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CHAPTER I

INTRODUCTION

The purpose of this paper is to examine some of the proper-

ties of chain sequences. According to Dr. H. S. Wall [2, p. 79],

chain sequences play a fundamental role in the study of continued frac-

tions.

First some general properties of chain sequences will be

stated and proved. Properties of constant chain sequences will also

be examined. The existence of meximal and minimal parameter sequences

for a chain sequence will be established and these parameter sequences

will be used to determine the existence of other parameter sequences.

Although the theorems in this paper have been proven in other

papers, the proofs given here are original with the author.



CHAPTER II

DEFINITIONS, AXIOMS AND PRELIMINARY THEOREMS

In this paper the following grouping symbols [ ], ( ), ( 1,
and [ ) will be used to indicate closed, open, opeh on the left,and
open on the right intervals, respectively. In proving theorems, it
will be assumed that functions are from real numbers to real numbers.
Symbols such as A, B, x, y, etc., will represent numbers unless indi-

cated otherwise. Subscripts will denote nonnegative integers,

Definition 2.1l: The number set S has a least upper bound means there

is a number M such that
(1) if x e S, then x < M, and

(2) 4if p < M, then there exists x € S such that x > p.
Notation 2.1: The symbol "l.u.b." means "least upper bound."

Definition 2.2: The number set S has a greatest lower bound means

there is a number M such that



(1) 4if x € S then x 2 M, and

(2) if p > M, then there exists x € S such that x < p.

Notation 2.2: The symbol "g.l.b." means "greatest lower bound."

Notation 2,3: The symbol "iff" means "if, and only if."

Definition 2.3: {cn}; 1 is a chain sequence iff there exists a number
sequence {gn}:_o such that
(1) if n is a positive integer, then c, = (1 - gn_l)gn, and

(2) if n = 0 or a positive integer, then 0 f,gn < 1.

o0

n=l° It

The sequence (gn}:_o is called a parameter sequence for {cn}

follows from the definition that if {c is a chain sequence, then

[e]
n]n=l

for each positive integer n, 0 Sc S 1,

) s ©
Definition 2.4: Suppose (c )7 . is a chain sequence: (m )7 . and

{Mh);_o are minimal and maximal parameter sequences for {c means

-]
n}n=l

=} 0 o0
(1) [mn}n=0 and [Mn}n=0 are parameter sequences for [cn]n=l and

© =)
(2) 1if (g}-0 15 & paresmeter sequence for [cn}n=l’ then



mnﬁgn SMnforn=l, 2, 3, . .

Definition 2.5: The sequence {an]: 1 is a dense set in the interval

[0,1] means, if p € [0,1] and § > 0, then there exists a number

a a }* _ such that |a - .
n el n}n=1 ue I n pl <?

Axiom 2.1: Every non-empty set which is bounded above has a least

upper bound.

Theorem 2.1l: Every non-empty set which is bounded below has a greatest

lower bound.

Theorem 2.2: If [an}: 1 is a non-decreasing sequence which is bounded

above, then lim a exists and is the least upper bound of {a }* _.
Nwo 1 n'n=1

Theorem 2.3¢ If (an}: 1 is a non-increasing sequence which is bounded

below, then lim a exists and is the greatest lower bound of {a }* _.
N N n'n=1

Theorem 2.4¢ If A and B are numbers, the following statements are

equivalent:



(l) A= B, and

(2) if € >0, then |A - B| < e.

Theorem 2.5: (Cauchy criterion) If {xn}: 1 is a sequendéythen the
following statements are equivalent:
(1) 1lim x exists, and
N« n

(2) if ¢ > 0, there exists a N > 0 such that if n > Nand m > N,

then ]x -x| <e.
n m

Theorem 2.6: If Sn is a subset of [a,b], then the least upper bound

and greatest lower bound of Sn belong to [a,b].

Theorem 2.7: {Intermediate Value Theorem) Suppose f is continuous on
the closed interval [a,b], f(a) = A, £(b) = B, and A # B, then if

A < C < B, there is & point p ¢ [a,b] such that f(p) = C.
Theorem 2.8: If {x }® _ and {y }® _ are sequences such that lim x
- n'n=1 n n=1 Neco N

exists and lim y exists and x <y for each n, then limx < limy .
=0 11 n n Nesco N Isoo I

The preceding theorems will be used without proof in this paper.

Proof of these theorems can be found in elementary or advanced. calculus books.



CHAPTER ITI

BASIC PROPERTIES OF CHAIN SEQUENCES

Properties of general chain sequences, constant chain se-

c,c

quences, and special chain sequences of the form cl, cz, cl, ot Cp»

c . are examined in this chapter.

2’
Theorem 3.1:
Given: {c }® _ is a chain sequence and for eachn, 0<b <ec .
I n n=1 n n
Conclusion: {b }® _ is a chain sequence,

n n=1
Proof:

Suppose that {g }* 1is a parameter sequence for {c¢ }* _ and
n" n=0 n'n=1

define {qn)” 0 as the sequence of numbers such that q0 = 0 and if
=

n # 0 then,
0, ifb =0
n
4 =
n




A proof by induction will be used to show that ¢ < g for
n n

each n. Since =0< then q < g . 20, and q < it
% = 0= 8y U =8y Hm=20,e0dq 2g,

<g

will be shown that < .
qm+l m+1

Suppose b = 0, then =0< .
PP m+l ? qm+l =&

Suppose b # 0 and assume that q <g is false; therefore
m+l m+1 m+l

q >g and since we will assume that q < g , then it follows
m+1 m+1 m m

that

b o=(1-a)

m+l qm+l

> (1~ gm)qm:L

l -
> ( gm)gm+l

m+l’

Hence b >c which contradicts the hypothesis; therefore,
m+l m+l

< and by induction < forn=0,1, 2, 3, . ..
Y1 = Eppa Y 4GW =& P T m

Since g < g < 1, then 9 < 1 for each n. It will be shown
n n
by induction that 0 < 9 forn=0,1,2, 3 ... . Bydefinition

0= qo. Assume that 0 < q, for k > 1. Now, if b +

kl:o, then

e,y = 03 and if by . # 0, then since q >0, it follows that



0<b = (1 -
k+l ( qk) qk+1
<(1-0)aq
k+l
= q .
k+l

Therefore 0 < qk+l and by induction O g_qn forn=0,1, 2, 3, .

Since 0 < q <leandb =(L~q _)g forn=1, 2, 3,
= 'n-1°- n n- n

1

. , then (b }® _ is a chain sequence.
n n=1

Corollary 3.1:

Given: ({c }* _ and {d }* _ are chain sequences.
Given: (e Y . @), q
Conclusion: ({c d }*® _ is a chain sequence,
R n n n=1
Proof:
It follows from Definition 2.3, that O g_dn < 1; therefore,

0<cd <c . Since {c }®
- = n n n=

is a chain sequence and since for each
nn

1

n, 0<cd <c , then from Theorem 3.1, {c_d }® _ is a chain sequence.
-~ nan~ n n n'n=1

Theorem 3.2: Suppose ¢ is a number and {c }* 1 is a sequence such that
IR — n n=

cn =cforn=1 2, 3, . . .. The following two statements are

equivalent:



1 ¢ }® _ is a chain sequence, and
(1) (n}n=l 1 quence,

(2) 0<candc<

N

Proof: 1 - 2

Assume the conclusion is false; then either ¢ < 0 or ¢ > —i—

(>

Since {cn}n—l is the constant chain sequence ¢, ¢, ¢, . . . , then it

follows from Definition 2.3, that ¢ > 0. Therefore, c £ o.

