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MULTIPLE SIGN-CHANGING SOLUTIONS FOR SOME
M-POINT BOUNDARY-VALUE PROBLEMS

XIAN XU

Abstract. In this paper, we show existence results for multiple sign-changing

solutions for m-point boundary-value problems. We use fixed point index and
Leray-Schauder degree methods.

1. Introduction

In this paper, we consider the second-order multi-point boundary-value problem

y′′(t) + f(y) = 0, 0 ≤ t ≤ 1,

y(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi),
(1.1)

where 0 < αi, i = 1, 2, . . . ,m− 2, 0 < η1 < η2 < · · · < ηm−2 < 1, f ∈ C(R, R).
The multi-point boundary-value problems for ordinary differential equations

arise in different areas of applied mathematics and physics. For examples, the
vibrations of a guy wire of uniform cross-section and composed of N parts of differ-
ent densities can be set up as a multi-point boundary-value problem (see [11]), many
problems in the theory of elastic stability can be handled as multi-point problems
(see [13]). Recently, there is much attention focused on the existence of nontriv-
ial or positive solutions of the nonlinear multi-point boundary-value problems(see
[3, 4, 5, 7, 9, 10, 12, 14, 15, 16, 17] and the references therein). For example, Ruyun
Ma [9] considered the m-point boundary-value problem

u′′(t) + a(t)f(u) = 0, t ∈ (0, 1),

u′(0) =
m−2∑
i=1

biu
′(ξi), u(1) =

m−2∑
i=1

aiu(ξi),
(1.2)

where f ∈ C(R+, R+), ξi ∈ (0, 1) with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai, bi ∈ R+

with 0 <
∑m−2

i=1 ai < 1, and 0 <
∑m−2

i=1 bi < 1. Set

f0 = lim
u→0+

f(u)
u

, f∞ = lim
u→+∞

f(u)
u

.
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Then f0 = 0 and f∞ = ∞ correspond to the super-linear case, and f0 = ∞ and
f∞ = 0 correspond to the sub-linear case. By applying the fixed point theorem in
cones, Ruyun Ma [9] showed that the m-point boundary value problem (1.2) has
at least one positive solution if f is either super-linear or sub-linear.

In this paper, we shall study the cases f0, f∞ 6∈ {0,+∞}. In these cases, the
m-point boundary-value problem (1.1) may have sign-changing solutions. Quite
recently, the existence and qualitative properties of sign-changing solutions for el-
liptic boundary-value problems have been extensively studied. To the author’s
knowledge, however, there were fewer papers considered the sign-changing solu-
tions for multi-point boundary value problems. The purpose of this paper is to give
some existence results for multiple sign-changing solution for m-point boundary
value problem (1.1). We shall follow the idea employed in [8] by Liu. To show the
main result in this paper we need to study the the spectrum properties of the lin-
ear operator related the m-point boundary-value problem (1.1). Gupta and Sergej
Trofimchuk [4] studied the problem of existence of solutions for the three-point
boundary-value problem

x′′(t) = f(t, x(t), x′(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αx(η),
(1.3)

where α ∈ R, α ≤ 1 and η ∈ (0, 1) are given. Using the spectrum radius of some
related linear operators, the authors proved some existence results for nontrivial
solutions of the three-point boundary-value problem (1.3).

We shall organize this paper as follows. In §2 some preliminary results are given
including the study of the eigenvalues of the linear operator A′(θ) and A′(∞). In
§3 by using the fixed point index and Leray-Shauder degree method, we will prove
the main result.

2. Preliminary Lemmas

From [1, Theorem 2.3.1], we have the following definition. Let X be a retract of
real Banach space E, U be a relatively bounded open subset of X, A : D 7→ X be
completely continuous operator. The integer i(A,U, X) be defined by

i(A,U,X) = deg(I −A · r, B(θ, R) ∩ r−1(U), θ),

where r : E 7→ X is an arbitrary retraction and R > 0 such that B(θ, R) ⊃ U .
Then the integer i(A,U,X) be called the fixed point index of A on U with respect
to X.

Set

β0 = lim
x→0

f(x)
x

, β1 = lim
|x|→∞

f(x)
x

.

