

The outline of this paper is as follows. In the next section we state the precise
assumptions on the model and present the main result. In Section 3 an outline
of the proof is given. Section 4 is concerned with the properties of the pres-
sure equation. The basic bounds needed for the velocities are derived through
Schauder estimates carefully derived in Ladyzenskaya and Ural’tseva [17], cf.
also Gilbarg and Trudinger [11]. In Section 5 we study linear advection prob-
lems and the results for these equations are applied to the linearized saturation
equation in Section 6. As mentioned above, estimates on the spatial derivatives
of the approximate solutions imply, by the Arzela–Ascoli theorem, the conver-
gence of the family of approximate solutions. In Section 7 it is proved that the
limit also is sufficiently smooth in time and the nonlinear saturation equation
holds. Finally, we derive stability estimates for the initial value problem.



EJDE–2000/04 H. J. Schroll & A. Tveito 3

2 The main result

In this section we will give the precise assumptions on the mathematical model
under consideration. But first, we have to introduce some notation. The basic
properties of norms and function spaces used here are discussed in e.g. [1, 11, 17].
With x · y =

∑
j xjyj and |x| =

√
x · x we denote the Euklidian inner product

and norm in Rn. The usual sup–norm for bounded functions f ∈ L∞ is denoted
by ‖ · ‖L∞ . Similarly ‖ · ‖Lp is the Lp–norm and ‖ · ‖Hm is the Sobolev norm

‖f‖Hm =
∑
|β|≤m ‖D

βf‖L2, where β ∈ N
d
0 is a multi-index, |β| =

∑d
j=1 βj and

Dβ =
∂|β|

∂β1x1 . . . ∂
βd
xd

.

For functions f ∈ Ck(Ω) we write ‖f‖k =
∑
|β|≤k ‖D

βf‖L∞. A function f is
called α–Hölder continuous, if the quantity

|f |α = sup
x 6=y∈Ω

|f(x)− f(y)|

|x− y|α
, 0 < α ≤ 1

is finite. Note that Hölder continuity with α = 1 is the same as Lipschitz
continuity. The Hölder spaces are defined as subspaces of Ck(Ω)

Ck,α(Ω) := {f ∈ Ck(Ω) : ‖f‖k,α <∞}, k ∈ N, 0 < α ≤ 1

with the associated norms ‖f‖k,α = ‖f‖k +
∑
|β|=k |D

βf |α.

We consider incompressible and immiscible two–phase flow in a two– or
three–dimensional reservoir Ω ⊂ Rd, d = 2, 3. A derivation of the model can be
found in the books by Ewing [8] and Peaceman [18]:

st +∇ · [f(s)v] = g ,

−∇ · [λ(s)∇p] = q , (2)

v = −λ(s)∇p , t ≥ 0 , x ∈ Ω

Here, Ω is the domain defined by the reservoir. Since s denotes the saturation
of the aqueous phase, the first equation is often referred to as the saturation
equation. Similarly, the second equation is referred to as the pressure equation.
Furthermore, the system (2) is augmented with the following initial and

boundary conditions

s(0, x) = s0(x), x ∈ Ω̄;
∂p

∂n
= 0, x ∈ ∂Ω;

∫
Ω

p dΩ = 0. (3)

Here, n denotes the outward normal to the boundary ∂Ω. We assume that the
reservoir initially is filled with oil such that

0 ≤ s0(x) < s+ � 1, x ∈ Ω̄.
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In order to ensure that the saturation remains in the unit interval, we only seek
solutions up to time

t ≤ t? =
1− s+

‖qo‖L∞ + ‖qw‖L∞
. (4)

More precisely, we will seek a solution for t ≤ t? if the solution stays sufficiently
smooth in this time-interval. If smoothness breaks down at T? < t? we will only
prove existence up to T?. This point will be clarified below where we derive
a–priori estimates of the appropriate Hölder norms of the solutions.
The functions involved are assumed to satisfy the following requirements

(i) f ∈ C∞([0, 1], [0, 1]),

(ii) λ(s) ≥ c0 > 0, λ ∈ C∞[0, 1],

(iii) s0 ∈ C1,α(Ω̄), 0 ≤ s0(x) ≤ s+ � 1, x ∈ Ω̄,

(iv) q, g ∈ C∞(R+ × Ω̄), q(t, ·), g(t, ·) ∈ C∞0 (Ω̄),

(v) g ≥ 0, g − q ≥ 0,

∫
Ω

q(t, ·) dΩ = 0, (t, x, y) ∈ R+ × Ω,

(vi) Ω ⊂ Rd is a smoothly bounded domain ∂Ω ∈ C2,α and d = 2 or 3.
(5)

Now, we are in the position to state the main result of the present paper.

Theorem 2.1 Assume the data satisfy the requirements listed in (5). Then,
the two–phase reservoir model (2) with initial and boundary conditions (3) has
locally in time a unique, classical solution. More precisely: There is a time
T > 0 and a unique solution of (2) and (3) such that

s(t, ·) ∈ C1,α(Ω̄), s(·, x) ∈ C1([0, T ]), p(t, ·) ∈ C2,α(Ω̄), t ∈ [0, T ], x ∈ Ω̄.

For any two solutions (s, p) and (S, P ) with initial data s0 and S0 satisfying (5)
(iii) the following stability estimates hold

‖(s− S)(t, ·)‖L2 ≤ M‖s0 − S0‖L2,

‖(p− P )(t, ·)‖H1 ≤ M‖s0 − S0‖L2, t ∈ [0, T ].
(6)

The constant M depends on the smoothness of the solutions and the time T .

Remark. The corresponding stability estimate for the flow speed v =
−λ(s)∇p follows easily from the above estimates for the saturation and the
pressure gradient

‖(v − V )(t, ·)‖L2 ≤M‖s
0 − S0‖L2, t ∈ [0, T ].

The model considered in this paper relies on a series of assumptions. Some
of these are reasonable from a physical point of view and some are not. The
assumption of compact support for the source terms is natural, as injection and
production usually takes place only in a few spots in the reservoir. Let us discuss
out the non–physical assumptions more specifically.
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1. The main disadvantage of the present analysis is, that we are only able
to handle the case of smooth solutions. We prove that such solutions
exist for a while, but we also know that they will subsequently develop
discontinuities and thus probably exist in a weaker topology. Compared
with other work in this field, we are able to avoid the introduction of
diffusion terms and other types of regularization at the prize of getting
existence locally in time.

2. We have assumed constant porosity φ and constant absolute permeability
K. These assumptions can, without difficulties, be relaxed to cover the
case of sufficiently smooth and uniformly positive functions. However,
real porosity and absolute permeability can be discontinuous functions in
which case the solutions cease to exist in the spaces considered here.

3. More general, smooth source terms can be included. Also more general
smooth initial data can be allowed provided that these data and the asso-
ciated source terms imply the proper invariant region for the saturations.
The assumptions applied here are put up in order to reduce the technical-
ities.

4. The present analysis balances the smoothness of the saturation equation
and the pressure equation such that subsequent solutions of these equa-
tions generate solutions of proper regularity. If discontinuities are allowed
in either porosity, sources, sinks or absolute permeabilities, this balance
is lost and our argument fails. In order to prove existence for such data,
a theory covering discontinuous solutions must be developed. Typically,
one would look for existence of a BV saturation and a H1 pressure. But
such a theory is not known for this system.

