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ABSTRACT 

CONSTRUCTION OF A NONSTANDARD ITEGRAL ON AC [ 0, 1] 

by 

Gerard Leonard Omas, Jr., BS 
Southwest Texas State University 

August 1998 

Supervising Professor: Stanley G. Wayment 

A review of the Riemann and Lebesgue integration leads into the development and 

proof of the Riesz Representation Theorem. After this a new function space and a new 

norm are presented. A dense subset is extracted and used to approximate the functions in 

the new space. These approximations are used to define a nonstandard integral and an 

accompanying integral representation theorem. 

Chapter One is a review of the basic definitions needed throughout the remainder 

of the thesis. For the less common definitions an example function is provided. A very 

fundamental theorem, that the space C [ 0, 1 ] is complete is worked out in detail. The 

Riemann integral is defined, both as the supremum of Riemann sums over partitions, and 

as the limit of Riemann sums as the norm of the partition goes to zero. Finally, the 

Fundamental Theorem of Calculus is given. 

Chapter Two traces the development of the Lebesgue integral, following the path 

ofH. L. Royden's Real Analysis1. The chapter begins by showing the deficiencies of the 

Riemann integral. The first step in constructing the Lebesgue integral to avoid these 

difficulties is to define measure for sets. Next the Lebesgue integral is defined for a wider 

and wider range of functions. Starting with simple functions and moving up to the general 

1 H. L. Royden, Real Analysis, 3rd Edition, Macmillan, New York, 1988 
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case of Lebesgue integrable functions. The theorem that a function is the anti-derivative 

of another function if and only if it is absolutely continuous is stated. Finally, the chapter 

closes with an example of a very peculiar function, which illustrates the distinction 

between integration and antidifferentiation. 

Chapter Three also follows the path in Royden. More care is given however to 

show and fill in the proofs. The chapter is mostly a sequence of lemmas, definitions, and 

propositions, leading to the very important Riesz Representation Theorem. The chapter 

closes with the statement and a detailed proof, following that ofRoyden. 

Chapter Four is the actual development of the nonstandard, variation integral, 

developed by Edwards and Wayment2. The chapter starts by setting up the space of 

absolutely continuous functions on [ 0, 1 ]. Next the norm is defined and proved to be a 

norm. Next the set of polygonal functions is shown to be dense in the space of absolutely 

continuous functions. Using this subset to approximate the absolutely continuous 

functions, the computable variation integral is defined. Simultaneously, an integral 

representation theorem for the new integral, representing the integrals as bounded linear 

functionals is developed. Finally, a couple of examples are given to illustrate the use of 

the integral. 

2 J. R Edwards and S. G. Wayment, Representations for Transformations Continuous in the BV Norm, 
Transactions of the American Mathematical Society, 154, 1971 ( 251- 265) 
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CHAPTER I 

INTRODUCTORY MATERIAL , 

One quality of a college education is that it forces us to develop the tools with 

which we analyze the world around us. A sophomore English major would cringe in 

embarrassment if he was forced to read a book report he wrote analyzing a book like 

Moby Dick in middle school The ideas he uses to look at the world of literature change 

very rapidly. Yet a doctoral candidate in biology would look with pride at her 

dissertation, even though it was full of math based on the integration technique she learned 

as a senior in high school calculus. 

Why is it that our methods of viewing things change so dramatically in the liberal 

arts, yet almost not at all in mathematics. The answer, to the latter half of the question 

anyway, is the awesome power, ubiquity, and most importantly computability of the 

Riemann integral. For a tremendous range of uses, including most used in engineering and 

physics, the Riemann integral is a perfectly valid tool. However, it is not the only way to 

define an integral operator on a function space. Nor is it a one size fits all tool. As we 

will see in Chapter 2, it does not take a very difficult function to gum up the works of 

Riemann integration. 
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We will spend the rest of Chapter 1 laying out definitions and some important 

results we will need throughout the rest of the thesis. In Chapter 2 we will define the first 

of our alternative integrals, the Lebesgue integral. In Chapter 3 we will use this integral in 

an important theorem which lets us represent functionals on a space of functions as 

integrals. In the Chapter 4 we will develop the second of our alternate integrals, the 

variation integral. We will also develop another representation theorem analogous to the 

Riesz Representation Theorem in Chapter 3. 

To start with however, we will review some definitions we will be working with 

throughout the rest of the thesis. To begin the definitions we will list some of the various 

forms of continuity of functions. 

Definition: A function f is said to be continuous at a point x, if given any e > 0, there is 

a 8> 0 so that if y E(x-8,x+o), then we have that f(y) E(j(x)-e,f(x) + e). 

A function that is continuous at every point in a set is said to be continuous on that 

set. This is the classical definition of continuity. 

Definition: A function/is said to be uniformly continuous on an interval [ a,b J if/or 

anye>Othereisa8>0, sothatforanyxE[a, b], if yE(x-8,x+o) then 

IJ(x)- f (y~ < e. 

This definition differs from the above definition of continuity in that in the first 

definition, o was a function of both e and x. In uniform continuity, o is a function only of 

e. In other words, one o will work for the entire set once e is given. Of course a function 

which is uniformly continuous is continuous. 
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An example of a function which is n~t uniformly continuous on the reals is 

J (x) = x2 . A simple series of algebraic calculations will show that in order for 

1/(x)-/(y)l<e given e>0,8>0,x>0 and yE(x,x+o), thenitmustbethecasethat 

e-~ e 
x < -- Since 6 > 0 we have that· x < 2 s:- • Rearranging this gives us (since x > 0) 28 . u 

8 
that 8 < - . Thus 6 must depend very much on our x. Hence x7 is not uniformly 

2x 

continuous. 

A well known result of classical analysis is that a function which is continuous on a 

closed interval is uniformly continuous. 

Definition: A junction/ is said to be absolutely continuous on an interval [ a, b J if 

given e > 0, there is a 8 > 0, so that, given any finite collection { ( x1 , y1)} ~=I such that 

n n 

LCY, - x,) <O, then it is the case that Llf(y1 )- J(x,)I < e. 
1=! 1=! 

Notice, a function which is absolutely continuous would clearly be uniformly 

continuous. We can choose any finite collection of intervals whose lengths sum to less 

than 6. Ifwe choose the collection to consist of only one interval, a very finite collection 

indeed, then we have the very definition of uniformly continuous. 

We will now show two functions which are uniformly continuous, but not 

absolutely continuous. The first will not be absolutely continuous on the entire non­

negative real line, but will be on any closed and bounded interval of the non-negative reals. 

The second example, which we will see in Chapter 2, will not be uniformly continuous on 

the closed interval [ 0, 1 ]. 
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In order that a function be uniformly continuous, but not absolutely continuous, it 

must grow very much in steep jumps in order that a collection of intervals of finite length 

cannot contain the growth. But, it cannot take very large jumps, although they must be 

steep , in order that the function be uniformly continuous. 

The function we will look at is 

n 1 1 I:-. - XE[n,(n+l--;] 
1=0 l + l 2 

f(x) = n l ( 2n ) 1:-. -+(x-(n+l-2-n)) -
1=0 z + 1 n + 2 

1 
x E [ n + (l - -; ), n + l] 

2 

where n is an integer greater than or equal to zero. 

While the above description looks very messy a geometric interpretation will shed 

much light on the function. The function can be pictured as a sequence of steps, where 

1 1 
the height of the ~ step is --. The length of each step is 1 - -n. The height of all the 

n+l 2 

stairs is the sum of the harmonic series, which is infinity. The sum of the length of the 

00 1 
intervals over which the function's slope is greater than zero is L-; = 2. The 

n=O 2 

increment between successive steps is going to zero. For any E there is an N so that the 

height of the jump of the,#!- step for all n > N is less thane. This makes it easy to show 

that the function is uniformly continuous. But the horizontal distance of the intervals over 

which the steps grow is also going to zero, and is doing so quickly enough for the total 

sum of their lengths to be finite. Since the harmonic series diverges, we can get a set of 

partial sums to exceed any given number. We can do this with an arbitrarily narrow finite 
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collection of intervals, since the length of the intervals over which the function is growing 

1 
are shrinking as zn. Hence the function is not absolutely continuous. 

Notice that it was the fact that the function grew to infinity in the limit that caused 

our function to not be absolutely continuous. Ifwe restnct our function to any bounded 

interval, then the function is absolutely continuous on this interval. 

We will state and prove a few results about absolutely continuous functions. 

These are that sum and product of absolutely continuous functions are absolutely 

continuous. 

Proposition: If f and g are absolutely continuous junctions then their sum (j + g) is 

also absolutely continuous. 

Proof: Let e > 0. Since f and g are both absolutely continuous there exist of and og, so 

th~t ifwe are given any finite collection' of intervals {(x, ,y,)r=I' with the condition that 

Now consider a collection {(x, ,y,)r=I' with L~=I (y, - x,) < 8. Since ois smaller 

than either of or og, _we have that 
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z:~J( u (y,) + g(y,) )- ( u (y,) + g(y,) )I = 

= L~J((J(y,)- f(x.)) + ((g(y,) + g(x.))I 

~ L~=i{l((f(y,)- f(x.))I +l((g(y,) + g(xJ)I) 

= L~JJ(y.)- f(xJI + z:;Jg(y,)-g(xJI 

8 8 
<-+-=e. 

2 2 

Thus (t + g) is absolutely continuous. 

QED. 

Proposition: If f and g are absolutely continuous on [ a, b ], Jg is also absolutely 

continuous on [ a, b ]. 

Proof: Notice that the proposition is trivial if either function is the zero function. Since f 

and g are absolutely continuous they are bounded on [ a, b ]. We will let two numbers 

nonzero numbers F and G be numbers so that IJ(x)I <F,lg(x)I < G, for all x E[a,b]. 

Now since f is absolutely continuous given a finite collection { {x, ,Y,)} ~=1 , of sub-intervals 

of [ a, b ], there is a 81 > 0, so that if 

L~=1 (y, - x,) < 81 , then L~=1IJ(y,)- f(x,)I < 2~. Since g is absolutely continuous, 

there is also a 8g > 0, so that given {{x, ,y.)r=l, such that 

of 8f and 8g. We choose next {(x.,y.)r=I' so that L~=l (y, - x,) < 8. Now consider: 
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L~J(J(y,)g(y,))-(J(x,)g(x,))I = 

L~J(J(y,)g(y,))-(J(x,)g(y,)) + (J(x,)g(y,))-(J(x,)g(x,))I 

s L~=I (l(J(y,)g(y1 ))-(J(x,)g(y1 ))I + l(J(x,)g(y1 ))-(J(x,)g(x1 ))1) 

s L~J(J(y,)- f(x,))g(y,)I + L~JJ(x,)(g(y,)-g(x,))I 

s L~J(J(y,)- f(x,))la + L~J(g(y,))-(g(x,))f 

= GL~JJ(y,) - f (x,)j + FL~Jg(y,) - g(x,)j 

8 8 8 8 
< G-+ F- = - + - = 8. 

2G 2F 2 2 

Thus Jg is absolutely continuous. 

QED. 

Observation: Constants junctions are absolutely continuous. 

Proof: Let f (x) = k, for some number k. Let e > 0, o > 0. Consider { (x,,y,) r=l' so that 

Thus f is absolutely continuous. 

QED. 

The next couple of definitions will deal with the notion of sequences of functions 

converging to a function. 

Definition: A sequence of junctions, (in), de.fined on an interval [ a, b J is said to 

converge ( pointwise) to a function f ( called the pointwise limit of the sequence) if, 

given any 8 > 0, there is a natural number, N, so that ifn > N, then lfn(x)- f (x~ < 8. 
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Notice that the N in the above definition is a function of both x and e, in much the 

same way as o was in the definition of continuous function. This analogy will be carried 

further with the next definition. 

First, we will give an example of a sequence of functions which converge 

1 
pointwise to the functionf(x )=0. The sequence of functions is given by f/x) = -. That 

n 

this sequence converges can be seen by observing that given e > 0, there is an N, given by 

1 
the Axiom of Archimedes, so that N < &. This will be the N for the sequence. 

Definition: A sequence of functions, (in), de.fined on an interval [ a, b ], is said to 

converge uniformly to a Junction, f, if given s > 0, there is a natural number N, so that if 

n > N, then lfn(x)- J (x)j < &. 

Notice that, as we foreshadowed in the previous definition, the difference in our 

two forms of convergence of sequences of functions is that in uniform convergence, the N 

is totally dependent on e, and has no dependence whatsoever on x. An example of a 
' 

1 
function which is uniformly convergent is the example, fn ( x) = - , above. 

n 

We next give a sequence of functions which converges, but does not do so 

uniformly. The sequence of functions we describe will converge pointwise, as did the 

previous sequence to the zero function on the interval [ 0, 1 ]. Let the sequence (gn) be 

defined as follows on the interval [ 0, 1 ] : 
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1 
This is a sequence of Gaussian curves whose peak value of 1 occurs at x = l - - . 

n 

The Ji' term in the exponential makes the curves become narrow as than they slide to the 

right. As a result, any point p less than 1 will be passed by the peak of the curve for some 

n and the function values at p will then very rapidly go to zero. 