Let us list some conditions to be used in this paper.
(H0) Assume that the sequence of positive solutions of the equation

sin
√

x =
m−2∑
i=1

αi sin ηi

√
x

is λ1 < λ2 < · · · < λn < λn+1 < . . . .
(H1) 0 <

∑m−2
i=1 αi < 1, f ∈ C(R, R), f(0) = 0, xf(x) > 0 for all x ∈ R\{0}.

(H2) There exist positive integers n0 and n1 such that

λ2n0 < β0 < λ2n0+1, λ2n1 < β1 < λ2n1+1.
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(H3) There exists C0 > 0 such that

|f(x)| <
2(1−

∑m−2
i=1 αiηi)

5−
∑m−2

i=1 αiηi

C0,

for all x with |x| ≤ C0.
The main result of this paper is the following.

Theorem 2.1. Suppose that (H0)–(H3) hold. Then the m-point boundary-value
problem (1.1) has at least two sign-changing solutions. Moreover, the m-point
boundary-value problem (1.1) also has at least two positive solutions and two nega-
tive solutions.

Before giving the proof of Theorem 2.1, we list some preliminary lemmas. Let

E = {x ∈ C1[0, 1] : x(0) = 0, x(1) =
m−2∑
i=1

αix(ηi)}

P = {x ∈ E : x(t) ≥ 0 for t ∈ [0, 1]}.
For x ∈ E, let ‖x‖ = ‖x‖0 + ‖x′‖0, where ‖x‖0 = maxt∈[0,1] |x(t)| and ‖x′‖0 =
maxt∈[0,1] |x′(t)|. It is easy to show that E is a Banach space with the norm ‖ · ‖
and P is a cone of E. Let the operators K, F and A be defined by

(Kx)(t) =
t

1−
∑m−2

i=1 αiηi

∫ 1

0

(1− s)x(s)ds−
∫ t

0

(t− s)x(s)ds

− t

1−
∑m−2

i=1 αiηi

m−2∑
i=1

αi

∫ ηi

0

(ηi − s)x(s)ds, t ∈ [0, 1], x ∈ E,

(2.1)

(Fx)(t) = f(x(t)) for t ∈ [0, 1], x ∈ E and A = KF .
From [1, Lemma 2.3.1], we get the following Lemma.

Lemma 2.2. Let θ ∈ Ω and A : P ∩ Ω̄ 7→ P be condensing. Suppose that

Ax 6= µx, ∀x ∈ P ∩ ∂Ω, µ ≥ 1.

Then i(A,P ∩ Ω, P ) = 1.

From [2, Corollary 2, p.p.146], we have the following Lemma.

Lemma 2.3. Let Ω be a open set in E and θ ∈ Ω, A : Ω̄ 7→ E be completely
continuous. Suppose that

‖Ax‖ ≤ ‖x‖, Ax 6= x, ∀x ∈ ∂Ω.

Then deg(I −A,Ω, θ) = 1.

Remark Obviously, Lemma 2.3 can also be directly obtained by the normality
and homotopic invariance property of Leray-Schauder degree.

The following Lemma can be easily obtained.

Lemma 2.4. Suppose that
∑m−2

i=1 αiηi < 1. If u ∈ C[0, 1], then y ∈ C2[0, 1] is a
solution the m-point boundary-value problem

y′′(t) + u(t) = 0, 0 ≤ t ≤ 1,

y(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi)
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if and only if y ∈ C[0, 1] is a solution of the integral equation y(t) = (Ku)(t), t ∈
[0, 1].

Remark By Lemma 2.4 we can easily show that A : E 7→ E is a completely
continuous operator.

Lemma 2.5. Suppose that (H1) and (H2) hold. Then the operator A is Fréchet
differentiable at θ and ∞. Moreover, A′(θ) = β0K, and A′(∞) = β1K.

Proof. For any ε > 0, by (H2) there exists δ > 0 such that for any 0 < |x| < δ,∣∣f(x)
x

− β0

∣∣ < ε,

that is |f(x)− β0x| < ε|x|, for all 0 ≤ |x| < δ. Then, for any x ∈ E with ‖x‖ < δ,
we have

|(Ax−Aθ − β0Kx)(t)|
= |(K(Fx− β0x))(t)|

≤ 1
1−

∑m−2
i=1 αiηi

∫ 1

0

(1− s) max
s∈[0,1]

|f(x(s))− β0x(s)|ds

+
∫ 1

0

(1− s) max
s∈[0,1]

|f(x(s))− β0x(s)|ds

+
1

1−
∑m−2

i=1 αiηi

m−2∑
i=1

αi

∫ ηi

0

(ηi − s) max
s∈[0,1]

|f(x(s))− β0x(s)|ds

≤
[ 1
2(1−

∑m−2
i=1 αiηi)

+
1
2

+
∑m−2

i=1 αiη
2
i

2(1−
∑m−2

i=1 αiηi)

]
‖x‖0ε

≤ 1
1−

∑m−2
i=1 αiηi

‖x‖ε, t ∈ [0, 1].