3 Outline of the argument

Our approach to prove local existence of a solution is based on a–priori bounds
for a family of approximate solutions and the Arzela–Ascoli theorem. For the
elliptic pressure equation so–called Schauder estimates are available in the lit-
erature. To make use of these estimates, we decompose the coupled system into
the hyperbolic and the elliptic sub–problems by a fractional step approach.

Define an approximate solution (s∆, p∆) as follows:
Initially n = 0 and s0∆ = s

0 ∈ C1,α is given.
Then repeat the following three steps for n = 0, 1, 2, . . . , N = min(t?, T?)/∆t.

i) Define pn∆ as the solution of

−∇ · (λ(sn∆)∇p
n
∆) = q

n , x ∈ Ω ,

∂pn∆
∂n
= 0 , x ∈ ∂Ω , (7)∫
Ω

pn∆ dΩ = 0 .
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ii) Set vn∆ = −λ(s
n
∆)∇p

n
∆, x ∈ Ω̄.

iii) Solve the variable coefficient advection equation

∂

∂t
s∆ + f

′(sn∆)v
n
∆ · ∇s∆ = g

n − f(sn∆)q
n, (t, x) ∈ (tn, tn+1)× Ω, (8)

with initial data s∆(tn, ·) = sn∆ for one time step tn → tn+1 = (n+ 1)∆t.

Note that we can switch between the conservative and the non–conservative
form of the saturation equation. ¿From the pressure equation (7) it follows

∇ · vn∆ = q
n.

Therefore, for smooth solutions the saturation equation is equivalent to

∂

∂t
s∆ + f

′(s∆)v
n
∆ · ∇s∆ = g − f(s∆)q

n,

which is approximated by (8).
Clearly, the approximate solution (s∆, p∆) depends on the time step ∆t. In

the next section we shall derive bounds on the pressure pn∆ and the flow speed
vn∆ in terms of the saturation s

n
∆. Since the flow speed is frozen during one time

step for the saturation equation (8), these bounds can be used to obtain bounds
for the saturation sn+1∆ at the next time level. Up to some time T > 0 we obtain
a family of uniformly smooth functions (s∆(t, ·), p∆(t, ·)) in space ie. we bound
‖s∆(t, ·)‖1,α and hence ‖p∆(t, ·)‖2,α independent of ∆t. In Section 6 existence of
a smooth limit as ∆t→ 0 can be inferred from the Arzela–Ascoli theorem. By
construction s∆(·, x) is continuous but not differentiable with respect to time.
Differentiability of the limit s := lim∆t→0 s∆ depends on the continuity of the
speed v∆ = −λ(s∆)∇p∆ as a function in time. In Section 7 we show that v∆
is continuous in time. Sending ∆t to zero, we obtain a classical solution for
the coupled reservoir system (2). The stability of this solution follows from the
stability of the pressure equation with respect to the right hand side and an
energy estimate for the saturation. In Section 10 we summarize the proof of
Theorem 2.1.
Finally, the uniqueness of the limit implies that not only a subsequence

—obtained by the Arzela–Ascoli theorem— but also the complete family of
approximate solutions (s∆, p∆) converges as ∆t→ 0. Since the above operator
splitting approach is used in most of the available reservoir simulation software,
we state this convergence as the second main result of the present paper. It will
be proved in Section 9.

Theorem 3.1 Under the general assumptions (5), the approximation (s∆, p∆)
generated by the operator splitting approach above converges to the unique clas-
sical solution (s, p) of the reservoir model (2) with boundary conditions (3):

‖s∆(t, ·)− s(t, ·)‖1 → 0, ‖p∆(t, ·)− p(t, ·)‖2 → 0, t ∈ [0, T ],

as ∆t→ 0.
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4 The pressure equation

As mentioned above, we have to solve an elliptic pressure equation at each time
step. In this section we discuss the regularity of the solution of this equation.
Consider a given saturation function s = s(x) and a source term q = q(x)

such that

s ∈ C1,α(Ω̄), 0 ≤ s(x) ≤ 1, q ∈ C∞(Ω̄),

∫
Ω

q dΩ = 0.

The corresponding pressure is defined by

−∇ · (λ(s)∇p) = q , x ∈ Ω ,

∂p

∂n
= 0, x ∈ ∂Ω , (9)∫
Ω

p dΩ = 0 .

This variable-coefficient elliptic type boundary value problem has been carefully
studied, cf. e.g. Gilbarg and Trudinger [11] or Ladyzenskaya and Ural’tseva [17].
It follows from [17] (Section 3.3 estimate (3.6)) that (9) has a unique solution
p ∈ C2,α(Ω̄) satisfying the bound

‖p‖2,α ≤ M

{
(1 + |s|α)‖q‖L∞ + |q|α + ‖p‖L∞

[
1 + (1 + |s|α)

2+α
α

+
∑
|β|=1

(
(1 + ‖Dβs‖L∞)

2+α + (1 + |Dβs|α)
2+α
1+α

) ]}
.

The constant M depends only on the ellipticity constant c0 (cf. (5)) and the
smoothness of λ and ∂Ω. Since 1 + a ≤ exp(a) for any a, it follows that

‖p‖2,α ≤ M

{
‖q‖0,α exp(‖s‖1,α) + ‖p‖L∞

[
1 + exp(

2 + α

1 + α
‖s‖1,α)

+ exp((2 + α)‖s‖1,α) + exp(
2 + α

α
‖s‖1,α)

]}
.

Since
2 + α

1 + α
< 2 + α <

2 + α

α
, α ∈ (0, 1)

it follows

‖p‖2,α ≤M

{
‖q‖0,α exp(‖s‖1,α) + ‖p‖L∞ exp(

2 + α

α
‖s‖1,α)

}
. (10)

Here, we need to bound ‖p‖L∞ in terms of the data q and s. The outline for
this bound is as follows. By a Sobolev embedding (cf. [1] Theorem 5.4 part
II) H2(Ω) is embedded in C0,δ(Ω̄) where 0 < δ ≤ 2 − d/2 ≤ 1/2 and d = 2, 3.
Hence,

‖p‖L∞ ≤ ‖p‖0,δ ≤M‖p‖H2.
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Here, and in the rest of the paper, M denotes a generic constant. Furthermore,
p ∈ H2 and

‖p‖H2 ≤M(‖q‖L2 + ‖s‖1,α‖p‖H1). (11)

This bound will be derived below. Finally, it is well known, c.f. Hackbusch [14]
p. 152, that

‖p‖H1 ≤M‖q‖L2.

The last three estimates yield

‖p‖L∞ ≤M‖p‖H2 ≤M(1 + ‖s‖1,α)‖q‖L2 .

Since Ω is bounded and q is smooth

‖p‖L∞ ≤M (1 + ‖s‖1,α) ‖q‖L∞ .

This estimate is used in (10) to find

‖p‖2,α ≤M‖q‖0,α (1 + ‖s‖1,α) exp(
2 + α

α
‖s‖1,α).

Considering q as a given smooth function and α as a constant this implies the
following bounds for p and v = −λ(s)∇p

‖p‖2,α ≤M exp(M‖s‖1,α), ‖v‖1,α ≤M exp(M‖s‖1,α), (12)

which will be crucial in the estimate of the saturation derived in the next section.
It remains to derive the estimate (11). A direct application of Hackbusch

[14] p. 218 ff. would give a bound like

‖p‖H2 ≤ C(‖q‖L2 + ‖p‖H1),

where the “constant” C depends on the coefficients of the elliptic operator

−∇ · (λ(s)∇p)

and hence on the saturation s. To avoid this implicit dependence, we rewrite
the pressure equation on Poisson form. Since p ∈ H2 it follows that

∆p = −
1

λ(s)
[q + λ′(s)∇s · ∇p] =: rhs.

