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EXISTENCE OF SOLUTION TO CRITICAL KIRCHHOFF-TYPE
EQUATION WITH DIPOLE-TYPE POTENTIAL

SAINAN WANG, YU SU

ABSTRACT. Dipole-type potential arises in the area of nonrelativistic molecular
physics. In this paper, we establish the existence and nonexistence of solution
to critical Kirchhoff-type equation with dipole-type potential.

1. INTRODUCTION

We consider the Kirchhoff-type equation

o .
- (1 + b/ \VU|2dx)Au - Mwu = [u* 2u, xeRV, (1.1)
RN

where N > 3, b > 0 and 2* = % is the Sobolev critical exponent. The function
® and the parameter p satisfy the following condition:

(A1) 0<® € LP(SN-1), p > 5?1\7_2)12) +1, and p € (0,As), where
(N —-2)* no1p
N N1 12 L

A<1> =
On the other hand the Laplace operator with dipole-type potential is

Pd(x/|x
Lo ::—A—uw, z eRY,
|[?
where N > 3. This kind of operator arises in the area of nonrelativistic molecular
physics. Specifically, the Schrédinger equation for the wave function of an electron
interacting with a polar molecule can be written as

z-D
|z[®

where D is the dipole moment of the molecule, e and m denote the charge and
the mass of the electron, see [I9]. The operator with different kinds of singular
potentials have been largely studied, see [7, 8, [9] 10, 23, 26], 28] and references
therein.

On the other hand, equation is related to the stationary analogue of equa-

tion
82
dr) 557 = 0.
Ox?

H= A+ _ B,

@_(PO |
Porr ~\n " 2L
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which was proposed by Kirchhoff in [I8] as an extension of the classical D’Alembert
wave equation for free vibrations of elastic strings. The existence of solution of
Kirchhoff-type equation with Laplacian was explored in [3] [25], and with fractional
Laplacian was investigated in [21].

Liu-Liao-Tang [20] studied equation with & = 0:

- (a + b/ |Vu|2dx>Au = |u)?* 2u, zeRV. (1.2)
RN
By using the minimizing of best constant
S = in HUHQDM(RN)
 ueDT2®RN\{0} ([pn [u|?"dz)?/ %
as follows
N2 5N;2
U.,=[N(N-2)] T ———,
o = W2 G R

they established the existence and nonexistence of solutions for equation (|1.2]) with
respect to parameters N, a and b. The existence of solution of equation with
p-Laplacian was presented in [I7], 22].

For & =Constant, Fiscella-Pucci [I1] established the Concentration Compact-
ness Principle with Hardy potential, and then they established the existence of
solutions for Kirchhoff-type equations involving Hardy potential and different crit-
ical nonlinearities. For more recent work, we refer to [Il, 12 [13].

The case where the potential ® is a constant was discussed in [I1], 17, 20], 22].
Therefore, it is natural to ask whether equation admits a solution for ® non-
constant. To the best of our knowledge, there is no result on this problem.

If b = 0, equation becomes

O(z/|x])

—Au—p FE u=|u* 2u, zeRV. (1.3)
We study the following minimizing problem:
2
S = 12ilflf lulls P
w€D G (RO} ( [y Jul? da)

Extremals for S¢ are solutions of the Euler-Lagrange equation (|1.3)). The following
is our first result.

Theorem 1.1. Assume that N > 3 and (Al) hold. Then equation (1.3)) has a
radially symmetric solution v € D:a’?d(]RN), and infinitely many nonradial solutions

U such that [, 0% |2 dz — 00 as k — oo.

Remark 1.2. Note that the Sobolev embedding D*?(RN) — L* (RV) is not
compact. Hence, it is hard to show that the minimizing sequence of S¢ has a
convergence subsequence. We investigate this problem by two different methods.
In the first method, we obtain a radially symmetric solution. In the second method,
we obtain infinitely many nonradial solutions.

For b > 0 and N = 3 < 2* > 4, we have

Theorem 1.3. Assume that N =3, b > 0 and condition (A1) holds. Then (1.1)

has a radially symmetric ground state solution v € Drla’fi(RN). Moreover, if u €

(0,4A9/(2)2), then v € L2 (RN).
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When N > 4 & 2* < 4, equation (|1.1)) is more complicated.

Theorem 1.4. Assume that N > 4, b > 0 and condition (Al) holds. Then the
following statements are true.

(1) For N=4 and b > S72, equatz’on has no nontrivial solution.

4-2 *
(2) For N >4 and b > z *2(/\7;1)”)2* 2 (4 22 )2**25’7ﬁ, equation (L.1)) has
no nontrivial solution, where A and p are defined in condition (Al).

(3) For N > 4, there exists by > 0 small enough such that for all b € (0,bp),

equation (1.1 has a radially symmetric.

We summarize of Theorems [[LIHI.4] as follows:

a radially symmetric solution,
b=0,N>3e0 M I . .
infinitely many nonradial solutions,

N = 3, a radially symmetric ground state solution,
N =4,b> 872,
28 2*—2 (A 4-2*
N>5 b> <+ ( j’\q)“)ﬂ 2( 5 )2* 2S 7= 2, no nontrivial solution,
be (O7 bp), a radially symmetric solution.

no nontrivial solution

This article is organized as follows. In Section 2, we present notation. In Sections
3-5, we give the proofs of Theorems respectively.