This implies

‖Ax−Aθ − β0Kx‖0 ≤
1

1−
∑m−2

i=1 αiηi

‖x‖ε, x ∈ E, ‖x‖ < δ. (2.2)

Similarly, we can show that for any x ∈ E, ‖x‖ < δ,

|(Ax−Aθ − β0Kx)′(t)| ≤
3−

∑m−2
i=1 αiηi

2(1−
∑m−2

i=1 αiηi)
‖x‖ε, t ∈ [0, 1]

and so

‖(Ax−Aθ − β0Kx)′‖0 ≤
3−

∑m−2
i=1 αiηi

2(1−
∑m−2

i=1 αiηi)
‖x‖ε, x ∈ E, ‖x‖ < δ. (2.3)

By (2.2) and (2.3), we have

‖Ax−Aθ − β0Kx‖ = ‖Ax−Aθ − β0Kx‖0 + ‖(Ax−Aθ − β0Kx)′‖0

≤
5−

∑m−2
i=1 αiηi

2(1−
∑m−2

i=1 αiηi)
‖x‖ε

Consequently,

lim
‖x‖→0

‖Ax−Aθ − β0Kx‖
‖x‖

= 0.
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This means that A is Fréchet differentiable at θ, and A′(θ) = β0K.
For each ε > 0, by (H2), there exists R > 0 such that

|f(x)− β1x| < ε|x|
for |x| > R. Let b = max|x|≤R |f(x)− β1x|. Then we have for any x ∈ R,

|f(x)− β1x| ≤ ε|x|+ b.

Consequently,

|(Ax− β1Kx)(t)|
= |(K(Fx− β1x))(t)|

≤ 1
1−

∑m−2
i=1 αiηi

∫ 1

0

(1− s) max
s∈[0,1]

|f(x(s))− β1x(s)|ds

+
∫ 1

0

(1− s) max
s∈[0,1]

|f(x(s))− β1x(s)|ds

+
1

1−
∑m−2

i=1 αiηi

m−2∑
i=1

αi

∫ ηi

0

(ηi − s) max
s∈[0,1]

|f(x(s))− β1x(s)|ds

≤
[ 1
2(1−

∑m−2
i=1 αiηi)

+
1
2

+
∑m−2

i=1 αiη
2
i

2(1−
∑m−2

i=1 αiηi)

]
(ε‖x‖0 + b)

≤ 1
1−

∑m−2
i=1 αiηi

(ε‖x‖+ b), t ∈ [0, 1].

This implies

‖Ax− β1Kx‖0 ≤
1

1−
∑m−2

i=1 αiηi

(ε‖x‖+ b), x ∈ E. (2.4)

Similarly, we can show that

‖(Ax− β1Kx)′‖0 ≤
3−

∑m−2
i=1 αiηi

2(1−
∑m−2

i=1 αiηi)
(ε‖x‖+ b), x ∈ E. (2.5)

By (2.4) and (2.5), we have

‖Ax− β1Kx‖ = ‖Ax− β1Kx‖0 + ‖(Ax− β1Kx)′‖0

≤
5−

∑m−2
i=1 αiηi

2(1−
∑m−2

i=1 αiηi)
(ε‖x‖+ b).

Consequently,

lim
‖x‖→∞

‖Ax− β1Kx‖
‖x‖

= 0 .

This means that A is Fréchet differentiable at ∞, and A′(∞) = β1K. The proof is
complete. �

Lemma 2.6. Suppose that (H0) and (H1) hold. Let β be a positive number. Then
the sequence of positive eigenvalues of the operator βK is

β

λ1
>

β

λ2
> · · · > β

λn
. . . .

