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VARIATION OF CONSTANTS FORMULA FOR FUNCTIONAL
PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

ALEXANDER CARRASCO, HUGO LEIVA

Abstract. This paper presents a variation of constants formula for the system

of functional parabolic partial differential equations

∂u(t, x)

∂t
= D∆u + Lut + f(t, x), t > 0, u ∈ Rn

∂u(t, x)

∂η
= 0, t > 0, x ∈ ∂Ω

u(0, x) = φ(x)

u(s, x) = φ(s, x), s ∈ [−τ, 0), x ∈ Ω .

Here Ω is a bounded domain in Rn, the n × n matrix D is block diagonal

with semi-simple eigenvalues having non negative real part, the operator L is

bounded and linear, the delay in time is bounded, and the standard notation
ut(x)(s) = u(t + s, x) is used.

1. Introduction

In this paper we find a variation of constants formula for the system of functional
parabolic partial differential equations

∂u(t, x)
∂t

= D∆u+ Lut + f(t, x), t > 0, u ∈ Rn

∂u(t, x)
∂η

= 0, t > 0, x ∈ ∂Ω

u(0, x) = φ(x)

u(s, x) = φ(s, x), s ∈ [−τ, 0), x ∈ Ω

(1.1)

where Ω is a bounded domain in RN , the n × n matrix D is non diagonal with
semi-simple eigenvalues having non negative real part, and f : R × Ω → Rn is an
smooth function. The standard notation ut(x) defines a function from [−τ, 0] to Rn

by ut(x)(s) = u(t + s, x), −τ ≤ s ≤ 0 (with x fixed). Here τ ≥ 0 is the maximum
delay, which is suppose to be finite. We assume the operator L : L2([−τ, 0];Z) → Z
is linear and bounded with Z = L2(Ω) and φ0 ∈ Z, φ ∈ L2([−τ, 0];Z).
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The variational constant formula plays an important role in the study of the
stability, existence of bounded solutions and the asymptotic behavior of non linear
ordinary differential equations. The variation of constants formula is well known
for the finite dimensional semi-linear ordinary differential equation

x′(t) = A(t) + f(t, x), x ∈ Rn

x(0) = x0,
(1.2)

and it gives the solution

x(t) = Φ(t)x0 +
∫ t

0

Φ(t)Φ−1(s)f(s, x(s))ds

where Φ(·) is the fundamental matrix of the system

x′(t) = A(t)x. (1.3)

Due to the importance of this formula, for semi linear ordinary differential equa-
tions, in 1961 the Russian mathematician Alekseev [1] found a formula for the
nonlinear ordinary differential equation

y′(t) = f(t, y) + g(t, y), y(t0) = y0, (1.4)

which is given by

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s))g(s, y(s))ds,

where x(t, t0, y0) is the solution of the initial value problem

x′(t) = f(t, x), x(t0) = y0, (1.5)

and

Φ(t, s, ξ) =
∂x(t, t0, y0)

∂y0
.

This formula is used to compare the solutions of (1.4) with the solutions of (1.5).
In fact, it was used in [9].

In infinite dimensional Banach spaces Z, we have the following general situation.
If A is the infinitesimal generator of strongly continuous semigroup {T (t)}t≥0 in
Z and f : [0, β] → Z is a suitable function, then the solution of the initial value
problem

z′(t) = Az(t) + f(t), t > 0, z ∈ Z
z(0) = z0,

(1.6)

is given by the variation constant formula

z(t) = T (t)z0 +
∫ t

0

T (t− s)f(s)ds, t ∈ [0,∞). (1.7)

Therefore, any solution of the problem (1.6) is also solution of the integral equation
(1.7). However, the converse may not be true, since a solution of (1.7) is not
necessarily differentiable. We shall refer to a continuous solution of (1.7) as a mild
solution of problem (1.6); a mild solution is thus a kind of generalized solution.
However, if {T (t)}t≥0 is an analytic semigroup and the function f satisfies the
following Hölder condition

‖f(s)− f(t)‖ ≤ L|s− t|θ, s, t ∈ [0, β],
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with L > 0, θ ≥ 1, then the mild solution (1.7) is also solution of the initial value
problem (1.6).

Our work and many others are motivated by the legendary paper by Borisovic
and Turbabin [3]; there they found a variational constants formula for the system
of nonhomogeneous differential equation with delay

z′(t) = Lzt + f(t), t > 0, z ∈ Rn

z(0) = z0,

z(s) = φ(s), s ∈ [−τ, 0),
(1.8)

where f : R+ → Rn is a suitable function. The standard notation zt defines a
function from [−τ, 0] to Rn by zt(s) = z(t + s),−τ ≤ s ≤ 0. Here τ ≥ 0 is
the maximum delay, which is suppose to be finite. We assume that the operator
L : Lp([−τ, 0]; Rn) → Rn is linear and bounded, and z0 ∈ Rn, φ ∈ Lp([−τ, 0]; Rn).
Under some conditions they prove the existence and the uniqueness of solutions for
this system and associate to it a strongly continuous semigroup {T (t)}t≥0 in the
Banach space Mp([−τ, 0]; Rn) = Rn ⊕ Lp([−τ, 0]; Rn).

Therefore, system (1.8) is equivalent to the following system of ordinary differ-
ential equations, in Mp,

dW (t)
dt

= ΛW (t) + Φ(t), t > 0,

W (0) = W0 = (z0, φ(·))
(1.9)

where Λ is the infinitesimal generator of the semigroup {T (t)}t≥0 and Φ(t) =
(f(t), 0).