2. PRELIMINARIES

The space DV2(RY) is the completion of C§°(R”) with respect to the semi-norm

Hu“%Lz(RN) = / |VU|2dI
RN

D2 (RN) the space of radial functions in D2(RY). We define the

rad

We denote by D
best constant

HUI|D1 2(RN)
weD1 2(RN)\{O} (Jan |u?dx)?/2""

We know that S can be attained in RY, see [5].
For all u € DY2(RY), we have the Hardy inequality, see [14],

N —2 2 2
7( ) / |u|2dx < / |Vu\2dx.
4 RN |£C| RN

We introduce the measure dv} induced by Lebesgues measure on the unit sphere
SN-1 c RN. We denote by || - | La(sv—1) the quantity

TP /SN?I 1 (9)]7d0.

Lemma 2.1 ([I5]). Let N >3, 0 < ® e L7(SV1) and p > $55205 21) +1. Then

2
/ |Vu|2d:c>A/ e/l

>

S =

where u € DY2(RY) and Ag := %\SN—1|1/1)||¢>||;;(SN,I).
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By using Lemma and p € (0,As),
d 2
HUH% = / |Vu|2da: — lu/ de
RN RN EE

is an equivalent norm in D%2(RY).
A measurable function u : RN — R belongs to the Morrey space |[u/|ze.=(rx)
with ¢ € [1,00) and w € (0, N] if and only if

fllfs ey = sup B[ ju(frdy < o
R>0,z€RN B(z,R)

Lemma 2.2 ([24]). For N > 3, there exists C > 0 such that for v and ¥ satisfying
£ <1<1,1<9<2%, we have

. 1/2*
([ 1k a)"™ < Cllultpnaenylul

for any uw € DV2(RY).

1—¢
9(N—2) )
Lo 5 (RN)

Equation (|1.1)) is variational and its solutions are the critical points of the func-

tional defined in DV2(R¥Y) by
1 L b 1 «
() = gl ~ 5 [ da+ Flullany = 57 [ ol da.

It is easy to see that the functional I, € C1(DV2(RY),R). It is easy to see that if
u € DY2(RV) is a critical point of I, i.e.,

0 = (Ij(u), o)
= (]_ +bHU||%1,2(RN)) /RN VUV(,Od{E

—u/ <I><£>u—('02dm—/ [ul?" ~2upda,
rv  Nz|/ 2] RN

for all ¢ € DL2(RY).

O (a/|a])uf?
>

3. PROOF OF THEOREM [I.1]

We separate the proof of Theorem into two parts: (i) radially symmetric
solution; (ii) nonradial solution.
Proof of Theorem[I.]]. (radially symmetric solution).
Step 1. Note that p € (0, Ag). Applying Lemma 2.2 with ¢ = 2, we obtain

. /2" o n2(l—u
([ )™ < Clul s e (31)
RN
for u € DV2(RN). Let {u,} € DLA(RN) be a minimizing sequence of Sy, that is

Junll3 = Se  as n — oo,

[
RN

According to (3.1]), there exists C' > 0 such that for any n it holds
||’Z,Ln||£2,N—2(RN) >C>0.

and
2 dr = 1.
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On the other hand, we note that {u,} is bounded in D% (RY) and
DiA(RN) — L* (RN) — £2N2(RN).

rad
Then
||un ||L2,N—2(RN) < C,

Hence, there exists Cy > 0 such that for any n it holds
Co < ||unllc2v—2g@mny < Cy .
From above inequality, we deduce that for any n € N there exist 0, > 0 and
z, € RN such that
1
o JB(en.0m)

N—-2
Let v, (x) = 0n? up(opz). By scaling invariance, we have

C
[n () Py > lfun 2252y = 5 = C1 >0,

||vn||31> — Se, asn — oo,
/ lon > dz = 1,
]RN

1
/ o (y) Py = — / un(y)dy > C1 > 0. (3.2)
B(2z2,1) On JB(an,on)

Hence, we assume that
v, —vin DIARY), v, »vae inRY, v, —oin LL (RY)
for all ¢ € [2,2%).

Step 2. We show that {%} is bounded. Suppose on the contrary that i—z — 00

as n — o0o. By the boundedness of {u,} in DL%(RY), we have vl pre@yy =

ltn || pr2eyy < C. Tt follows from the uniform decay estimates of radial functions
that

and

|vn(1:)| S @H’UTLHDLz(RN) S a.e. RN.
2

N—_2>
||

|z[ 72
For ,/% > ¢ > 0, there exists M > 0 for any n > M it holds

C- Tn
2 N—2 <e, LUGBC(O,|*—1D.

()| < ——————
0le)] < o

Note that B(Z=,1) C B(0, |2 —1[). Then

[ P [ ay=2BEE D =250, < G
B(%2,1) B(%2,1) On

This contradicts (3.2). Hence, {£2} is bounded. There exists R > 0 such that

On

/ lon(w)|2dy > / lon(y)[2dy > C1 > 0.
B(O,R) B(M,l)

on

Since the embedding D% (RN) < L7
v Z 0.