1 
To show this consider that given an x e[0,1), there is an n so that x < l- - . Now 

n 

consider the exponent in the sequence of real numbers, (gk ( x)) for all k > n. The kk term. 

grows very, very quickly. The ( 1- ~) - x term. also grows. Thus the exponent goes to 

-oo, and the sequence (gk(x)) goes to zero. 

As the curves become narrower, the function goes to zero at x=l, as well. To 

-(k1 [(1-~)-1] 2 

show this consider the sequence (gk(l)). This sequence is equal to e k This 

( l-1 )2 
simplifies to e- k , which also converges to zero. 

Thus, the sequence converges pointwise to the zero function. However, for any 

1 
value of n, there is a point, namely 1 - - , for which the function value is one. This 

n 

means ifwe take O < E < 1 for any n there is an x for which lgn(x)- g(x)I > e. Hence the 

sequence of functions does not converge uniformly. 

We will now define a property of functions which will be very useful to us in the 

future. 
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We will consider a function/ defined on an interval [ a, b]. Next define a set of 

points cr= { x0 = a < x1 < x2 <· · · < xn-I < xn = b} , which we will call a partition of [ a, b ]. 

We will define the positive variation of the function under the partition to be 

n 

p= L[/(x1)- f(x1_1)t 
' 1=] 

where given a function g, 

+ x = {g(x) g(x) > 0 
g() o g(x)~o· 

We will define the negative variation to be 

n 

n = L[f(xl)- 1cx1-1)r, 
1=] 

where g is defined, analogously to g+ by : 

g-(x)={-
0

g(x) g(x)~O 
g(x)> O" 

We define the total variation off over our partition to bet= p + n. 

We define the positive, negative, and total variations off on the interval [ a, b]: 

P= supp 

N·= supn 

T= supt 

where the supremum is taken over all possible partitions of the interval. 

A function, defined on [ a, b] is said to be of bounded variation if T (f) < oo. 

Notice that a function of bounded variation need not be continuous. For example, 

consider the function g(x) = 0, where X:f:. 0.5 and g(x) =I, when x= 0.5. It is not difficult 

to show that T ( g ) = 2 on [ 0, 1 ]. 



Functions which are not of bounded variation take a little effort to construct, but 

1 
not too much. Consider the fun~ion, defined on [ 0, - ] 

7r 

form 

x:;t: 0 

x=O 

If we look at a sequence of partitions each consisting of the first k numbers of the 

1 1 
--- , along with zero and - . These partitions will give an sequence of total 

(n+½)1r ,r 

variations which diverges. Hence this function is not of bounded variation. A more subtle 

example, based upon this idea would be the function 

( ) {
x sin.!_ x :;t: 0 

g X = X . 

0 X= 0 

The analysis of this example is mostly the same as the previous one, except that the 

divergence of the total variations of the partitions is a result of the divergence of the 

harmonic series. 

Now that we have defined bounded variation, we can state a theorem which will be 

very important later on, in Chapter 2. 

Theorem: A function f is of bounded variation on [ a, b ] if and only if f can be written 

as the difference of two monotone real-valued functions on [ a, b ]. 1 

Another observation we can make right now is: 

1 H.L. Royden, Real Analysis, 3rd Ed1twn, MacMillan, New York, 1988, pg. 103 
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Observation(S.11): An absolutely continuousfunctionf on a closed interval is of 

bounded variation. 2 

Proof: Let i:: > 0. We have a 8 > 0 for which/ on any collection of sub-intervals of 

length less than 8 will grow less than i::. lfwe have any partition of the interval, we can add 

points to this partition if necessary to get a collection of intervals so that we can group 

(b- a) . 
them into at most I+ 8 groups, so that each group has a total length ofless than 8. 

The total change in these functions on any group is less than i::. Thus the total change in 

( (b-a)) 
the function is less than e I + 8 . Thus we have a number which bounds the total 

variation of the function over any partition. This number bounds the supremum of the 

variation over all partitions. So we have a number, which is a bound for the variation of 

the function and the function is of bounded variation. 

QED. 

We will now turn our attention to some definitions which we will need in our work 

in Chapters 3 and 4 concerning functional analysis. 

Definition: A set Xis said to be a real linear vector space if: 

1. Xis a group under an operation €B-

2. Given a Efll (the field of real numbers) and x EX, ax EX 

3. Given a,b Efllandx,y EX, then both (a $b)x= ax $bx, and 

a(f $g) =af $ gf 

2lbid., pg. 108 
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One obvious example of a linear space is to let X the real numbers. Another 

example is to let X be the set of continuous functions on the interval [ 0, 1 ], heretofore 

denoted Cf 0, 1]. To demonstrate this we observe that the sum of two continuous 

functio~s is itself continuous. Also if we take a continuous function and multiply it by a 

constant we again get a continuous function. Also the real numbers distribute over the 

space of continuous functions. Further, since we have closure under multiplication, C[ 0, 

1 ] also have another structure. They form an algebra. 

Let AC[ 0, J] be the set of absolutely continuous functions on the unit interval. 

We recall that products of absolutely continuous functions on a closed interval are 

absolutely continuous. Further constant functions are absolutely continuous. Hence, 

scalar products of absolutely continuous functions are absolutely continuous. Given this 

and the fact that the sum of absolutely continuous functions are absolutely continuous, 

and we can observe that the absolutely continuous functions on the interval [ 0, 1 ], form a 

linear vector space, and also an algebra. 

Definition: A linear space Xis said to be a normed space if there is a function, denoted 

IIJII which maps elements of X to the non-negative reals, .subject to the following 

constraints: 1. llcif II = I all!JII for any constant a, and any f EX, 2. ll/11 = 0 if and only if f 

= 0, and 3 .. Ill +~I~ 11111 + 11~1,. 
This third criterion is called either the Minkowski inequality or the triangle 

inequality. It is one of the most commonly used tools in analysis. 

One norm which comes up quite frequently when the linear space in question is 

C[ 0, 1] is the sup norm. We define the sup norm as follows: 
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lltlL = supl/(x).I 
O:,,x:,,l 

It is not very difficult to show that this does in fact describe a norm. The first property 

follows from the facts that (1.) The absolute value of a product is the product of an the 

absolute values and (2.) The supremum of a constant over any non-empty set is simply the 

constant itself The second property follows from the fact that no number has an absolute 

value less than zero. Hence if the norm of a function is zero, then the greatest the absolute 

value of the function could be anywhere in the unit interval would be zero. Thus the 

function must be identically zero. Finally, the hardest part in showing that the sup norm is 

in fact a norm is the triangle inequality. This is not surprising as it will almost always be 

the hardest part in showing any purported norm to be an actual norm. Let us consider the 

norm of the sum of two functions, f and g. We see that 

IJ(x) + g(x~ ~ IJ(x~ + lg(x~ 

By the classical triangle inequality. Further: 

IJ(x)I + lg(x)I ~ IJ(x)I + suplg(x)I 
X 

~ supl/(x)I + supjg(x)I 
X X 

Hence, 

ll/ + gjL, = supl/(x) + g(x)I 
X 

~ supl/(x~ + suplg(x)I = lltll,,, + l~t-
x X 

Hence the sup norm is in fact a norm on C[ 0, 1]. 

The last quality of a linear normed space we will consider is whether or not the 

space is complete. A space is complete if every Cauchy sequence in the space converges 

to an element of the space. This necessitates our defining the term Cauchy. 
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Definition: A sequence, (in), in a linear normed space, X, is said to be Cauchy if 

given an & > 0, there is a natural number N, so that for any n, m > N, lltn - fmll < & . . 

The real numbers, using the standard euclidean metric form a normed linear space. 

An example of a Cauchy sequence in the reals is (xn) = (~). For any E, we know that 

l & 
there is a positive integer N for which N < 2 . If we choose n , m > N Then 

But since n and m are real numbers, as are their reciprocals, we can apply the triangle 

inequality to get 

Thus we have that our sequence is Cauchy. In fact we can use a similar argument 

to show that any convergent sequence is Cauchy. 

We can demonstrate a point here with an example which is not Cauchy. This will 

demonstrate that just because the distance between successive terms goes to zero, it is not 

necessarily the case that the sequence is Cauchy. 

The sequence we will use is the partial sums of the harmonic series, that is 

n l 
X = "'"'­n LJ . 

l=l n 

It is a very well known result that the sequence (xn) diverges to infinity. Yet as n 

gets very large, the distance between consecutive terms goes to zero. We will now show 

that even though this is the case, the sequence is not Cauchy. 
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We will start our proof by letting Ebe a number greater than zero. Next we will 

n l 
choose n to be an arbitrary number. The sum L - is a number we will call N Now 

1=1 n 

consider the number ( N + & ). Since the sums of the partial sequences go to infinity, there 

m 1 
must be an m so that L--:- > (N + s). For this m, we will consider 

1=1 l 

IIX -x II= "'m !_"'n !';?:.(N+&)-N=&. 
n m L..i,=lj L..i1=lj 

Thus given an E and any n whatsoever, there i~ an m greater than n so that the 

norm of the distance between the two points is greater than E. Thus the sequence is not 

Cauchy. As the previous example demonstrated that any convergent sequence is Cauchy, 

this example demonstrates that any if lltnll ➔ oo, the sequence is not Cauchy. In fact, any 

sequence which diverges to ±oo cannot be Cauchy. 

The only question tlns leaves regarding when a sequence is Cauchy is "Is every 

Cauchy sequence convergent?" The answer to this is in general no. For instance, the 

Cauchy sequence ofrational numbers (L~=0 ~ 1), converges to the number e, as is known 

from calculus. However, e is not a rational number. So we have a set of numbers, namely 

the rationals, in which not every Cauchy sequence converges in the set. There are sets in 

which every Cauchy sequence does converge. It is an axiom of the real numbers that 

every Cauchy sequence of real numbers converge to a real number. Similarly every 

Cauchy sequence of complex numbers converge to a complex number. This property of 

both the reals and complex numbers is called completeness. 
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Definition: A normed linear space , X, is complete if every Cauchy sequence in X 

converges in X 

We will now show another example, namely, that the set C [ 0, J], the continuous 

functions on the interval [ 0, 1 ] under the sup norm is complete. 

Theorem: Every Cauchy sequence of continuous functions on [ 0, 1 ] under the sup 

norm converges to a continuous function. 

Proof: We will prove this theorem in three steps. First we will define what we want our 

limit function to be. Second we will show that this candidate function is in fact 

continuous. Finally we will show that this function is the limit of the sequence under the 

norm. 

In Chapter 4 we will be proving a similar theorem with a different set of functions 

and a different norm, but the proof will follow this same set of steps. 

We will start with a Cauchy sequence of functions and observe that given any a > 0 

and any x in [ 0, 1], there is anN> 0 so that ifn and m > 0, then lfn(x)- fm(x)I < &. 

Thus for each point x the sequence (fn (x)) is a Cauchy sequence of real numbers. As we 

stated above, the real numbers are complete, so for each x, the sequence (fn (x)) has a 

limit. We now define our candidate for our limit function, f (x) = lim fn (x). 
n➔ OO 

The next step is to show that this function is continuous at x. That is, given a > 0 

and x E[0,1], we must find a o > 0, so that if y E(x- 8,x + 8), then IJ(x)- f (y~ < s. 

Since (fn(x)) converges tof(x) there is anN so that ifn > N', then 

lfn(x)- J(x)I <:. Since (in) is Cauchy there is an N" so that if n,m> N" then 
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lfn(x)- fm(x)I < : for all x E [0,1]. We now fix.N=N'+ N". Since JN is continuous, 

there is a o so that if Ix- J1 < 8, then IJN(x) - JN(y)I <:. This is the owe will use for 

the definition of continuity. We next let y E (x- 8,x + 8). As we observed above 

(fn (y)) converges, so there is an M so that if k > M, then Ilk (y) - f (y )J < : . Let 

m=M+N Now consider: 

IJ<x)- J<Y)I = 

= IJ(x)- JN(x) + JN(x)- JN(y) + fN(y)- fm(y) + fm(y)- f(y)I 

~ IJ(x)- fN(x)I + IJN(x)- fN(y)I + IJN(y)- fm(y)I + lfm(y)- f(y)I 

Thus f is continuous. 

8 8 8 8 
<-+-+-+-=e. 

4 4 4 4 

Finally, we must show that given a > 0, there is an N so that for any n > N, 

if (x)- fn(x)I < e, for any x E[0,1]. Choose N as follows: 

Since (in) is Cauchy, there is anN so that JJn(x)- fm(x)J <;, for allm,n > N 

and all x E[0,1]. Then for n,m > N and x E[0,1] we have 

for any choice ofm. Notice that the left hand side of the inequality is independent ofm. 

8 
However, the first term in the right hand side is less than 2 when m > N. Since the 

sequence ofreal numbers (fn (x)) converges to f (x), there is an M, which depends on x, 
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so that ifm > Mthen lfn(x)- f(x~ < ~. lfm > N+Mboth terms on the right are less 

than 8 . Thus ifn is greater thanN and x E[O,l] we have lfn(x)- f (x~ < & . 
2 

We now let y be in the unit interval, and n > N, and m = N + M. Now consider 

Thus our arbitrary Cauchy sequence of continuous functions converges in the sup 

norm to a continuous function. 