For this type of equation it follows from standard elliptic theory (cf. [14] The-
orem 9.1.16) that

‖p‖H2 ≤M (‖rhs‖L2 + ‖p‖H1) ≤M‖rhs‖L2 .

Here, the constant M depends only on the geometry of Ω. Since λ(s) ≥ c0 > 0
is smooth and 0 ≤ s ≤ 1 the right hand side is bounded by

‖rhs‖L2 ≤
1

c0
(‖q‖L2 + ‖λ

′(s)‖L∞‖∇s · ∇p‖L2)

≤ M

(
‖q‖L2 +

∑
|β|=1

‖DβsDβp‖L2

)

≤ M

(
‖q‖L2 + ‖s‖1,α

∑
|β|=1

‖Dβp‖L2

)
.



EJDE–2000/04 H. J. Schroll & A. Tveito 9

¿From (a+ b)2 ≤ 2(a2 + b2), a, b ≥ 0 it follows that

∑
|β|=1

‖Dβp‖L2 ≤M‖∇p‖L2 ≤M‖p‖H1 ,

thus
‖p‖H2 ≤M‖rhs‖L2 ≤M (‖q‖L2 + ‖s‖1,α‖p‖H1) ,

which is exactly the estimate (11).

5 The advection equation

In this section the saturation equation with frozen speed (8) is analyzed. It is
a variable coefficient advection equation of the generic type

st + w · ∇s = h, t ≥ 0, x ∈ Ω (13)

with data
s(0, ·) = s0, w · n = 0. (14)

By the assumption w · n = 0 the boundary is characteristic and we do not need
to specify boundary data. Based on characteristics, we construct the classical
solution and derive estimates in terms of the data s0, w and h.

Lemma 5.1 With data s0, w ∈ C1(Ω̄) and h ∈ C1(R+×Ω̄) the Cauchy problem
(13) and (14) has a unique smooth solution s ∈ C1(R+ × Ω̄) and the following
bound holds:

‖s(t, ·)‖1 ≤ [1 +MCt exp(MCt)] ‖s0‖1 + t‖h‖1.

With data s0, w ∈ C1,α(Ω̄) and h ∈ C1,α(R+ × Ω̄) it follows s(t, ·) ∈ C1,α(Ω̄)
and

‖s(t, ·)‖1,α ≤ [1 +MCt exp(MCt)] ‖s0‖1,α +Mt exp(MCt)‖h‖1,α.

Here, C is a bound for ‖w‖1 or ‖w‖1,α respectively.

Proof. The proof of this result is divided into three steps. First, the solution
is constructed with C1–data. Then, the C1–estimate is derived. In a third step
the additional regularity with C1,α–data will be proved. The uniqueness is
obvious, as the equation is linear.
1. Existence: The point here is to observe that C1–regularity of the data is

enough to construct a smooth solution. The solution will be defined with the
help of characteristics c = c(t, x̄, t̄) given by

ct = w(c), t ∈ R, c(t̄, x̄, t̄) = x̄ ∈ Ω̄.

As the characteristic speed is differentiable, the characteristic is unique and
depends smoothly on the initial value Dx̄c(t, ·, t̄) ∈ C(Ω). Since the boundary



10 Local existence and stability EJDE–2000/04

itself is characteristic, all characteristics started in Ω̄ stay in Ω̄ and therefore
they exist for all time.
We define a function s(t, x) by pointwise backtracking the characteristic.

For any t̄ ≥ 0 and x̄ ∈ Ω̄ we follow the characteristic back to t = 0. Let
x0 := c(0, x̄, t̄) and set

s(t̄, x̄) :=

∫ t̄
0

h (t, c(t, x̄, t̄)) dt+ s0(x0), x̄ ∈ Ω̄, t̄ ≥ 0. (15)

As the characteristics are unique, this is an appropriate pointwise definition. If
we can show that s is differentiable, then

d

dt
s(t, c(t, x̄, t̄)) = st +∇s · ct = st + w · ∇s = h(t, c(t, x̄, t̄)),

hence s is a solution of (13).
To study the differentiability of s, denote by x(t) = c(t, x̄, t̄) and y(t) =

c(t, ȳ, t̄) two different characteristics x̄ 6= ȳ. Then consider

s(t̄, x̄)− s(t̄, ȳ) =

∫ t̄
0

∫ 1
0

∇h (t, η(t, ξ)) dξ (x(t)− y(t)) dt+ s0(x0)− s0(y0),

where η(t, ξ) = y(t)+ ξ (x(t) − y(t)), ξ ∈ [0, 1]. Since the characteristic depends
smoothly on the initial value, we have

x(t) − y(t) =

∫ 1
0

Dxc(t, η̄(ξ), t̄) dξ(x̄ − ȳ), t ≥ 0,

where η̄(ξ) = ȳ + ξ (x̄− ȳ). Finally, since ∇h, ∇s0 and Dxc are continuous
functions and η(t, ξ) → y(t) as x̄ → ȳ, the quotient (s(t̄, x̄)− s(t̄, ȳ))/|x̄− ȳ| is
continuous and the limit x̄→ ȳ exists. This shows that s is differentiable with
respect to x.

t

xx x

t

t

0x

c(t,x,t)c(t,x,t)

Concerning the time variable we select x̄ ∈ Ω̄ and 0 ≤ t ≤ t̄. Using the
characteristic c(t, x̄, t̄) we express the time difference s(t̄, x̄)− s(t, x̄) by a space
difference. We have

s(t̄, x̄) = s(t, x) +

∫ t̄
t

h (τ, c(τ, x̄, t̄)) dτ
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where x := c(t, x̄, t̄) and thus

s(t̄, x̄)− s(t, x̄)

t̄− t
=
s(t, x)− s(t, x̄)

t̄− t
+

∫ t̄
t

h (τ, c(τ, x̄, t̄)) dτ

t̄− t
.

By construction ct = w(c), hence

lim
t→t̄

x̄− x

t̄− t
= ct(t̄, x̄, t̄) = w(c(t̄, x̄, t̄)) = w(x̄).

With s(t, ·) ∈ C1(Ω̄), it follows

lim
t→t̄

s(t, x)− s(t, x̄)

t̄− t
= ∇s(t̄, x̄)w(x̄).

As c and h are continuous,

lim
t→t̄

s(t̄, x̄)− s(t, x̄)

t̄− t
= ∇s(t̄, x̄)w(x̄) + h(t̄, x̄).

Therefore, s is differentiable with respect to t and s ∈ C1(R+ × Ω̄).
2. The estimate: ¿From the definition (15) it is obvious that

‖s(t, ·)‖L∞ ≤ ‖s
0‖L∞ + t‖h‖L∞. (16)

To estimate first order derivatives of s, we apply the gradient to equation (13).
Along characteristics it follows

d

dt
∇s+DwT · ∇s = ∇h,

where Dw is the Jacobian of w. Hence,

∇s(t, c(t, x0, 0)) = exp

(
−

∫ t
0

DwT (c(τ, x0, 0)) dτ

)
∇s0(x0)

+

∫ t
0

∇h(τ, x(τ, x0, 0)) dτ,

where c is a characteristic. Because each element of Dw is bounded by C, we
have |DwT | ≤MC and

∣∣∣∣exp
(
−

∫ t
0

DwT (c(τ, x0, 0)) dτ

)
− I

∣∣∣∣ ≤MCt exp(MCt). (17)

For |β| = 1 it follows

∣∣Dβxs(t, c(t, x0, 0))∣∣ ≤ ‖Dβxs0‖L∞+MCt exp(MCt)
∑
|β|=1

‖Dβxs
0‖L∞+t‖D

β
xh‖L∞
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and therefore∑
|β|=1

‖Dβxs(t, ·)‖L∞ ≤ [1 +MCt exp(MCt)]
∑
|β|=1

‖Dβxs
0‖L∞ + t

∑
|β|=1

‖Dβxh‖L∞ .