Step 3. Set

(RN), r € [2,2%) is compact, we deduce that

h(t) =12, t>0.
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It is easy to see that h(t) is a convex function. By h(0) = 0 and { € [0, 1], we know
R(it) = h(lt + (1 —1)-0) < Ih(t) + (1 — 1)h(0) = Ih(t).
For t1,t5 € [0,00), applying last inequality, we obtain

B(tr) + ht) = h((t + t2) 2l ) (e + 1) ts )

t1 4+ to t1 +to
1 ta
h(t;y +t2) + h(ty +1t
,t1+t2(1 2) t1+t2(1 2)
Zh(tl—i-tg).

Step 4. We claim that v,, — v strongly in D%2(R¥). It follows from Brézis-Lieb
type lemma [2] that

[ol3 + im Jlon — w3 = Tim fon]} = Sa.0,

lim |vn|2*dx= lim |vn—v\2*d1:+/ |v|2*dx.
n—oo JpN n—oo JpN RN
Therefore,
1= lim lun |2 da:

n—oo RN
L o o
= lim |vr, — v dx—|—/ |v]* da

n—oo RN RN

_z I
<55 dm o, — ol + S5 7 ol

_2r 2
<83 7 (Jim flow = vlla +lvle) =1

n—oQ

Therefore, all the inequalities above have to be equalities. We know that

*

Tim [l = 03 + o)y = ( lim_ v, = vlle + [[o]l0)

This further gives: either lim,,_, ||v, — v||le = 0 or ||v||e = 0.
From v # 0, so we have ||v]|¢ # 0. Then

lim |lv, —v|ls =0.
n— oo

We can choose v > 0.
There exists C' > 0 such that v = Cv satisfies

p—L U =p¥ 7tz eRY.
The proof is complete. O

To study the nonradial solution of equation (L.1]), we need the following result.

Lemma 3.1 ([6]). Let X be a closed subspace of H*(SN~1). Suppose that the
embedding X C LY(SN~1) is compact. Then the restriction of function K on X,
K|x satisfies the Palais-Smale condition. Furthermore, if X is infinite dimensional,
then K|x has a sequence of critical points ¢y in X, such that fSN71 |px|?dd — oo
as k — 0.
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Proof of Theorem[I.]. (nonradial solutions). It is easy to see that

2—N x
u(e) = o =0 1) (3.3)
solves equation (|1.3)), if and only if ¢ is a solution of the equation
N —2)? . _ _
~n0ot B wo = 67 20, s (3.4
The energy functional of equation (3.4)) is
1 N —2)2
Koy =5 [ wopar+ 20 [ jeran B [ aloas
2 SN—l 8 SN—l 2 SN—l
1 o
- — dv
2% Jon-1 ‘¢

and

, (N — 2)2
(K'(¢),0) s VoVedd + — /SM1 ppd u/SN?l Dppd

- [ o e

Suppose that G = O(k) x O(m) C O(N), where k +m = N, then HL(SV™1) is

an infinite dimensional closed subspace of H*(SV~1), and HL (SN ~!) is compactly
. _ 2(N-1 ,

embedded in LI(SV~1) for every ¢ € [1, (N—3)>’ see [6].

Since 2* € [1, 2%\7:31)), so we have that HL(SV~!) is compactly embedded in
L¥ (SN-1). Applying Lemma with X = HL(SM™!) and ¢ = 2*, then we
have that K|py s~v-1) has a sequence of critical points ¢y, in HE(SN~1), such that
fSN_l \¢k|2*dz9 — o0 as k — oo.

According to (3.3)), we know that vy (z) = || ¥¢k(ﬁ) are solutions of equation

(L3), and [ [03]> dz = [on o [6[> d9 — 00 as k — oo. O

4. PROOF OF THEOREM [ 3|

Define

Jp = Ib‘Dxl-a’i(RN)’ c= W}réfl“ tren[(z)i,}i] Jp(Y(¢)),

where
T ={Y € C([0, 1], D3 (RY))[Y(0) = 0, J,(T(1)) < 0}

It is easy to see that J, possesses the mountain pass geometry, there exists {u,} C
D52 (RYN) such that

Jp(un) = ¢>0 and Jj(up) =0 asn— oo.

And {u,} is uniformly bounded in D2 (RM).

rad

The Nehari manifold on Drla’é(RN ) is defined by
Ny = {u € DA (RY)|[(J5(u),u) =0, u # 0},

rad
and

c= inf Jy(u) andé=  inf  maxJp(tu).
u€N, ueDL2(RN) t20
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With minor change the proof of [27, Theorem 4.2], we can show that

=cCc=c.

ol

Lemma 4.1. Assume the assumptions in Theorem hold. Then for each u €
D2 (RN \ {0}, there exists a unique t, > 0 such that t,u € Nj. Moreover,

rad

Jp () = maxe>o Jp(tu).