Assume ¢ > -i—‘-, and let {gn}: 0 be a parameter sequence for

An indirect proof will be used to show that gn > gn for

[+ 4]
CIN Y 1

each n. Buppose there exists a positive integer n such that gn < gn

1"
l — - P c = .
Since 0 < 4< c = (1 gn_l)gn, then (1 gn_l) # 0 and e, 8, <8 5
-1
therefore ¢ < g - gz and gz ~ g +c¢< 0. Sincec > X
= "n-1 n-1 n-1 n-1 = 4’

-—é-)2 > 0, which is a

#
Py
153

. 2 _ 1
it follows that 0 > g 1 gn_l + 7
contradiction. Therefore the assumption that gn < gn 1 is false,and it
follows that for each n.
ollow g > g 1

An indirect proof will be used to show that gn - gn 1 > 2vc a1

forn=1, 2,3, . .. . Suppose there exists a positive integer n

such that
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(L) g - &g <2k -1
n 1

- Ye = 2/(1 - .
(2) g, g, +1< 2 2/(1 gn_l)gn

Since &, > g, for each n, and since ¢ > -i-, both sides of inequality

1

2 are nonnegative. Thus,

2

2 - -
(3) g  +g . + 1 Zgn + Zgngn_l Zgn_l < 0.
However, from inequality 3,
(¢) 0< (g +g -1)2 =g2 +g2 +1-22 +22¢ -2g < 0.
= '"n n-1 n n-1 n n n-1 n-1

This gives the contradiction 0 < 0; hence the assumption in inequality
1l is false and therefore for each n,
5 - 2/e -1,
(5) g -8 .2
Since 0 < g .1 < 1 and g > € -1 form=1,2, 3, . . ., then
{gn}: o is a non-decreasing sequence which is bounded above; therefore,

by Theorem 2.2, rJi-J-'gcl. gn exists and is the least upper bound of {gn}::O'

Since 1:!l.im ) exists and since 2vc -1 > 0, then there exists
-0
a number N > 0 such that if (n-1) > N, then Ign - e J.| < ale -1,

(Theorem 2.5). ILet (n-1)> N. Since g > g, then

-1’

(5) g -8

n “n-1 lgn i gn--ll <ale - 1.
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Inequalities 4 and 5 give the contradiction 2/c - 1 < 2/c - 1. There-

fore, the original assumption is false, and ¢ <

N

Hence, 0 < c and
c< .i., and Statement 1 implies Statement 2.
Proof: 2 =1

First we will show that [cn}:_l is a chain sequence if

¢ = for each n. Suppose that c =L for each n and define (g }®
n 4 n 4 n n=0
as the sequence of numbers such that for each n, gn e ..lé. Since
1 1} 1
¢ ==2={l-=}== (1~
n 4 ( 2) 2 ( ﬁgn-l)gn’
thenc = (1 = for each n. Also 0< & = =L < 1 for each
n ( gn-l)gn < 2 gn-l 2
n, hence 0 < & 1 < 1. Therefore the constant sequence -i-, 34'-, %, ..

is a chain sequence. Since {c }® _ is a chain sequence when ¢ = i
n'n=1 n 4
for each n and since 0 < ¢ _<_i'-, then, from Theorem 3.1, ¢, ¢, ¢, . . ,

is a chain sequence.

Theorem 3.3:
Given: {x }® _ is a sequence such that lim x exists.
- n'n=1 N-co N

Conclusion: 1lim (x -x)=0
——=—'" N '‘n+l n
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Proof:

Let € > 0. Since %?_ﬂ X exists, then there exists a N > 0

such that if n > N and m > N then |xn - xm| < ¢, (Theorem 2.4). Let

n > N, then
-x) - = |x - ;
I(xn+l n) of - | n+l xn| <&
therefore lim (x -x)=0.
Newo N4l n

Theorem 3.4:

Given: Suppose c¢ is a positive number and f is a function such that

F(x) = x - =&,

l-x

Conclusion A: The following statements are equivalent:

(1) there exists a real number q such that f (a) = 0, and

(2) 1-4c>0andg=2itlzdc ;1'40.

Conclusion B: If 1 - 4c > O and k-g——-— vi-4c o x < ,l-;"_é...__ V1-4C then £(x) > O.

If 1-1/2-4c < x g itfl-de *él~4C, then f(x) > 0.

Conclusion C: If 1 - 4c > 0 and x< k—z-—-— v1-4C or x > -‘]'-"'—2——— Y174C then

f(x) < 0. If x< izfl-dc 'é"‘*e or x > tvl-dc 'é'"*c, then f(x) < 0.



Proof of Conclusion A, 1 - 2:
Since f(a) = 0, then

0=f(a)=a-—c-and
1l-a

13

0=0a2-a+ec. Therefore,
a= lEL%:éE, Since @ is a real number, then 1 - 4c > 0.
2 -1
£(q) = q - =S = 1i/1-4c _ c
la 2 1 - id/I-gc
2

- 1¥/l-4c | _ 2c
2 l¥/1-4c

_ Ige | 1d/14c
2 2

Proof of Conclusion B:

Suppose (1) 1 - 4c > 0, and

(2) 1-Y1-4c < x< l+¢l-4c_
2 2

An indirect proof will be used. Suppose that f(x) < O.

that

It follows
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-l
l-x

(5) 0gxB-x4c= (x, - ;L.:r.___.._v'lz-m)(x ] l-J;-am),

P = £(x) < 0; therefore,

From inequality 2, (x - Livl-dc 'é"‘m)< 0 and( x - i=¥l-4c ";’4")> 0. Thus,

(¢) (x - ———-—l"‘"l?‘i-‘;)(x - ________l--/g-l—c)< 0.

Inequality 3 contradicts inequality 4; therefore the original assumption
is false and f(x) > 0. Similarly, if i:@ <x< @, then
f(x) > 0.
Proof of Conclusion C:
Using an indirect proof, we will assume that 1 ~ 4c > 0 and
x < @ and that f(x) > 0. Sincec >0 and 1 - 4c > 0 then

c < i:; therefore,

(5) l+'/;-4c > 1-1/]2.~4c S x.

Since 0 < f(x) = x - -l—‘_:}-(-, then

<

(6) 0 Zxa -~X +¢C _—_(x - ,1+V‘é"4c)(x - l-‘ﬁz::é-g)'

However, from inequality 5, (x - lavl-de ";"4‘:) < 0 and (x - d-vl-de '%“‘c) < 0;

therefore the product
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(7) <x - 1+/§TZE)(X - 1-!1147)”,

2
Inequality 6 contradicts inequality 7; hence the original assumption
is false and f(x) < 0. Similarly, if x < 2z¥l-4c  then f(x) < O.
2
If 1 - 4c >0 and x > Lirl-dc 'é“‘c, a similar indirect argument

can be used to show that f(x) < 0. Suppose f(x) > 0, and inequality 6

can be obtained. Since 0 < ¢ <

i. then, 1"”2-‘40 1+*1'4° < x, and

therefore ( l+'l'4°) > 0 and ( - A= ;'40) > 0. Since both factors
are positive, the product (x - i/l-4c véu}c)( x - iz¥l-4c "é"m)> 0 which con-
tradicts inequality 6. Therefore, the assumption that f£(x) > 0 is

false and f(x) < 0. Similarly, if x > l+vl-4c 'é"‘*c, then f(x) < O.

Theorem 3.5:

Given: The number seguence {gn}“

a0 is a parameter sequence for the

chain sequence ¢, ¢, ¢, ., .

Conclusion A: gO < l+'/]2.-4c

+/1-
Conclusion B: if ¢ > 0 and go = .]::._é_é‘i, then gn = go for n =1, 2,

3, . .., and

Conclusion C: if g < Atrl-dc '1“4", then lim g = 1-v1l-4c
O 2 Nw=oo N 2
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Proof':

Since ¢, ¢, c,... is a chain sequence, it follows from

Theorem 3.2 that 0 < ¢ <

-

Proof for Conclusion A:

An indirect argument will be used to prove Conclusion A,

Assume

(1) g >l+-/l-4c.
0 2

Since 0 < ¢ < %:-, then from inequality 1,

(2) g, > 1*'%"@- > 1"2'43.