In combination with (16) the bound in C1 follows

‖s(t, ·)‖1 ≤ [1 +MCt exp(MCt)] ‖s0‖1 + t‖h‖1. (18)

Note that M depends on the dimension d.
3. Additional regularity: Next, we assume slightly more regularity for the

data, namely (14), and show that the solution has the same regularity i.e.
s(t, ·) ∈ C1,α(Ω̄). Consider again two different characteristicsx(t) = c(t, x0, 0) 6=
c(t, y0, 0) = y(t), then

∇s(t, x(t)) −∇s(t, y(t)) = ∇s0(x0)−∇s0(y0)

+ [exp(A(x)) − I]
(
∇s0(x0)−∇s0(y0)

)
+ [exp(A(x)) − exp(A(y))]∇s0(y0)

+

∫ t
0

∇h(τ, x(τ)) −∇h(τ, y(τ)) dτ,

(19)

where A(x) := −

∫ t
0

DwT (x(τ)) dτ . As the convex combination

B(ξ) = A(y) + ξ (A(x) −A(y)) , ξ ∈ [0, 1]

is bounded

|B(ξ)| ≤ max (|A(x)|, |A(y)|) ≤ t‖DwT ‖L∞ ≤MCt

it follows

|exp (A(x)) − exp (A(y))| ≤ exp (MCt) |A(x) −A(y)|.

Here, we use w ∈ C1,α and find

|exp (A(x)) − exp (A(y))| ≤ exp (MCt) |DwT |α

∫ t
0

|x(τ) − y(τ)|α dτ. (20)

Again each element ofDw has a bounded Hölder coefficient, therefore |DwT |α ≤
MC. It follows from (19) using the estimates (17),(20) as well as C1,α–smoothness
of s0 and h∣∣Dβxs(t, x(t))−Dβxs(t, y(t))∣∣ ≤ ∣∣Dβxs0∣∣α |x0 − y0|α

+MCt exp (MCt)
∑
|β|=1

∣∣Dβxs0∣∣α |x0 − y0|α

+MC exp (MCt)
∑
|β|=1

‖Dβxs
0‖L∞

∫ t
0

|x(τ) − y(τ)|α dτ

+
∑
|β|=1

∣∣Dβxh∣∣α
∫ t
0

|x(τ) − y(τ)|α dτ, |β| = 1.

(21)
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Here, we need a bound for γ(τ) = x(τ)− y(τ) in terms of γ(t) where 0 ≤ τ ≤ t.
By definition

γ′(t) = w(x(t)) − w(y(t)).

Let η(t, ξ) = y(t) + ξ(x(t)− y(t)), ξ ∈ [0, 1], then it holds

γ′(t) = w(η(t, 1)) − w(η(t, 0)) =

∫ 1
0

Dw(η(t, ξ)) dξ γ(t).

Now, consider the derivative

d

dt
|γ(t)|2 = 2 < γ(t), γ′(t) >= 2 < γ(t),

∫ 1
0

Dw(η(t, ξ)) dξ γ(t) > .

As Dw is bounded it follows

−MC|γ(t)|2 ≤
d

dt
|γ(t)|2 ≤MC|γ(t)|2.

Using the lower bound, we find the desired estimates

|γ(τ)| ≤ exp(MC(t− τ))|γ(t)|, τ ≤ t

and ∫ t
0

|γ(τ)|α dτ ≤ t exp(αMCt)|γ(t)|α.

Inserted in (21) —treating α as a constant— we get∣∣Dβxs(t, ·)∣∣α ≤ exp(MCt)
∣∣Dβxs0∣∣α

+MCt exp (MCt)
∑
|β|=1

‖Dβxs
0‖0,α

+t exp(MCt)
∑
|β|=1

∣∣Dβxh∣∣α , |β| = 1.

With exp(x) ≤ 1 + x exp(x) it follows∑
|β|=1

∣∣Dβxs(t, ·)∣∣α ≤
∑
|β|=1

∣∣Dβxs0∣∣α
+MCt exp (MCt)

∑
|β|=1

‖Dβxs
0‖0,α

+Mt exp(MCt)
∑
|β|=1

∣∣Dβxh∣∣α .

Finally, taking into account the C1–bound (18) results in

‖s(t, ·)‖1,α ≤ [1 +MCt exp(MCt)] ‖s0‖1,α +Mt exp(MCt)‖h‖1,α.

The constant M depends on the spatial dimension of the reservoir Ω and the
Hölder coefficient α, but not on the data s0, w or h. Here, the proof of
Lemma 5.1 is complete. ♦
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6 Existence of the limit

To establish the limit of the approximate solution by the Arzela–Ascoli theorem,
we need to bound the family (sn∆, p

n
∆) uniformly in ∆t.

Due to the time limitation (4) it follows easily that the saturation stays in
the unit interval.

Lemma 6.1 Assume the general requirements (5) hold. Then, up to time t?,
the approximate saturation s∆ defined in Section 3 remains in the unit interval

s∆(t, x) ∈ [0, 1], (t, x) ∈ [0, t?]× Ω̄.

Proof. Initially we have

0 ≤ s0(x) ≤ s+ � 1.

The approximation is piecewise defined by (8)

∂

∂t
s∆ + f

′(sn∆)v
n
∆ · ∇s∆ = gn − f(sn∆)q

n, (t, x) ∈ (tn, tn+1)× Ω,

s∆(tn, ·) = sn∆.

By (15), the solution of this Cauchy problem is

s∆(t, x) =

∫ t
tn

h∆(c(τ, x, t)) dτ + s
n
∆(c(tn, x, t)), tn ≤ t ≤ tn+1,

where h∆ = gn − f(sn∆)q
n. With sn∆ ∈ [0, 1], the source term is non–negative

and bounded (cf. (5) (v))

0 ≤ gn − f(sn∆)q
n = (1− f(sn∆))g

n + f(sn∆)(g
n − qn) ≤ ‖g‖L∞ + ‖g − q‖L∞

It follows by induction

0 ≤ s∆(t, x) ≤ s
+ + n∆t (‖g‖L∞ + ‖g − q‖L∞) .

By the definition of t? (cf. (4)) the right hand side is bounded by 1 for n∆t ≤ t?
(remember g = qw and g − q = qo). ♦
A bound for first order derivatives and their Hölder coefficients is obtained

by an iterative application of Lemma 5.1 to the linearized saturation equation
(8). Therefore, we need to estimate the frozen speed w∆ = f ′(sn∆)v

n
∆ and the

right hand side h∆ = g
n − f(sn∆)q

n in (8) in terms of sn∆.

Lemma 6.2 Let s ∈ C1,α(Ω̄, [0, 1]), f ∈ C∞([0, 1],R) and v ∈ C1,α(Ω̄,R) be
given, then

‖vf(s)‖1,α ≤M‖v‖1,α(1 + ‖s‖1,α + ‖s‖
2
1,α).