Moreover, the positive eigenvalues β
λn

(n = 1, 2, . . . ) have algebraic multiplicity one.
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Proof. Let λ̄ be a positive eigenvalue of the linear operator βK, and y ∈ E\{θ} be
an eigenfunction corresponding to the eigenvalue λ̄. By Lemma 2.4, we have

y′′(t) +
β

λ̄
y(t) = 0, 0 ≤ t ≤ 1,

y(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi).
(2.6)

The auxiliary equation of the differential equation (2.6) has roots ±
√

β
λ̄
i. Thus the

general solution of (2.6) is of the form

y(t) = C1 cos t

√
β

λ̄
+ C2 sin t

√
β

λ̄
, t ∈ [0, 1].

Applying the condition y(0) = 0, we obtain that C1 = 0, and so the general solution
can be reduce to

y(t) = C2 sin t

√
β

λ̄
, t ∈ [0, 1].

Applying the second condition y(1) =
∑m−2

i=1 αiy(ηi), we obtain that

sin

√
β

λ̄
=

m−2∑
i=1

αi sin ηi

√
β

λ̄
.

Since the positive solutions of the equation sin
√

x =
∑m−2

i=1 αi sin ηi
√

x are 0 <
λ1 < λ2 < . . . , then λ̄ is one of the values

β

λ1
>

β

λ2
> · · · > β

λn
. . .

and the eigenfunction corresponding to the eigenvalue β
λn

is

yn(t) = C sin t
√

λn, t ∈ [0, 1],

where C is a nonzero constant. By ordinary method, we can show that any two
eigenfunctions corresponding to the same eigenvalue β

λn
are merely nonzero constant

multiples of each other. Consequently,

dim ker(
β

λn
I − βK) = dim ker(I − λnK) = 1. (2.7)

Now we show that
ker(I − λnK) = ker(I − λnK)2. (2.8)

Obviously, we need to show only that

ker(I − λnK)2 ⊂ ker(I − λnK).

For any y ∈ ker(I − λnK)2, (I − λnK)y is an eigenfunction of linear operator βK

corresponding to the eigenvalue β
λn

if (I − λnK)y 6= θ. Then there exists nonzero
constant γ such that

(I − λnK)y = γ sin t
√

λn, t ∈ [0, 1].
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By direct computation, we have

y′′(t) + λny = −λnγ sin t
√

λn, t ∈ [0, 1],

y(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi).
(2.9)

It is easy to see that the general solutions of (2.9) is of the form

y(t) = C1 cos t
√

λn + C2 sin t
√

λn + (
γt
√

λn

2
− γ

4
sin 2t

√
λn) cos t

√
λn

+
γ

4
cos 2t

√
λn · sin t

√
λn, t ∈ [0, 1],

where C1, C2 are two nonzero constants. Applying the condition y(0) = 0, we
obtain that C1 = 0. Since sin

√
λn =

∑m−2
i=1 αi sin ηi

√
λn, then we have

y(1) = C2 sin
√

λn + (
γ
√

λn

2
− γ

4
sin 2

√
λn) cos

√
λn +

γ

4
cos 2

√
λn · sin

√
λn

=
m−2∑
i=1

αiC2 sin ηi

√
λn +

γ
√

λn

2
cos

√
λn −

γ

2

m−2∑
i=1

αi sin ηi

√
λn cos2

√
λn

+
γ

4

m−2∑
i=1

αi cos 2
√

λn sin ηi

√
λn,

(2.10)
and

m−2∑
i=1

αiy(ηi) =
m−2∑
i=1

αiC2 sin ηi

√
λn +

m−2∑
i=1

(
γαiηi

√
λn

2
− γαi

4
sin 2ηi

√
λn) cos ηi

√
λn

+
m−2∑
i=1

γαi

4
cos 2ηi

√
λn · sin ηi

√
λn.

(2.11)
Since y(1) =

∑m−2
i=1 αiy(ηi), by (2.10) and (2.11), we have

cos
√

λn =
m−2∑
i=1

αiηi cos ηi

√
λn.

