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EXISTENCE OF SOLUTION TO CRITICAL KIRCHHOFF-TYPE

EQUATION WITH DIPOLE-TYPE POTENTIAL

SAINAN WANG, YU SU

Abstract. Dipole-type potential arises in the area of nonrelativistic molecular
physics. In this paper, we establish the existence and nonexistence of solution

to critical Kirchhoff-type equation with dipole-type potential.

1. Introduction

We consider the Kirchhoff-type equation

−
(

1 + b

∫
RN
|∇u|2dx

)
∆u− µΦ(x/|x|)

|x|2
u = |u|2

∗−2u, x ∈ RN , (1.1)

where N > 3, b > 0 and 2∗ = 2N
N−2 is the Sobolev critical exponent. The function

Φ and the parameter µ satisfy the following condition:

(A1) 0 ≤ Φ ∈ Lp(SN−1), p ≥ (N−2)2

2(N−1) + 1, and µ ∈ (0,ΛΦ), where

ΛΦ :=
(N − 2)2

4
|SN−1|1/p‖Φ‖−1

Lp(SN−1)
.

On the other hand the Laplace operator with dipole-type potential is

LΦ := −∆− µΦ(x/|x|)
|x|2

, x ∈ RN ,

where N ≥ 3. This kind of operator arises in the area of nonrelativistic molecular
physics. Specifically, the Schrödinger equation for the wave function of an electron
interacting with a polar molecule can be written as

H = − ~
2m

∆ + e
x ·D
|x|3

− E,

where D is the dipole moment of the molecule, e and m denote the charge and
the mass of the electron, see [19]. The operator with different kinds of singular
potentials have been largely studied, see [7, 8, 9, 10, 23, 26, 28] and references
therein.

On the other hand, equation (1.1) is related to the stationary analogue of equa-
tion

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|dx
)∂2u

∂x2
= 0,
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which was proposed by Kirchhoff in [18] as an extension of the classical D’Alembert
wave equation for free vibrations of elastic strings. The existence of solution of
Kirchhoff-type equation with Laplacian was explored in [3, 25], and with fractional
Laplacian was investigated in [21].

Liu-Liao-Tang [20] studied equation (1.1) with Φ = 0:

−
(
a+ b

∫
RN
|∇u|2dx

)
∆u = |u|2

∗−2u, x ∈ RN . (1.2)

By using the minimizing of best constant

S := inf
u∈D1,2(RN )\{0}

‖u‖2D1,2(RN )

(
∫
RN |u|2

∗dx)2/2∗

as follows

Uε,y = [N(N − 2)]
N−2

4
ε
N−2

2

(ε2 + |x− y|2)
,

they established the existence and nonexistence of solutions for equation (1.2) with
respect to parameters N , a and b. The existence of solution of equation (1.2) with
p-Laplacian was presented in [17, 22].

For Φ =Constant, Fiscella-Pucci [11] established the Concentration Compact-
ness Principle with Hardy potential, and then they established the existence of
solutions for Kirchhoff-type equations involving Hardy potential and different crit-
ical nonlinearities. For more recent work, we refer to [1, 12, 13].

The case where the potential Φ is a constant was discussed in [11, 17, 20, 22].
Therefore, it is natural to ask whether equation (1.1) admits a solution for Φ non-
constant. To the best of our knowledge, there is no result on this problem.

If b = 0, equation (1.1) becomes

−∆u− µΦ(x/|x|)
|x|2

u = |u|2
∗−2u, x ∈ RN . (1.3)

We study the following minimizing problem:

SΦ := inf
u∈D1,2

rad(RN )\{0}

‖u‖2Φ( ∫
RN |u|2

∗dx
)2/2∗ .

Extremals for SΦ are solutions of the Euler-Lagrange equation (1.3). The following
is our first result.

Theorem 1.1. Assume that N ≥ 3 and (A1) hold. Then equation (1.3) has a

radially symmetric solution v̄ ∈ D1,2
rad(RN ), and infinitely many nonradial solutions

v̄k such that
∫
RN |v̄k|

2∗
dx→∞ as k →∞.