Proof. Since s is bounded and f is smooth

‖vf(s)‖L∞ ≤M‖v‖L∞. (22)
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Next, consider the gradient ∇(vf(s)) = (∇v)f(s) + vf ′(s)∇s. Similarly it
follows

‖∇(vf(s))‖L∞ ≤ M(‖∇v‖L∞ + ‖v‖L∞‖∇s‖L∞

≤ M‖v‖1,α(1 + ‖∇s‖L∞).

Since there is a generic M on the right hand side, we have
∑
|β|=1

‖Dβ(vf(s))‖L∞ ≤M‖v‖1,α(1 + ‖∇s‖1,α). (23)

Applying the product rule |fg|α ≤ ‖f‖L∞|g|α + |f |α‖g‖L∞, where f is a scalar
and g a vector to the gradient ∇(vf(s)) = (∇v)f(s) + v∇f(s), it follows that

|∇(vf(s))|α ≤ ‖∇v‖L∞ |f(s)|α +M |∇v|α + ‖v‖L∞|∇f(s)|α + |v|α‖∇f(s)‖L∞ .

Observe that |f(s)|α ≤M |s|α, ‖∇f(s)‖L∞ ≤M‖∇s‖L∞ and

|∇f(s)|α = |f ′(s)∇s|α ≤ M |∇s|α + |f ′(s)|α + ‖∇s‖L∞

≤ M |∇s|α +M |s|α + ‖∇s‖L∞.

This implies
|∇(vf(s))|α ≤M‖v‖1,α(1 + ‖s‖1,α + ‖s‖

2
1,α),

where we have used |g|α ≤ M(‖g‖L∞ + ‖∇g‖L∞) ≤ M‖g‖1,α for any C1,α–
function. Again, the same estimate holds for the sum

∑
|β|=1

|Dβ(vf(s))|α ≤M‖v‖1,α(1 + ‖s‖1,α + ‖s‖
2
1,α). (24)

Finally, the statement in Lemma 6.2 follows by adding the inequalities (22),
(23) and (24). ♦
Concerning the source term it holds

Lemma 6.3 Let s ∈ C1,α(Ω̄, [0, 1]), f ∈ C∞([0, 1],R) and g, q ∈ C∞([0, t?] ×
Ω̄,R) be given, then

‖g − f(s)q‖1,α ≤M(1 + ‖s‖1,α + ‖s‖
2
1,α).

Proof. Obviously ‖g−f(s)q‖1,α ≤M +‖f(s)q‖1,α and it remains to bound
the product f(s)q. As s is bounded, f is smooth and q is compactly supported
‖f(s)q‖L∞ ≤M . Furthermore,

‖∇(f(s)q)‖L∞ ≤ M (‖∇f(s)‖L∞ + ‖f(s)‖L∞) ≤M (1 + ‖∇s‖L∞) ,

|∇(f(s)q)|α ≤ ‖∇f(s)‖L∞ |q|α + |∇f(s)|α‖q‖L∞

+‖f(s)‖L∞ |∇q|α + |f(s)|α‖∇q‖L∞

≤ M (‖∇s‖L∞ + |∇s|α + |s|α‖∇s‖L∞ + 1 + |s|α)

≤ M
(
1 + ‖s‖1,α + ‖s‖

2
1,α

)
and Lemma 6.3 is proved. ♦
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Now, we are prepared to estimate the approximate saturation s∆ step by
step. Applying Lemma 5.1 to one time step

∂

∂t
s∆ + f

′(sn∆)v
n
∆ · ∇s∆ = g

n − f(sn∆)q
n, tn < t < tn+1

it follows

‖s∆(t, ·)‖1,α ≤ [1 + ∆tMC exp (∆tMC)] ‖sn∆‖1,α

+∆tM exp (∆tMC) ‖gn − f(sn∆)q
n‖1,α ,

where C is a bound for ‖f ′(sn∆)v
n
∆‖1,α. By Lemma 6.2 —applied componentwise

to f ′(sn∆)v
n
∆—

‖f ′(sn∆)v
n
∆‖1,α ≤ C ≤M‖v

n
∆‖1,α

(
1 + ‖sn∆‖1,α + ‖s

n
∆‖
2
1,α

)
.

Using the bound (12) for the approximate speed vn∆

C ≤M exp (M‖sn∆‖1,α) .

Lemma 6.3 states

‖gn − f(sn∆)q
n‖1,α ≤M exp (M‖s

n
∆‖1,α)

and hence

‖s∆(t, ·)‖1,α ≤ {1 + ∆tM exp [M exp (M‖sn∆‖1,α)]} ‖s
n
∆‖1,α

+∆tM exp [M exp (M‖sn∆‖1,α)] , tn ≤ t ≤ tn+1 .

Using x ≤ ex this estimate simplifies to

‖sn+1∆ ‖1,α ≤ ‖s
n
∆‖1,α +∆tM exp [M exp (M‖s

n
∆‖1,α)] .

Therefore ‖sn∆‖1,α is bounded by ψ
n which is defined by the one–step method

ψn+1 = ψn +∆tM exp [M exp (Mψn)] , ψ0 = ‖s0‖1,α .

This scheme is consistent to the initial value problem

ψ′ =M exp [M exp (Mψ(t))] , ψ(0) = ‖s0‖1,α

which has a unique solution ψ = ψ(t) up to some maximal T∗ > 0. As the right
hand side of this ordinary differential equation is convex and strictly increasing,
the approximation obtained by the explicit Euler method stays below the exact
solution

‖sn∆‖1,α ≤ ψ
n ≤ ψ(tn), tn = n ·∆t ≤ T∗

and the approximate saturation is uniformly bounded

‖s∆(t, ·)‖1,α ≤ ψ(t) ≤M, t ∈ [0, T ], T := min(t∗, T∗) .

This proves
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Lemma 6.4 Assume the general assumptions (5) hold and the approximate
solution is defined by the procedure in Section 3. Then, there is a time T > 0
such that the family (s∆, p∆, v∆) is uniformly bounded

‖s∆(t, ·)‖1,α ≤ M ,

‖p∆(t, ·)‖2,α ≤ M exp (M‖s∆(t, ·)‖1,α) ,

‖v∆(t, ·)‖1,α ≤ M exp (M‖s∆(t, ·)‖1,α) , 0 ≤ t ≤ T .

The generic M does not depend on the step–size ∆t.

Based on this a-priori bounds, the convergence of a subsequence as ∆t→ 0
follows.

Lemma 6.5 Under the assumptions of Lemma 6.4 there are limits s(t, ·) ∈
C1,α(Ω̄), p(t, ·) ∈ C2,α(Ω̄) and v(t, ·) ∈ C1,α(Ω̄) and a sequence ∆tj such that

‖s∆tj(t, ·)− s(t, ·)‖1 → 0 ,

‖p∆tj(t, ·)− p(t, ·)‖2 → 0 ,

‖v∆tj (t, ·)− v(t, ·)‖1 → 0 as ∆tj → 0 .

Furthermore, in the limit the pressure equation holds

−∇ · (λ(s)∇p) = q in Ω,
∂p

∂n
= 0 on ∂Ω,

∫
Ω

p dx = 0

and
∇ · v = −∇ · (λ(s)∇p) = q

for all t ∈ [0, T ].

A tool for the proof of Lemma 6.5 is the following version of the Arzela–
Ascoli theorem (cf. [15] Appendix 4)

Theorem 6.6 (Arzela–Ascoli) Let D ⊂ Rs denote a closed and bounded set
and let um : D → Cn be a sequence of functions such that

i) um is uniformly bounded: ‖um‖L∞ ≤M

ii) um is uniformly continuous: For all δ > 0 there exists a ε > 0, independent
of m, such that

‖um(x) − um(y)‖L∞ < δ if ‖x− y‖ < ε .