Hence, the solution of system (1.8) is given by the variational constant formula
or mild solution

W (t) = T (t)W0 +
∫ t

0

T (t− s)Φ(s)ds. (1.10)

Finally, the formula we found here is valid for those system of PDEs that can be
rewritten in the form ∂

∂tu = D∆u, like damped nonlinear vibration of a string or a
beam, thermoplastic plate equation, etc. For more information about this, see the
paper by Oliveira [12].

To the best of our knowledge, there are variational constant formulas for re-
action diffusion equations, functional equations and neutral equations [6], but for
functional partial parabolic equations we are not aware of results similar to the one
presented here. At the same time, if we change the Neumann boundary condition
by Dirichlet boundary condition, the result follows trivially.

2. Abstract Formulation of the Problem

In this section we choose a Hilbert Space where system (1.1) can be written as
an abstract functional differential equation. To this end, we consider the following
hypothesis.

(H1) The matrix D is semi simple (block diagonal) and the eigenvalues di ∈ C
of D satisfy Re(di) ≥ 0. Consequently, if 0 = λ1 < λ2 < · · · < λn →∞ are
the eigenvalues of −∆ with homogeneous Neumann boundary conditions,
then there exists a constant M ≥ 1 such that :
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‖e−λnDt‖ ≤M , t ≥ 0, n = 1, 2, 3, . . .
H2). For all I > 0 and z ∈ L2

loc([−τ, 0);Z) we have the following inequality∫ t

0

|Lzs|ds ≤M0(t)|z|L2([−τ,t),Z), ∀t ∈ [0, I],

where M0(·) is a positive continuous function on [0,∞).

Consider H = L2(Ω,R) and 0 = λ1 < λ2 < · · · < λn → ∞ the eigenvalues of −∆,
each one with finite multiplicity γn equal to the dimension of the corresponding
eigenspace. Then

(i) There exists a complete orthonormal set {φn,k} of eigenvectors of −∆.
(ii) For all ξ ∈ D(−∆) we have

−∆ξ =
∞∑

n=1

λn

γn∑
k=1

〈ξ, φn,k〉φn,k =
∞∑

n=1

λnEnξ, (2.1)

where 〈·, ·〉 is the inner product in H and

Enx =
γn∑

k=1

〈ξ, φn,k〉φn,k. (2.2)

So, {En} is a family of complete orthogonal projections in H and ξ =∑∞
n=1Enξ, ξ ∈ H.

(iii) ∆ generates an analytic semigroup {T∆(t)} given by

T∆(t)ξ =
∞∑

n=1

e−λntEnξ. (2.3)

Now, we denote by Z the Hilbert space L2(Ω,Rn) and define the following operator

A : D(A) ⊂ Z → Z, Aψ = −D∆ψ

with D(A) = H2(Ω,Rn) ∩H1
0 (Ω,Rn).

Therefore, for all z ∈ D(A) we obtain

Az =
∞∑

n=1

λnDPnz, z =
∞∑

n=1

Pnz, ‖z‖2 =
∞∑

n=1

‖Pnz‖2, z ∈ Z

where Pn = diag(En, En, . . . , En) is a family of complete orthogonal proyections in
Z. Consequently, system (1.1) can be written as an abstract functional differential
equation in Z:

dz(t)
dt

= −Az(t) + Lzt + fe(t), t > 0

z(0) = φ0

z(s) = φ(s), s ∈ [−τ, 0)

(2.4)

Here fe : (0,∞) → Z is a function defined as follows:

fe(t)(x) = f(t, x), t > 0, x ∈ Ω.
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3. Preliminaries Results

For the rest of this article, we will use the following generalization of lemma 2.1
from [8].

Lemma 3.1. Let Z be a separable Hilbert space, {Sn(t)}n≥1 a family of strongly
continuous semigroups and {Pn}n≥1 a family of complete orthogonal projection in
Z such that

ΛnPn = PnΛn, n ≥ 1, 2, . . .

where Λn is the infinitesimal generator of Sn. Define the family of linear operators

S(t)z =
∞∑

n=1

Sn(t)Pnz, t ≥ 0.

Then:
(a) S(t) is a linear and bounded operator if ‖Sn(t)‖ ≤ g(t), n = 1, 2, . . . , with

g(t) ≥ 0, continuous for t ≥ 0.
(b) {S(t)}t≥0 is an strongly continuous semigroup in the Hilbert space Z whose

infinitesimal generator Λ is given by

Λz =
∞∑

n=1

ΛnPnz, z ∈ D(Λ)

with

D(Λ) =
{
z ∈ Z /

∞∑
n=1

‖ΛnPnz‖2 <∞
}

(c) the spectrum σ(Λ) of Λ is given by

σ(Λ) = ∪∞n=1σ(Λ̄n), (3.1)

where Λ̄n = ΛnPn : R(Pn) → R(Pn).

Proof. First, from Hille-Yosida Theorem, Sn(t)Pn = PnSn(t) since ΛnPn = PnΛn.
So that {Sn(t)Pnz}n≥1 is a family of orthogonal vectors in Z. Then

‖S(t)z‖2 = 〈S(t)z, S(t)z〉

=
〈 ∞∑

n=1

Sn(t)Pnz,
∞∑

m=1

Sm(t)Pmz
〉

=
∞∑

n=1

‖Sn(t)Pnz‖2

≤ (g(t))2
∞∑

n=1

‖Pnz‖2

= (g(t)‖z‖)2

Therefore, S(t) is a bounded linear operator.
Second, we have the following relations: (i)

S(t)S(s)z =
∞∑

n=1

Sn(t)PnS(s)z
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=
∞∑

n=1

Sn(t)Pn

( ∞∑
m=1

Sm(s)Pmz
)