Proof. For each u € D% (RN)\ {0}, and ¢ € (0, 00), we set

rad

2, bt 2 -
fi(t) = Jp(tu) = EHUH@ + THUHDL?(RN) T2 Jon [ul* dz

)

F1E) = Hlull3 + Bl b, — 2 / fuf? da.
]RN

This implies that f{(-) = 0 if and only if
£ ulfy 4 0 gy = [l

Set

fa(t) = 272 |lull3 +bt*—2 ”u”LJL)L?(]RN)'
We know that lim; ¢ f2(t) = oo, lim; o f2(t) = 0 and fo(-) is strictly decreasing
on (0,00). Then there exists a unique 0 < ¢, < oo such that

< Jon [u¥ dz, t, <t<oo,
fa(t) 4 = f]RN |u|2*dz, t=ty,
> [ lul? dz, 0<t<t,.
This is showing that t,u € Ny. Moreover,

<0, ty,<t<oo,
A 4=0, t=ty,
>0, 0<t<ty.

This shows that fi(-) admits a unique critical point ¢, on (0,00) such that fi(-)
takes the maximum at %,,.

To prove the uniqueness of t,, let us assume that 0 < < ¢ satisfy f](f) =
fi(t) = 0. We obtain

|l de = £2(0) = £2(0
RN

Since 0 < t < ¢, the above equality leads to the contradiction: v = 0. Hence, for
each u € D22 (RN)\ {0}, there exists a unique t, > 0 such that t,u € Nj. O

rad

Lemma 4.2. Assume that the assumptions in Theorem hold. Let {u,} be a
(PS). sequence of Jp at ¢ > 0. Then up to a subsequence, u, — u in Drléﬁl(RN)
with w Z£ 0 being a weak solution of equation (|1.1)).
Proof. 1t is easy to see that {u,} is uniformly bounded in Drlji (RM). In order to
see that u is a weak solution of J;,, we recall

Up — U in D};E(RN), up, — uae. in RY,  w, —uin L] (RY)

for all r € [2,2*). Moreover, there exists A € R, such that

Jim [tnl oy = A. (4.1)
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Then by Fatou’s lemma,
”quDlv?(RN) <A

We claim that ||u||2D1,2(RN) = A. To obtain a contradiction, we assume that
||u||2D1,2(RN) < A. Since u, — u weakly in D%(RY), we know that for each
¢ € Dyg(RY)

lim Vuanadwf,u/ @(i) %dx

n—o0 Jgm Ry Nal/ |z

N (4.2)
= Vquodm—u/ @(—) —%dw
RN ey Nz|/ |zl

and

lim |un|2*_2ungodx=/ [ul? ~2upde. (4.3)

From lim,, oo (J}(un), ¢) = 0, we have
0= nli_}n;o(l + b||un||%1,2(RN)) /RN Vu,Vedr — ,u/R
- / |un|2*_2un@dx-
RN
Applying (4.1), we obtain

0=(1+0b4) Vu,Vedz — u/ <I>(£> unfdx - / [t |* 2w, pda.
RN ||/ || RN

T\ Un¢p
@(—)—d
v o]/ a2

RN
By using ({£.2), (4.3) and [Jul|}1 2y < A, we know that
(Jp(u),u)y < 0. (4.4)

On the other hand, we have
(Jy(tu), tu) = fi(0)t = ullg + bt*|ul oy — / [ul* da, (4.5)
RN

Applying Lemma there exists a unique to > 0 satisfying f](to) = 0, which
implies that

(Jy(tow), tou) = fi(to)to =0 (4.6)
Now, we show that ¢y < 1. Combining and (4.5), we know that f{(1) < 0.
Taking ¢, > 0 small enough in (£.5), we know f{(t.)t > 0, which implies f](t.) >
0. According to Intermediate value theorem, there exists t; € (f.,1) such that
fi(t1) = 0. By using the uniqueness of ¢y, we have

to=t1 € (t,1) (4.7)
From (4.5)-(4.7), we obtain
¢ = Jp(tou)
1
= Jo(tou) — 1<Jé(tou)»tou>
B 2 L1 5 2
= ZH“H@ + (Z - 5) 0 fon [ul” dz

1 1

1 2 2*
- o d
< gl + (G =50 [ e da
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2dx

IN

1 1 1. ..

7. 0m flunlls + (7 = ) lim /RN [t
. 1 . /

= nh—>néo Jp(tn) — 1 nlgr;()(Jb(un),u@ =c

which is a contradiction. Then

Tim By = A4 = [l

Thus for any ¢ € DV2(RY), we obtain

lim (J}(un), ) = 0 = (Jp(u), ).

n— oo

The proof is complete. O

The following result implies the non-vanishing of (PS). sequence.

Lemma 4.3. Assume that all the assumptions descripted in Theorem[I.3 hold. Let
{un} be a (PS). sequence of J, at ¢ > 0. Then

lim |up|? dz > 0.
n—oo RN

Proof. Tt is easy to see that {u,} is uniformly bounded in D}2(RY). Then there
exists a constant 0 < C' < oo such that |ju,|le < C.
Suppose on the contrary that

lim un|? da = 0. (4.8)

n—oo [pN

According to (4.8) and the definition of (PS). sequence, we obtain
1 b
c+o(1) = 3llunlls + Zl\un\\%m(um and  o(1) = [Jun|[3 + bllun|pr.2 @y
This implies ¢ + o(1) = —||u, ||%, which contradicts 0 < c. O

Proof of Theorem[1.3. (i) Note that {u,} is a bounded sequence of .J, at level ¢ in
Drléfi(RN ). Up to a subsequence, we assume

u, — uin DLA(RY), w, — vae in RN, w, — uin L], (RY)