Then there is a sequence mj →∞ and a continuous function u : D → Cn such
that

‖umj − u‖L∞ → 0 as mj →∞ .

Proof of Lemma 6.5. Consider some fixed time t ∈ [0, T ]. We apply
Theorem 6.6 to s∆(t, ·). By Lemma 6.4 s∆ is uniformly bounded. As first order
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derivatives are bounded as well, s∆(t, ·) is uniformly continuous. Therefore,
there exists a sequence ∆tj and a continuous function s(t, ·) such that

‖s∆tj (t, ·)− s(t, ·)‖L∞ → 0 as ∆tj → 0 .

Next, consider the sequence ∇s∆tj (t, ·). Again, by Lemma 6.4 ∇s∆tj (t, ·) is
uniformly bounded. As |∇s∆tj (t, ·)|α is uniformly bounded, ∇s∆tj (t, ·) is uni-
formly continuous. Again, by Theorem 6.6 there is a subsequence ∆tk = ∆tjk
and a continuous function G(t, ·) such that

‖∇s∆tk(t, ·)−G(t, ·)‖L∞ → 0 as ∆tk → 0 .

Moreover, G(t, ·) is the gradient of s(t, ·). It holds

s∆tk(t, x) − s∆tk(t, x̄) =

∫ x
x̄

∇s∆tk(t, ξ) dξ .

Sending ∆tk to zero we find

s(t, x)− s(t, x̄) =

∫ x
x̄

G(t, ξ) dξ .

Obviously s(t, ·) is differentiable and G(t, ·) = ∇s(t, ·). Next, we show s(t, ·) ∈
C1,α(Ω̄). By Lemma 6.4

|∇s∆tk(t, x)−∇s∆tk(t, y)| ≤M |x− y|
α ,

where M is independent of ∆tk. Because ∇s∆tk converges to ∇s it follows
|∇s(t, ·)|α ≤M and hence s(t, ·) ∈ C1,α(Ω̄).
Associated with each s∆tk(t, ·) ∈ C

1,α(Ω̄), there is a corresponding pressure
p∆tk(t, ·) ∈ C

2,α(Ω̄) defined by the Neumann problem (9). It holds

‖p∆tk(t, ·)‖2,α ≤M exp (M‖s∆tk(t, ·)‖1,α) .

By Lemma 6.4 the pressure is uniformly bounded

‖p∆tk(t, ·)‖2,α ≤M, t ∈ [0, T ] .

Again, it follows as above the existence of a subsequence ∆t` = ∆tk` — the
subsequence claimed in Lemma 6.5 — such that both s∆t` and p∆t` converge.
Obviously, the flow speed v∆t`(t, ·) := −λ(s∆t`(t, ·))∇p∆t`(t, ·) associated

with the saturation and the pressure converges in C1 to v(t, ·) := −λ(s(t, ·))∇p(t, ·).
It remains to show that the pressure equation holds in the limit. By construction
we have

−∇· (λ(s∆t` )∇p∆t`) = q in Ω,
∂p∆t`
∂n

= 0 on Ω̄ and

∫
Ω

p∆t` dx = 0 . (25)

As λ is smooth ∇·(λ(s∆t`)∇p∆t`) converges pointwise to ∇·(λ(s)∇p) as ∆t` →
0. Therefore (25) holds in the limit. Finally, by definition ∇ · v(t, ·) = q and
Lemma 6.5 is proved. ♦
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In order to verify the saturation equation, we have to show that s is differen-
tiable with respect to time. Observe that this is not true for the approximation
s∆, as the frozen speed f

′(sn∆)v
n
∆ has a jump at discrete time levels tn = n∆t.

It is the purpose of the next section to verify that this jump is of order ∆t and
hence the limit v is continuous and s is differentiable in time.

7 The saturation equation

The approximate saturation is piecewise defined by

∂

∂t
s∆ + f

′(sn∆)v
n
∆ · ∇s∆ = g

n − f(sn∆)q
n, (t, x) ∈ (tn, tn+1)× Ω .

At tn the time derivative
∂
∂t
s∆ is discontinuous, since the frozen speed w∆ =

f ′(s∆)v∆ is discontinuous. We will show that s∆ is Lipschitz and the gradient
∇s∆ is α–Hölder continuous in time.

Lemma 7.1 Assume (5) holds. Then the approximate saturation s∆ has the
following regularity: For any t ∈ [0, T ], s∆(t, ·) ∈ C1,α(Ω̄). Furthermore

i) ‖s∆(t, ·)− s∆(τ, ·)‖L∞ ≤M |t− τ |,

ii) ‖∇s∆(t, ·)−∇s∆(τ, ·)‖L∞ ≤M |t− τ |α, t, τ ∈ [0, T ].

The constant M does not depend on ∆t.

We shall first apply this result before we prove it. An immediate consequence
from the uniform estimates and Lemma 6.5 is

Corollary 7.2 The regularity of s∆ carries over to the limit, i.e. s(t, ·) ∈
C1,α(Ω̄) and

i) ‖s(t, ·)− s(τ, ·)‖L∞ ≤M |t− τ |,

ii) ‖∇s(t, ·)−∇s(τ, ·)‖L∞ ≤M |t− τ |α.

Note that this is a preliminary result which will be improved below. It
implies that the speed v will be continuous in time. Then the saturation s is
differentiable in space and time.
Proof of Corollary 7.2. We know already that s(t, ·) ∈ C1,α(Ω̄). Further-

more, by Lemma 6.5 there is a sequence s∆tj converging to s. By Lemma 7.1 i)
it holds

‖s∆tj(t, ·)− s∆tj (τ, ·)‖L∞ ≤M |t− τ | .

As M is independent of ∆t, the limit s is Lipschitz in time. In the same way
Hölder continuity of the gradient follows from Lemma 7.1 ii). This proves the
Corollary. ♦
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As indicated above, time–Lipschitz continuity of s gives additional regularity
for the pressure gradient and the flow speed. Consider two time levels t, τ ∈
[0, T ] and denote by S = s(t, ·), P = p(t, ·), V = v(t, ·) and S = s(τ, ·), P =
p(τ, ·), V = v(τ, ·) the saturation, pressure and speed respectively. By definition
it holds

V − V = −λ(S)(∇(P − P ))− (λ(S)− λ(S))∇P . (26)

Obviously time–continuity of v depends on the continuity of the pressure gra-
dient. By Lemma 6.5 the pressure equation holds for all t ∈ [0, T ], hence

−∇ · (λ(S)∇P ) = q = −∇ · (λ(S)∇P )

and
−∇ · (λ(S)∇(P − P )) = ∇ ·

[
(λ(S) − λ(S))∇P

]
.

To estimate the pressure difference, we multiply by P − P , integrate in Ω and
apply the Gauss formula. Due to the Neumann boundary condition ∂p/∂n = 0
it follows∫

Ω

λ(S)∇(P − P ) · ∇(P − P ) dΩ =

∫
Ω

(λ(S) − λ(S))∇P · ∇(P − P ) dΩ.

Because of the ellipticity assumption λ ≥ c0 > 0, we find

c0‖∇(P − P )‖L2 ≤M‖S − S‖L2.

By (26) and Corollary 7.2 i) it follows

‖v(t, ·)− v(τ, ·)‖L2 ≤M‖s(t, ·)− s(τ, ·)‖L2 ≤M |t− τ |.