=
∞∑

n=1

Sn(t+ s)Pnz

= S(t+ s)z

(ii)

S(0)z =
∞∑

n=1

Sn(0)Pnz =
∞∑

n=1

Pnz = z

(iii)

‖S(t)z − z‖2 = ‖
∞∑

n=1

Sn(t)Pnz −
∞∑

n=1

Pnz‖2

=
∞∑

n=1

‖(Sn(t)− I)Pnz‖2

=
N∑

n=1

‖(Sn(t)− I)Pnz)‖2 +
∞∑

n=N+1

‖(Sn(t)− I)Pnz‖2

≤ sup
1≤n≤N

‖(Sn(t)− I)Pnz‖2
N∑

n=1

+K
∞∑

n=N+1

‖Pnz‖2,

where K = sup0≤t≤1; n≥1 ‖(Sn(t) − I)‖2 ≤ (g(t) + 1)2. Since {Sn(t)}t≥0 (n =
1, 2, . . . ) is an strongly continuous semigroup and {Pn}n≥1 is a complete orthogonal
projections, given an arbitrary ε > 0 we have, for some natural number N and
0 < t < 1, the following estimates:

∞∑
n=N+1

‖Pnz‖2 <
ε

2K
, sup

1≤n≤N
‖(Sn(t)− I)Pnz‖2 ≤

ε

2N
,

‖S(t)z − z‖2 < ε

2N

N∑
n=1

+K
ε

2K
< ε

Hence, S(t) is an strongly continuous semigroup.
Let Λ be the infinitesimal generator of this semigroup. By definition, for all

z ∈ D(Λ), we have

Λz = lim
t→0+

S(t)z − z

t
= lim

t→0+

∞∑
n=1

(Sn(t)− I)
t

Pnz.

Next,

PmΛz = Pm

(
lim

t→0+

∞∑
n=1

(Sn(t)− I)
t

Pnz
)

= lim
t→0+

Sm(t)− I

t
Pmz = ΛmPmz

So,

Λz =
∞∑

n=1

PnΛz =
∞∑

n=1

ΛnPnz
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and

D(Λ) ⊂
{
z ∈ Z/

∞∑
n=1

‖ΛnPnz‖2 <∞
}

On the other hand, if we assume that z ∈
{
z ∈ Z/

∑∞
n=1 ‖ΛnPnz‖2 <∞

}
, then

∞∑
n=1

ΛnPnz = y ∈ Z

Next, making zn =
∑n

k=1 Pkz, we obtain

lim
t→0+

S(t)zn − zn

t
=

n∑
k=1

PkΛkz <∞.

Therefore, zn ∈ D(Λ) and Λzn =
∑n

k=1 PkΛkz. Finally, if zn → z when n → ∞
and limt→0+ Λzn = y, then, since Λ is closed, we obtain that z ∈ D(Λ) and Λz = y.

To complete the proof of the lemma, we shall prove part (c). It is equivalent to
prove that

∪∞n=1σ(Λ̄n) ⊂ σ(Λ) and σ(Λ) ⊂ ∪∞n=1σ(Λ̄n).
To prove the first part, We shall show that ρ(Λ) ⊂

⋂∞
n=1 ρ(Λ̄n). In fact, let λ be in

ρ(Λ). Then (λ−Λ)−1 : Z → D(Λ) is a bounded linear operator. We need to prove
that

(λ− Λ̄m)−1 : R(Pm) → R(Pm)
exists and is bounded for m ≥ 1. Suppose that (λ− Λ̄m)−1Pmz = 0. Then

(λ− Λ)Pmz =
∞∑

n=1

(λ− Λn)PnPmz = (λ− Λm)Pmz = (λ− Λ̄m)Pmz = 0.

Which implies that, Pmz = 0. So, (λ− Λ̄m) is one to one.
Now, given y in R(Pm) we want to solve the equation (λ− Λ̄m)w = y. In fact,

since λ ∈ ρ(Λ) there exists z ∈ Z such that

(λ− Λ)z =
∞∑

n=1

(λ− Λn)Pnz = y.

Then, applying Pm to the both side of this equation we obtain

Pm(λ− Λ)z = (λ− Λm)Pmz = (λ− Λ̄m)Pmz = Pmy = y.

Therefore, (λ − Λ̄m) : R(Pm) → R(Pm) is a bijection. Since Λ̄m is close, then, by
the closed-graph theorem, we get

λ ∈ ρ(Λ̄m) = {λ ∈ C : (Λ̄m−λI) is bijective } = {λ ∈ C : (Λ̄m−λI)−1is bounded }
for all m ≥ 1. We have proved that

ρ(Λ) ⊂
∞⋂

n=1

ρ(Λ̄n) ⇐⇒
∞⋃

n=1

σ(Λ̄n) ⊂ σ(Λ).

Now, we shall prove the other part of (c), that is to say:

σ(Λ) ⊂ ∪∞n=1σ(Λn).

In fact, if λ ∈ σ(Λ), then
(1) λ ∈ σp(Λ) = {λ ∈ C : (Λ− λI) is not injective }
(2) λ ∈ σr(V ) = {λ ∈ C : (Λ− λI) is injective , but R(Λ− λI) 6= Z}
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(3) λ ∈ σc(Λ) = {λ ∈ C : (Λ − λI) is injective, R(Λ− λI) = Z, but R(Λ −
λI) 6= Z}.

(1) If (AΛ − λI) is not injective, then there exists z ∈ Z non zero such that:
(Λ− λI)z = 0. This implies that for some n0 we have

(Λn0 − λI)Pn0z = 0, Pn0z 6= 0.