N_2
for all r € [2,2%). Let v,(x) = 0n® up(opz). We assume that

. 1,2 /N : N ; q N
vy, = vin D)3 (RY), v, = vae inRY, v, = vin L] _(RY)

for all ¢ € [2,2*). From Lemma [4.3] we have

lim |up|? dz > 0.

n—oo RN
Similar to the proof of Theorem Steps 1 and 2, we deduce that v # 0. From
Lemma we know v € V. We show that v,, — v strongly in D2 (RM). Applying

rad
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Brézis-Lieb lemma [2], we obtain

c= lim Jp(v,) — lim i<Jb(vn) Up)

n—00 n—oo 2*
) 1 1 5 . 11 4
= nh_{gO (5 - 2—*)||vn||q> + nh—%o (Z - 27*)”'071”D1’2(RN) (4.9)
1 1 1 1
> (3= )10l + G = ) ol
=Jy(v) > ¢

Thus, the inequalities above have to be equalities. We know that
limloal} = [lo]3.
By Brézis-Lieb lemma again, we have
T [oall} — lim o — o = [lo]3,
which implies

i [lo, — [} = 0.

Using (4.9) again, we know that J,(v) = ¢. This implies that v attains the minimum
of J, at ¢. Moreover, we can choose v > 0. The principle of symmetric criticality

implies that the critical point of Jj is also a critical point of Ij.
(ii) For each L > 1, define

op(z) = v(z) ifv(z) <L,
L L if v(x) > L.

For § =2%/2 > 1. Set ¢ = 111)2(’6 U1t is easy to see that qS € le (RM).
We know that v is a nonnegative solution of equation . Then

v .
(1+b||v||%1,2(RN)) /RN VoVedz — p / <I>(| ‘)| |2d /RN [v|* “2veda.

Plugging ¢ into above equation, we obtain

v .
(1 —I—b||v||2D1,2(RN)> /]RN VoVedr — ,u/RN ¢)<|x\) z |2da: = /]RN [v|* “2vpda.

A direct calculation yields

RNV@V¢dx2uéNv?ﬁ4”Vdem (4.10)
Notice that

IV (00?112 = 02D W02 4 (8 = 120202772 |V |2 + 2(8 — Voo *Voevuy.
Then one has

/ vQUi(“_2)|V1}L|2dx §/ vi(”_1)|Vv|2dx,
RN RN

/m;L VvVdex</ vi(’hl)|VU|2dx.
RN RN

Therefore,

/|wm;nm<ﬁ/vﬁﬂwwm. (4.11)
RN RN
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It follows from (4.10) and (4.11) that
1 _
@/ V(v " M)Pdz < | VoVeda.
RN RN

Hence,

2% -2 6712(21:1 b 2 /de_ /@i%d
/RN w2 2 ov) 7 2dx (+ IIUHDm(RN)) o VY oda — . <|x|>|z|2 v

T\ vp
> VoVedr — / P — ) —=dx
[Lvoves—u [ o(5) i

> L [ wpa - [ a5
> — VU T — i — | ———dx
B2 Jrw g Ry Nz/ faf?
1 H -1
> (55 - ATD)HUUf 13-
Then, combining above inequality and Moser iteration technique, we deduce that
ve L¥ = (RN). 0

5. PROOF OF THEOREM [L.4]

5.1. Perturbation equation. In this subsection, we look equation (|1.1f) as a per-
turbation of (1.3)). The energy functional of equation (1.3) is

1 1 .
o) = gl = 5 [l do.
Set
Jo = To|pr2 @),
and define

= inf Jo(Y(t
co = nf max Jo(T (1)),

where Ty = {T € C([0,1], D% (RN))|T(0) = 0, Jo(Y(1)) < 0}. The Nehari mani-
fold is
No = {u € D3 RY)[(J(u), u) =0, u # 0},

rad
and
Co = inf max Jo(tu) and ¢y = inf Jy(u).
0 “eDrléi(RN) t>0 0( ) 0 u€eNy 0( )

We can show that co = ¢y = ¢o.

Lemma 5.1. Assume that the assumptions in Theorem[I.4] hold. Then the energy
functional Jy satisfies the following properties

(M1) There exist p,v > 0 such that if ||u|pr2@w~y = p, then Jo(u) > ¢, and
eo € DL2(RN) exists such that lleoll pr2yy > p and Jo(eo) < 0.

(M2) There exists vo #Z 0 such that Jo(vo) = co := minyer, maxe(o,1] Jo(Y(t)),
where To = {T € C([0,1], DLARN))|T(0) = 0, Jo(Y(1)) < 0}.

(M3) ¢o = inf{Jo(w)|[| 5 ()|l p-12@~) = 0,u € D3 (RV)\ {0}}.
(M4) There exists a path Yo(t) € T passing through vy at t = tg and satisfying

Jo(’UQ) > Jo(To(t)) for all t 35 to.
(M5) The set S :={u € Difi(RNﬂ||J6(u)||071,2(RN) =0,Jo(u) = co} is compact
in D2 (RN with the strong topology up to dilations in RY .

rad
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Proof. As in Theorem we have (M1)—(M4).