Induction will be used to show that gn > gn 1 for each n.

Define f to be the function such that for each x ¢ (0,1), f(x) = x -1°_X .

From inequality 1 and the fact that 1 > go , we can show that ¢ > 0.

Therefore, from Theorem 3.4, since go > Lxfl-dc ';'““c, then 0 > f(go) =

-~ - = - g 3 hence . Assume > for k an integer

gO 1‘80 80 1} 81 > 80 um gk gk-l g
eater than one and show . Since 1 0, then

& Gei1 ~ & 28 >8 2%

(l-gk_l) >0, and since g _>g_ ., then

(3) c= (1“gk) 8,1 % (1 - gk-l) 8,1’
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It follows from inequality 3 that

(4) (1-g ,)g =c<(l-g g ..
Since (1 - gk-l) > 0, then from 4, 8, < gk+l' Hence, for each n,
& > Ehur

Since {gn}:_o is an increasing sequence which is bounded
above by 1, then by Theorem 2.2, lim g exists. Since g > 1+vl-4c '1'4‘:,
Neeo 1 0 2
there exists a number q > 0 such that
(5) go = Lxfl-dc 'é’c + Q.
Since x.'lii_m gn exists and a3 > 0, then there exists a number N > 0 such
]
thet if n >N, then |g_ . - g | < o, (Theorem 2.5). Let n >N and

let

(6) e = 8.1 " 8y

From equation 6

c-_-(l-gn)gmF (l-sn) (e+gn)

1

2 .

e(l-g)+g -8
n n n

Therefore
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2 _ i. - - i
g, gn+4-e(l gn) ¢+ Hence,

-1 _tYi-dc v 4e(l-gn) Hoveve Lifl-de 5 L gpg
gn > > . Hwevr,go> 5 P 2

[
NV o

*® is increasing; hence = and it follows that -
50 N g; hence g >g 2= (sn

)>o.

Therefore, since (1 - gn) < 1, then

(1) (&, - ) + T Ae)

Yl-4c + 4e
—_—

IA

It follows from equation 4 and inequality 7 that

LL——.—-I%-M:+G = g

<~gn

< 1+vl-dc + 4de
-— ' 2 hd

Since ¢ = 81" & = Ign+l - gn| < OLS, then from inequality 7, we
obtain
(8) l+1/Jz.-4c +a< l+v’1-4ic2: + 4de
- 3
< 1471 4‘; + 4o, Therefore,
J1- - 3
l-dc | o < Yi-dc + 403 o

2 2



.17;4_0 + afl-tc + a? < l;—‘g-’- + a’; and since ¢ < %, ‘

ng’l—4c<a3 - a2
0<a-1
a>1
Now, 12g0=.3i___”;“4°+a>1.

assumption in inequality 1 is false and go < l-iz—-_— vl-4c
Proof of Conclusion B by induction:

Let ¢ >0 and let g = 1i/l-4c “é“*c Since ¢, ¢, c

chain sequence and ¢ > 0, then (1 - go) # 0; therefore,

(9) g ==
l l-go

— c

- 1- l‘.";l-zlc

)

This is a contradiction; thus the

. 1s a

19
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Assume gk = go for k > 1. Therefore,

l'go

go, from equation 9. Hence, for n=1, 2, 3, . . .,

_ L1t J1-4c
n 0 2 )

Proof of Conclusion C:

Suppose that ¢ = 0 and go < -Ja—";—é———— '1'4°; then, go < 1. There-

fore, forn=1, 2,3, . .., gn = 0. Hence, %‘Hﬂ gn =0=42 -241-4c.

Three cases will be used in order to prove Conclusion C for

c >0.

(1) L=odl-dec oo L+ ¥lde gpgccd
2 0 2’ 4’

(2) go<1—'—-—-- 'é’”*cand cg;': and

=Ll Yl-dc gpg o <L
(3) & 2 = g

Case 1:

Let -]al—é-——- V1l-4c g, < l-i-z-—-— Y1-4C and let 0 < ¢ < -i—'- A proof by
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induction will be used to show that g < g N forn=1, 2, 3, .
n n-

Define f to be the function such that for each x e (0,1), £(x) = x - EE—.
=-X

Since l:;él:éi'< g, < ;—iél;:éﬁ, then by Theorem 3.4,

0< ?f = - L = - and therefore < g . Assume
(g,) = &, e g, - & 8 <&,

< for kK > 1. Now
gk gk 1 > ’

(10) (1 -g _,)g =c=(1-¢)g

) &

l -
> & k+1

k-1

Since ¢ > 0, then (1 - g

. l) # 0; therefore it follows from inequality

10 that g > g _. Hence by induction, g < g for each n.
k k+l n n-1

Since0< g and g < g for each n, then (g }* 1is a
=~ n n n-1 n’ n=0

decreasing sequence which is bounded below; therefore, by Theorem 2.2,
lim g exists and is the greatest lower bound of (g }*® .
N-o 1 n n=0

is 1l - 11'40,

In order to show that the g.l.b. of {g }*
n n=0 2

let p = the g.1.b, of {g }* . Since lim g = p,it follows from Theorem
n" n=0 N N

)

3.3, that

0=1lim (g - g
N N n+l
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li -—-9——
naﬂ (gn l-gn )

C

- ——

1l-p°
+ J/1- o
Therefore p = 2-=YL™4C gince g < 2+ ¥174C 513 o < g and g.1.b.
2 0 2 n n-1

o 1+ Y1-4c 1 + vV1l-4c
of {gn}n=0 is p, then p <g < &y < > . Hence p # 5
and thus p = ;;:éflﬁég.

Case 2:
Let g, < L-:-l%:ég and let 0 < ¢ g_%. An induction proof

will be used to show that gn > gn 1 for each n, Define f to be the

function such that for each x ¢ (0,1), f(x) = x - is—' Since

1 - VYl-4c
& —————,
& 2

o , and since ¢ > 0, then (1 - go) # 0, therefore, by

Theorem 3.4,

0> f(gy) = g, - =

Hence gl > go. Assume that gk > gk-l for k > 1. Now,

(11) (1-g._)eg =c=(1-¢g)g.
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<(1-¢g e

k-=1" “k+l’

Since ¢ > 0, then (1 - gk-l) # 0 and therefore, from inequality 11,
gk < gk+l' Hence, by induction, gn < gn+l for each n..
i 1 and T h h *© a.
Since g8 < n g, < gn+l or each n, then [gn}n=0 is an
increasing sequence which is bounded above; therefore by Theorem 2.1,

Py 0 [}
%}g g, exists and is the least upper bound of {g )7 _o°

We will show that -l—-'-'-é——-—- ¥1-4C i35 the least upper bound of
{g }*® . and then use this fact to show lim g = L= Jl4c  Ap indirect
n’ n=0 D=0 1 2
proof will be used to show that if x e {g }7 ., then x < 1- vl-dc
n° n=0 = 2
Suppose there exists a number x ¢ {gn}:_o such that x > l—'—z——-—- vl-dc

Since {gn}; o is an increasing sequence, and since there exists a

number X e [gn);:o such that x >.J;_‘_2_.__.._ ”—"4‘3’ then there exists a first
number &8s (where n > 1) such that g >!:_.:é_..____. vl-4c ,ng g < 1l - 1/21-4c .