Recall that by Lemma 6.4 ‖v∆(t, ·)‖1,α is uniformly bounded. By Lemma 6.5
this bound carries over to the limit ‖v(t, ·)‖1 ≤ C uniformly in 0 < t < T .
Therefore, a technical argument ([19], Lemma 11.1) implies

Lemma 7.3 The velocity v(t, ·) is Hölder continuous in time

‖v(t, ·)− v(τ, ·)‖L∞ ≤M |t− τ |
2/(2+d), t, τ ∈ [0, T ] .

Now, we are in the position to conclude that s is differentiable and the
saturation equation holds. The approximate saturation is defined by the initial
value problem

∂

∂t
s∆ + w∆ · ∇s∆ = h∆ in (tn, tn+1)× Ω ,

s∆(tn, ·) = sn∆ .

Piecewise integration yields

s∆(t, ·)− s∆(τ, ·) =

∫ t
τ

h∆(ξ, ·)− w∆(ξ, ·) · ∇s∆(ξ, ·) dξ .
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Consider the convergent subsequence of Lemma 6.5. As s∆tj and v∆tj are
uniformly bounded and converge pointwise, we may compute the limit ∆tj → 0
under the integral sign and find

s(t, ·)− s(τ, ·) =

∫ t
τ

h(ξ, ·)− w(ξ, ·) · ∇s(ξ, ·) dξ , (27)

where h = g − f(s)q and w = f ′(s)v. By Corollary 7.2 s and hence h are
Lipschitz in time. Furthermore, the gradient of s is α–Hölder continuous. By
Lemma 7.3 v and hence w are continuous in time. Therefore, the complete
expression under the integral in (27) is continuous in time. It follows that s is
differentiable,

st + f
′(s)v · ∇s = g − f(s)q ,

and st is continuous
1 in time. Since by Lemma 6.5 q = ∇ · v, the saturation

equation holds in conservative form

st +∇ · [f(s)v] = g in [0, T ]× Ω .

Except of Lemma 7.1, the existence part of Theorem 2.1 is proved.
Proof of Lemma 7.1. Smoothness in space i.e. s∆(t, ·) ∈ C1,α(Ω̄) has

been discussed already, see Lemma 6.4. The point here is to focus on the time
variable. Similar as in the proof of Lemma 5.1 we investigate the smoothness in
time by transforming time differences into space differences using characteristics.
By definition it holds

∂

∂t
s∆ + w∆ · ∇s∆ = h∆ in (tn, tn+1)× Ω , s∆(tn, ·) = s

n
∆ ,

where w∆(t, x) = f ′(sn∆(x))v
n
∆(x) and h∆(t, x) = gn(x) − f(sn∆(x))q

n(x) in
[tn, tn+1)× Ω. Note that characteristics c = c(t, x̄, t̄) are uniquely defined by

ct = w∆(t, c), t ∈ [0, T ], c(t̄, x̄, t̄) = x̄ ∈ Ω̄ .

Along characteristics it holds

d

dt
s∆(t, c(t, x̄, t̄)) = h∆(t, c(t, x̄, t̄)), tn < t < tn+1

and

s∆(t̄, x̄) = s∆(t, x) +

∫ t̄
t

h∆(τ, c(τ, x̄, t̄)) dτ, 0 ≤ t ≤ t̄ ≤ T

where x := c(t, x̄, t̄). Now, the time difference is expressed by a space difference
and the evolution along the characteristic

s∆(t̄, x̄)− s∆(t, x̄) = s∆(t, x)− s∆(t, x̄) +

∫ t̄
t

h∆(τ, c(τ, x̄, t̄)) dτ .

1In fact st is Hölder continuous in time with exponent min(α, 2/(2 + d)).
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As s∆ is uniformly bounded, h∆ is bounded as well and the integral is of order
t̄− t ∣∣∣∣∣

∫ t̄
t

h∆(τ, c(τ, x̄, t̄)) dτ

∣∣∣∣∣ ≤M(t̄− t).
Furthermore, w∆ is bounded and |x̄− x| = O(t̄ − t), therefore

|s∆(t̄, x̄)− s∆(t, x̄)|

t̄− t
≤M

|s∆(t, x)− s∆(t, x̄)|

|x̄− x|
+M ≤M (1 + ‖∇s∆(t, ·)‖L∞) .

Obviously, s∆(·, x) is Lipschitz in time.
Concerning the gradient we have

∂

∂t
∇s∆ +

(
w∆ · (∇s∆)x
w∆ · (∇s∆)y

)
+

(
(w∆)x · ∇s∆
(w∆)y · ∇s∆

)
= ∇h∆, tn < t < tn+1 .

Along characteristics it follows

d

dt
∇s∆ = ∇h∆ − J

T
∆ · ∇s∆, tn < t < tn+1 ,

where J∆ is the Jacobian Dxw∆. This ordinary differential equation can easily
be solved

∇s∆(t, c(t, x̄, t̄)) = exp

(
−

∫ t
tn

JT∆(τ, c(τ, x̄, t̄)) dτ

)
∇s∆(tn, c(tn))

+

∫ t
tn

∇h∆(τ, c(τ, x̄, t̄)) dτ, tn ≤ t ≤ tn+1 .

Because spatial derivatives of w∆ and h∆ are uniformly bounded

∇s∆(t̄, x̄) = exp

(
−

∫ t̄
t

JT∆(τ, c(τ, x̄, t̄)) dτ

)
∇s∆(t, x)

+

∫ t̄
t

∇h∆(τ, c(τ, x̄, t̄)) dτ +O(t̄− t) ,

where the characteristic connects x := c(t, x̄, t̄) and x̄ = c(t̄, x̄, t̄). It follows

|∇s∆(t̄, x̄)−∇s∆(t, x)| = O(t̄− t),

|∇s∆(t̄, x̄)−∇s∆(t, x̄)| = |∇s∆(t, x)−∇s∆(t, x̄)|+O(t̄− t)

and
|∇s∆(t̄, x̄)−∇s∆(t, x̄)|

|t̄− t|α
≤M

(
|∇s∆(t, ·)|α + |t̄− t|

1−α
)
.

As |∇s∆(t, ·)|α is bounded, ∇s(·, x) is α–Hölder continuous.
This concludes the proof of Lemma 7.1. ♦
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8 Uniqueness and stability

It remains to show that for a pair of initial data s0 and S0 satisfying (5), the
associated solutions of the system

st +∇ · [f(s)v] = g ,

−∇ · [λ(s)∇p] = q ,

v = −λ(s)∇p, (t, x) ∈ [0, T ]× Ω

subject to the boundary conditions (3), are stable in the sense of (6). Obviously,
uniqueness is a consequence of these estimates.
In the following we derive an energy estimate for the saturation. For both s

and S the saturation equation (in non–conservative form) holds, therefore

(s− S)t + w · ∇(s− S) + (w −W ) · ∇S = h−H,

where w = f ′(s)v, W = f ′(S)V , h = g − f(s)q and H = g − f(S)q. Now
consider

1

2

d

dt
‖(s− S)(t, ·)‖2L2 =

∫
Ω

(s− S)(s− S)t dΩ = (I) + (II) + (III),

with

(I) := −

∫
Ω

(s− S)w · ∇(s− S) dΩ,

(II) := −

∫
Ω

(s− S)(w −W ) · ∇S dΩ,

(III) :=

∫
Ω

(s− S)(h−H) dΩ.

The goal is to bound each term by M‖(s− S)(t, ·)‖2L2 .
Concerning (I), we rewrite

w · ∇(s− S) = ∇ · (w(s − S))−∇ · w(s− S)

and find

(I) = −

∫
Ω

(s− S)∇ · (w(s − S)) dΩ +

∫
Ω

(s− S)∇ · w(s− S) dΩ.