(M5) Note that Jy is invariant by dilations. It follows from Theorem that
the weak convergence of the dilated subsequence can be upgraded into strong con-
vergence. This further implies that the set S is compact in DI’Q(RN ) with the

rad

topology up to dilations in RY. |
5.2. Perturbation method. We define a modified mountain pass level of J,

= i Jp(Y(t
¢ = poin mex (Y (1)),

where

'y = {T e€ly: sup ||T(t)||D1,2(RN) < M} with
t€(0,1]

M = 2{sup ||’U,HD1,2(RN), sup ||T(t)||D1,2(RN)} fixed.
uesS te[0,1]

By the choice of M, To € I'ps, we have ¢y = minyer,, max;eo,1) Jo(Y(t)). becasue
Iy €& Ty, the standard mountain pass theorem becomes unavailable.

Lemma 5.2. Let b > 0. Then limy_.qcp, = ¢g.

Proof. For b > 0, it is easy to obtain ¢, > ¢o. We take eg = Tvg in (M), where
T > (2*/2)7 1. Then To(t) € C([0,1], DL2(RY)) defined as

To(t) = teo = tTUo,
and to = £ in (M4). We know that

. . b
lim ¢, = lim J,(To(t)) < Jo(To(t)) + lim ZIo(t) s, = Jowo) = co.

b—0
O
For any d > 0, and any subset A of Drlé(zi(]RN)7 we set
Ad = U Bd(u),
u€cA
where By(u) = {v € D2 (RN)|||lu — v[| pr2ny < d}.

Lemma 5.3. Let d > 0 and {u;} C S?. Then there exists {o;} such that

HajHDl*z(RN) = ”Uj”Dl,z(RN)
N-—2

where 4;(z) = o;°? u;(ojz). Up to a subsequence, u; — u € S

Proof. Let {u;} C 8% From S? and Lemma (M5), there exists w; € S such
that
||'U,j — wj||D1,2(RN) < d.
N—-2
From (M5), there exists {0} such that w; € S,where w;(z) =0, * w;(o;x). It is
easy to prove that w; — w € S. And

@]l pr2@yy = lujllpre@yy, @ = @jllpre@yy = lu; — wjllpra@yy < d.
For j large enough, we have
”aj - 1D||D1,2(RN) = ||1_lfj —w; +w; — 1DHD1,2(RN)

< ||fbj - U_}jHDLz(RN) + ||”U_}j - 'II)HDI,2(RN) < 2d.
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This shows that {@;} is bounded. Up to a subsequence, we assume that @; — @
in Drlii(RN). Note that Bgg(w) is weakly closed in D:;Z(RN). We obtain u €
Bag(w) C S 0

Lemma 5.4. Let dy := ,/22*2200 and d € (0,dy). Suppose that there exist se-
quences bj >0, b; — 0, and {u;} C S satisfying

lim Jy, (u;) <co and lim |[Jy (u;)||p-12@~y = 0.
Jj—o0 j—o0 J

Then there exists a sequence {o;} such that ||| pr2@~y = [Jujl|pr2myy, where
uj(r) =o0; T uj(o;x). Up to a subsequence, {u;} converges to u € S.

Proof. Let lim; .o ||J;, (u;)[|p-12mv) = 0 and {u;} be bounded. From Lemma
up to a subsequence, u; — U € S2%¢. From d;, we know that @ # 0.

N
Let aj(z) =0, ? wuj(ojz). We have

J
lim Jb ( ): ‘lim ij (uj) < cp.
Jj—oo J—00

For all ¢ € Drad(RN) we obtain
(T, (@), 0)]
= [(J5; (u;), )]
< HJéj ()l p-12@™) |2l pr2 )
= o(1)||@ll pr2mnys
where ¢ = Uj_ygo(x/oj) Note that ||| p12@~y = [[¢l|pr.2@y). We know that
173, (@) p-12mvy — 0 as j — oo,

which further implies
_ b _
(Jo(a), p) = Jim (o, (85), ¢) = 81| vy = 0.
This shows that ||J(/)(1_L)HD*1’2(]RN) =0.
It follows from @; € 8§24 that
lim (Jg(u;), ) = lim (J (4;),¢) — lim ijﬂjHQDlv?(]RN)/ Vi (2)Ve(r)ds
Jj—o0 j—o0 RN

]—)OO

= o(1)|l¢llpremn)-
On the other hand,
co > lim Jy, (uy)

j*}OO

b;
= lim Jo(a,) + hm —||uj||D1 2(RN) (5.1)

j—oo

= lim Jo(a;).

j*}OO

So {a;}isa (PS)m sequence for Jy with m := lim;_,, Jo(@;). Up to a subsequence,
ﬂj — 7 and

Az

_ 1 1 B
Ho@) = llls = 5; [ o
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1 1y, 12

(3~ )l

1 1,.. . -
(§ _ 2—*) hjrr_ligf lla; 1%

IA

L N
= timinf (Jo(;) ~ g7 (g (), 55)) = m.