By the Schwarz inequality, we obtain

1− sin2
√

λn = (
m−2∑
i=1

αiηi cos ηi

√
λn)2

≤ (
m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i cos2 ηi

√
λn)

= (
m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i )− (

m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i sin2 ηi

√
λn).
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Applying the condition sin
√

λn =
∑m−2

i=1 αi sin ηi

√
λn, we obtain

1 ≤ (
m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i ) + (

m−2∑
i=1

αi sin ηi

√
λn)2 − (

m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i sin2 ηi

√
λn)

= (
m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i ) + (1− (

m−2∑
i=1

η2
i ))(

m−2∑
i=1

α2
i sin2 ηi

√
λn)

+
∑
i 6=j

αiαj sin ηi

√
λn sin ηj

√
λn

≤ (
m−2∑
i=1

η2
i )(

m−2∑
i=1

α2
i ) + (1− (

m−2∑
i=1

η2
i ))(

m−2∑
i=1

α2
i ) +

∑
i 6=j

αiαj

= (
m−2∑
i=1

αi)2,

which is a contradiction of
∑m−2

i=1 αi < 1. Thus, (2.8) holds. It follows from (2.7)
and (2.8) that the algebraic multiplicity of the eigenvalue β

λn
is 1. The proof is

complete. �

Lemma 2.7. Suppose that (H0) and (H1) hold and y ∈ P\{θ} is a solution of the

boundary-value problem (1.1). Then y ∈
◦
P .

Proof. Since y′′(t) = −f(y(t)) ≤ 0 for t ∈ [0, 1], then y is a concave function on
[0, 1]. For all i ∈ {1, 2, . . . ,m− 2}, we have from the concavity of y that

y(t) ≤ y(1)− y(ηi)
1− ηi

(t− 1) + y(1), t ∈ [0, η1]

that is y(t)(1− ηi) ≤ (y(1)− y(ηi))(t− 1) + y(1)(1− ηi), t ∈ [0, η1]. This together
with the boundary condition y(1) =

∑m−2
i=1 αiy(ηi) implies

y(t) ≤ y(1)
∑m−2

i=1 αi(1− ηi) + (1−
∑m−2

i=1 αi)(1− t)∑m−2
i=1 αi(1− ηi)

≤ y(1)
∑m−2

i=1 αi(1− ηi) + (1−
∑m−2

i=1 αi)∑m−2
i=1 αi(1− ηi)

= y(1)
1−

∑m−2
i=1 αiηi∑m−2

i=1 αi(1− ηi)
, t ∈ [0, η1].

(2.12)

From the concavity of y and this inequality, we have

y(t) ≤ y(η1)
η1

t ≤ y(η1)
η1

≤ y(1)
1−

∑m−2
i=1 αiηi∑m−2

i=1 αi(1− ηi)η1

, t ∈ [η1, 1]. (2.13)

From this inequality and (2.12) it follows that

y(1) ≥
∑m−2

i=1 αi(1− ηi)η1

1−
∑m−2

i=1 αiηi

‖y‖0.

Since y is a concave function on [0,1], we have

y(t) ≥ (y(1)− y(0))t = y(1)t ≥
∑m−2

i=1 αi(1− ηi)η1

1−
∑m−2

i=1 αiηi

‖y‖0t, t ∈ [0, 1]. (2.14)
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Consequently,

y′(0) = lim
t→0

y(t)
t

≥
∑m−2

i=1 αi(1− ηi)η1

1−
∑m−2

i=1 αiηi

‖y‖0 > 0.

Then there exist ε > 0 and τ1 > 0 such that

y′(t) > τ1,∀t ∈ [0, ε]. (2.15)

By (2.14), there exists τ2 > 0 such that

y(t) > τ2, ∀t ∈ [ε, 1] (2.16)

Let τ = min{τ1, τ2}. Then by (2.15) and (2.16), we obtain u(t) ≥ 0, t ∈ [0, 1]

for any u ∈ E with ‖u − y‖ < τ . Therefore, B(y, τ) ⊂ P and y ∈
◦
P , where

B(y, τ) = {x ∈ E : ‖x− y‖ < τ}. The proof is complete. �

By [1, Lemmas 2.3.7, 2.3.8], we have the following Lemma.

Lemma 2.8. Let A : P 7→ P be completely continuous, Suppose that A is dif-
ferentiable at θ and ∞ along P and 1 is not an eigenvalue of A′

+(θ) and A′
+(∞)

corresponding to a positive eigenfunction.
(1) If A′

+(θ) has a positive eigenfunction corresponding to an eigenvalue greater
than 1, and Aθ = θ. Then there exists τ > 0 such that i(A,P∩B(θ, r), P ) =
0 for any 0 < r < τ .