QED. 

We will spend most of the rest of this chapter defining the Riemann integral. This 

is the integral for which we will spend most of the remainder of the thesis finding an 

alternative. This will mostly be a statement of the definition and some theorems and 

results. For a basic development, many freshman calculus texts will suffice. For a careful 

and rigorous development of the Riemann integral a very good source is Rudin's 

Principles of Classical Analysis. 3 

Given an interval, [ a, b ], we have defined a partition on this interval to be a set 

cr={a = x0 <X1 <xx <··•<xn-I <xn = b}. Given a function/ defined on this interval, we 

define the upper Riemann sum of this function on this partition to be 

n 

U(P,J) = L(supf(x))(x1 - x1_ 1). 

1=! 

3 W. Rudin, Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, New York, 1976 

19 



Geometrically, we are finding the area of a rectangle, whose base is the interval 

between two points in our partition. The height of this rectangle is the supremum of the 

function on the interval in our partition. We are then summing the area of all the 

rectangles defined by our partition. This sum is an overestimate of the area under the 

curve f on the interval [ a, b ]. 

We also define the lower Riemann sum, L(P, f ), of the function similarly, except 

that the height of the rectangle will be the infimum of the function on the interval. 

We will now define the upper Riemann integral, ufJ(x)dx = inf U(P,f), where 

the infimum is taken over all partitions of [ a, b ]. We will similarly define the lower 

Riemann integral to be L f:J (x)dx ~ supL(P,f). Again, the supremum is taken over all 

partitions of [ a, b]. If the upper and lower Riemann integrals are equal to one another, 

we say the Riemann integral off on the interval [ a, b] exists and is equal to the lower 

(and of course the upper) Riemann integral. 

We can equivalently define the Riemann integral by taking the right hand value ( or 

left hand, or center) of the function on each interval. As we let the norm of the partition, 

that is the length of the longest interval in our partition, go to zero we get the same 

integral as above. 

While the first definition has theoretical and pedagogical advantages in proofs, the 

second definition has a very large advantage of its own. We can take any partition and 

find the right hand endpoint and evaluate the function there. Since we know that this is 

very close to the integral, for a fine enough partition, evaluating the Riemann integral, 

within any chosen accuracy becomes an arithmetic process. That is, we can actually 
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compute the Riemann integral, even when the Fundamental Theorem of Calculus does not 

apply. This is not a property held by the Lebesgue integral we will look at in Chapter 3. 

It is an important property of the integral we will develop in Chapter 4. 

The two single most in;iportant developments of mathematics in the seventeenth 

century ( and arguably since) are the Riemann integral ( although it was not called such, or 

defined in the above fashion at the time) and the following theorem. 

Theorem: (The Fundamental Theorem of Calculus) If f is Riemann integrable on the 

interval [ a, b ] and has an anti-derivative F, then 

fJ(x)dx =F(b)-F(a). 

If we define the indefinite integral off (x) to be F (x) = f: f (t)dt, then at points where f is 

continuous, F' (x) = f (x ). 

This theorem tells us that integration and differentiation are inverse procedures and 

also tells us how to evaluate a Riemann integral. If a Riemann integrable function has an 

anti-derivative, then the integral over the interval [ a, b] is just the anti-derivative of the 

function evaluated at the endpoints a and b. One of the major questions this leaves 

unanswered is "How do we know whether a function has an anti-derivative or not?" This 

is one of the major questions we will answer in the next chapter. Another question we will 

face is "Can a function have an anti-derivative and yet fail to be integrable?" 
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CHAPTER II 

THE LEBESGUE INTEGRAL, AN OVERVIEW 

In the previous chapter, we made several definitions and defined Riemann 

Integration. In this chapter, we will point out the shortcomings of the Riemann integral 

and review the development, as presented in Royden' s Real Analysis1 of the first of our 

two alternate integrals, the Lebesgue integral. We will find its basic properties, and state 

several results concerning it. We will finish with the discussion of some interesting, but 

pathological functions. 

In Riemann integration, the "area under the curve" is approximated by slicing the 

graph along the x-axis and approximating the area of these slices with rectangles whose 

height is some value the function takes on in the slice. The integral is then defined to be 

the limit (if it exists) of the approximations as the width of the widest slice goes to zero. 

Using this definition is very useful and leads to the fundamental theorem of calculus, which 

gives us a way of actually computing integrals. 

At this point we might ask, "Why did we slice up the x-axis? Couldn't we have 

sliced up the y-axis just as easily?" The answer that comes to mind first is that because a 

function can only have one value for a given x, we know that our slices will be slices. If 

we were to cut up the y-axis we might get many different pieces, which would be harder 

1 Royden, Real Analysis, 3rd Edition, Macmillan, New York, 1988 
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to add up. On the other hand, we are talcing the same area, and just cutting it differently. 

A large pizza is still large whether we cut it into wedges, or strips. Both these points are 

valid. The integral we get by cutting the y-axis will not in general be easily computable, 

except by the fact that it will turn out to be the same as the standard Riemann integral, 

wherever the Riemann integral exists. There will however be some advantage to 

developing this integral, in that we can integrate more functions with this integral than we 

could with the Riemann integral. Further, we will be able to tighten up the constraints on 

the Fundamental Theorem of Calculus during the development of the new Lebesgue 

integral. 

To start with, we will show that there are bound functions on finite domains 

which are not Riemann integrable. While as we saw in the first chapter, it can take a very 

strange function indeed to get around some of the classifications we, it will not take 

much to describe our pathological case here. Define a function/ (x), the Dirichlet or so­

called "salt and pepper" function on the interval [0, 1] as follows: 

f(x)={~ 
x Eirrationals 

x E rationals 

Notice that, since both the rational and irrational numbers are dense in [0,1], in any 

slice we make in the domain off, there will be an x where/ (x)=l and ay where/(y)=0. 

Thus the upper Riemann sum will always be 1 and the lower Riemann sum will always be 

0. Thus the integral, which is the limit of the Riemann sum cannot exist. 

If we could find a way to measure the "size" of the rationals and the irrationals, 

then integrating this function would be trivial. We would multiply Oby the "size" of the 
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irrationals, multiply 1 by the "size" of the rationals, and add the two products. So the 

issue with our new integral is, what do we mean by the size of a set? 

This evaluation of the size is what we will call the "measure" of the set. Before 

we can define the measure of a set however, we must first make a pair of definitions. First 

we define an algebra of sets to be a collection of sets, S, so that if the two sets, A and B 

are both in S, then their union, intersection, and complements are also in S. By induction, 

any finite union of sets from S is also in S. We will also define a special class of 

algebras, the a-algebra. An algebra of sets~ is a a-algebra if every countable union of 

sets in ~ is also in ~. All the other properties of algebras hold, of course, because if~ is 

a o:-algebra it is by definition, an algebra. 

With these definitions out of the way, we can now proceed to define a measure. 

A measure is defined as a function with the following properties: First it maps a a­

algebra of sets to the non-negative extended real numbers (i.e. the real numbers along with 

± oo ). It also has a property called countable additivity, that is, the measure of a countable 

union of sets is equal to the sum of the measures of the individual sets in the unions when 

the sets are disjoint. It would also be nice if the a-algebra the function was defined on 

was as large as possible. 

The measure we will use is the Lebesgue measure where the measure of an interval 

was the length. The Lebesgue measure is based on the outer measure of a set. The outer 

measure is defined for all subsets of the real numbers. We denote the outer measure of a 

set A, by m*(A). Consider a collection of intervals A'= {(x.,y.)} which cover A. Ifwe 

denote the sum of the lengths of the intervals in A' by a, m*(A) is the infimum over all 
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collections of intervals covering A of a. Since any subset of the reals can be covered by 

the real line, we know that the set of all collections of intervals covering A is non-empty. 

So the set of the a's is a non-empty subset of the reals, bounded below by zero, hence it 

has an infimum. This infimum is the outer measure. We call a set E measurable if given 

any test set A the following equation holds: 

m* A= m*(AnE)+m*(AnE) 

Where E is the complement of E. By invoking the Axiom of Choice we can 

construct a set which does not meet this criterion, but without bringing in this big gun, 

most any set encountered will be measurable. If a set is measurable, we define its 

Lebesgue measure to be its outer measure. 

A couple of classical results are that the (Lebesgue) measurable sets form a cr­

algebra and that open intervals are in this a-algebra. We call the smallest a-algebra 

containing the open sets the Borel sets. Thus the Lebesgue measure is defined at least on 

the Borel sets. The second result is that the measure of an interval is its length. This 

result follows almost directly from the definition of outer measure. 

We can use the definition of Lebesgue measure to find the measure of the rational 

1 1 
numbers. Each rational number x can be fit into an interval (x - - ,x +-), for any n. So 

n n 

the radius of the interval containing x is 2/n. The infimum of the set of all such numbers is 

zero. Thus the measure of a point is zero. From here, we observe that there are 

countably many rationals. Thus 

C() C() 

mQ= Lm(q.)~LO=O. 
1=! 1=! 

thus, mQ = 0, where Q denotes the rationals. 
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This also proves that any countable set is of measure zero. 

The measure of the interval [0,1] is one. The irrationals are the complement of the 

rationals, and are thus disjoint from the rationals. The sum of the measure of the union of 

the rationals and irrationals is the measure of the interval. Hence the measure of the 

irrationals is one. This gives us what we need to integrate the Dirichlet function we 

started with. The measure of the irrationals is one and the function evaluates to zero on 

the irrationals, so the irrationals contribute a value of zero to the integral. The function 

evaluates to one on the rationals, but since the measure of the rationals is zero, they also 

contribute zero to the integral of the function. While we can evaluate this integral quite 

nicely using the Lebesgue integral (which we still have not formally developed yet), this 

will be the exception rather than the rule. 

We have defined the notion of a measurable set earlier, now we are going to define 

what is meant by a measurable function, which we will need in defining our integral. A 

function f is measurable if given for each real a., {x:f (x):s; a} is measurable. 

We have an algebra of measurable functions. It can be shown that linear 

combinations, and products of measurable functions are measurable. Further, the 

suprema, infima, limits, limits superior, and limits inferior of sequences of measurable 

functions are all measurable. This gives us a very wide latitude of functions with which to 

deal. 

One more thing remains to be done before we can actually define the Lebesgue 

integral. We will state a pair of theorems which will allow us to approximate measurable 
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functions with more well behaved functions and measurable sets with collections of 

intervals. 

Theorem: Letf be a measurable junction defined on an interval [a, b], and 

assume that f takes on the values ±oo only on a set of measure zero. The 

given e>O, we can find a step function g and a continuous function h such 

that 

If (x)- g(x)I < e and If (x)-h(x)I < e 

except on a set of measure less thane. Further, if 3m, M so that m sf(x) sM, 

for all x, then we may choose the Junctions g and h so that m s g(x) s M 

andm sh(x) sM 2 

We will now, at long'last, actually define the Lebesgue, integral and state and 

prove some of the theorems along the way. We will define the integral in stages, 

expanding the range of functions with which we work. 

The first step we will take will be in defining an integral of a simple function. A 

simple function is a function which takes on only finitely many values over its domain. 

The "salt-and-pepper'' function we defined earlier is an example of a simple function. It 

takes on only two values. Another example would be the "greatest integer" function on 

the interval [ 17, 42 ]. Since a simple function, qJ(x), takes on only finitely many values 

we can label these values a,, where i ranges from Oto some natural number n. We will 

2 Royden, 69 -- 70 
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define the sets E,, to be the set of all x's where tp(x) =a,. We will also define the 

characteristic function, XE , to be: 
I 

{
· 1 x EE, 

XE, (x)= 0 E 
X~ I 

We can thus write our function, tp , as the sum of each a, times the characteristic 

function of E,. We can do this because any given point will only fall into one E,. Hence, 

for any given x at most one term in our sum will be non-zero as we sum over all i, i.e. 

tp(x) = La,xE,. This gives us the "canonical" representation of tp, 
I 

With our function thus defined we now define the integral to be exactly what 

would be intuitive: namely the sum of the values of the simple function times the measure 

of the set having that value. In rough geometric terms we are taking the height of the 

function and the "width" of that portion of the domain taking on that value. We must of 

course realize that the set taking on this value may be broken into infinitely many pieces, 

each of which may be "infinitesimally narrow." This is of course why we defined the 

Lebesgue measure in the first place. Symbolically, for a given simple function over a 

domain£: 

f tp(x)dx =La,mE, 
E 

One very important, but not very difficult to demonstrate property of our integral 

is that it is a linear operator, that is: 

28 



af f +bf g= f (af +bg). 