It follows from (M3) that m > Jo(u) > ¢o. From (5.1), one has m = Jy(a) = co,
which implies @ € S. (]
Set
my = max Jp(To(t)). (5.2)
t€0,1]

Then ¢, < my. It is easy to see that limy_,gmy < ¢p. From this inequality and

Lemmas [5.2] and [5.4], one has

lim ¢, = lim myp = ¢q.
b—0 b—0

We define
Ty = {u € Dy (RY)|Jy(u) < my}.
Proposition 5.5. Let d2,d3 > 0 satisfying d3 < dy < di. Then there exist 1 > 0
and b > 0 depending on da, d3 such that for b € (0,b), it holds
||Jé(u)HD71,2(RN) >, UuE€ Jgnb N (Sd2\8d3).

Proof. Suppose on the contrary that ds,ds > 0 satisfying d3 < ds < d1, there exist
sequences {b;} with lim;_,. b; =0, and {u;} € Sy, "N (8% \ 8%) such that

lim Jp, (u;) <co and  lim [[Jy (us)||p-1.2@ny = 0.
j—o0o j—oo 7

From (M5), there exists sequence {c;} such that
(@} € J, 7 0 (8= \8%), lim Jy,(a;) < co,
7 j—o0

Jlggo Il']l;j (ﬂj)HD—l,z(RN) =0,

N_2
where ;(z) = 0; * uj(ojx). Hence, we can apply Lemma and the existence of
€ S such that @; — @ in D% (RY). As a consequence, dist(i;, S) — 0 as j — oc.

This is a contradiction with u; ¢ S, [

Proposition 5.6. For any d > 0, there exists § > 0 such that if b > 0 small
enough, then
Jp(Yo(t)) > cp — 0 implies Yo(t) € ST, t € [0,1].
The proof of the above proposition follows by repeating the proof of [16, Propo-
sitions 4].
Proposition 5.7. For any d € (0,d1), there exist by > 0 and a sequence {u;} C
J N8 such that || J;(u;)|| p-12@yy — 0 as j — oo, for all b € (0,b).

The proof of the above proposition follows from a discussion in [4, Propositions

5.3], by Propositions and
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Proof of Theorem [T} (i) Suppose on the contrary that u € DL2(RV)\{0} is a
solution of (L.1)). It follows from 2* =4 and b > S~2 that

& (/| uf? :
(1)) = Ny — 0 [ b by = [l e
RN |9U| RN
&z |z]) uf? .
> Julfynaem = [ e bl sy = Sl e,

D(z/|z|)|ul?
> ||U||2D1,2(]RN) - M/]RN Tdm > 0.

This is a contradiction.
(ii) Suppose on the contrary that u € DY2(RY)\{0} is a solution of (T.1)). Ap-

plying Young’s inequality and
4— 2%
S 2* 2
() s

7!
(1= o)l oy + Bl oy

O (/||
S ||U||%1,2(RN) - MAN de + b||u||4D12(RN)

:/ lul* da
]RN
_2t o
< S7F ||ullbrzgy)
_ar g 20\ 20\ o@—o
=[s 2(2*—2) ”“"D”(RN)H(Q*—Q) I [
4—2%0 _orr 20 \NEE g (T
<=5 Is 2(2*72) Jull 55 )
221/ 20 \F52 gy 17
+ ) [(2* _ 2) ||u||D1 Z(RN)}

= 5 ST a7 (T) HUHQDLQ(RN) + b||uH4D1’2(RN)'

which is a contradiction.
(iii) Taking d € (0,d), by Proposition [5.7} there exists by > 0 such that for all
A € (0,bp), there exists a Palais-Smale sequence {u;} ¢ S¥2. By applylng (M5),

b>

RN
we have

there exists sequence {o,} such that {@;} C S¥? where ;(z) = O']TuJ(O‘J.’L‘)

Clearly, {u;} is bounded in Drlaz(RN ). Then by Lemma up to a subsequence,
there exists @ € S%'2 = 8¢ such that i; — @. Then we obtain ||Jj(@)|| p-1.2r~y = 0.
It follows from d € (0,d;) that @ # 0. Hence @ is a nontrivial critical point of Jp.
The principle of symmetric criticality implies that the critical point of Jj is also a
critical point of Ij. O

ACKNOWLEDGMENTS

This research is supported by the University-level key projects of Anhui Univer-
sity of Science and Technology (xjzd2020-23), and by the Key Program of University
Natural Science Research Fund of Anhui Province (Grant No. KJ2021A0452).



EJDE-2022/34 CRITICAL KIRCHHOFF-TYPE EQUATION 17

(1]

2]
(3]
(4]

5

(6]

(8]

9
[10]
(11]
(12]
(13]
(14]
[15]

[16]

(17)
(18]
[19]
[20]

(21]

22]

23]

[24]

[25]

REFERENCES

V. Ambrosio, A. Fiscella, T. Isernia; Infinitely many solutions for fractional Kirchhoff-
Sobolev-Hardy critical problems, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No.
25.

H. Brézis, E. Lieb; A relation between pointwise convergence of functions and convergence
of functionals, Proc. Amer. Math. Soc., 88 (1983), no. 3, 486-490.

D. Cassani, Z. Liu, C. Tarsi, J. Zhang; Multiplicity of sign-changing solutions for Kirchhoff-
type equations, Nonlinear Anal., 186 (2019), 145-161.

G. Cerami, X. Zhong, W. Zou; On some nonlinear elliptic PDEs with Sobolev-Hardy critical
exponents and a Li-Lin open problem, Calc. Var. Partial Differential Equations, 54 (2015),
no. 2, 1793-1829.