Since ¢ >0, then (1 - g ;) # O and therefore,

c

&y = 1-g

c
<
1-v1-4c

1-==
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Hence the contradiction g8, < 8, is obtained. Thus, the original as-

sumption must be false and it follows that if x ¢ [gn]:_o, then

1 - Yl-4c

X< >

) l- V1l-4c

Iet p = 1l.u.b, of (gn}n=0' Suppose p > s from

1l - Jl-4c

Definition 2.1, there exists a number g, € [gn}:_o such that 8,> 5

However, this contradicts the statement in the preceding paragraph that

for each x ¢ {gn]::.-:O' x< -J-'—-——EJ-':AQ Therefore p ;“]'—:-—Z-JL‘]-“E
Suppose p < ;—-2—:‘5@- Since %}.13 &, exists, from Theorem 3.3,

0= %:_L.I“I} (gn+l - gn)

i
=
[5%
=]
P
=
:?tla (]
[
(1}
B
~——
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1-:}3 < 1 + V1-4dc ,

# 0 by Theorem 3.4, since p < £-= > 5

+ 1=
then p 94 ~J-'—=—-J-'——f-L£. This gives a contradiction and it follows that

2
p = 22 174G, pence 1im g = p = 2=Y1%dC
2 Nwo 1N 2
Case 3:
Let &, = !'_Z.é_-—.—. v1-4c 14 follows , from Conclusion B of this
theorem, that g =¢g = -l—:-—l_-é-c- for each n. Therefore lim g = 1~ '1‘40.
n 0 2 N 1N 2

Theorem 3.6: If %im an = A > B, then there exists a number N > 0 such
=500

B

that if n > N then an > >

Proof:
A-B

Since lim a = A and since == > 0, then there exists a
Neco N 2

number N >0 such thaet if n >N, then |a_ - A] < 2B, Let n >N, then

A=A-a +a8
n n

(A-a)+(a)

<|A-a] +a
n n

A-B
———— a .
< 2 * n

Therefore, A < A_%_B_ +a and
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Temme 3,1:

Given: (1) {cn};_ is a chain sequence, and

1

00
(2) {hn]n=l is & sequence such that for each n, h = Cyon where

k is a positive integer.
s L :
Conclusion: {hn]n=l is a chain sequence.
Proof:

Since {c }* _ is a chain sequence, there exists a sequence
n n=

1

® guch that if n is a positive integer then ¢ = (1 -
G P v eger .= (-e e

and 0 < g, < 1. For eachn, hn =C

= (1 - a
1 kan = 7 B(in)-1'8m &

0<L g < 1; therefore, there exists a sequence [qn}:p such that

(k+n)-1 0

for each n, 9 =8

. Since
kKan 0 S'qn--

1 <1 and hn = (1 - qn-l)qn’ then

h }® . is a chain sequence.
{ n}n=l q

Theorem 3,7:

. [+
Given: {cn}

is a chaln sequence and limc¢ = c.
h=1 N n



a7

Conclusion: c¢ <

Lo Lo

Assume the conclusion is false; then c > L since limc=c > .:-'-.,
4 D= n 4

then by Theorem 3.6 there exists a number b and N > 0, such that if

p > N then
1
l) ¢ —_—= b > =,
() > 5 >

Let p > N. From Lemma 3.1, [cn}:_p is a chain sequence.

Define [bn}:_l as a sequence of numbers such that for

o]
l

=1,235 ...,b =b Since0<-i-<b<cpthenfor

=]
f

=p,P+1l,p+2, ..., 0_<_bn_<_cn. It follows from Theorem 3.1

that {bn};_l is a chain sequence; therefore from Theorem 3.2, b <

Ll Lo

which contradicts inequality 1, (b > i-) Hence, the original assumption

is false and ¢ <

r

N

Lemms 3.2: If 0 < a < 1, then a < 7a.
Proof':
An indirect proof will be used. Assume a > va where 0 < a < 1.

Therefore,
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a2 - g = a(a-1) > 0.

Since a > 0, then (&-1) > 0 and a > 1 vhich contradicts the hypothesis

a < 1. Therefore the assumption that a > Ja is false and a < /a.

Theorem 3.8: If c__L and c2 ‘are numbers such that 0 < cl < c2 < 1, then

the following two statements are equivalent:

(1)

cl, cz, cl, cz, cl, cz, « + . 5 is & chain sequence, and

1 2
2 ¢, < =and (1 ¢ ~c - 4c
(2) land (L4c -c)

L >0,

1

Proof: 1 - 2

Since ¢ c

1’ ¢

. « . is a chain sequence and ¢_ < ¢

Cc
2’ 1 T2’ 1 n

for each n, then from Theorem 3.1, c . is a chain

1 %1 % G
sequence. From Theorem 3.2, since the constant sequence c:L ’ cl,

Cl, Cl,

. is a chain sequence,then cl < %

An indirect proof will be used to show that ,c:L # i- Suppose

(o] =
1

> |

and -let [gn];’ 0 be a parameter sequence for the chain sequence
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c,¢c,¢c,¢, ... . Induction will be used to show that gn g'gn

1’ T2 Y Tz

for each n. BSuppose that gl < go. Then

1
— = l -
=% ( go)g1
< (1 -
( go)go
_ _ .2
= go go .

It follows that O > goz - g+

l l 2 1
- = - - 0. This is a contra-~
0 ] (g 2) 2

diction; therefore, g

. Now assume that > for k >1. If
1 2 gO gk = gk--l =

k is an odd integer, then

~

[10]
[t}
(2]
A
[¢]
fl

- 1 -
(1-g ,)g =c <c,=01-glg

s -eg g,

and since c 0, then (1 - 0 and < ., In order to show
17 1-g )7 & < &1

that gk 1 > gk for each even integer k, we assume an even integer k exists
+

such that gK 1 < gk. It follows that
+.

L_o¢c =(1-
4 c1 ( gk)gk+l
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< (1~ gk)gk;

therefore 0 > gkz - gk + i— = (gk -%)2 > 0. Since this contradiction

is obtained, then g . p

and it follows by induction that g > g
k+l n-— n-

k’ 1

for each n.

For each positive integer n, -i:g_ cn = (1 = gn )gn; therefore

1l
1 and Oforn=1, 2 .+ ,8n0d 0< 1l for each n.
€1 # g, # 0 » 2, 3, and 0 Sn_l < r
Since [gn]: 5 is a non-decreasing sequence which is bounded
above, then lim g exists, (Theorem 2.2). Since lim g exists and since
N+ n N0 n
(c2 - cl) > 0, then there exists a number N > O such that if n > N

and m > N, then lgn - gm|\< (cz - cl), (Theorem 2.5). Let r be an

even integer such that (r - 1) > N; it follows that

1 - = - < -
(1) gI‘ gI"-l |gr gr-ll cz c=l'

However, since 81 < 1 for each n, then (1 - g l) # 0 and since

d (1 - 1, th
g, ,<8g ,,and (1 gr_l) < 1, then

__ %2 __%&
r I'=- - -
bl gr-l 1 €r-2
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(o]
52 - _ 1
1-gp.1 181

Ca = cCy
1-g..1

>ec _=-c_,
Therefore, gr - gr 1 > c2 - cl which contradicts inequality 1. Hence

the assumption that ¢, = -11-' is false,and since ¢ < i-, then c¢_ < %

1l 1l

An indirect proof will be used to show that (l+cl- c2)2-4c12 0.

Suppose (1 + c - cz)z - 4cl < 0, and define h to be the function such

that

(o]
h(x) = x = cz ; then h(x) = 0 iff

1
l'-l-x

_ l-cy +cp ¥ 1/(1+c1-c2)2~4c1
= 5 .

X

Since (1 + ¢, - cz)2 - 49 < 0, then if x is a real number, h(x) # 0.