¿From here we obtain that λ ∈ σ(Λn0), and therefore λ ∈ ∪∞n=1σ(Λn).
(2) If R(Λ− λI) 6= Z, then there exists z0 ∈ Z non zero such that

〈z0, (Λ− λI)z〉 = 0, ∀z ∈ D(A).

But, z =
∑∞

n=1 Pnz, so

〈z0,
∞∑

n=1

(Λn − λI)Pnz〉 = 0.

Now, if z0 6= 0, then there is n0 ∈ N such that Pn0z0 6= 0. Hence,

0 = 〈z0,
∞∑

n=1

(Λn − λI)Pnz〉 = 〈z0, (Λn0 − λI)Pn0z〉 = 〈Pn0z0, (Λn0 − λI)Pn0z〉

So, R(Λn0 − λI) 6= Pn0Z. Therefore, λ ∈ σ(Λn0) ⊂ ∪∞n=1σ(Λn).
(3) Assume that (Λ− λI) is injective, R(Λ− λI) = Z and R(Λ− λI) ⊆ Z. For the

purpose of getting a contradiction, we suppose that λ ∈
(
∪∞n=1σ(Λn)

)C

.
However, (

∪∞n=1σ(Λn)
)C

⊂
( ∞⋃

n=1

σ(Λn)
)C

=
⋂
n≥1

(
σ(Λn)

)C =
⋂
n≥1

ρ(Λn),

which implies that, λ ∈ ρ(Λn), for all n ≥ 1. Then we get that

(Λn − λI) : R(Pn) → R(Pn)

is invertible, with (Λn − λI)−1 bounded. Hence, for all z ∈ D(Λ) we obtain

Pj(Λ− λI)z = (Λj − λI)Pjz, j = 1, 2, . . . ;

i.e.,
(Λj − λI)−1Pj(Λ− λI)z = Pjz, j = 1, 2, . . .

Now, since D(A) is dense in Z, we may extend the operator (Λj −λI)−1Pj(Λ−λI)
to a bounded operator Tj defined on Z. Therefore, it follows that

Tjz = Pjz, ∀z ∈ Z, j = 1, 2, . . . ,

and
‖Tj‖ = ‖Pj‖ ≤ 1, j = 1, 2, . . . .

Since R(Λ− λI) = Z, we get

‖(Λj − λI)−1‖ ≤ 1, j = 1, 2, . . . . (3.2)

Now we shall see that R(Λ− λI) = Z. In fact, given z ∈ Z we define y as

y =
∞∑

j=1

(Λj − λI)−1Pjz.
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¿From (3.2) we get that y is well defined. We shall see now that y ∈ D(Λ) and
(Λ− λI)y = z. In fact, we know that

y ∈ D(Λ) ⇐⇒
∞∑

j=1

‖ΛjPjy‖2 <∞.

On the other hand, we have
∞∑

j=1

‖ΛjPjy‖2 =
∞∑

j=1

‖Λj(Λj − λI)−1Pjz‖2 =
∞∑

j=1

‖{I + λ(Λj − λI)−1}Pjz‖2.

So,
∞∑

j=1

‖ΛjPjy‖2 ≤
∞∑

j=1

‖(1 + |λ|)2‖Pjz‖2 = (1 + |λ|)2‖z‖2 <∞.

Then, y ∈ D(Λ) and (Λ − λI) = z. Therefore R(Λ − λI) = Z, which is a contra-
diction that came from the assumption: λ ∈

(
∪∞n=1σ(Λn)

)C . �

Lemma 3.2. Let Z be a separable Hilbert space, {Sn(t)}t≥0 a family of strongly
continuous semigroups with generators Λn and {Pn}n≥1 a family of complete or-
thogonal projections such that

ΛnPm = PmΛn, n,m = 1, 2, . . . (3.3)

If the operator

Λz =
∞∑

n=1

ΛnPnz, z ∈ D(Λ)

with

D(Λ) = {z ∈ Z :
∞∑

n=1

‖ΛnPnz‖2 <∞}

generates a strongly continuous semigroup {S(t)}t≥0, then

S(t)z =
∞∑

n=1

Sn(t)Pnz, z ∈ Z.

Proof. If z0 ∈ Z, then Pnz0 ∈ D(Λ) and the mild solution of the problem

z′(t) = Λz(t)

z(0) = Pnz0
(3.4)

is given by zn(t) = S(t)Pnz0 and it is a classic solution. Using (3.3) and the
Hille-Yosida Theorem, we get PnS(t) = S(t)Pn, which implies

S(t)z0 =
∞∑

n=1

PnS(t)z0 =
∞∑

n=1

S(t)Pnz0. (3.5)

On the other hand, since zn(t) is a classic solution of (3.4), we obtain

z′n(t) = Λzn(t)

= ΛS(t)Pnz0

=
∞∑

m=1

ΛmPmS(t)Pnz0

= ΛnPnS(t)Pnz0



10 A. CARRASCO, H. LEIVA EJDE-2007/130

= ΛnS(t)Pnz0 = Λnzn(t)

So that, zn(t) = Sn(t)Pnz0 = S(t)Pnz0 and from (3.5) we get

Sn(t)z0 =
∞∑

n=1

Sn(t)Pnz0.

�

Now, applying Lemma 3.1 we can prove the following result.

Theorem 3.3. The operator −A is the infinitesimal generator of a strongly con-
tinuous semigroup {TA(t)}t≥0 in the space Z, given by

TA(t)z =
∞∑

n=1

e−λnDtPnz, z ∈ Z, t ≥ 0. (3.6)

3.1. Existence and Uniqueness of Solutions. In this part we study the exis-
tence and the uniqueness of the solutions for system (2.4) in case fe ≡ 0. That is,
we analyze the homogeneous system

dz(t)
dt

= −Az(t) + Lzt, t > 0

z(0) = φ0 = z0

z(s) = φ(s), s ∈ [−τ, 0)

. (3.7)

Definition 3.4. A function z(·) define on [−τ, α) is called a Mild Solution of (3.7)
if

z(t) =

{
φ(t) −τ ≤ t < 0,
TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, α)

Theorem 3.5. Problem (3.7) admits only one mild solution defined on [−τ,∞).