We can now use this definition to define an integral on a much wider class of 

functions. If we have a bounded function we can define functions qJ(x), v,(x), which are 

both simple functions with : 

qJ(x)~f(x), 

v,(x)"?.f(x), 

for all x in E. Clearly, for all such functions, 

since qJ is always less than/, which is in tum always less than v,. Given this we 

can state: 

sup f qJ 
rp~f E 

It can be shown that if f is a bounded measurable function on an interval, then the 

above numbers will be equal. Hence, we can define the Lebesgue integral for a bounded 

measurable function: 

ff = sup 1 qJ. 
E rp<f E 

Some results follow almost immediately from this definitions. The first of these is 

that the integral is still a linear operator on its expanded domain. Another is the Bounded 

Convergence Theorem. This is the first in a sequence of convergence theorems which 

give us different criteria under which the limit of a sequence of integrals is the integral of 

the limit of the integrands. 
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Theorem: Let (in) be a sequence of measurable functions defined on a 

set E of finite measure, and suppose that there is a real number M such 

that lfn(x)I ~ M for all n and allx. If f(x) = limfn(x) for each x in E, 

then 

One result concerning Riemann integrals is that if a bounded function has a 

Riemann integral, it will agree with the Lebesgue integral. It is possible however, if a 

function has an improper Riemann integral, that the function may not have a Lebesgue 

integral. Another result of note, which can be shown at this point is that the Riemann 

integral of a function exists if and only if the set of discontinuities of the function is of 

measure zero. Since the "salt and pepper" function above is discontinuous at every point 

in the unit interval, its Riemann integral does not exist based on this result. (Although we 

had already shown this from the definition of Riemann integral directly.) 

It should be noted, mostly as a reminder, that while we can evaluate the Riemann 

integral of a function with possibly an uncountable number of discontinuities ( as we shall 

see below), if even one discontinuity exists, we cannot use the fundamental theorem to 

evaluate the integral. 

We will now demonstrate two examples of the above result. In the first example 

we will show a function with uncountably many discontinuities which has a Riemann 

integral. In the second, we will demonstrate a function with "only" countably many 

3 Ibid. 84 
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discontinuities, but discontinuities which are dense in the domain, which also-has a 

Riemann integral. 
' 

First we will consider the following function defined on the interval [ 0 , 1 ] . 

{
l x E Cantor set 

g(x)= 2 x (I. Cantor set 

Since we will consider first the points in the Cantor set, let x be a point in the 

Cantor set. Let us also take two numbers 1 > e > 0, 8 > 0. Since the Cantor set is totally 

disconnected, there is a y E (x - 8, x + 8), y not in the Cantor set. Since y is not in the 

Cantor set: 

lg(y)- g(x)I = 12- 11 = 1> e. 

Hence, g is not continuous on the Cantor set. To show that g is continuous on the 

complement of the Cantor function, we will let x be a point in the unit interval and not in 

the Cantor set. 

We will next need to consider how the Cantor set is constructed in the first place. 

We start with the unit interval. The first step in the construction is to define the intervals 

which define the complement of the Cantor set What remains after all the middle thirds 

are removed from the unit interval is the Cantor set. 

We will do this in steps. The first set of intervals C1 in the complement of the 

Cantor consists only of the open middle third or the unit interval, (½ , ½). The next set of 

intervals are the middle thirds of the intervals remaining when we remove the first 

interval. These are (½,¾) and (¼,¾). Notice that the intervals(¾,¾) and(¾,.%) are 
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sub intervals of (½ , ½). This suggests a pattern we will use to define the complement of 

the Cantor set: 

{(2n-1 2n) k} Ck = ~, Tn" n is a natural number such that: 1 ::; 2n - 1 < 3 

The Cantor set is now defined to be: 

C ~ [O,l]-(Qc,) 
We note that at each step of the construction, the only sets thrown out of the unit 

interval are the middle thirds of the intervals left over from the previous step, since all 

' 
other intervals in C, we subintervals of Ck for some k<i. We will consider an equivalent 

1 
definition a little later. Thus ( Ck - Ck_1) is a collection of 2k-i intervals oflength t · 

Returning to our function, we have that the point x is in an open interval in the 

complement of the Cantor set. Hence, by definition of open interval there is a o > 0 so 

that the interval (x - 8, x + 8), is completely in the complement of the Cantor set. If we 

let E >O, then for any point, y, in our interval, 

lgCx)- g(y)I = 12- 21 = o< s. 

Thus our function is continuous on the complement of the Cantor set. 

If we now apply additivity of the Lebesgue measure to the complement of the 

Cantor set, we find that its measure is: 
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Thus the measure of the complement of the Cantor set is one. The measure of the 

Cantor set and its complement must add up to the measure of the unit interval. The 

measure of the unit interval is one, thus the measure of the Cantor set must be zero. 

Hence, the function has discontinuities of measure zero. Thus this function has a 

Riemann integral. 

f1(x)~ = 1 · m(Cantor Set)+ 2 • m(Complement) = 

1-0+2·1=2 

One interesting observation can be made at this point. While in the above 

example the function was constant on the Cantor set, we could have done anything we 

wanted with the values of the function on the Cantor set and it would all have occurred on 

a set of measure zero. As a result all the possible acrobatics we could have put the 

function through would not have affected either the Riemann integrability of g, nor the 

integral of the function. 

We will now take a very interesting detour. Notice above, that the measure of the 

Cantor set was zero because we deleted the middle third of the unit interval. When we 

added the lengths (i.e. measures) of the intervals in the complement of the Cantor set, we 

got a geometric series which summed to one. If instead of removing the middle third we 

removed a smaller interval, the series can sum to a number smaller than one. For instance 

1 
we will remove inductively at the kl!! step an interval of length ~ from the center of the 

intervals left over from the (k-ff step, starting with a unit interval, in the same way we did 
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1 
with the standard Cantor set. We will thus remove 2k-I intervals oflength ~, at the kl!! 

step. Thus the measure of our generalized or "fat" Cantor set is: 

1 "" ( 1) n 1 1 = 1- - " - = 1- -(1) = - . 2 .Li,=! 2 2 2 

This would give us a set with most of the properties of the Cantor set, but it 

would have measure of one half By using smaller intervals as our base ( a sixteenth 

instead of a third or fourth, for instance), we can make our fat Cantor set have measure 

arbitrarily close to one. 

Notice that our function g above, if we re-define it on our fat Cantor set has a set 

of discontinuities of measure one half This means that the Riemann integral of this 

function does not exist. It is however a trivial matter for the Lebesgue integral. The value 

of the function on the fat Cantor set is one, and the measure is one half The value of the 

function on the complement of the fat Cantor set is two and its measure is one half Thus 

the Lebesgue integral of the function on the unit interval is three halves. 

Our next example will be the "smog" function. The name of the function is an 

analogy to the way smog just seems to settle over a city, becoming more dense as the 

altitude becomes lower. This function, which we will refer to as h, in keeping with the 

alphabetic progression we have been following is defined as follows. First, recall that any 

rational number can be written as a fraction in which the numerator and denominator have 
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no common factors. We will refer to this unique reduced representation of the number 

and we will call the denominator nx. 

h(x)=fr• x E rationals 

x E irrationals 

It is straightforward to show that h is discontinuous on the rationals. Given x let 

e = _!_(_!_J, 8 > 0. Since the irrationals are dense in the reals, there is an irrational 
2 nx 

number, y, in the interval (x- 8,x + 8). Thus: 

Thus h is discontinuous on the rationals, which is not necessarily bad, as we 

already know the rationals are a set of measure zero. It is a little more subtle to see that 

the function is continuous on the irrational numbers however. Let x be an irrational 

1 
number and let e >O. There is a number n so that - < e. So, for any rational number, y, 

n 

whose denominator, in lowest terms is greater than n, we have the following: 

So we need only worry about those rationals whose denominator is less than n. 

Fortunately there are only finitely many of these. As a result we can measure there 

distances from x. We then take o to be half the least of these numbers. Thus, for any y 

within o ofx h(y) will be within e of h(x). By definition, his continuous on the 
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irrationals. So the Riemann integral of h exists, and it is straightforward to show that the 

integral ofthis function is in fact zero. 

Now we will continue expanding the functions we can integrate with the Lebesgue 

integral. We have already defined our integral for simple functions and for bounded 

measurable functions on sets of finite measure. We will now use our previous definition to 

expand our range of functions to unbounded functions on any measurable set, finite 

measure or not. We must, for now at least, give up something, however. We must 

restrict ourselves for the moment to non-negative functions. We will define the integral of 

a non-negative function,/, defined on a measurable set E: 

ff = supf h. 
E h,!,f E 

The supremum in the above integral is taken over all bounded functions h, with 

f ( x) ~ h( x ), for all x EE and h(x) = 0 outside of a bounded interval. 

We will also define the terminology, integrable. A non-negative measurable 

function is said to be integrable over the measurable set E if the integral over E is finite. 

As has been the case before, we can show that our integral is still a linear operator. We 

also get the next two of our integral convergence theorems, Fatou's Lemma and the 

Monotone Convergence Theorem. 

Theorem (Fatou's Lemma): If (in) is a sequence of non-negative measurable 

functions and fn (x) ➔ f (x) almost everywhere on a set E, then 

4 Ibid. 86 
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Theorem (Monotone Convergence Theorem): Let (in) be an increasing sequence of 

non-negative measurable functions, and let f = limfn almost everywhere. Then, 

These theorems tell us that over a great range of functions we can pass a limit 

"through" an integral sign. This is a very useful thing to be able to do. 

The phrase "almost everywhere" or a. e. which appears above means that the set 

where the criteria listed fail to hold is a set of measure zero. For instance, the smog 

. 
function is zero a.e. This idea is a very important difference between Lebesgue and 

Riemann integration. In the former we in almost every case can simply skip over or ignore 

sets of measure zero, eve~ if the sets in question are not only infinite, but in the case of the 

Cantor set, uncountably infinite. We saw with the salt and pepper function however that 

this is not the case with Riemann integration. 

We are now at the stage of finally getting our full integral over all measurable 

functions. To do this we will note that a function can be either positive or negative, but 

not both at the same time. Using this we will define the functionsf and/ as we did in 

Chapter 1: 

+ -{f (x) f (x) '2::. 0 
f (x)- 0 f(x)<O 

_ -{- f(x),f(x)~ 0 
f (x)- 0 f(x)>O 

5 Ibid. 87 
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It is not difficult to see that from this definition f (x) = f+ (x )- f- (x). This 

definition also has the advantage that it turns a general measurable function into a linear 

combination of two measurable functions we can integrate with what we have. We now 

define the integral of a measurable function/ over a measurable set E: 

Definition: A measurable function is said to be integrable over a measurable set E if 

both f and f are integrable over E. In this case we de.fine 

We now have an integral which will integrate any measurable function, except for 

those where both the positive and negative parts (f and /, respectively) have infinite 

integrals. Our integral fails in this case because we are left with a difference of the form oo 

- oo. We cannot work with differences like this. 

We will now consider the last of our integral convergence theorems, the Lebesgue 

Convergence Theorem. In this theorem we require simply that our sequence of functions 

be bounded by some integrable function. We also require that the sequence of functions 

be convergent to the measurable limit function almost everywhere. This is a much less 

restrictive premise than for our other convergence theorems. Of course, this is due in part 

to the Lebesgue Theorem using the previous work in its proof 

Theorem (Lebesgue Convergence Theorem): Let g be integrable over E 

and let (in) be a sequence ofmeasurablejuncti~ns such that 

lfn(x)l::;;g(x)on E and for almost all x in Ewe have f (x) = limfn(x). 

Then 
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We will conclude this chapter by considering the relationship between the integral 

we have just developed and the derivative. This will conclude with a theorem similar to, 

but more precise than the fundamental theorem of calculus. 

Before we can look too closely at the relationship between integration and 

differentiation, we must of course define the derivative. Unlike the integral, the derivative 

we define will be precisely the same as the standard derivative from first semester calculus. 

We will however construct "derivates" which are analogous to the right and left hand 

derivatives we learned as freshmen. In fact, for those functions which had right and left 

hand derivatives, the derivates will be the right and left derivatives. With this in mind, we 

now define: 

D_f (x) = lim f (x + h)- f (x) 
h➔O- h 

The first and the second derivates are called the upper right and upper left 

derivates, respectively. The third and the fourth are called the lower right and lower left 

, derivates, respectively. Notice that the derivates are defined as limits superior and 

inferior of non-empty sets of numbers. Thus, they always exist. If the upper and lower 

right derivates are equal, they are equal to the right hand derivative. Similarly, the upper 

6 Ibid. 91 
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and lower left hand derivate give the left hand derivative if they are equal to one another. 

If all four derivates are equal, then they all are equal to the derivative of the function, 

denoted f. 

One result from calculus we can loosen up slightly is that if a function is 

continuous and any one of its derivates is everywhere non-negative, then f is non­

decreasing on the interval. 

We can now state a pair ofresults which are very useful, both in the path our 

development will take, and in their own place. The first result is that an increasing 

function has a derivative almost everywhere. This is an incredible piece of information to 

have based on nothing more than that a function never decreases. 

1 
An example of this is the "-3 " function, defined on the unit interval. We will 

q 

define this function to be 

1 
J<x)= L -3 

allratmnal n q 
q<x 

Where nq is the reduced denominator of q, as in the smog function. We observe that the 

function will be a jump at each rational number. The jump will be the reciprocal of the 

denominator of the rational cubed. Thus the function is not continuous. There are at 

most nq -l rationals with a denominator of nq, thus the value of the function is bounded 

by: 

n l 00 1 
f(x)= L ~= L -2 ::;;L-2 < 00 . 

allrallonal n q allrallonal n q n= 1 n 
q<x q<x 
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So the function is well defined for all x in the unit interval. Since this function is 

increasing, it has a derivative almost everywhere. Since the function is discontinuous at 

each rational, where it jumps, it cannot have a derivative on the rationals. We cannot say 

if the derivative exists everywhere else or not (at least not based on this result), nor what 

the derivative is where it does exist. It is interesting however, that the derivative does in 

fact exist except on a set of measure zero. 