From the Intermediate Value Theorem, Theorem 2.7, since h is continuous

on [0,1-c,) and h(x) # 0, then for all x ¢ [0,1-c,), either h(x) < 0
2
or h(x) > 0. Therefore, since h(0) = = Toa- < 0, then for each
1

X e [O,l-cl), h(x) < 0.
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Since {gn}z=o is a parameter sequence for f(c and since

[+4]
n]n=l

0< g, < 1, for each n, then,

8onyz = T - 8an+l

and for each n such that gzn € [O,I-cl), then

2
O h = - C = - .
>n(s, ) = &, - 1 8oy ™ Bonin

€on
Therefore > makin ®  an increasing sequence which is
g2n+2 an & [an}n=0 & 4

bounded above; hence lim an exists and is the least upper bound p of
N0

[gzn}:=o'

In order to show that the least upper bound p of {g_}®
2n" n=0
belongs to [0,l-cl), an indirect proof will be used. Suppose p * [O,l-cl),
then p 2'l-cl. Assume p > l-cl, then from the definition of l.u.b.,
Definition 2.1, there exists a number g e {(g_ }® _ such that
an 2n n=0

> 1l-c_. Therefore
an 1 )

c. . >1-
1 an



33

Therefore the contradiction cl > cl is obtained, Hence p f-l-cl.

/ c
Suppose p = (1l-c_). Since 1 - l <1-c = p = 1l.ub., of
1 l—c2 1

(g 1*® then from Definition 2.1, there exists a number g_ e {g_ }*
an aa 2n"n=0

n=0’

[
such that g > 1 - —&-. It follows that
2a ¢ l-c2

it
[AN)

Therefore, g > 1 which contradicts the fact that gZa < 1 since

2842 +2

® . -c.. Si <, t -
Bonyn © {an}n=O Hence, p # 1 e nce p 21 ¢ hen p ¢ [0,1 cl)

and therefore h(p) < 0.

e . since 1i i i - = 0.
From Theorem 3.3, r]i-g 8o exists, then %}3 (g g )=0

However,



O
]

it
.
[P
8
n

]

1
Lo |
=
—~~
e
~
S

70,

since h(p) < 0. Therefore, since the original assumption that

(1 + cl - cz)2 - 4cl < 0 leads to the contradiction O # 0, then

l+c =-c)%=-4c >0.
( 1l 2) 1~
2=-+1
Define an = l-cp + c2‘+ /(l+cl-c2)2-4ci, and
2
g2n+l = 1+cl - ¢y + /(l+cl-cz)2'4cl, forn=0, 1, 2, .
2
Since

om
}

=1-c) +Cp + /(l+cl-cz)2-4cl
2

34
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4

2

o]
>3 + 0, since (l+cl-c2)2-4c120,
2

1
(03314 ]

h L]
>0, teng2n>0

+0+1/(l+0 -¢_)2-4c sincec_ < Lande >0
1 2 1 14 2”7 7’

35

An indirect proof will be used to show that an < 1. Suppose

- - 2a
_lcy 4 e, 4 r’(l+cl cz) 4c

1>,

- - 2.
1 ¢y +Cy v/(l+cl cz) 4c; > 2 and therefore

- 2~ -
(1) /(l+cl cz) 4c; > 1 +cy -c,.

However, since c, > 0

- = - 2 - 2-
l+cy cz_-/(l+cl cz) > ¥(1+c cz) 4c

1 1

> l+cl - c2

This is a contradiction and therefore the assumption that 8an >1is

false and 8on S 1.

from inequality 1.
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- - 2-
l+cl c, + 1/(1+cl cz) 4c,
2

Since g2n+l =

l+cl-l+0

2
2

, since c, < 1 and (l+cl-c2)2-4c > 0,

1

!
col

> 0, then g2n+l > 0.

An indirect proof will be used to show that an 1 < 1l. BSup-
+

pose

licy - ¢y + '/(l+cl-c2)2

101t
= 3 en
an+l 2 !

g

- . -
(2) /(l+cl cz) 4c) >1-c, +c,.

However, since (l+c_ - cz)[> 0 and 4e, > 0, then

1l

- c_ = Y(l+c_~c )2 > /(1l+c_-c )2-4
Lie) = ey = V(1o e ) > V(e e )S-de)

’ from inequality 2.

>1l-¢c + ¢
1 2

It follows that l+c, ~ ¢, > 1l-¢c, +c.,and 0O >c., - c_>~cC

1° %2 1t 1°” %2 1 +¢>0.

This is a contradiction and therefore 8on41 > 1l is false and Bon,1 X 1.
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The following will show that cn = (1 - g, l)gn for each n:

(1- an)g2n+l

- - 2 - 2
l-c; + ¢, + 1/(l+cl c,)e4ey lic e, + 7(l+c )&4c

1 2
2 p

17C2/5%¢

I
[¢]
'—J
-

(1- g2n+l)82n+2

]

- g2n+l)g2(n+l)

- - 2w - - 2.
l+cy = ¢, + 4%l+cl cz) 4cq 1-c) + ¢, + w/(l+cl cz) e,

= |1 -
2 2

Since O <84 <lforn=1, 2, 5, .. ., and since
-]
c, = (1 - gn-l)gn for each n, then {gn}n=0 is a parameter sequence

for ¢ c,, . . . and therefore, Cy5 Cgy Cq5 Cpoy o+ » is a

12 %22 C1s G2

chain sequence.

Theorem 3,9:

o0 o o N
Given: {cn}n=l is an increasing chain sequence and [gn}n=0 is a
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parameter sequence for (c_}o

n'n=1"
1
Conclusion: (A) c,gzforn=1,23 ...,
1 + Y1l-4cy
(B) 81 <3 — forn-= 1, 2,3, ...,
1- Vl-4cn 1+ ¢1-4cn
(c) 1If 8.1 < 5 , then g < 3 for
n=1, 2, 3, ’
1 - /1-4c 1- Vl-écn+l
(D) If 8,1 < 5 , then g < > for
n = l’ 2, 3, . y
1l - Vl"4:Cl 0
(E) If 8<% then {gn]n_o is a non-decreasing
. . . 1- v1l-4c,
sequence and %££ %lex1sts and %ag g, < %ag —
. co 1 = Yl-4c 1 4+ Y1-4c
(F) 1If limc = c and if Z < g, < 5 , then
l - Vl"‘4:Cn
lim g = lim ————5—, and
Noco “n =10 2
(G) If limc_=c and if for some n, 0 < g_ < ;—i——l:ég,
5o n n 2

l - vl‘éCn
2 .

then i1 & = Jia
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Proof:

Since {cn};_l is an increasing chain sequence and since

c, < 1l for each n, then by Theorem 2.2, %}’2 c, exists and is the least

[+ <]
upper bound ¢ of (cn}n=l'

Proof of Conclusion A:

=

Since lim ¢, = ¢, & shown above, then by Theorem 3.7, ¢ <

- ©0
Als9, ¢ is the 1l.u.b, of {cn}n.—.l and therefore for each cn € {cn}n=l’

> [

c <c< 7. Hencecns_i'-forn=l, 2, 3, . ..

n—

Proof of Conclusion B:

1+ Vl-4c,
An indirect proof will be used to show that €n-1 < >
forn=1, 2, 3, . . . . Assume there exists an integer k > 1 such
1 + Y1l-4cy )
that 8p1 2 > . It will be shown by induction that 8, < 8p,1n
1+ Vl"‘4:ck
ifn>k - 1. Since el 23 then by Theorem 3.4C,

Cx
02> gk-l - E:sl—{-:; = gk-l - gk Hence, gk-l < &) - Assume that
AN - for m > k. In order to show that g < &y, s SuppOSE it is

false; then &, > 81’ It follows that

(1- gm-l)gm+l 2 (1- gm)gm+l



40

= %m41

>c

=1 - g8
> (1 -eyq)ey,;-

Therefore (1 - gm_l)g

me1 > (L - gm_l)gm+l which is a contradiction;

hence &n S-gm+l and by induction &, g.gn+

, forn >k - 1.