(2) If A′
+(∞) has a positive eigenfunction which corresponds to an eigenvalue

greater than 1. Then there exists ς > 0 such that i(A,P ∩ B(θ, R), P ) = 0
for any R > ς.

Lemma 2.9. Suppose that (H0)–(H3) hold. Then
(1) There exists C0 > r0 > 0 such that for any 0 < r ≤ r0,

i(A,P ∩B(θ, r), P ) = 0, i(A,−P ∩B(θ, r),−P ) = 0

(2) There exists R0 > C0 such that for any R ≥ R0,

i(A,P ∩B(θ, R), P ) = 0, i(A,−P ∩B(θ, R),−P ) = 0.

Proof. We prove only conclusion (1). The same way, conclusion (2) can be proved.
First we claim that K(P ) ⊂ P and K(−P ) ⊂ −P . Let x ∈ P be fixed and y = Kx.
Obviously, y ∈ C1[0, 1]. By direct computation, we have

y(1) =
1

1−
∑m−2

i=1 αiηi

(
m−2∑
i=1

ηi

∫ 1

0

(1− s)x(s)ds−
m−2∑
i=1

αi

∫ ηi

0

(ηi − s)x(s)ds)

≥ 1
1−

∑m−2
i=1 αiηi

m−2∑
i=1

αi

∫ ηi

0

(1− ηi)sx(s) ds ≥ 0 .

(2.17)
It follows from Lemma 2.4 that

y′′(t) = −x(t) ≤ 0, ∀t ∈ [0, 1]. (2.18)

y(0) = 0, y(1) =
m−2∑
i=1

αiy(ηi) (2.19)

By (2.18), we see that y is a concave function on [0,1]. Then the boundary condition
(2.17) and (2.19) mean that y(t) ≥ 0 for t ∈ [0, 1]. Therefore, y ∈ P , and so
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K(P ) ⊂ P , K(−P ) ⊂ (−P ). Since xf(x) > 0 for x ∈ R\{0}, then we see that
A(P ) ⊂ P and A(−P ) ⊂ (−P ).

It follows from Lemmas 2.5 and 2.6 that A′
+(θ) = β0K, β0/λ1 (> 1) is an

eigenvalue of the linear operator β0K and the eigenfunction corresponding to β0
λ1

is

y(t) = C sin t
√

λ1, t ∈ [0, 1],

where C is an arbitrary positive constant and λ1 is the smallest positive solution
of the equation sin

√
x =

∑m−2
i=1 αi sin ηi

√
x. Since

lim
x→0

sin
√

x−
∑m−2

i=1 αi sin ηi
√

x√
x

= 1−
m−2∑
i=1

αiηi > 0 ,

there exists δ0 ∈ (0, 1) small enough such that

sin
√

δ0 −
∑m−2

i=1 αi sin ηi

√
δ0√

δ0

≥ 1
4
(1−

m−2∑
i=1

αiηi) > 0.

On the other hand,

sin
√

π2 −
m−2∑
i=1

αi sin ηi

√
π2 = −

m−2∑
i=1

αi sin ηiπ < 0.

Then, by the intermediate-value principle, λ1 ∈ (δ0, π
2). Consequently,

y(t) = C sin t
√

λ1 ≥ 0, t ∈ [0, 1].

It follows from Lemma 2.8 that there exists τ0 > 0 such that i(A,P ∩B(θ, r), P ) = 0
for any 0 < r ≤ τ0.

Similarly, we can show that there exists τ1 > 0 such that i(A,−P∩B(θ, r),−P ) =
0 for any 0 < r ≤ τ1. Let r0 = min{τ0, τ1}. Then the conclusion (1) holds and the
the proof is complete. �

From [6, Theorems 21.6, 21.2], we have the following two lemmas.

Lemma 2.10. Let A be a completely continuous operator, let x0 ∈ E be a fixed
point of A and assume that A is defined in a neighborhood of x0 and Fréchet
differentiable at x0. If 1 is not an eigenvalue of the linear operator A′(x0), then x0

is an isolated singular point of the completely continuous vector field I −A and for
small enough r > 0

deg(I −A,B(x0, r), θ) = (−1)k,

where k is the sum of the algebraic multiplicities of the real eigenvalues of A′(x0)
in (1,+∞).