We can combine the result that monotone functions have derivatives almost 

everywhere with the fact from, Chapter 1 that a function of bounded variation can be 

written as a difference of increasing functions to state that a function of bounded variation 

has a derivative almost everywl).ere. 

We can also state that since any absolutely contip.uous function is of bounded 

variation, ,that any absolutely continuous function has a derivative almost everywhere. 

Applying the contrapositive of this gives us that the famous function, due to Wierstrass, 

which is continuous, but has a derivative nowhere, is not absolutely continuous. 

The second result is a weaker form of part of the Fundamental Theorem of 

Calculus. It states that given an increasing function/ on a closed interval [ a, b ] 

ff'(x)dx~f(b)- f(a). 

Recall, that we defined, in Chapter 1, the indefinite integral of a function/ to be 

F(x)= [f(t)dt. 

With this definition and the above results we can make several statements about 

integrals. The first of these is that the indefinite integral of a function is absolutely 
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continuous and further is of bounded variation. Another is that if/ is integrable on [ a, b], 

then 

(J: f(t)dt}= f (x) a.e. 

A quick sequence of lemmas and propositions, based upon the properties of 

absolute continuity and bounded variation will lead us to the result with which we will 

end our chapter. 

Theorem: A function Fis an indefinite integral if and only if it is absolutely 

continuous7• 

An example of a function which is not the anti-derivative of another function is the 

Cantor ternary function, based upon the Cantor set. The function is defined as follows. 

One way of defining the Cantor set is that it is those elements of [ 0, 1 ] which 

have a ternary (i.e. base 3) expansion without any ones in it. However a ternary expansion 

is not necessarily unique. In fact precisely the "endpoints" of the Cantor set, the endpoints 

of the removed open intervals, have two expansions, one without any ones in it. It can be 

shown that this definition is equivalent to the definition given earlier. Those elements of 

the unit interval not in the Cantor set must have a one in their ternary expansion. 

Given any element of [ 0, 1 ] not in the Cantor set, call it x, we can consider the 

set consisting of the index of the terms in the ternary expansion which are one. This set is 

a set of natural numbers. It is non-empty, otherwise the point would be in the Cantor set 

by definition. By the well ordering property of the natural numbers, there is a least 

n a 
element in the set. We will call this element n. Now we will define/(x) to be L-:, 

1=! 2 
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1 
where a, is 2 b1 , where b1 is the 1"/b, term in the ternary expansion of x for i < n and an =I. 

Notice that for any term in a given interval in the complement of the Cantor set, the first 

term which is one in the ternary expansion will be the same. Further all previous terms 

will be the same. Thus on a given interval of the complement of the Cantor set,/ (x) will 

be a constant. For those points in the Cantor set the function will use the same sum, using 

the expansion without ones, but now since there is no term which is one it will be the sum 

<X) 1 
from one to infinity. The series is bounded above by L---;; = 1, and is bounded below by 

n=I 2 

<X) 

L O = 0 , so we know that not only does the series converge for all x in the Cantor set, 
n=I 

but that O ~ f ( x) ~ 1 and f is non-decreasing. 

We showed that the function was constant on each component of the 

complement of the Cantor set. Thus the function must do all of its growing on the Cantor 

set itself But we have already shown that the function has a value of zero at zero and a 

value of one at one. We stated that the function was continuous. Thus, the function 

grows by a value of one on a set of measure zero. Given any a, such that O < a <l, and 

any o >O, we can get a finite collection of intervals with measure less than o so that they 

contain the entire Cantor set, and hence the sum of the jumps of the function over that 

interval will be one, which is greater than a, hence the Cantor ternary function is not 

absolutely continuous. 

7 Ibid. llO 
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We now define a very pathological function fusing our fat Cantor set, FC, with 

measure of a half On the FC we set/ (x)=0. For each interval (a, b) in the complement 

of FC we define: 

(,r b-a ) (,r b - a) 
J(x)=(x-a)2(b-x)2sin 2 (x-a) sin 2 (b-x) 

1 
This function has very similar properties to the function g( x) = x2 sin - at the 

. X 

origin. As a result,/is of bounded variation. On the intervals of the complement of the 

fat Cantor set, the function is continuous, and has a well defined, but very messy 

derivative. On the endpoints of the Cantor set, we must look at the difference quotient of 

the function and take the limit as our h goes to zero to evaluate the derivative. Let a be 

the left endpoint of the component, and h > 0. Then 

I I I 12I 12 (1r(b-a)) (1r(b-a)) I 12 f(x) = x-a b-x sin 2 (x-a) sin l(b-x) ::; x-a , so 

l
f(a +h)- f(a) = lf(a+h)- 01 < h2 = 

h h - h h. 

Which, of course, goes to zero. Thus the derivative of/is zero at the left endpoints of the 

components of the complement ofFC. The proof that the derivative of/is zero at the 

right endpoints will follow the same pattern. 

Ifwe next consider a point x in the Cantor set, but not an endpoint, the~analysis 

will be much the same. We must look at the point (x + h), if it is in the Cantor set, our 

difference quotient is zero. If it is not then, it is in an interval in the complement of the 
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Cantor set, with left endpoint a, to the right ofx. We have x <a< x + h. Now we again 

consider our difference quotient. We will also define h' to be the distance from a to x+h, 

so h'< h. 

J(x +h)- J(x) J(x +h')-0 
f'(x)=----=---

h h 

lx+h-al 2 h' h2 

<----=-<-=h - h h, h . 

Thus our function has a derivative, which is zero on all points of the fat Cantor set. 

The derivative of the function on the complement does not have a limit as x tends to an 

endpoint of the components of the complement. The function wobbles between two 

values more and more rapidly. This means that the derivative is not continuous at the 

endpoints, or on any other point in the fat Cantor set. 

Since we have a Cantor set with a measure of one half, and that is the set of 

discontinuities, the Riemann integral for f' does not exist. The requirements for the 

Lebesgue integral to exist are that the function is finite a.e. and measurable. Both 

requirements are met, and so f' does indeed have a Lebesgue integral. 

The strange property of f, therefore, is that it has a derivative at every point, yet 

the Riemann integral of the derivative does not exist. The Lebesgue integral does exist. 

In this case we can even compute it by using symmetry to notice that in any interval in the 

complement of the fat Cantor set, the integral can be computed on that interval. We can 

then decompose [O, 1] to FC and [O, 1 ]-FC. The integral 
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f:J'(t)dt= f f'(t)dt+ f f'(t)dt. 
[O,x]nFC [O,x]nFCc 

The first integral on the right is zero, and the second can be computed by further 

subdividing [O, x] n FCc into its open intervals. On these we can use an improper 

Riemann integral to evaluate the integral on the interval. For any point on the fat Cantor 

set, the integral is simply zero. 
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CHAPTERID 

THE RIESZ REPRESENTATION THEOREM 

We defined the Riemann integral, and stated the Fundamental Theorem of Calculus 

in the first chapter, along with many definitions which form much of the groundwork for 

the rest of the thesis. Next we traced the development of the Lebesgue integral in the 

second chapter. In the next chapter we will develop the variation integral and develop a 

few results about it. In this chapter, following again the development in Royden' s Real 

Analysis, we will prove a few results leading up to one theorem. We will then spend most 

of the chapter proving this theorem. The theorem we will be proving is the Riesz 

Representation Theorem, which is one of the most important theorems in functional 

analysis. 

To begin with, we will define a convex function. The geometric idea of a convex 

curve is that a curve is convex if given two points on the curve, the strait line connecting 

the two points lies above the curve. If the strait line always falls below the curve, the 

curve is concave. Our rigorous definition will be nothing more than taking the above 

definition and re-writing it in a mathematical formula: 

Definition: A function rp is convex on an interval [ a, b J if for each x, yin ( a, b ), and 

for each A, with O::;; A::;; 1, we have: 

rp(lx + (1- l )y)::;; lrp(x) + (l- l )rp(y). 

47 



Many useful results follow concerning convex functions. One of these results we 

are interested in, for the Riesz Representation Theorem, is the following lemma. 

Lemma: If <pis convex on (a, b) and ifx, y, x', y' are points in (a, b) with x ~ x•~ y' and 

x'~y ~y•, then the chord over (x' ,y') has larger slope than the chord over (x, y), that is: 

rp(y)- <p(x) < <p(y')- <p(x') 1 

y-x - y'-x' · 

With this result in hand, we will now move on to proper functional analysis. Many 

of the definitions we need here were ones we presented in Chapter 1. Among these are 

the idea of a norm, a linear space, and completeness. We now must define the spaces in 

which we are working. 

A function/ with the property that J: ltl P < oo is said to be p-integrable. The set 

of all p-integrable functions on the interval [ 0, 1 ] is called LP. We observe that LP is a 

linear space for any p. To demonstrate this we note that 

and observe that lalP is a number. If the function is p-integrable, then the integral of the 

absolute value of the function to the power of p is finite. The product of two numbers is 

finite. Hence af is p-integrable. We can show in a cute little proof that the sum of two 

p-integrable functions is p-integrable. To do this consider, two p-integrable functions,/ 

and g. At any point x in the unit interval, one of the two functions must be greater. Thus if 

f (x) is the greater, then 

1 Royden, 113 
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or if g (x) is the greater, then 

Notice that regardless of whichever term is greater, the right hand side of each of the 

above inequalities is still a positive number. Ifwe have a number, x, which is greater than 

another number, y, and we add a positive number, z, to x, we can say that x + z > y. This 

leads to the conclusion that 

But, as we noted in the previous chapter, the Lebesgue integral is a linear operator, so 

f 11 + gjp ~ f 2p(l1lp +lgjp) 
= 2P f IJIP +2P f lgjp 

We know, by assumption that both of the integrals in the bottom line are finite, and that 

the product of a constant times those integrals is also finite. Thus the integral of the sum 

of two p-integrable functions is finite. Hence the sum of p-integrable functions is p­

integrable. Thus the space of p-integrable functions is a linear space. 

We will now define a norm on these functions. For any p greater than or equal to 

one and less than infinity, we define the norm of a function/ in LP to be: 

We will show that the above function does in fact describe a norm on LP. Clearly, 

this function maps Lebesgue p-integrable functions to the non-negative reals. Next we 

must make a small observation. If a function is non-zero only on a set of measure zero, 
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then the norm of the function as defined above will be zero. Thus we must work with 

equivalence classes of functions. Two functions are considered to be the equivalent if they 

are equal almost everywhere. Since IJ(x)I is a non-negative number for all x, the integral 

of/is zero only if the function is zero up to equivalence. 

What remains is to show the Minkowski inequality, that is llt + gjiP ~ llfllP + ijgJJP 

We start this by observing that if either of the functions is zero, the statement is trivial. 

Thus we can without loss of generality define a = ll/11 * 0, and P = ijgjl * 0. We can p p 

. . , IJ(x)I Jg(x)I 
normalize these funct10ns and get ,fo(x) = ~ and g0 (x) = p. Now we define A to 

be A= a p, leaving 1- A= pp. Next we consider, 
a+ a+ 

IJ(x) + g(xf ~ (IJ(x)I +Jg(x)IY = (qtix) + /Jg0(x)Y 

= (a+PY[( afo(x) l + figo(x)]P = (a+PY(A/i(x)+(l-A)g (x)Y 
(a+p)) (a+p) o o 

~(a+ PY(iJ/(x) + (1-J)g/(x)) 

The last line comes about because the functionyis convex on the unit interval. If 

we now integrate the ends of the inequality, the first term will of course be the norm of 

f+ g to the power p. 

(llt +gjlpY ~(a+PY[illfollp +(1-i)llgoln 
=(a+ PY[i + (1-J)] =(a+ PY. 

The jump from the second line to the third was because ll/0 11 = 1 = 1~0 11- Thus the p­

norm is a norm, as can be seen by taking the pl!! root of both sides of the inequality. 
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If pis equal to positive infinity, we can again describe a norm as follows: 

lltlL, = inf{M:m{t:J(t) > M} = o}. 

As quite often happens in mathematics, a few words or explanation will clear up 

much confusion over what a mathematical statement "means." The norm described above 

of a function is the in:fimum of all the numbers, M, such that the measure of points at 

which the function takes on values which are greater than M is of measure zero. In more 

descriptive words if the "essential supremum" of a function isM, the function can take on 

values greater than M, but only on a set of measure zero, and again Mis the smallest such 

number. 

Notice that for continuous functions, the essential supremum is the same as the 

supremum. Hence on C [ 0, 1 ], this norm is exactly the same sup norm we dealt with 

throughout Chapter 1. 

The proofs that the above norms are norms involved demonstrating that the , 

Minkowski inequality holds. There is another inequality, the Holder inequality which 

states: 

1 1 
Theorem: If p and q are non-negative, extended real numbers, such that - + - = l, and 

p q 

iffE LP and g E LP., then 

2 Ibid. 121 
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A major result of functional analysis, the Riesz-Fisher Theorem can be stated quite 

succinctly, "The LP. Spaces are complete." We will need a proposition about complete 

spaces to prove this result. 