Since & < 1 and g, <8 for each n > k - 1, then {gn}z_k_

n+l 1
is a non-decreasing sequence which is bounded above; therefore by
3 . [>e]

Theorem 2.2, %53 &, exists and is the least upper bound p of {gn}n=k—l'

Since %ig c,=c and %;& 8, = p and from Theorem 3.3,it

follows that

0 = %E‘:’g (gn+l = gn)

i

c
Ho (22 o)

andp:
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, 1% J1-4c . o
Now we will show that p > > . Since p = l.u.b. of (g} , ¢,
then
P28
1 + /1-4cy
272
1+ Y1-4c

> , since ¢ = 1,u.b, of {cn)

0
2 n=1l"

1 + Y1-4c 1 - Jl-4c

Therefore p > = > > 5 which contradicts the statement
+ /1-
that p = ;—ZE—;¥22. Therefore the original assumption that there
. 1 + Yl-4cy 1+ J/1-4cy,
exists a -1 22— 1is false and 8n-1 < - for each n,

Proof of Conclusion C:

1—11-401‘1
An indirect proof will be used to show that if g,_4 < .
1+ 41-4cn
then g, < > . Suppose the statement is false, then there
1 - Tde, 1 4 /iy
exists a number m such that -1 <3 and L then

1) o= (g,

2 (1- gm_l)(_l.in'ﬁir&}
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1 - Yl-4c
Solving inequality 1 for g , we obtain g S M This is a
m~1 m-1- 2
. 1 - #1-4cn
contradiction of Conclusion B of this theorem; hence, if gn 1 < —
1 + Y1l-4c,
then g < > forn=1, 2, 3, .
Proof of Conclusion D:
1 - J1l-4c,
An indirect proof will be used to show that if 81 <3
1l - Vl-4cn+l
then g < > . Assume Conclusion D is false, then there

exists an integer n such that

1l - 41-4cn 3
(2) gy < 2 &n

1 - J/l-4c
(3) gn 2 > n+l.

It follows that

(4) e,=(1-g._4) 8,

(1-g._

o)

v

1 - Y1-4 - Y1-4
_ Cn4l ‘gh-l{? = Cnil )

Solving inequality 4 for gn 1’ we obtain
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2c
g > 1 - n

n-1= oy
l - l-4cn+l

Cn # Cp v1-4cp .3

=1- 2c

n+l

Cp + Cp 1/1-4cn

>1 - 2c,, , since c, < ¢

n+ls

=1 - Vl"4Cn
2

>g from inequality 2.
n-1

This is a contradiction and therefore the assumption in inequality 3

1l - Vl‘écn 1
is false and g < > +=> for each n,
n

Proof of Conclusion E:

let g < 2% ang by induction show that g <
—_——— show tha
g, < nd by induction sho 8, <8 s
1 - /iTae;
forn=0,1, 2,3 ., . . 8ince go < , then by Theorem 3.4C,
-

0 — = - . Therefore > g . Assume that >
28 €& " & &, 28 & 2 8

where the integer k > 1, and suppose that gk 1 < gk. It follows that
+

1- 1-
(-8 )8, 2158,
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k+l

=(1-8g. ;)8

)g

l - .
> ( & k4l

k-1

Therefore, (1 - g _)g

o1 (1 - gk-l)gk+l’ a contradiction; hence

k+l >

and by induction for each n. Thus ® is a
gl't,+l 2 &, 804 by > 8nl 28 [gn}n=0
non-decreasing sequence which is bounded above and by Theorem 2.2,

lim g exists and is the least upper bound, p, of (g }* .
N=oc I n" n=0

for each n.

1 - Yl-4c,
2

The following will show that g, S,l - J;-4cn

for

First an indirect proof will be used to show that 8p1 S
each n. Suppose the preceding statement is false, then there exists

an integer n such that

1 - Yl-4c

n
(5) 8p-1 = ) . Since g >g,_;, then

cp=(1-8g.,)8,

2 (1 - g,.,)g, , and therefore,
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gn-l

gn-l 2

1 + YI-Zep _ 1~ VI-acy
2

From Conclusion B of this theorem g < 1 + ¥l~4cn; therefore

n-1 2
1 + Y1l-4c, 1 - Yl=4c,
-1 - T < 0 and from inequality 5, gn-l- 2 > 0.
2o, 1- 417
Hence, the product g 1" E—:—§£:527 81" 5 *n < 0 which

contradicts inequality 6. Therefore the assumption in inequality 5 is

false and
1l - Yl-4c
(7) g .< I for each n.
n-1 -~
. l - Vl“4;Cn
Suppose there exists an integer n such that g, >'--§--——;

then using this and inequality 7,

l- #l—4cn

e, = (1- gn-l)gn >(1- gn-l) -2

(1
2]
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Therefore c > y which is a contradiction and hence, for each n,

1l- Vl“'4Cn
& < 2 :
1 - vYl-4cp
Since lim g, exists and lim —————5— exists, and since
-0 N-wo 2
1l - J1-4cp 1 - Yl-4c,
g, < > for each n, then lim g < lim 3 , (Theorem 2.8).
Proof of Conclusion F:
It has been shown that limc = c < L,
n-° n — 4

Let l—l—z——-— Yl-4C o o < L + ¥1-4C  Frop Conclusion B of this theorem,

0 2
1 + Y1-4c, )
8.1 < 3 — for each n. Therefore, either
1 - Yl-4cy 1 + Y1l-4c,
(8) — % < 8,y <——%— for each n, or

(9) there exists an integer k such that

l - V1'4:Ck
Bp-1 = 2 .

Suppose that inequality 8 is true. From Theorem 3.4B,

c

17 I-g,

0 < g, =81 " & Therefore 8,-1 > 8, forn=1, 2, 3, .

and (gn];::o is a decreasing sequence which is bounded below and by

*

Theorem 2.3, lim g exists and is the greatest lower bound, p, of [gn}:;:o.

\
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Since xJng g, exists, then from Theorem 3.3,

0 = lim (gn-l - gn)

Cn
=z len1 "1
c 17t 1-4c

Since p = g.1.b. of

P - T—’i Therefore p = > .

1+ /1-4c ) 1+ /l-4c
(eylpgr thenp< g 5 < 5 for each n; hence p # =————

1 - /1-ac 1 - /1-4c , 1 - 7Jl-4cy

, and %}'glo g, =

and therefore p =

2 2 ~ fiwo 2
1l- Vl“4ck
Suppose the statement made in 9 is true. Since 81 < T3 s

then from Conclusion E of this theorem lim g, exists, Therefore, let

o = r]i}’gg 8, and from Theorem 3.3,

0 = li -
2n (g, - &)
84
n
= r-}-j;l}.;l, (grl-l - l"gn_l
c. 1t Vl-ac 1 - Vl-4cp
=a - 335 It follows that a = 5 + Since g _, < > s
‘ . 1-VIdeyn 1-4Tgc
then from Conclusion D of this theorem g, < 2 < >
1 - Y1-4c¢ .
for n >k - 1. Therefore ™ 5  1is an upper bound of {8n}n=0, and
s:.ncel"z"l"‘Lc S.J-_.’.“_z___—. vl-40, then the least upper bound a = -1—2-2—-—-— vl-dc
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Therefore,
14 _1-Jlsc o, 1 - vl-dcy
ne &n = 2 = 54 2 )