Proof. Consider the initial function

ϕ(s) =

{
φ(s), −τ ≤ s < 0
TA(s)z0 s ≥ 0

which belongs to L2
loc([−τ,∞), Z). For a moment we shall set the problem on

[−τ, I], I > 0 and denote by G the set

G = {ψ : ψ ∈ L2[[−τ, α], Z] and |ψ − ϕ|L2 ≤ ρ, ρ > 0},

where α > 0 is a number to be determine. It is clear that G endowed with the
norm of L2([−τ, α];Z) is a complete metric space.

Now, we consider the application S : G→ Z, for z ∈ G, given by

(Sz)(t) = Sz(t) =

{
φ(t), −τ ≤ t < 0
TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, α]

Claim 1. There exists α > 0 such that

(i) Sz ∈ G, for all z ∈ G.
(ii) S is a contraction mapping.
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In fact, we prove (i) as follows:

|Sz(t)− ϕ(t)| ≤
∫ t

0

|TA(t− s)Lzs|ds ≤
∫ α

0

M |Lzs|ds ≤MM0(α)|z|L2([−τ,α),Z).

Integrating, we have
|Sz − ϕ|L2 ≤ Kα1/2|z|L2

where K = max{MM0(α)/α ∈ [0, I]}. ¿From here we get

|Sz − ϕ|L2 ≤ Kα1/2(|ϕ|L2 + ρ), z ∈ G.

Taking

α <
( ρ

K(|ϕ|L2 + ρ)

)2

we obtain that Sz ∈ G, for all z ∈ G.
To prove (ii), we use the linearity of L to obtain:

|Sz − Sw|L2 ≤ Kα1/2|z − w|L2 , ∀z, w ∈ G.

Next, to prove that S it is a contraction and S(G) ⊂ G it is sufficient to choose α
so that

α < min
{( 1
K

)2

,
( ρ

K(|ϕ|L2 + ρ)

)2}
Therefore, S is a contraction mapping. So, if we apply the contraction mapping
Theorem, there exists a unique point z ∈ G such that Sz = z. i.e.,

z(t) = Sz(t) =

{
φ(t), −τ ≤ t < 0
TA(t)z0 +

∫ t

0
TA(t− s)Lzsds, t ∈ [0, α],

which proves the existence and the uniqueness of the mild solution of the initial
value problem (3.7) on [−τ, α].
Claim 2. α could be equal to ∞. In fact, let z be the unique mild solution define
in a maximal interval [−τ, δ)(δ ≥ α).
By contradiction, let us suppose that δ <∞. Since z is a mild solution of (3.7), we
have that

z(t) = TA(t)z0 +
∫ t

0

TA(t− s)Lzsds, t ∈ [0, δ).

Consider the sequence {tn} such that tn → δ−. Let us prove that {z(tn)} is a
Cauchy sequence. In fact,

|z(tn)− z(tm)|

= |TA(tn)z0 − TA(tm)z0 +
∫ tn

0

TA(tn − s)Lzsds−
∫ tm

0

TA(tm − s)Lzsds|

≤ |(TA(tn)− TA(tm))z0|+ |
∫ tn

0

TA(tn − s)Lzsds−
∫ tm

0

TA(tm − s)Lzsds|

But,

|
∫ tn

0

TA(tn − s)Lzsds−
∫ tm

0

TA(tm − s)Lzsds|

≤ |
∫ tm

0

(TA(tn − s)− TA(tm − s))Lzsds|+ |
∫ tm

tn

TA(tn − s)Lzsds|
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Now, for z ∈ L2([−τ, δ]) we obtain∫ tm

0

|(TA(tn − s)− TA(tm − s))Lzs|ds ≤
∫ δ

0

|(TA(tn − s)− TA(tm − s))Lzs|ds

We know that

lim
n,m→∞

|(TA(tn − s)− TA(tm − s))Lzs| = 0,

|(TA(tn − s)− TA(tm − s))Lzs| ≤ 2M |Lzs|

But, from the hypothesis (H1), we obtain∫ δ

0

2M |Lzs|ds ≤ 2MM0(δ)|z|L2([−τ,δ);Z)

Therefore, applying the Lebesgue Dominated Convergence Theorem, we obtain

lim
n,m→∞

∫ δ

0

|(TA(tn − s)− TA(tm − s))Lzs|ds = 0

Then, since the family {TA(t)}t≥0 is strongly continuous and tn, tm → δ− when
n,m → ∞, the sequence {z(tn)} is a Cauchy sequence and therefore there exists
B ∈ Z such that

lim
n→∞

z(tn) = B.

Now, for t ∈ [0, δ) we obtain that

|z(t)−B| ≤ |z(t)− z(tn)|+ |z(tn)−B|
≤ |(TA(t)− TA(tn))z0| + |z(tn)−B|

+ |
∫ tn

0

TA(tn − s)Lzsds−
∫ t

0

TA(t− s)Lzsds|

However, ∣∣ ∫ tn

0

TA(tn − s)Lzsds−
∫ t

0

TA(t− s)Lzsds
∣∣

≤
∫ tn

0

|(TA(t− s)− TA(tn − s))Lzs|ds+
∫ tn

t

|TA(t− s)Lzs|ds.