Proposition: A normed linear space Xis complete if and only if every absolutely 

summable series is summable. 3 

Theorem: The LP. Spaces are complete. 4 

Proof: We will start by noting that using the result of the above proposition, we need 

only show that any absolutely summable series of functions in LP is summable. 

We start with an absolutely summable sequence of functions, (in). Since the 

sequence is absolutely summable, we have, by definition that L:1 lltnt = B < oo. 

We next define a sequence of functions (gn) by gn(x) = L~JJ; (x)I. 

Using the Minkowski inequality in the LP norm, we getllgnllP $; L~Jltnt- Since 

the right hand side of the inequality is bounded by B so it the left. Thus 

For each x the function values g n (x) form an increasing series. Thus they must 

converge to an extended real number. The number to which they converge we will call 

g(x). Since each gn is positive, and converge to measurable g we can use Fatou's lemma 

to show 

3 Ibid. 124 
4 Ibid. 125 
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This tells us that g is integrable and hence is finite a.e. For any x where g is finite, 

L~=1f, (x) is absolutely summable. The sum we will call s(x). For those x's where g is 

infinite, we set s(x)=O. Notice that ifwe define sn (x) = L~=1f, (x) thens is the limit of 

(sn) a.e. Since lsn (x~::;; g(x) for all n, we have ls(x)I::;; g(x). This gives us thats is 

integrable, and the triangle inequality gives us lsnCx)- s(x)IP::;; 2P(g(x)Y. This gives us 

the dominating function we need to invoke the Lebesgue convergence theorem and state 

that 

Thus we have L:1 fn (x) = s(x ). So given an absolutely summable series of 

functions, we have found a function to which the series converges. 

QED. 

With this result proven, we are now just a proposition, a couple oflemmas, and a 

few definitions away from the major goal of this chapter. 

The following proposition states that in LP given a function there is a step function 

and a continuous function so that these functions are arbitrarily close to our original 

function in the LP. norm. In fact, ifp=oo, this is exactly the same as one of the theorems 

we gave in Chapter 2. 

Proposition: Given f E If ,l < p::;; oo, and e > 0, there is a step function rp and a 

continuous function 1f1 such that llt- rpll < e, and llt- '1'11 < e. 5 
p p 

5 Ibid. 128 
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We will now make a couple of definitions. 

Definition: A linear functioruzl F on a space Xis a mapping from X to the real 

numbers, such that F(af +pg)= aF(f) + PF(g)for all f ,g EX. A linear functioruzl is 

bounded if there is an M so that jF(f)I ~ MJlfll for all f EX. The smallest number M 

for which the preceding holds is the norm of F. 

We can, of course show that the purported norm above is in fact a norm on the 

space of linear bounded functionals. The easiest one of the properties to show is that if 

the norm of a functional is zero, then the functional must be the zero functional. If M=O 

then for any f, IF(f )I ~ 0 · ll/11- Since the absolute value of a number is non-negative, the 

functional must map every function to zero. Hence the functional is the zero functional. 

Next, showing that llaF11 = lalllF11 follows trivially. 

jaF(f ~ laljF(f)j 
llaF1I = sup lltll = sup lltll 

but since we can pull a multiplicative constant through a supremum or infimum, the above 

is equal to 

IF(/)1 
lal sup lltll = lal · IIF11. 

and we are done. The final thing we must show is the Minkowski inequality, that the 

norm of a sum is less than or equal to the sum of the norms. This will follow easily from 

the fact that the numerator in the definition of the norm is a real number, and we have the 

triangle inequality on the real numbers. When we put this together with the fact that, as 

we have shown previously, the supremum of a sum is less than or equal to the sum of the 

suprema, the result falls out nicely. 
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I IF(/) + G(J)I 
IIF +Gil= sup IIJII 

IF(J)I + IG(/)1 
~sup IIJII 

(jF(f)j jG(f)IJ 
= sup IIJII + IIJII 

(jF(f)IJ ('G(f)IJ 
~ sup lltll + sup IIJII 

=IIFll+IIGII. 

This gives us all we need to show that we have a norm on the space of linear 

functionals. 

We will now state and prove the lemmas we need and then proceed to state and 

prove the Riesz Representation Theorem. 

Proposition: Each function gin Lq de.fines a bounded linear functional Fon ll', by 

F(f)= f Jg. 

We have IIFII = lwt · 6 

Proof: First, we observe that the Holder inequality tells us that the integral is bounded 

and that IIFII ~ lwt . We will also recall from Chapter 2 that the Lebesgue integral is a 

linear operator. Thus we have that Fis a bounded linear functional, since the integral 

clearly maps every function to a number. 

6 Ibid. 131 
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We next choose a specific function/ and apply the functional F. We will then 

divide the result by the norm off This will give us a lower bound for the norm of F. We 

choose f(x) = lg(x}i1:;; signum g(x). Observe that, 

111P = (1gf'r = 1~q 
I~= Iii¼' so l~q = IJIP 
Jg= lg(x~¼ (signumg(x))g(x) = lg(x)l 1+¼ = l~P. 

We will refer back to these relations in the next lemma as well as here. 

By the first equation above, we have that/is p-integrable, and hence f EH. We 

have by the third equation that 

Thus we have that the norm of F is: 

11 vii IFlf)I _ lltll)~lq _ 1u1 
µ' ~ lltt - lltllp - ~I q· 

Since we already knew llFII ~ lwllq' we have llFII = lwt. 

QED. 

nus is a very profound proposition. It tells us that ifwe take any q-integrable 

function, we can define a bounded linear functional on LP. This tells us that LP and b are 

very closely related. We will soon show that each linear functional can be identified with a 

q-integrable function. The term given to the relationship the spaces share is that they are 

the dual spaces of one another. 
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Lemma: Let g be an integrable function on [ 0, 1 ], and suppose that there is a constant 

M, such that 

for all bounded measurable Junctions f Then g is in Lq, and llgt = M. 

Proof: We will begin by proving the lemma for the case where 1 < p < oo. Since 

1 1 
-+-= 1, ifp=l, then q=oo, we will need to prove this case separately. 
p q 

We will define a sequence of bounded measurable functions (gn(x)) as follows 

For each n, gn (x) is clearly bounded by n. It is apparent that since g was 

measurable, as it must be in order to be integrable, that gn(x) is also measurable for each 

n. We now define a sequence (fn(x)), analogous to the function/in the previous 

proposition. 

We have the following relations: 

7 Ibid. 131 
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Where the last equality in the third equation follows from the fact that if 

gn(x) s n, g(x) = gn(x), otherwise gn(x) = 0= fn(x), and the statement is trivial. 

Observe that, 

by the hypothesis of the lemma, and 

Since 
1 1 q 
- + - = 1, q - - = l and 
p q p 

Since g is integrable, it is finite a.e. and thus (gn(x)) converges to g(x) a.e. Thus 

(lgn(xl) converges a.e. to lg(xl, and thus we have the conditions to apply Fatou's 

lemma, which gives 

Jlgjq slim JlgJ s limMq = Mq 

so, g E Lq, llgjlq s M. 

We now need only consider the case p=l,q=co. We let E >O and set 

E = {xllg(x)I ~ M + e}. Where Mis given by the hypothesis of the lemma. Next we 

define f to be the characteristic function on the set E. We have 
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Thus we have that 

MmE = M1ltll1 ~ IJ f~ 

IJJ~ ~(M +s)mE 

Where the first inequality is by hypothesis, and the second by the construction of 

E. If we combine the two inequalities we get that mE=O. Thus by definition of essential 

supremum, llmL s M. 

QED. 

Using the above lemma, we will now prove the Riesz Representation Theorem, 

which says that every bounded linear functional on /J', can be represented as the integral 

off multiplied by a function gin Lq. This is the converse of the preceding proposition 

above and tells us that the set of linear functionals on LP is exactly Lq. 

The proof of the theorem we will give follows that given by Royden, as have 

almost all the proofs in this chapter. However this is an important theorem, and Royden' s 

proofs tend to consist of a small number of statements, each of which requires a proof of 

its own. 

Theorem: (Riesz Representation Theorem) Let F be a bounded linear functional on 

LP, ls p < oo. Then there is a junction gin Lq such that 

F(f)= f Jg. 

We also have IIFII = lwt 8 

8 Ibid. 132 
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Proof This proof will start in much the same way as our construction of the Lebesgue 

integral did in the previous chapter, that is by starting with simple functions and using 

approximation theorems to expand the range of functions to cover the entire domain. 

We will consider first a set of functions, z.= the characteristic function on the 

interval [ 0, s ] . For each s in the unit interval, F will map z. to a number, as Fis a 

functional. Thus as s ranges over the unit interval we will define a function 

<l>(s) = F(z8 ). We will show that this function is absolutely continuous. 

Let a> 0. Consider a finite collection of intervals {(s,,s'i}f,,;1 with 

Notice thatf(x) always has an absolute value of one within the collection of intervals, 

( s,, s, '] and zero outside. Thus, (lltllp r < 8, and we have 

F(f) ~ llF11 · lltll ~ IIFll8½' so p 

B 
F(f) ~ llF11 · llF11 = B. 

Notice that F(f) is the growth of the function <I> over the collection of intervals. 

Thus <I> is absolutely continuous. 

We can now apply the major result from Chapter 2 and say that there is a function 

g which is the derivative a.e. of <I>, such that <l>(s) = fi- But since 
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F(zs) = <I>(s), we conclude that 

F(zs) = f:g = fogzs-

The last equality above follows from the fact that we can break the last integral up 

into a sum of the integral from O to s and from s to 1. The characteristic function, being 

one on the former, has no effect there., It does however change the integrand to zero on 

the interval ( s, 1 ]. Thus the second integral becomes zero, and we have what we started 

with. This equation tells us that a bounded linear functional defined on the characteristic 

function of [ 0, s] can be written as the integral of the product of the characteristic 

function and some integrable function, g. 

The next step we will take is based upon the fact that the Lebesgue integral is a 

linear operator. This will let us expand our function to step functions. From step 

functions, we can use Littlewood's second principle,(again) to expand to bounded and 

measurable functions in LP. From there we will use the ubiquitous analysis method of 

adding and subtracting something to a difference. We then follow the standard operating 

procedure and apply the triangle inequality to the result from the previous step. This will 

allow us to expand our domain to the fullest extent. 

But, we must go one step at a time. First we will recall from Chapter 2 that a step 

function, 1//, can be written in its canonical representation as L c1 x, . Notice, the E1 's 

we are using are intervals, but not necessarily half-open intervals. The biggest possible 

difference between the different types of intervals is the endpoints of the intervals. These 

form an at most countable set. The measure of this set is zero, and the set will have no 

contribution to the integral. 
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Now we will apply the linearity of the Lebesgue integral. 

J g1/f = J ~~ c,x,) 

= fLgc,x, 

=I:Jc,gx, 
' 

Now we will work our way through the same steps using the fact that we know F 

is a linear functional. 

=~~c.x.) 
=F(1/f). 

We know from a previous theorem that given a bounded measurable function, we 

can find a step function so that j/(x)-1//(x)j > e, only on a set of measure less thane, and 

that the step function will be bounded by the same bound as f We can use this fact to 

construct a sequence of step functions ( 1//N) so that thee in question converges to zero. 

This property is known as convergence in measure. One consequence of convergence in 

measure is that a subsequence of the sequence we constructed, call it (1//n) to avoid 

double subscripts, will converge to our function/ almost everywhere. 

Since we know that each of our 1/fn 's are bounded by M, the bound on/, we know 

that the sequence (It -1//nt) is bounded on the unit interval by M'. We also know that 
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the sequence converges almost everywhere to zero. These are the criteria we need to 

apply the Bounded Convergence Theorem. This theorem tells us that the integral of our 

sequence, which is the l!!!Lpower of the norm of (f - lfl,J, converges to zero. Hence the 

norm of (f- lfl,J converges to zero. 

Now we apply the fact that Fis a bounded linear functional to get that 

The next step is to apply the definition of the norm of a functional to get 

We will now observe that the norm of Fis a fixed number, and that the norm of 

the elements of our sequence goes to zero. Hence 

Notice that the equality comes about because, once again, Fis a linear functional. 

This tells us that limF(lfln) = F(f). 
n➔oo 

Also we know that gljfn is bounded by JgjM. This gives us, by the Lebesgue 

convergence theorem, 

f Jg= lim J If/~-

Which now holds for all bounded and measurable functions/ in LP. 

Ifwe now observe once more that IF(J)I ~ IIFIIIIJII for every p-integrable 
p 

function, then we take M = Jlf JJ , the lemma on page 57 gives us that g is q-integrable and 
p 

that J~t ~ llFII. 
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We will now proceed with the coup d 'grace. We will let f be any p-integrable 

function, bounded or not. We also choose e > 0. Since/ is p-integrable we can get a 

step function 1] on [ 0, 1 ], so that Ill - ~I < s. Since all step functions are, by definition, 
p 

bounded, we know F(17) = J 17g. This leads to the following chain of inequalities: 

IF(/)-J f~ = IF(f)-f 17g+ f 17g-f Jgl 

~ IF(f) - f 1]~ + IJ 17g - ff~ 
~ IF(f)-F(11)I +IJ(11- J)~ 

~ IF(f-11)1 +IJh- J)~ 
~ 11F11-111- ~1 +llmlq -111- ~1 

= (11F11 + 11m1q )111 - ~1 
~ (IIFII + llmlq )s. 