Lemma 2.11. Let A be a completely continuous operator which is defined on all
E. Assume that 1 is not an eigenvalue of the asymptotic derivative. The completely
continuous vector field I − A is then nonsingular on spheres Sρ = {x|‖x‖ = ρ} of
sufficiently large radius ρ and

deg(I −A,B(θ, ρ), θ) = (−1)k,

where k is the sum of the algebraic multiplicities of the real eigenvalues of A′(∞)
in (1,+∞).
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3. Proof of main Theorem

Proof of Theorem 2.1. From Lemma 2.4, a function y is a solution of the boundary-
value problem (1.1) if and only if y is a fixed point of the operator A. By (H3), we
have for any x ∈ E, ‖x‖ = C0,

|(Ax)(t)|

≤ 1
1−

∑m−2
i=1 αiηi

∫ 1

0

(1− s) max
s∈[0,1]

|f(x(s))|ds +
∫ 1

0

(1− s) max
s∈[0,1]

|f(x(s))|ds

+
1

1−
∑m−2

i=1 αiηi

m−2∑
i=1

αi

∫ ηi

0

(ηi − s) max
s∈[0,1]

|f(x(s))|ds

<
2(1−

∑m−2
i=1 αiηi)

5−
∑m−2

i=1 αiηi

( 1
2(1−

∑m−2
i=1 αiηi)

+
1
2

+
∑m−2

i=1 αiηi

2(1−
∑m−2

i=1 αiηi)

)
C0

≤ 2C0

5−
∑m−2

i=1 αiηi

, t ∈ [0, 1] .

Therefore,

‖Ax‖0 <
2C0

5−
∑m−2

i=1 αiηi

. (3.1)

Similarly, we can show that for any x ∈ E, with ‖x‖ = C0,

‖(Ax)′‖0 <
3−

∑m−2
i=1 αiηi

5−
∑m−2

i=1 αiηi

C0. (3.2)

It follows from (3.1) and (3.2) that ‖Ax‖ < C0, for all ‖x‖ = C0. Then, by Lemmas
2.2 and 2.3 we have

i(A,P ∩B(θ, C0), P ) = 1, (3.3)

i(A,−P ∩B(θ, C0),−P ) = 1, (3.4)

deg(I −A,B(θ, C0), θ) = 1. (3.5)
By (H2) and Lemma 2.6, the eigenvalues of the operator A′(θ) = β0K which are
large than 1 are

β0

λ1
,

β0

λ2
,

β0

λ3
, . . . ,

β0

λ2n0

.

Therefore, by Lemmas 2.6, 2.9, and 2.10, there exists 0 < r1 < r0 such that

deg(I −A,B(θ, r1), θ) = (−1)2n0 = 1 . (3.6)

Similarly, by Lemmas 2.6, 2.9 and 2.11, we have for some R1 ≥ R0,

deg(I −A,B(θ, R1), θ) = 1 . (3.7)

By Lemma 2.9, we have

i(A,P ∩B(θ, r1), P ) = 0, (3.8)

i(A,−P ∩B(θ, r1),−P ) = 0, (3.9)

i(A,P ∩B(θ, R1), P ) = 0, (3.10)
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i(A,−P ∩B(θ, R1),−P ) = 0. (3.11)
Then, by (3.3), (3.8) and (3.10), we have

i(A,P ∩ (B(θ, R1)\B(θ, C0)), P ) = 0− 1 = −1, (3.12)

i(A,P ∩ (B(θ, C0)\B(θ, r1)), P ) = 1− 0 = 1. (3.13)

Therefore, the operator A has at least two fixed points x1 ∈ P∩(B(θ, R1)\B(θ, C0))
and x2 ∈ P ∩ (B(θ, C0)\B(θ, r1)), respectively. Obviously, x1 and x2 are positive
solutions of the boundary-value problem (1.1).

Similarly, by (3.4), (3.9) and (3.11), we have

i(A,−P ∩ (B(θ, R1)\B(θ, C0)),−P ) = −1, (3.14)

i(A,−P ∩ (B(θ, C0)\B(θ, r1)),−P ) = 1. (3.15)

Therefore, the operator A has at least two fixed points x3 ∈ (−P )∩(B(θ, C0)\B(θ, r1))
and x4 ∈ (−P ) ∩ (B(θ, R1)\B(θ, C0)), respectively. Obviously, x3 and x4 are neg-
ative solutions of the boundary-value problem (1.1).