Proof of Conclusion G

Tet m be an integer such that 0 < gm-l < ;;i¥5i:ég. If for
1l - Vl-4cn 1+ Vl-4cn
n>m, > < g, 1<%, then by a proof similar to that
following from inequality 8 in Conclusion F, %;g 8, = ;~:§-l:ég. But
if0< g ;< . 2' 174C  then it follows from a proof similar to that
1l - J/l-4c

following from statement 9 of Conclusion F that %ag &, = >

Theorem 3.10:

. © . . o}
Given: {cn}n=l is a decreasing sequence and [gn}n=0 is a parameter

sequence for {cn}oo

n=1"

. 1 - Y1l-4cp 1 + /1-4c,
Conclusion: (A) If €1 <5 then g < >—— for n =
1, 2,3, ...,

1 - Y1-4c; 1+ /l-4c; 0 .
(B) If > < 8y <5, then {gn}n=0 is a non-
1 - V1l-4cy

increasing sequence and %3% g, = %ig 5 .-
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1- Vl-4cn 1l - #l-4cn+l
(c) If 8p1 > 3, then g, >- 5 , for

n=0,l, 2,3,-.
Proof:

Since f{c is a decreasing sequence which is bounded below

[+ ]
n}n=l

by zero, then limc —exists (Theorem 2.3). Let ¢ = limec .

Proof of Conclusion A:

Using an indirect proof, we will assume there exists an

1~ Vl-4cy 1 + Yl-4c,
integer m such that 8n-1 < - 3 and Bu2 3 then
(1) ey = (-8, )8,
1 + ¥l-4c,
S e

Solving inequality 1l for 8y_12 WE obtain

1l - #l—4cm
5] e ———
gm-l = 2

1l + Vl—4cm
= 2

1l - Vl-4cm
2

>8 1" This is a contradiction; hence the assumption that
m
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1l- r/l-4cn 1+ Vl-4cn
then g < s
2 ? n 2

1+ {1—42

m .
8n-1 2> > is false and if gn-l <

for each n.

Proof of Conclusion B:

1l - 41'401
Let (2) — <8<

Ll

1+ Vl-4cl
— It will be shown by
induction that g < g, ; for each n. From Theorem 3.4,

l-go

0< &g 8y = 85 therefore 8 < go. Assume that 8y < 81

for k > 1. Since {cn];_l is a decreasing sequence, then for each n,

cy #0for 0=c >c . >0. Since g < 8-y it follows that

(3) (1-glg 2(1-¢g_q)g

> ck+l

(1 -

&), 1-

Since ¢ # O for each n, then (1 - g) # 0 and from inequality 3,

8 > 81" Therefore, by induction, for each n, &, < 81"
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From the preceding paragraph, (gn]:_o is a non-increasing

sequence which is bounded below and therefore %Eg g, exists and is the

o0

greatest lower bound, p, of [gn}n_o,

(Theorem 2.3). From Theorem 3.3,

since %Eﬁ &, exists then

0 = Jlim (gn - gn+l)
c
. n+l
= lim g - 77—
gi-m n 1 gn+l
+ /1=
=p - E%E. Therefore, p = J“%EJL-QE. However, since p = g.1.b.

of [gn};;:o, by Definition 2.2,

p<e,

< 25)

1+ Vl-4cl

< 2

, from inequality 1,

1 + Yl-4c
b

< 2

1l - Yl-4c

Therefore p = 5

s . (2]
for e g ¢, since %E& ¢, =¢=glb.of {c ] ..

1l- Vl-4cn

and it follows that %ig g, = %gg _— -
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Proof of Conclusion C, indirectly:

Assume that Conclusion C is false; then there exists an

integer t such that

1l - Vl-4ct

(4) 8p.p >3 end
l - 'l'4ct+l
8 < 2 '

It follows that

() ey = (1-8._qlg

1 - Vl'4ct+l
< Q-gy) z

Solving inequality 5 for 8y_p ve obtain

g <1l- gc
t=-1 = - f1-dc. .
1 1 4ct+l
1ot e R-dc,
th+l
<1-C5ttct v1-4cy
th
l1- Vl-éct

|
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< gt 1’ from inequality 4.

Therefore gt 1 < gt 1’ a contradiction. Hence, for each n, if
1~ Y1-4c, 1~ Jl-4c,, 1

g > e 2 then g > x ,

n-1 2 n 2

Theorem 3.11l: There exists a chain sequence {cn}:_l and a parameter
sequence [gn};_o such that {gn}:=o has uncountably meny cluster points,
Proof:

Define the sequence {g }* _as follows: g
n n=0 0

"
o
e
0
n
[
-

=-J-'- =l =§ =i =§. =-]-'- =.g =.§
8= B3 =5 8 T B = By = 8 T By Ty By =
B0 "5 8118 B2 6 Bz T T B T B T Bg T T

Continuing this process yields a sequence such that

(1) [gn}; 0 contains all the rational numbers between 0 and 1, and

2 0 < < for each n.
(2) 0<eg <

Define {c¢c }* _ as the sequence obtained by using (g }* o as follows:
n n n=

c.=(1-glg

1 )8 ¢, = (1 - gl)gz, cee e = (1 - g )gn. There-

1

=

fore {c }% N is a chain sequence.
n
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Since the set {gn}::__o is dense in the interval [0,1], then
each number of [0,1] is a cluster point of {gn]:_o and therefore the

set of cluster points is uncountable.



CHAPTER Iv

MINIMAL AND MAXIMAL PARAMETER SEQUENCES

The existence of minimal and maximal parsmeter sequences
will be established. Then these sequences will be used to determine

other properties of chain sequences,

Lemme 4.1:

Given: a, b, ¢, and d are numbers such that 0 < a<1l, 0<b< 1,

0<e<l 0<dag1land (1-a)b = (1l-c)d.

Conclusion: If b >d, then a > c. !
Proof':

An indirect proof will be used. Suppose that b > d and that

a<c Since a< c, then

(1-a)d > (1-c)b

> (1-c)d.

Therefore, (l-a)b > (1-c)d, a contradiction of the hypothesis which

55
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states that (1-a)b = (l-c)d. Hence, if b > d, then a > c.
Theorem 4.1:
Given: f{c }® _ is a chain sequence.
Given: { n}n=0 q
Conclusion: There exist minimal and maximal parameter sequences

{m }® and (M }® _respectively for {c }*
n' n= n n=0 n'n=

0 1

Proof':

Define Sn to be the set of numbers such that x ¢ Sn iff x is

the n®l element of some parameter sequence for {c }® _. Since {c }®
n ' n=1 n n=1

is a chain sequence, there exists a parameter sequence {g }* _of {c }®
n'n=0 . n'n=1

and forn=1, 2, 3, . . ., & 1€ Sn; therefore Sn is non-empty for

n=1,2, 3, . .. . Furthermore, S 1is bounded above by 1 and below
n
by 0. Therefore, by Axiom 2.1, Sn has a l.u.b. (tn l) and by Theorem
2.1, a g.1.b. (s _). Since Sn is a subset of [0,1], then .
0<s <t < 1, (Theorem 2.5).
= n-1= n-1-"7" ( )

The following will show that c = (1 - tn l)tn for each n.

Iet 0 < e < 1., Since tn = l.u.b, of Sn 1 for each n, there is an
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element g, € Sa-l such that gy > ta - <. Likewise, there is an element

wm

h,_q € Sy_,such that b ., >t _ There exist numbers g . and

- £
1 3

h_ such that (1 - ga-l)ga = ¢, and (L-nh

a )ha=0. Eitherca>0

a=-1 8

1, 0< g

or ¢, = 0. Suppose ca>0. Then 0 < g 5,

o o1 < <l,0gh _ <1

h_. For convenience,

and 0 < ha < 1. Either 8 > ha’ 8 < ha’ or g, a

h

we will arbitrarily assume that g, >h_ . Since (1- ga-l)ga= cf= (1- ha-l) o

£
then by Lemma 4.1, 8.7 2 h,_;. Therefore, 8o-1 2 ha-l > ta-l 3
i - £
Let B=t,_, - 8gn17 .and since 8oy > ta-l 50 then

<t -t hence

g.
a-1 "~ 8a-1 < Pa-1 7 Ya-1 * 3

(1) B< §.