If we now note that (11Fil + ljgjlq) is a number, as both F and g are already 

determined, and that e is arbitrarily small, the only conclusion to be reached is that 

IF(/)-J f~ =0, 

and hence that 

F(J)= f Jg. 

The final part of the theorem, that llmlq = IIFII, comes directly from the previous 

lemma. 

QED. 
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CHAPTERIV 

THE VARIATION INTEGRAL 

We now have all the tools we will need to complete our goal. We will, in this 

chapter, develop our new integral, as we developed the Lebesgue integral in the second 

chapter. We will then give and prove a theorem, giving us a way of relating linear 

functionals on our space with our new integral. This will accomplish the analog of what 

we accomplished with the Riesz Representation Theorem in Chapter Three. 

In Chapters Two and Three the space of functions we were working on we the 

Lebesgue integrable functions. The conclusion of the Riesz Representation Theorem was 

that for each Lebesgue q-integrable function, g, we could define a linear functional on the 

p-integrable functions defined by F(f) = f Jg. We conversely found that every linear 

functional on the p-integrable functions was defined by some function g as above. Thus 

there is a bijective correspondence between the functions in Lq, and the functionals on LP . 

We will develop such a theorem in this chapter. We will work with a much 

stronger norm, but our space of functions will be more restricted. We will only work on 

the space of absolutely continuous functions defined on the interval [ 0, 1 ], which we will 

refer to as AC [ 0, 1 ]. A slight restriction we will need to place on this set is that for any f 

in AC [ 0,1 ], f (0) = 0. 
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We showed in Chapter One that this set is a linear space. 

A normed space of function consists of two things, the first of which is the set of 

objects in the space. This we have just defined. The other thing involved is the norm we 

put on the space. The norm we will put on AC [ 0,1] is the bounded variation norm. The 

value of the norm of a function using this norm is the total variation T, of the function on 

the interval [ 0, 1 ]. We defined this in Chapter One. 

We must now show that this does in fact form a norm on the space. Clearly the 

norm maps any function in AC [ 0, 1 ] to the non-negative reals. Further, we now show 

that, for the total variation to be zero, the function must be the zero function. Suppose the 

function had a value of y, not zero at a point, p. We could then pick the partition, 

P = { O,x,1}. The variation off over this partition is 

VP =lf(x)- f(O~ +lfO)- f(x~ 

= IY - q + If (1) - J1. 

The first term in this sum is a positive number and the second term is non-negative. 

Hence the variation v;f = sup Llf(x,)- f (x,_ 1~ must be greater than zero. 
a a 

The norm is defined as the supremum over all partitions of the variation of the 

function. Given any scalar, we can pull a scalar out of each term in the sum, add, then 

multiply the scalar back in. That is 

Using this fact we can easily show that: 

llefllnv = v;(ef) = lalVo1(f). 
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The only thing remaining, in order to show that the bounded variation norm is a 

norm, is the Minkowski inequality. We will show this below, making use of the fact that 

the supremum of a sum is less than or equal to the sum of the suprema, as we have shown 

before. 

V(J + g) = sup Lif(x,) + g(x.)-(J(x1_1) + g(x1_1))I 
O' O' 

= sup Llf(x,)- f(x1_1) + g(x,)-g(x1_1)I 
O' O' 

~ sup Llf(x,)- f(x1_1)I + sup ~]g(x,)- g(x1_1)I 
O' O' O' O' 

When we were dealing with Lebesgue measurable functions, we approximated 

them with simple functions in order to construct the Lebesgue integral. We cannot do this 

here, as simple functions, and their subset of step functions are not, in general continuous, 

let alone absolutely continuous. Further, iffis absolutely continuous, ands is a step 

function, then 

ll/ - ~IBv = ll/llBv + ll~IBv 

and we cannot possibly hope to have a sequence of step functions converging to fin the 

BV norm, except in the trivial case off being the zero function. 

To get around this, we will in developing our new integral, approximate our 

functions with polygonal approximations to the functions. A polygonal approximation can 

be thought of as taking a partition of the interval, evaluating the function at the points of 

the partition, and "connecting the dots" with straight line segments. More rigorously, if 

we have a partition, a = { 0 = x0 < x, <· · · < xn-i < xn = l} , then we define the polygonal 
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/(0)= 0. 

We can show that polygonal approximations are, in fact absolutely continuous. 

The function, Pia, will on each interval {xi-1, x,], have slope m,. Since there are only a 

finite number of subintervals in cr, we can take the largest slope, in absolute value and call 

8 
it m. Then given E > 0, our o will simply be any number less than lml. Now, ifwe take a 

collection of subintervals, { {x, ,Y, )} ~=1 , where L~=I {y, - x,) < 8, we get that 

L:1 If (y,) - f (x, ~ ~ L~=1 lmllY, - x, I 
= lmlL~Jy, - x,I < lml8 = 1ml I~ = 8. 

Hence, our polygonal approximations will be absolutely continuous, and thus 

elements of AC[ 0, 1 ]. 

The next major step in our construction will be to show that the closure of the 

space of polygonal functions under the BV norm is AC[ 0, 1 ]. That is, given a Cauchy 

sequence of polygonal functions in AC[ 0, 1 ], there is an absolutely continuous function 

to which the sequence converges, and that Pia ➔ f in the BV norm. 

Recall that as we showed in Chapter One, any absolutely continuous function is of 

bounded variation. We next show that the supremum of a function is less than or equal to 

the total variation. Consider a function/ E AC[ 0, 1 ]. In the unit interval there is a point 

x for which IJ(x)I = lltll«,. We will find the variation off over the partition, CJ"= {o,x,1}. 

68 



The variation over this partition is: 

IJ(O)-/(x)l+IJ(x)-/(1)1= 
Jo- /(x)J + IJ(x)- /(l)J = 
IJ(x)l+IJ(x)-/(1)1= 

lltlL + 11 ex) - 1 o )I ;?: lltlL 

Since the variation of a function is the supremum of the variation over all 

partitions, and we have found one partition whose variation was greater than the sup 

norm of the function, we are done. 

An easy consequence to see of this result is that if a sequence is Cauchy in the BV­

norm, it is Cauchy in the sup norm. To see this consider a Cauchy sequence of absolutely 

continuous functions, (in), in AC[ 0, 1 ] under the BV norm. By the definition of 

Cauchy, given e >O, there is a natural number, N, so that ifn, m > N, then llfn - fmllev < e. 

But notice that llfn - fmll 00 < llfn - fmllev < e, so the sequence is also Cauchy under the sup 

norm, using the same N as the sequence in the BV norm. Similarly, a sequence of 

functions which converge in the BV norm converge in the sup norm. 

As we showed in Chapter One, the space C [ 0, 1 ] is complete under the sup 

norm. We will use this fact and follow the same steps to show that the closure of the 

space of polygonal functions under the BV norm is AC [ 0, 1 ]. 

Theorem: A Cauchy sequence of polygonal functions on [ 0, 1 ] under the BV norm 

converge to an absolutely continuous function. 

Proof: We will start by considering a Cauchy sequence of polygonal functions, (Pn), 

under the BV norm. As we have noted, this means (Pn) is Cauchy under the sup norm. 
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Thus, since polygonal functions are continuous, and using that C [ 0, 1 ] is complete under 

the sup norm, there is a function/, which is the limit of (Pn) in the sup norm. 

We now have three things to prove in order to establish this theorem. The first is 

that/ is of bounded variation. Next, we will show that/ is absolutely continuous. 

Finally, we will show the (Pn) converges to/ in the BV Norm. 

In showing that the function is of bounded variation, we will consider (Pn). The 

norms of these functions form a Cauchy sequence of real numbers. Since the sequence 

(IIPnllBv) is Cauchy, it is bounded, as all Cauchy sequences are bounded. We choose a 

bound Band note that for all n, IIPnllBv :5: B. 

Next, we let E > 0, and fix a partition cr. This partition has M points. Since we 

know (Pn) converges to/ in the sup•norm, there is a natural number N, so that 

for all n > N, and for all x in the unit interval. 

We now choose n > N. Then 

LIJ(x,)- f (x,_j = Llf(x,)- Pn(x,) + Pn(x, )- Pn(x,-1) + Pn(x,_1)- f(x,_1)1 
u u 

When we apply the triangle inequality of the reals, we get 

~]J(x,)- f(x,-1)1 :5: Llf(x,)- Pn(xj + LIPn(x,)- p/x,-1)1 + LIPn(x,-1)- f(x,-1)1 
a a a u 

:5: L:11 4:rl + ~IPn(x,)- p/x,-1)1 + L:11~ 
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& 
<-+B < oo. 

2 

Since both Band E are fixed,/ is of bounded variation. 

We must now show that the function/ is absolutely continuous. We start by 

letting E > 0. Since (Pn) is Cauchy in the BV norm, we can get a number N1 , so that 

l!Pn - PmllBv <:, for all n,m > N1• We next choose such an n. Since Pn is absolutely 

contin~ous, there is a o > 0 so that for any finite collection of intervals fix, ,y,]}~=i' with 

total length less than o, we get L~=I IPn (y, )- Pn (x, ~ < : . We continue by choosing such 

a collection of intervals. Since (Pn) converges to/ in the sup norm, we can get a natural 

number N2 , so that for any xE [ 0, 1 ], IJ(x)- Pn(x~ < ~. We now choose 

m = N1 + N2 • This gives 

Z:~Jt(y,)- t <x1)I 
= L~J(J(y,)-pm(y,))+(pm(y,)-pn(y,))+(pn(y,)-pn(x,))+(Pn(x,)-pm(x,))+(pm(x,)- f(x) 

= L~J(J(y,)- Pm(y,)) + (pm(y,)- Pn(y,)- Pm(x,) + Pn(x,)) + (pn(y,)- Pix,))+ (Pm(x,)- f(x,))I 

This monster does reduce to something somewhat more manageable when we 

break it into pieces using the classical triangle inequality. 

L~Jf(y,)- f(xj ~L~Jf(y,)- Pm(yj + L~Jpm(y,)- Pn(y,)- Pm(x,)+ Pn(xj 

+ L~Jpn(y,)- Pn(xj + L~JPm(x,)- f(xj 
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e 
The first and last sums add up to less than 4 each because of the sup norm ( or 

e 
uniform) convergence. The third term adds up to less than 4 because of the absolute 

continuity of p n . The second term can be rearranged to look like 

This term is a part of the variation on a partition of the function (Pm - Pn). This 

e 
will make it less than or equal to the norm of the function, which is less than 4 , since 

(Pn) is Cauchy. By adding these pieces together, we get a total jump in the function over 

the collection of intervals of less than s. Thus/ is absolutely continuous. 

Our last step in the proof of this theorem is to show (p n) converges to fin the B V 

norm. That is we must show that, llt - pJBv ➔ 0. So given B > 0, we must come up 

with an N so that for any n > N, then Ill -PnllBv < e. As we know we have a Cauchy 

sequence of polygonal functions, we will choose the N, so that for n, m > N, 

IIPn - PmllBv <;. We next choose any partition we want. It will have k points in it. We 

must show now that 

We will now choose, based on uniform convergence, an m so that for any x in the 

unit interval, L k If ( x) - pm ( x )I < _!__. Another application of the triangle inequality will 
•=I 3k 

now yield 
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L~J(f(x.)- Pn(x.))-(f(x,-1)- Pn(X,-1))1 

= L~J(f (x.)- pix.) )-(f (x,_1)- Pn(X1_1)) + (Pm(x.)- Pm(x.)) + (Pm(x,-1)- Pm(X,-1) )I 
= L~J(f(x,)- Pm(x.)) +(f(x,_1)- Pm(X1_1)) +[(Pm(x.)- Pix.))-(Pm(x,_1)- Pn(x1_1))]i 

~ L~J(f (x.)- Pm(x.)) + (f (x1_1)- Pm(X1_1) )I+ L~J(Pm(x.)- pix.) )-(pm(X,-1)- Pn(x1_1) )I 

The second term on the last line is an underestimate of JIPn - PmllBv. We already know 

. 8 
this to be less than 3. The first term we can break into 

L~J(t(x,)- Pm(x.))-(/(x,_1)- Pm(X,-1))1 

~ L~J(f (x,)- Pm(xi ))I+ L~J(f (x,-1)- Pm(x1_1))I 

8 

8 8 28 
<-+-=-- 3 3 3 . 

When we throw in the - from the previous term, we get the sum of all terms to be 
3 ' 

less than s. Thus our sequence converges in the BV norm. 

QED. 

Having gone from a Cauchy sequence of polygonal functions in the BV norm to an 

absolutely continuous function, we must now turn the process around and go from an 

absolutely continuous function, J, to a sequence of polygonal approximations which 

converge to f 

Theorem: Every junction/, in AC [ 0, 1] is the limit of a sequence of polygonal 

approximations to that junction. 