On the other hand, for z ∈ L2([−τ, δ]) we get the estimate∫ tn

0

|(TA(t− s)− TA(tn − s))Lzs|ds ≤
∫ δ

0

|(TA(t− s)− TA(tn − s))Lzs|ds

Therefore, applying the Lebesgue Dominated Convergence Theorem, we obtain

lim
n→∞

∫ δ

0

|(TA(t− s)− TA(tn − s))Lzs| = 0

Then, since the family {TA(t)}t≥0 is strongly continuous and tn → δ− when n→∞,
it follows that z(t) → B as t→ δ−. The function

ϕ(s) =

{
z(s), δ − τ ≤ s < δ

TA(s)B, s ≥ δ
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belongs to L2
loc([δ − τ,∞), Z). So, if we apply again the contraction mapping

Theorem to the Cauchy problem

dy(t)
dt

= −Ay(t) + Lyt, t > δ

y(δ) = B

y(s) = z(s), s ∈ [δ − τ, δ)

(3.8)

where z(·) is the unique solution of the system (3.7), then we get that (3.8) admits
only one solution y(·) on the interval [δ−τ, δ+ε] with ε > 0. Therefore, the function

z̃(s) =

{
z(s) −τ ≤ s < δ

y(s), δ ≤ s < δ + ε

is also a mild solution of (3.7) which is a contradiction. So, δ = ∞. �

4. The Variation Of Constants Formula

Now we are ready to find the formula announced in the title of this paper for
the system (2.4), but first we need to write this system as an abstract ordinary
differential equation in an appropriate Hilbert space. In fact, we consider the
Hilbert space M2([−τ, 0];Z) = Z⊕L2([−τ, 0];Z) with the usual innerproduct given
by 〈(φ01

φ1

)
,

(
φ02

φ2

)〉
= 〈φ01, φ02〉Z + 〈φ1, φ2〉L2 .

Define the operators T (t) in the space M2 for t ≥ 0 by

T (t)
(
φ0

φ(.)

)
=
(
z(t)
zt

)
(4.1)

where z(·) is the only mild solution of the system (3.7).

Theorem 4.1. The family of operators {T (t)}t≥0 defined by (4.1) is an strongly
continuous semigroup on M2 such that

T (t)W =
∞∑

n=1

Tn(t)QnW, W ∈ M2, t ≥ 0, (4.2)

where

Qn =
(
Pn 0
0 P̃n

)
,

with (P̃nφ)(s) = Pnφ(s), φ ∈ L2([−τ, 0];Z), s ∈ [−τ, 0], and {{Tn(t)}t≥0, n =
1, 2.3, . . . } is a family of strongly continuous semigroups on Mn

2 = QnM2 given in
the same way as in [5, Theorem 2.4.4] and defined by

Tn(t)
(
w0

n

wn

)
=
(

Wn(t)
Wn(t+ ·)

)
,

(
w0

n

wn

)
∈ Mn

2 ,

where Wn(·) is the unique solution of the initial value problem

dw(t)
dt

= −λnDw(t) + Lnwt, t > 0

w(0) = w0
n

w(s) = wn(s), s ∈ [−τ, 0)

(4.3)



14 A. CARRASCO, H. LEIVA EJDE-2007/130

and Ln = LP̃n = PnL, as it is in most the case practical problems.

Proof of Theorem 4.1. First, we shall prove that

T (t)W =
∞∑

n=1

Tn(t)QnW, W ∈ M2, t ≥ 0.

In fact, let W =
(
w1

w2

)
∈ M2.

∞∑
n=1

Tn(t)QnW

=
∞∑

n=1

Tn(t)
(
Pn 0
0 P̃n

)(
w1

w2

)

=
∞∑

n=1

Tn(t)
(
Pnw1

P̃nw2

)

=
∞∑

n=1

(
zn(t)

zn(t+ ·)

)
zn(·) is the only mild solution of (4.3)

=
∞∑

n=1

(
eAntPnw1 +

∫ t

0
eAn(t−s)Ln(P̃nz

n(s+ ·))ds
(P̃nz(t+ ·))

)

=

(∑∞
n=1 e

AntPnw1 +
∫ t

0

∑∞
n=1 e

An(t−s)Pn

(
L
∑∞

m=1(P̃mz(s+ ·))
)
ds∑∞

n=1(P̃nz(t+ ·))

)

=
(
TA(t)w1 +

∫ t

0
TA(t− s)Lz(s+ ·)ds
z(t+ ·)

)
=
(
z(t)
zt(·)

)
, z(·) is the only mild solution of (3.7)

= T (t)W.

In the same way as in [5, Theorem 2.4.4] we can prove that the infinitesimal gen-
erator of {Tn(t)}t≥0 is given by

Λn

(
w0

n

wn(·)

)
=
(
−ΛnDw

0
n + Lnwn(·)

∂wn(·)
∂s

)
with

D(Λn) = {
(
w0

n

wn(·)

)
∈ Mn

2 : wn is a.c.,
∂wn(·)
∂s

∈ L2([−τ, 0];QnZ), wn(0) = w0
n}.