By the Gauss formula and the boundary condition w · n = 0 it follows

∫
Ω

(s− S)∇ · (w(s − S)) dΩ = −

∫
Ω

∇(s− S) · w(s− S) dΩ = (I)

and

|(I)| =
1

2

∣∣∣∣
∫
Ω

(s− S)2∇ · w dΩ

∣∣∣∣ ≤M‖(s− S)(t, ·)‖2L2 . (28)
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This constant M depends on ‖∇ · w‖L∞ and hence on ‖∇s‖L∞ , ‖∇p‖L∞ and
‖∆p‖L∞.
Concerning the second term (II), consider

w −W = f ′(s)(v − V ) + (f ′(s)− f ′(S))V.

Here, we need to bound ‖(v − V )(t, ·)‖L2 in terms of ‖(s − S)(t, ·)‖L2 . ¿From
the pressure equation it follows

∇ · (λ(s)∇(p − P )) = ∇ · ((λ(s)− λ(S))∇P ).

We multiply by p− P , integrate in Ω and apply the Gauss formula. Again, the
boundary condition for the pressure gives

∫
Ω

λ(s)|∇(p − P )|2 dΩ =

∫
Ω

(λ(s)− λ(S))∇P · ∇(p− P ) dΩ.

The lower bound for λ (cf. (5) (ii)) implies

c0‖∇(p− P )(t, ·)‖L2 ≤M‖(s− S)(t, ·)‖L2 . (29)

Because of v − V = −λ(s)∇(p− P )− (λ(s) − λ(S))∇P it follows

‖(v − V )(t, ·)‖L2 ≤M‖(s− S)(t, ·)‖L2 (30)

and
‖(w −W )(t, ·)‖L2 ≤M‖(s− S)(t, ·)‖L2 .

Now it is obvious that

|(II)| ≤M‖(s− S)(t, ·)‖2L2 , (31)

where M depends on ‖∇P‖L∞.
¿From h−H = q(f(S)− f(s)) it follows that

|(III)| ≤M‖(s− S)(t, ·)‖2L2 . (32)

Finally, composing (28), (31) and (32) we find the energy estimate

d

dt
‖(s− S)(t, ·)‖2L2 ≤M‖(s− S)(t, ·)‖

2
L2 , t ∈ [0, T ],

where [0, T ] is the time interval by Lemma 6.4. Gronwall’s Lemma implies the
stability estimate for the saturation

‖(s− S)(t, ·)‖L2 ≤ e
Mt‖(s0 − S0)‖L2 . (33)

Together with (30) the corresponding estimate for the flow speed follows

‖(v − V )(t, ·)‖L2 ≤MeMt‖(s0 − S0)‖L2 .
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By (29) and (33) the gradient of the pressure difference is bounded in terms of
the data

‖∇(p− P )(t, ·)‖L2 ≤MeMt‖(s0 − S0)‖L2 .

Using Poincaré’s inequality (cf. [7] Sect. 7.2 Proposition 2) this bound turns
into the stability estimate for the pressure

‖(p− P )(t, ·)‖L2 ≤MeMt‖(s0 − S0)‖L2

and Theorem 2.1 is proved.

9 Convergence of the approximate solution

Having proved the uniqueness of smooth solutions of the hyperbolic–elliptic sys-
tem (2), (3) it follows by a standard argument, that not only the subsequence
obtained by Arzela–Ascoli (see Lemma 6.5), but also the entire family of ap-
proximate solutions (s∆, p∆) converges to this unique limit. The argument is
stated next.

Lemma 9.1 Let bj denote a sequence in a normed space such that

i) each subsequence bjk has a convergent subsequence.

ii) All convergent subsequences of bj converge to the same limit.

Then bj → b as j →∞.

Proof. If bj does not converge to b, then there is an ε > 0 and a sequence
jk → ∞, such that ‖bjk − b‖ ≥ ε for all jk. However, there is a convergent
subsequence of bjk with limit b, a contradiction. ♦
Let us apply Lemma 9.1 to prove Theorem 3.1.

Proof of Theorem 3.1. Consider the approximate solutions (s∆, p∆) de-
fined in Section 3. The complete family (s∆, p∆) and hence every subsequence
(s∆tj , p∆tj) is uniformly bounded by Lemma 6.4. By Lemma 6.5 every subse-
quence has a convergent subsequence (s∆tjk , p∆tjk ) and in the limit, the pressure
equation holds. Furthermore, by Section 7, the limit of s∆tjk satisfies the satu-
ration equation. As by Theorem 2.1 the solution of the coupled system (2), (3)
is unique, Lemma 9.1 applies and Theorem 3.1 is proved. ♦

10 Summary

The present paper presents an existence, uniqueness and stability result for a
hyperbolic–elliptic model of two–phase reservoir flow. Furthermore, a widely
used operator splitting approach is shown to converge to this solution. The
proof of the existence result Theorem 2.1 can be summarized as follows.
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The iterative procedure in Section 3 defines a family of approximate solutions
(s∆, p∆). By Section 4 the pressure and the flow speed v∆ = −λ(s∆)∇p∆ are
well–defined

p∆(tn, ·) ∈ C
2,α(Ω̄), v∆(tn, ·) ∈ C

1,α(Ω̄)

and bounded in terms of the source ‖q‖0,α and the saturation ‖s∆(tn, ·)‖1,α.
Lemma 5.1 states that the approximate saturation

s∆(t, ·) ∈ C
1,α(Ω̄), tn ≤ t ≤ tn+1

is piecewise well–defined. In combination with Lemmas 6.2 and 6.3 ‖s∆(t, ·)‖1,α
is bounded in terms of the data ‖s∆(tn, ·)‖1,α and ‖v∆(tn, ·)‖1,α. An iterative
application of these bounds leads to the step–size independent a–priori bounds
stated in Lemma 6.4. By the Arzela–Ascoli theorem the existence of smooth
limits s(t, ·) ∈ C1,α(Ω̄), p(t, ·) ∈ C2,α(Ω̄) and v(t, ·) ∈ C1,α(Ω̄) follows. Further-
more, the pressure equation holds in the limit cf. Lemma 6.5.
As the approximate saturation is not differentiable in time, it is not obvious

that the limit is differentiable. Lemma 7.1 states that the approximate satu-
ration s∆(t, ·) is Lipschitz continuous in time. This result carries over to the
limit s, see Corollary 7.2, but still is not sufficient. To verify the differentiability
of s, one has to investigate the smoothness of v and hence ∇p with respect to
time. ¿From the pressure equation it follows ‖∇p(t, ·)−∇p(τ, ·)‖L2 = O(|t−τ |).
Therefore, the speed v = λ(s)∇p is continuous in time (Lemma 7.3). As the
approximate saturation is piecewise differentiable and continuous, the integral
equation holds

s∆(t, ·)− s∆(τ, ·) =

∫ t
τ

h∆(ξ, ·)− w∆(ξ, ·) · ∇s∆(ξ, ·) dξ .

Passing to the limit the saturation equation holds in a weak sense. Since the
expression under the integral sign

h− w · ∇s = g − f(s)q − f ′(s)v · ∇s

is time continuous, it follows that s is differentiable with respect to time and
the saturation equation holds pointwise. Uniqueness follows from the stability
estimates (6) which are derived from an energy estimate for the saturation.
Finally, this uniqueness result implies the convergence of the approximate

solution (s∆, p∆) towards the unique limit (s, p) as ∆t→ 0.
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