Proof: We start with a functionfinAC [ 0, 1 ] and ans> 0. By our results in Chapter 

Two, we know there is a function f' E L1, so that f;f' (t)dt = f (x). We have now moved 
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from the sometimes bizarre space of the bounded variation norm to the more farmiliar 

space of Lebesgue integrable functions under the E norm. We know therefore that there 

is a step function sn, so that llt'-snll1 <;. 
It is not too difficult to see that the integral of a step function is a polygonal 

function. We will now de:f:i.ne a function <I> n (x) to be this integral. That is 

For an absolutely continuous function, we have that 

ll/llBv = f lf'I. 
This being the case, we can state that for each n, the is an sn and a <I> n so that 

This, of course tells us that ( <I> n) converge to f in the B V norm. 

QED. 

We will next show that ifwe take a sequence of polygonal approximations (Pfu), 

on a directed partially ordered set of partitions, the sequence will converge tof in the BV 

norm. 

Theorem: lim pf u = f. 
u 

Proof: We start by letting E > 0. We continue by taking a sequence (qn) of polygonal 

functions converging to f There is a term in this sequence, q n, so that llt - q n II Bv < ; . 
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Next we consider the set cr of the points at which qn has comer points. Clearly cr 

is a partition of the unit interval. Let u' be a partition beyond cr. We want to show that 

pfc,,, the polygonal approximation to/with comers on u', lies within a off in the BV 

norm. That is llt -Pfo-tv < &. 

Since the BV norm is a norm, we can apply the Minkowski inequality to 

Iii -Pf o-, IIBv to yield 

IIJ- PfABv ~ llf-qnllBv + llqn - PfABv 

<; + llqn - Pfo-,IIBv 

It now remains to show llqn - pf ABv < ; . We know q n is an approximation to f 

Notice that for x Eu' ,Pfo-, (x) = f (x). So llqn - Pfo-tv is an approximation of llqn - JIIBv 

on the partition (J' u 0' 1 • Thus, ~Jqn - Pfo-,I ~ v;(qn - f ), and we get that 
~~ . 

QED. 

At this point we refer back to the Riesz Representation Theorem. If we have any 

linear functional F defined on the I! functions, we know that F(j) = f Jg, for some gin 

1 1 
Lq , where - + - = 1. Let us now consider a new set function, 

p q 
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Except for the fact that the integral might be negative, we have all the properties of 

a measure for the set. In fact, we have a "signed measure." 

Recall that we could approximate any measurable function/ with a simple 

function 'I', so that Ill - q,"l!i < s. Further, we could decompose 'If into a sum of numbers 

and characteristic functions, the canonical representation, where 

If we now apply a linear functional F to f, we will get 

F(f) ~ F('P) = L a,F(xE ) 
' 

= Lf(t,)µ(E,). 

But, if we recall that µ is a measure, the last line represents an integral with respect 

to the µ measure in the limit. This is what we will do to define our new integral. 

Our first step is to decompose our functions into some simpler functions with 

which we can work. We cannot use step functions since we are working in a space of 

absolutely continuous functions. Step functions, non-trivial ones anyway, are 

discontinuous. Further, as we have noted, we cannot use them to approximate functions 

under the BV norm anyway. 

With some thought, we can see that we can decompose a polygonal function based 

on its partition cr. The functions will decompose into linear combinations of functions 

<I> ab, where a and bare consecutive points in cr. We define <I> ab as follows 
' ' 

0, ifx e[O,a] 

x-a 
<I> b = -b-, ifx e(a,b] 

a, -a 

1, ifxe(b,l] 
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Also, notice that for a polygonal approximation to a function/, 

Pfu(x) = L(f(xJ- f(x,_ 1)}1>x,_,,x, (x), wherex E(x,_1,x.). 
r, 

We can show that the <I> functions add convexly. That means that there are real 

numbers Ai , A:z so that 

Ai<l> a,b + A:z<Pb,c = <I> a,c· 

The easiest way to prove this is simply to give the values for Ai and A:z . 

b-a 
Ai=·-, 

c-a 
c-b 

A:z=-. 
c-a 

Notice that for x E[a,b ], <I>b c(x) = 0, and we have 

This is exactly what it should be. For x E [b, c ], we have <I> ab (x) = 1, so 

b-a c-b 
<I> a c(x) = --+-<I>b c(x) 

which is again what is expected. 

· · c-a c-a · 

= b-a + c-b(x-b) 
c-a c-a c-b 
b-a x-b x-a 

=--+--=-­
c-a c-a c-a 

Ifwe now consider a linear functional on the space AC [ 0, 1], F, and apply it to a 

function <I> a,b, we will have defined a convexly additive signed set function ( or convex 

measure) on [ a, b]. We will denote it byµ. To demonstrate this 
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µ((a,c]) = F(<I>a,J 
= F(Ai<I> a,b + Ai<l>b.J 

= AiF(<I> a,b) + AiF(<l>b,J 
= Aiµ((a,b]) + ~µ((b,cD. 

Now we approximate an absolutely continuous function/ with Pia, decompose, 

this, and apply F to it to get 

F(/) ~ F(pfa) = LL\J(F(<l>x,_1 ,x.) 
a 

= LL\Jµ((x,_ 1 ,x,]). 
a 

If we now take the limit of the above sums as we let Pia ➔ f, as we have shown 

we can for any absolutely continuous function, our sum goes to our new variation integral. 

F(/) = li,!11F(pfa) = li,!11Li\,}F( <l>x,_1 ,x,) 
a 

= limLL\Jµ((x,_ 1,x,]) 
a a 

= vf 4fdµ. 

We have, in one fell swoop, now both defined our integral, and given our Integral 

Representation Theorem. Notice also that the integral we have defined can be evaluated. 

Everything works on intervals and can be numerically calculated. While this integral does 

not have the advantage of being evaluated simply by taking its anti-derivative, it can be 

evaluated. This is not something which can be said about the Lebesgue integral in most 

cases. 

That we can evaluate the integral follows from the fact that like the Riemann 

integral, the limit of the sums as the norm of the partition goes to zero is the integral, as 

we show below. 
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We start with an absolutely continuous function/ We know that the limit of 

Pfu is f , as we take the limit of a directed partition. So there is a partition CJ'i , with N 

points, so that if u1 c u , then IIPfu, - pf u IIBv < ; , because the directed set, (pf u) is 

Cauchy. Since/ is absolutely continuous, there is a 8' > 0, so that if L~=1 (y, - x,) < 8', 

"n I \I e s: 8' h . . ha then L.J,=1 f(y.)-f(x,)l< 3 . Let u= 2N. Wenextc ooseanypart1t1on u2 sot t 

We now define the union of the two partitions u1 u u2 = u. Now note, 

Since u is a refinement of u1 , the first term in the right hand side of the above inequality 

. e 
1s less than 3. 

Now we define the set A to be the set of intervals defined by cr, [x,_1,xi], so that 

either of the two endpoints are in 0"1 . Notice that IIPfu - Pfu2 IIBv = LIIPfu - Pfu2 IIBv 
A 

because for any interval not in A, both endpoints are in u2 , and pf u = pf u 2 on the sub-

interval. 

Since we know the norm of the partition cr is less than 8' , we know the length of 

8' 
each interval in A is at most 2N , and we know there are at most 2N intervals in A. So 

8' 
we know the total width of all the intervals in A is less than 2N 2N = 8'. 
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If we next apply the Minkowski inequality to IIPfa - Pfa2 IIBv, we get 

But by absolute continuity, we have that both sides of the right hand side of the 

above inequality are less than ; . Thus given any partition u 2 with norm smaller than o, 

we have that 

8 8 8 
<-+-+-=e 

3 3 3 . 

Thus we can define our integral as the limit of a directed partition, or for the sake 

of computability as the limit of the norm of the partition. 

The beauty of the Riemann integral is that you can simply take the values of the 

anti-derivatives at the endpoints of the interval of integration. This simple fact is the 

climax of first semester freshman calculus. In second semester calculus, we learn that we 

are not always able to find an anti-derivative. For instance laboratory results are often 

noisy, and can seldom be represented as a closed form function. Even when it they can be, 

it is often easier to find an integral some other way. 

By using a very fine partition, we can evaluate to any desired precision any 

Riemann integral we are given, even if all we have are experimental data points. One of 

the main advantages of the variation integral is, as we have shown, it shares this property. 

In closing, we will present two examples of the variation integral. We will give the 

convexly additive set functions µ and v, which will integrate to give the functionals T and 
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1 
D, which give the value of the function and the value of its derivative at the point x = 2 , 

respectively. 

µ((a,b]} = 

1 
1, b~-

2 
1 
--a 
-2- a<_!_<b 
b-a' 2 

1 
0, a~-

2 

Clearly, this will give a linear functional on AC [ 0, 1 ], since 

T(pfu + pgu) = L{AJ + A,g)µ{{x,_i,x,]) 
u 

1 
I --a 

= L~:?(AJ + A,g)-1 + [(J(b) + g(b))-(J(a) + g(a))] ~ -a + 0 

1 
--a 

= f(a) + g(a)- f(O)- g(O) + [(J(b) + g(b))-(J(a) + g(a))] ~_a 

1 1 
--a --a 

= f(a) + (J(b) - f (a)) ~- a + g(a) + (g(b)- g(a)) ~-a 

= T(pfu) + T(pg u ). 

1 
Where a is the last element of cr less than or equal to 2, and b is the very next point in the 

partition. 

Since every absolutely continuous function is the limit of pf u, the above 

establishes that the functional is linear. We can similarly show that Tis linear under scalar 

multiplication. If we observe the way the sum in the integral collapsed we will note 
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But this is the equation of the chord between (a,f (a)) and (b,f (b)). Since/ is 

(absolutely) continuous, and a and b straddle one half, the continuity off forces the value 

of the functional to !(~) in the limit. 

We next will show that the measure µ is indeed convex. That is that 

Aiµ((a,b]) + .-1-zµ((b,c]) = µ((a,c]). 

For the case where a is greater than one half, and c is less than one hal:t: convexity 

is_ very easy to establish. Thus, the main cases we are concerned with are when one half 

falls between a and b or between b and c. The algebraic calculations are very similar in 

both cases. So we will suppose the latter case. Notice we are still using the same lambdas 

from earlier in the chapter. 

Aiµ((a,b]) + .-1-zµ((b,c]) = 
b-a ( ) c-b ( ) -µ (a,b] +-µ (b,c] = 
c-a c-a 

b - a c - b (1_ - b) ---1+-- _2_ -

c-a c-a c-b 

b -a ( 1_ - b) ( !. - a) ( ) --+ _2_ = _2_ =µ (a,c] 
c-a c-a c-a 

We conclude this functional, by looking at a calculation of a specific example of 

the variation integral. We will evaluate F(x2 ) using the partition a-= { 0, ½, ½ ,1}. Notice 
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the third sub-interval will not contribute to the integral as µ(( ½ ,1]) = 0. So our 

approximation to the integral is 

v{ x 2dµ R; [(½2 - 02 )]µ((o, ½]) + [(½2 -½2)]µ((½, ½]) 
1 1 5 

--+---- 9 6 - 18. 

If we had taken a finer partition and computed the integral again, we would have 

come closer to the functional's value, which is one fourth. 

Our final example is the functional D, the (right hand) derivative evaluated at the 

1 
point x = 2 . The convexly additive measure we will use here is 

v{(a,b]) = 

1 
0, b~-

2 
1 1 

-- a<-<b 
b-a' -2 

1 
0 a>-
' 2 

As the (right hand) derivative is not defined for all absolutely continuous functions, 

the functional cannot be linear and bounded. However, we can still demonstrate that this 

measure gives the point evaluation of the derivative, and that the measure is convexly 

additive. 

1 
We let a be the last element of the partition to be less than or equal to x = - again 

2 

and let b be the next point in the partition, as in the previous example. We then apply D to 

Pf a- . The only non-zero term in the sum will be the one from the interval straddling the 

. 1 
pomt x = - . Thus we get 

2 
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D(pfu)=(/(b)- /(a))(-1-) = f(b)- f(a) 
b-a b-a 

Which is the standard difference quotient, and in the limit becomes the right hand 

1 
derivative off at x = 2 . 

We next consider convexity. As vis zero except on the interval containing one 

1 1 
half, the cases with c ~ 2 and a > 2 are trivial. We will consider the case therefore where 

1 1 
a~ - < b. The other case, where b ~ - < c is almost identical. 

2 2 

Ai v((a,b]) + Az v( (b,c]) = 

( b-a) 1 c-b -- --+-- o-
c-a b-a c-a· -

1 
c- a= v((a,c]) 

This shows that the function is convex. Finally we give a numerical example of 

our integration. We again use the x squared function. We will use a slightly different 

partition though, CT= { 0, ½, ¾ ,1}. When we expand our sum, only the middle term will 

remain 

D(pf.) = [(ff -o}o+[(¾)'-(¾rJ[¾~J +[1-(¾)']-o 

= [(¾r-GrJ[¾~½J = ::-

This number is very close to the true derivative at one half, which is one. As the 

partition gets finer, the answer will come closer and closer to one. 
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