Furthermore, the spectrum of Λn is discrete and given by

σ(Λn) = σp(Λn) = {λ ∈ C : det(An(λ)) = 0}, (4.4)

where An(λ) is given by

Λn(λ)z = λz + λnDz − Lne
λ(·)z, z ∈ Zn = PnZ,

which can be considered a matrix since dim(Zn) <∞.
On the other hand, {Qn}n≥1 is a family of complete orthogonal projection on

M2 and
ΛnQn = QnΛn, n = 1, 2, 3, . . .
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In fact,

ΛnQn

(
w0

n

wn(·)

)
= Λn

(
Pnw0

n

P̃nwn(·)

)
=

(
−ΛnDPnw

0
n + LnP̃nwn(·)

∂ fPnwn(·)
∂s

)

=

(
−ΛnDPnw

0
n + LP̃nP̃nwn(·)

P̃n
∂wn(·)

∂s

)

=
(
−ΛnDPnw

0
n + PnLnwn(·)

P̃n
∂wn(·)

∂s

)
=
(
Pn 0
0 P̃n

)(
−ΛnDw

0
n + Lnwn(·)

∂wn(·)
∂s

)
= QnΛn

(
w0

n

wn(·)

)
Now, we shall check condition (a) of Lemma 3.1. To this end we need to prove the
following claim.
Claim. If Wn(t) is the solution of (4.3), then the following inequalities hold

‖Wn(t)‖Z ≤ c2e
c1t‖w0

n‖, t ≥ 0, (4.5)∫ t

0

‖Wn(u)‖Zdu ≤ kec2t‖w0
n‖, t ≥ 0. (4.6)

In fact, if we put M1 = max{M, ‖L‖}, then we get

‖Wn(t+ θ)‖Z ≤ M1‖w0
n‖+M2

1

∫ t

0

‖Wn
s ‖L2ds; θ ∈ [−τ, 0],

this implies

‖Wn(t+ θ)‖2Z ≤
(
M1‖w0

n‖+M2
1

∫ t

0

‖Wn
s ‖L2ds

)2

.

Next, ∫ 0

−τ

‖Wn(t+ θ)‖2Zdθ ≤
∫ 0

−τ

(
M1‖w0

n‖+M2
1

∫ t

0

‖Wn
s ‖L2ds

)2

dθ

≤
∫ 0

−τ

22
(
M2

1 ‖w0
n‖2 +M4

1

(∫ t

0

‖Wn
s ‖L2ds

)2)
dθ

= 22τM2
1 ‖w0

n‖2 +M4
1

(∫ t

0

‖Wn
s ‖L2ds

)2
∫ 0

−τ

dθ

= c22‖w0
n‖2 + c21

(∫ t

0

‖Wn
s ‖L2ds

)2

≤
(
c2‖w0

n‖+ c1

(∫ t

0

‖Wn
s ‖L2ds

))2

So that

‖Wn
t ‖L2 ≤ c2‖w0

n‖+ c1

(∫ t

0

‖Wn
s ‖L2ds

)
Therefore, applying Gronwall’s lemma we obtain

‖Wn
t ‖L2 ≤ c2e

c1t‖w0
n‖, t ≥ 0.
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On the other hand, we obtain the estimate

‖Wn(t)‖Z ≤ ‖TAn
(t)w0

n‖+ ‖
∫ t

0

TAn
(t− s)LnW

n(s+ ·)ds‖

≤M1‖w0
n‖+M2

1

∫ t

0

‖Wn(s+ ·)ds‖

≤M1‖w0
n‖+M2

1

∫ t

0

c1e
c2t‖w0

n‖ds

=
(
M1 +

M2
1 c1
c2

ec2t
)
‖w0

n‖

≤ cec2t‖w0
n‖,

where c = M1 + M2
1 c1
c2

, t ≥ 0. Finally, we get∫ t

0

‖Wn(u)‖Zdu ≤ kec2t‖w0
n‖, k =

c

c2
, t ≥ 0.

This completes the proof of the claim.
Now, we use the above inequalities:∥∥Tn(t)

(
w0

n

wn

)∥∥2 = ‖Wn(t)‖2Z +
∫ 0

−τ

‖Wn(t+ τ)‖2Zdτ

= ‖Wn(t)‖2Z +
∫ t

t−τ

‖Wn(u)‖2Zdu

≤ ‖Wn(t)‖2Z +
∫ t

0

‖Wn(u)‖2Zdu+ ‖wn‖2L2

≤
(
c22e

2c2t + k2e2c2t
)
‖w0

n‖2 + ‖wn‖2L2

≤ g(t)2
(
‖w0

n‖2 + ‖wn‖2L2

)
, n ≥ 1, 2, . . . .

Hence,
‖Tn(t)‖ ≤ g(t), n ≥ 1, 2, . . . .

Therefore, applying Lemma 3.1, we obtain that T (t) is bounded and {T (t)}t≥0 is a
strongly continuous semigroup on the Hilbert space M2, whose generator Λ is given
by

ΛW =
∞∑

n=1

ΛnQnW, W ∈ D(Λ),

with

D(Λ) =
{
W ∈ M2/

∞∑
n=1

‖ΛnQnW‖2 <∞
}

and the spectrum σ(Λ) of Λ is given by

σ(Λ) = ∪∞n=1σ(Λ̄n), (4.7)

where Λ̄n = ΛnQn : R(Qn) → R(Qn). �

Lemma 4.2. Let Λ be the infinitesimal generator of the semi-group {T (t)}t≥0.
Then

Λϕ̃(s) =
(
−Aϕ(0) + Lφ(s)

∂φ(s)
∂s

)
, −τ ≤ s ≤ 0,
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D(Λ) =
{( φ0

φ(·)

)
∈ M2 : φ0 ∈ D(A), φ is a.c.,

∂φ(s)
∂s

∈ L2([−τ, 0];Z)

and φ(0) = φ0

}
,

and
σ(Λ) = ∪∞n=1{λ ∈ C : det(Λn(λ)) = 0}

Proof. Consider
(
φ0

φ(·)

)
in M2. Then

ΛW = Λ
(
φ0

φ(·)

)
=

∞∑
n=1

ΛnQnW

=
∞∑

n=1

Λn

(
Pn 0
0 P̃n

)(
φ0

φ(·)

)
=

∞∑
n=1

Λn

(
Pnφ0

P̃nφ(·)

)

=
∞∑

n=1

(
−ΛnDP̃nφ(0) + LnP̃nφ

∂ ePnφ(·)
∂(s)

)

=

(
−
∑∞

n=1 ΛnDPnφ(0) + L
∑∞

n=1 P̃nφ
∂
∂s

(∑∞
n=1 P̃nφ(·)

) )

=
(
−Aφ(0) + Lφ(·)

∂φ(·)
∂s

)
.