A. Cotsiolis, N. Tavoularis; Best constants for Sobolev inequalities for higher order fractional
derivatives, J. Math. Anal. Appl., 295 (2004), no. 1, 225-236.

W. Ding; On a conformally invariant elliptic equation on RN, Comm. Math. Phys., 107
(1986), no. 2, 331-335.

V. Felli, A. Ferrero, S. Terracini; Asymptotic behavior of solutions to Schrédinger equations
near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc. (JEMS), 13
(2011), no. 1, 119-174.

V. Felli, E. Marchini, S. Terracini; On Schrédinger operators with multisingular inverse-
square anisotropic potentials, Indiana Univ. Math. J., 58 (2009), no. 2, 617-676.

Z. Feng, Y. Su; Ground state solution to the biharmonic equation, Z. Angew. Math. Phys.,
73 (2022), no. 1, 1-24.

Z. Feng, Y. Su; Lions-type theorem of the fractional Laplacian and applications, Dyn. Partial
Differ. Equ., 18 (2021), no. 3, 211-230.

A. Fiscella, P. Pucci; Kirchhoff-Hardy Fractional Problems with Lack of Compactness, Adv.
Nonlinear Stud., 17 (2017), no. 3, 429-456.

A. Fiscella, P. Pucci, B. Zhang; p-fractional Hardy-Schrodinger-Kirchhoff systems with crit-
ical nonlinearities, Adv. Nonlinear Anal., 8 (2019), no. 1, 1111-1131.

A. Fiscella, H. Mirzaee; Fractional p-Laplacian problems with Hardy terms and critical ex-
ponents, Z. Anal. Anwend., 38 (2019), no. 4, 483-498.

R. Frank, R. Seiringer; Non-linear ground state representations and sharp Hardy inequalities,
J. Funct. Anal., 255 (2008), no. 12, 3407-3430.

T. Hoffmann-Ostenhof, A. Laptev; Hardy inequalities with homogeneous weights, J. Funct.
Anal., 268 (2015), no. 11, 3278-3289.

W. Jeong, J. Seok; On perturbation of a functional with the mountain pass geometry: ap-
plications to the nonlinear Schrodinger-Poisson equations and the nonlinear Klein-Gordon-
Mazwell equations, Calc. Var. Partial Differential Equations, 49 (2014), no. 1-2, 649-668.
X. Ke, J. Liu, J. Liao; Positive solutions for a critical p-Laplacian problem with a Kirchhoff
term, Comput. Math. Appl., 77 (2019), no. 9, 2279-2290.

G. Kirchhoff; Mechanik, Leipzig, 1883.

J. Lévy-Leblond; Electron capture by polar molecules, Phys. Rev., 153 (1967), 1-4.

J. Liu, J. Liao, C. Tang; Positive solutions for Kirchhoff-type equations with critical exponent
in RN, J. Math. Anal. Appl., 429 (2015) 1153-1172.

Z. Liu, M. Squassina, J. Zhang; Ground states for fractional Kirchhoff equations with critical
nonlinearity in low dimension, NoDEA Nonlinear Differential Equations Appl., 24 (2017),
50.

O. Miyagaki, L. Paes-Leme, B. Rodrigues; Multiplicity of positive solutions for the Kirchhoff-
type equations with critical exponent in RN, Comput. Math. Appl., 75 (2018), no. 9, 3201-
3212.

B. Noris, M. Nys, S. Terracini; On the Aharonov-Bohm operators with varying poles: the
boundary behavior of eigenvalues, Comm. Math. Phys., 339 (2015), no. 3, 1101-1146.

G. Palatucci, A. Pisante; Improved Sobolev embeddings, profile decomposition, and
concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equa-
tions, 50 (2014), no. 3-4, 799-829.

J. Sun, T. Wu; Ground state solutions for an indefinite Kirchhoff type problem with steep
potential well, J. Differential Equations, 256 (2014), 1771-1792.



18 S. WANG, Y. SU EJDE-2022/34

[26] S. Terracini; On positive entire solutions to a class of equations with a singular coefficient
and critical exponent, Adv. Differential Equations, 1 (1996), no. 2, 241-264.

[27] M. Willem; Minimaz theorems, in “Progress in Nonlinear Differential Equations and their
Applications”, vol. 24, Birkh&user Boston, 1996.

[28] P. C. Xia, Y. Su; p-Laplacian equation with finitely many critical nonlinearities, Electron. J.
Differential Equations, 2021 (2021), no. 102, 1-11.

SAINAN WANG
SCHOOL OF MATHEMATICS AND BiG DATA, ANHUI UNIVERSITY OF SCIENCE AND TECHNOLOGY,
HuAaINAN, ANHUI 232001, CHINA

Email address: snwang@aust.edu.cn

Yu Su
SCHOOL OF MATHEMATICS AND BIG DATA, ANHUI UNIVERSITY OF SCIENCE AND TECHNOLOGY,
HuAINAN, ANHUI 232001, CHINA

Email address: yusumath@aust.edu.cn



	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	4. Proof of Theorem 1.3
	5. Proof of Theorem 1.4
	5.1. Perturbation equation
	5.2. Perturbation method

	Acknowledgments
	References