Let
S = {x|x = Ax, x ∈ P ∩ (B(θ, R1)\B(θ, C0))}.

It follows from Lemma 2.7 that S ⊂
◦
P . Therefore, for any x ∈ S, there exists δx > 0

such that B(x, δx) ⊂ P ∩ (B(θ, R1)\B(θ, C0)). Let O1 =
⋃

x∈S B(x, δx). Then, we
have O1 ⊂ P ∩ (B(θ, R1)\B(θ, C0)). By (3.12) and the excision property of the
fixed point index, we have

i(A,O1, P ) = −1. (3.16)
By the definition of the fixed point index, we have

i(A,O1, P ) = deg(I −A · r, B(θ, R̄) ∩ r−1(O1), θ), (3.17)

where r : E 7→ P is an arbitrary retraction and R̄ is a large enough positive number
such that O1 ⊂ B(θ, R̄). Now, we assume that y∗ ∈ B(θ, R̄) ∩ r−1(O1) such that
y∗ = A·r(y∗). Since r : E 7→ P and A : P 7→ P , then y∗ ∈ P , and so y∗ = ry∗ ∈ O1.
Therefore, y∗ ∈ O1 whenever y∗ ∈ B(θ, R̄)∩r−1(O1) is a fixed point of the operator
A · r. Then, by the excision property of the degree we have

deg(I −A · r, B(θ, R̄) ∩ r−1(O1), θ) = deg(I −A,O1, θ). (3.18)

By (3.16)-(3.18), we have

deg(I −A,O1, θ) = −1. (3.19)

Similarly, by (3.13)-(3.15), we can show that there exist open sets O2, O3 and O4

such that

O2 ⊂ P ∩ (B(θ, C0)\B(θ, r1)),

O3 ⊂ −P ∩ (B(θ, C0)\B(θ, r1)),

O4 ⊂ −P ∩ (B(θ, R1)\B(θ, C0)),

deg(I −A,O2, θ) = 1, (3.20)

deg(I −A,O3, θ) = 1, (3.21)

deg(I −A,O4, θ) = −1. (3.22)
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It follows from (3.5), (3.6), (3.20) and (3.21) that

deg(I −A,B(θ, C0)\(O2 ∪O3 ∪B(θ, r1)), θ) = 1− 1− 1− 1 = −2.

This implies that A has at least one fixed point x5 ∈ B(θ, C0)\(O2∪O3∪B(θ, r1)).
Similarly, by (3.5), (3.7), (3.19) and (3.22),

deg(I −A,B(θ, R1)\(O1 ∪O4 ∪B(θ, C0)), θ) = 1− 1 + 1 + 1 = 2.

This implies that A has at least one fixed point x6 ∈ B(θ, R1)\(O1∪O4∪B(θ, C0)).
Obviously, x5 and x6 are two distinct sign-changing solutions of the boundary-value
problem (1.1). The proof is complete. �

By the method used in the proof of Theorem 2.1, it is easy to show the following
four corollaries.

Corollary 3.1. Suppose that (H0), (H1) and (H3) hold, and that there exists
positive integer n0 such that λ2n0 < β0 < λ2n0+1. Then the boundary-value problem
(1.1) has at least one sign-changing solution. Moreover, the boundary-value problem
(1.1) has at least one positive solution and one negative solution.

Corollary 3.2. Suppose that (H0), (H1) and (H3) hold, and that there exists
positive integer n1 such that λ2n1 < β1 < λ2n1+1. Then the conclusion of Corollary
3.1 holds.

Corollary 3.3. Suppose that (H0) and (H1) hold, β0 > λ1, β1 < λ1 (or β0 < λ1,
β1 > λ1). Then the boundary-value problem (1.1) has at least one positive solution
and one negative solution.

Corollary 3.4. Suppose that (H0), (H1) and (H3) hold, β0 > λ1, β1 > λ1. Then
the boundary-value problem (1.1) has at least two positive solutions and two negative
solutions.

Remark. In Theorem 2.1, we show not only the existence of multiple sign-
changing solutions, but also the existence of multiple positive solutions and neg-
ative solutions. Obviously, we can employ this method to show the existence of
sign-changing solutions for other nonlinear boundary-value problems.
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