The other part of the lemma follows from (4.7) �

Therefore, the systems (3.7) and (2.4) are equivalent to the following two systems
of ordinary di-fferential equations in M2 respectively:

dW (t)
dt

= ΛW (t), t > 0

W (0) = W0 = (φ0, φ(·))
(4.8)

and
dW (t)
dt

= ΛW (t) + Φ(t), t > 0

W (0) = W0 = (φ0, φ(·)),
(4.9)

where Λ is the infinitesimal generator of the semigroup {T (t)}t≥0 and Φ(t) =
(fe(t), 0).

The steps we have taken to arrive here allow us to conclude the proof of the
main result of this work: The Variation of Constants Formula for Functional Partial
Parabolic Equations. This result is presented as the final Theorem of the this work.

Theorem 4.3. The abstract Cauchy problem in the Hilbert space M2,
dW (t)
dt

= ΛW (t) + Φ(t), t > 0

W (0) = W0

where Λ is the infinitesimal generator of the semigroup {T (t)}t≥0 and Φ(t) =
(fe(t), 0) is a function taking values in M2, admits one and only one mild solu-
tion given by

W (t) = T (t)W0 +
∫ t

0

T (t− s)Φ(s)ds (4.10)
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Corollary 4.4. If z(t) is a solution of (2.4), then the function W (t) := (z(t), zt)
is solution of the equation (4.9)

5. Conclusion

As one can see, this work can be generalized to a broad class of functional reaction
diffusion equation in a Hilbert space Z of the form

dz(t)
dt

= Az(t) + Lzt + F (t), t > 0

z(0) = φ0

z(s) = φ(s), s ∈ [−τ, 0),

(5.1)

where

Az =
∞∑

n=1

AnPnz, z ∈ D(A), (5.2)

where L : L2([−τ, 0];Z) → Z is linear and bounded F : [−τ,∞) → Z is a suitable
function. Some examples of this class are the following well known systems of
partial differential equations with delay:

The equation modelling a damped flexible beam:

∂2z

∂t2
= −∂3z

∂3x
+ 2α

∂3z
∂t∂2x

+ z(t− τ, x) + f(t, x) t ≥ 0, 0 ≤ x ≤ 1

z(t, 1) = z(t, 0) =
∂2z
∂2x

(0, t) =
∂2z
∂2x

(1, t) = 0,

z(0, x) = φ0(x),
∂z

∂t
(0, x) = ψ0(x), 0 ≤ x ≤ 1

z(s, x) = φ(s, x),
∂z

∂t
(s, x) = ψ(s, x), s ∈ [−τ, 0), 0 ≤ x ≤ 1

(5.3)

where α > 0, f : R × [0, 1] → R is a smooth function, φ0, ψ0 ∈ L2[0, 1] and
φ, ψ ∈ L2([−τ, 0];L2[0, 1]).

The strongly damped wave equation with Dirichlet boundary conditions

∂2w

∂t2
+ η(−∆)1/2 ∂w

∂t
+ γ(−∆)w = Lwt + f(t, x), t ≥ 0, x ∈ Ω,

w(t, x) = 0, t ≥ 0, x ∈ ∂Ω.

w(0, x) = φ0(x),
∂z

∂t
(0, x) = ψ0(x), x ∈ Ω,

w(s, x) = φ(s, x),
∂z

∂t
(s, x) = ψ(s, x), s ∈ [−τ, 0), x ∈ Ω,

(5.4)

where Ω is a sufficiently smooth bounded domain in RN , f : R × Ω → R is a
smooth function, φ0, ψ0 ∈ L2(Ω) and φ, ψ ∈ L2([−τ, 0];L2(Ω)) and τ ≥ 0 is the
maximum delay, which is supposed to be finite. We assume that the operators
L : L2([−τ, 0];Z) → Z is linear and bounded and Z = L2(Ω).
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The thermoelastic plate equation with Dirichlet boundary conditions

∂2w
∂2t

+ ∆2w + α∆θ = L1wt + f1(t, x) t ≥ 0, x ∈ Ω,

∂θ

∂t
− β∆θ − α∆

∂w

∂t
= L2θt + f2(t, x) t ≥ 0, x ∈ Ω,

θ = w = ∆w = 0, t ≥ 0, x ∈ ∂Ω,

w(0, x) = φ0(x),
∂w

∂t
(0, x) = ψ0(x), θ(0, x) = ξ0(x) x ∈ Ω,

w(s, x) = φ(s, x),
∂w

∂t
(s, x) = ψ(s, x), θ(0, x) = ξ(s, x), s ∈ [−τ, 0), x ∈ Ω,

(5.5)
where Ω is a sufficiently smooth bounded domain in RN , f1, f2 : R × Ω → R are
smooth functions, φ0, ψ0, ξ0 ∈ L2(Ω) and φ, ψ, ξ ∈ L2([−τ, 0];L2(Ω)) and τ ≥ 0 is
the maximum delay, which is supposed to be finite. We assume that the operators
L1, L2 : L2([−τ, 0];Z) → Z are linear and bounded and Z = L2(Ω).
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