$ -§. - - —e-o
Let o= ta 8, and since 8, > ta 37 then a = ta g, < ta ta + 23

hence

(2) a< % Since t,.y=B+g, andt =a+ gé, then

-1

(1= 1)ty =l = [[L = (g1 + B)1(gy + @) - oy

=@ - 818, - BE, + (1 - g, o~ oB - S
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< |(1-g, ;)8

a - c&l + IBgal + I(l - ga-l)a‘l + IQBI

0+ |Bgy| + (1 - g,_1)al + |aB

< B+ a+0B, since g, < 1 and (l-ga_ <1

l)

2
+ :;‘;- + -g—-, from inequalities 1 and 2,

oim

[\

€

3zt %, since 0 < ¢ < 1, then ez <g,

Since (1 - ta-l)ta and c_ are numbers, and since (1 - té—l)ta -c | <e,

a
then by Theorem 2.4, (1 - ta-l)ta =c,.

Suppose that cy = 03 then since ¢, = (1 - ga_l)ga, one of the

following statements is true:

L
[
(@]
2]

(A) 8, = 0 and 81 =

(B) g

ey = Land g #0, or

#l
o

(C) g,_q #1lendg

Suppose A is true. Since ta- = 1l.,u.b, of Sa’ then

1l

1>t 28, ;=1 Therefore, t , =1 and (l-ta_l)ta.—. 0= (1- ga-l)%= c .
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\

This same argument holds when g, # 0 and 8 = 1, (B).
Suppose C is true. Either all elements belonging to Sa 1
are zero or at least one element belonging to Sa 1 #0. If all ele-

ments in S 1 are zero, then the l.u.b. of S = ta = 0 and

- a-

l-t t =0=¢ . 8 ose there exists one element x S
( a-l) a a upp a a € a-1

R i - = = = a
such that x_ # 0. Since (1 xa-l)xa c =0, then x 1 1 an

therefore t =1l. Hencec = (1 -t _)t =0.
1 a a-1" a

Sincee =(1 -t _)t forec >0o0r c = 0, then for each
a a-1" a a a

n,c =(1-t _)t,endsince0<t
n-1" n ~ n

< 1 for each n, then {t }%
n 1~ n'n=

0

is a parameter sequence for {c }*® 1 Also, for each n, t = 1l.u.b.
n n= n

of S _; therefore, t >b , whereb e {b }* , (any parameter sequence
1 n= n n n ' n=0

for {¢ }* _). Therefore (t }*® is the maximum parameter sequence for
n'n=1 n’n=0

{c }°

n'n=1"

Using the g.l.b. Theorem 2.1, and similar steps, we can show

that ¢ = (1 -s _)s and 0< s < 1 for each n, Therefore {s }*
n 1 - 1= n'n=

n- n n- 0

is a parameter sequence for {c }* Also, since s = g.1.b of S
n n= n n

1"
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[« <]
for each n, then 5 < g, where g, € {gn]n=0’ (any parameter sequence

o0
for {cn}n=l) .

Theorem 4.2:
Given: {cn};:_o is a chain sequence with minimal and maximal parameter
sequences {mn}':_o and [Mn};_o.

Conclusion: If my < b < My, then (cn]oo has a parameter sequence

0 n=1
such that & = b.
Proof:

[
Let my < b < M0 and let (gn}n=0 be the sequence of numbers

such that g, = b and if n # 0 then

0, if Cn = 0,
&, = .
n_ .
Te if e # 0.

A proof by induction will be used to show that 0 < &, < Mn

for each n. Since 0 < m, < & = b < MO’ then 0 < &g < MO' . Suppose

0<g <M for k >1. If Cril = 0, then 8,1 = 0 and since
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M, 20=¢g ,thenO=g <M .. Ifc . # 0, then

(1) (1 - gleyg,y = Cppn = (1 - MM,

<@- g]4:)Mk+l'

Therefore, since ¢, # 0, then (1 - g, ) # 0 and it follows from in-
equality 1 that el S My - Also, since Cril # 0, then 8,1 > 0;
therefore 0 < 841 S Mk+l and by induction 0 < g, <M for each n.
Since {Mn}:=0 is a pérameter sequence for [cn]:=l, then for
each n, M < 1 and therefore 0 < g, < M < 1. Hence the sequence

L . .
(gn}n=0 satisfies the conditions that for each n, e, = (1 - gn_l)gn

o0 . b
and 0 <81 < 1; therefore {gn]n=0 is a parameter sequence for {cn}n=l‘

Lemma 4.2:

Given: {c_}=

. . . . ©
nin=1 is a positive term chain sequencej both [gn}n=0 and

[+ 0] [}
[hn]n=0 are parameter sequences for [cn}n=l and h0 = gq-

Conclusions If n is a positive integer, then hn = g

n

Proof:
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An induction proof will be used. From the hypothesis h

Assume h, = g for k > 1. It follows that

(1) (1-n

!

1Pl = Crr = (7 88,

(1-1n)e,;.

Since {cn}z=l is a positive term chain sequence, then (1 - hk) # 0
and from equation 1, hk+l = 81" It follows by induction that

hn = gn for each n.

Theorem 4.3: If {c }“ is a positive term chain sequence, the follow-

n'‘n=1

ing two statements are equivalent:

(1) the maximal parameter M, is zero, and

[+ ]

(2) (el g

has exactly one parameter sequence.

Proof: 1 =+ 2

Since {c is a chain sequence, by Theorem 4.1, there

o0
n}n=l

o0 =]
exists a parameter sequence [mn]n=0 and a parameter sequence {Mh}n=0

such that if {gn}:=o is a parameter sequence for [cn}:_l, then

0~ 8o

a3
N
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0
mn_s_gnig Mn for each n., ILet [gn}n=0 be a parameter sequence for

o
{cn}n=l; then 0 < m, < g < My = 0, and therefore gy = 0. It follows

o0

[+
that for any parameter sequence [hn]n=o of {cn]n=l’ h0 = 03 therefore,

from Lemma 4.3, if n is a positive integer, then hn = 8,5 hence {cn]z_l

has exactly one parameter sequence.

An indirect proof will be used to show that Statement 2
implies 1. Suppose that M, # 0; then M, > 0.

Define [gn}:=o as the sequence of numbers such that & = 0

c .
and if n # 0, then & = 1T 2 T (S8ince ¢ >0, then (1 - gn_l) #0).

A proof by induction will be used to show that g, < Mn for
each n., By definition, & = 0 and from the denial 0 < Nb; therefore,

& < Mb, Assume that g, < Mk for the integer k > 1. Then
(1- gk)gk+l =%kl = - Mk)Mk+l

<(1- gk)Mk+l;

i
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therefore, since ¢, , >0, then (1 - gk) # 0 and 81 < M,;- Thus
by induction, g < M for each n.

Since 0 < c = (1 - gn-l)gn’ then g >0 for each n. There-
fore, for each n, 0 < g, < Mh < 1, and c = (1 - gn_l)gn; hence {gn};=o
is a parameter sequence for [cn}z=l.

o

. L ©
Since (Mh}n=0 and (gn}n=0 are parameter sequences for [cn}n=l’

then {c has at least two parameter sequences,which contradicts

0
n}n=l

the statement in the hypothesis that [cn};—l has exactly one parameter.

Therefore the assumption that M # 0 is false and M, = 0.
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