Remark 1.2. Note that the Sobolev embedding D1,2(RN ) ↪→ L2∗
(RN ) is not

compact. Hence, it is hard to show that the minimizing sequence of SΦ has a
convergence subsequence. We investigate this problem by two different methods.
In the first method, we obtain a radially symmetric solution. In the second method,
we obtain infinitely many nonradial solutions.

For b > 0 and N = 3⇔ 2∗ > 4, we have

Theorem 1.3. Assume that N = 3, b > 0 and condition (A1) holds. Then (1.1)

has a radially symmetric ground state solution v ∈ D1,2
rad(RN ). Moreover, if µ ∈

(0, 4ΛΦ/(2
∗)2), then v ∈ L2∗· 2∗2 (RN ).
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When N ≥ 4⇔ 2∗ ≤ 4, equation (1.1) is more complicated.

Theorem 1.4. Assume that N ≥ 4, b > 0 and condition (A1) holds. Then the
following statements are true.

(1) For N = 4 and b ≥ S−2, equation (1.1) has no nontrivial solution.

(2) For N > 4 and b > 2∗−2
2

(
ΛΦ−µ

ΛΦ

) 4−2∗
2∗−2

(
4−2∗

2

) 4−2∗
2∗−2S−

2∗
2∗−2 , equation (1.1) has

no nontrivial solution, where ΛΦ and µ are defined in condition (A1).
(3) For N ≥ 4, there exists b0 > 0 small enough such that for all b ∈ (0, b0),

equation (1.1) has a radially symmetric.

We summarize of Theorems 1.1–1.4 as follows:

b = 0, N ≥ 3

{
a radially symmetric solution,

infinitely many nonradial solutions,

b > 0


N = 3, a radially symmetric ground state solution,

N = 4, b ≥ S−2, no nontrivial solution,

N ≥ 5

{
b > 2∗−2

2

(
ΛΦ−µ

ΛΦ

) 4−2∗
2∗−2

(
4−2∗

2

) 4−2∗
2∗−2S−

2∗
2∗−2 , no nontrivial solution,

b ∈ (0, b0), a radially symmetric solution.

This article is organized as follows. In Section 2, we present notation. In Sections
3-5, we give the proofs of Theorems 1.1–1.4, respectively.

2. Preliminaries

The space D1,2(RN ) is the completion of C∞0 (RN ) with respect to the semi-norm

‖u‖2D1,2(RN ) :=

∫
RN
|∇u|2dx.

We denote by D1,2
rad(RN ) the space of radial functions in D1,2(RN ). We define the

best constant

S := inf
u∈D1,2(RN )\{0}

‖u‖2D1,2(RN )

(
∫
RN |u|2

∗dx)2/2∗ .

We know that S can be attained in RN , see [5].
For all u ∈ D1,2(RN ), we have the Hardy inequality, see [14],

(N − 2)2

4

∫
RN

|u|2

|x|2
dx ≤

∫
RN
|∇u|2dx.

We introduce the measure dϑ induced by Lebesgues measure on the unit sphere
SN−1 ⊂ RN . We denote by ‖ · ‖Lq(SN−1) the quantity

‖Φ‖q
Lq(SN−1)

=

∫
SN−1

|Φ(ϑ)|qdϑ.

Lemma 2.1 ([15]). Let N ≥ 3, 0 ≤ Φ ∈ Lp(SN−1) and p ≥ (N−2)2

2(N−1) + 1. Then∫
RN
|∇u|2dx ≥ ΛΦ

∫
RN

Φ(x/|x|)|u|2

|x|2
dx,

where u ∈ D1,2(RN ) and ΛΦ := (N−2)2

4 |SN−1|1/p‖Φ‖−1
Lp(SN−1)

.
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By using Lemma 2.1 and µ ∈ (0,ΛΦ),

‖u‖2Φ =:

∫
RN
|∇u|2dx− µ

∫
RN

Φ(x/|x|)|u|2

|x|2
dx

is an equivalent norm in D1,2(RN ).
A measurable function u : RN → R belongs to the Morrey space ‖u‖Lq,$(RN )

with q ∈ [1,∞) and $ ∈ (0, N ] if and only if

‖u‖qLq,$(RN )
= sup
R>0,x∈RN

R$−3

∫
B(x,R)

|u(y)|qdy <∞.

Lemma 2.2 ([24]). For N ≥ 3, there exists C > 0 such that for ι and ϑ satisfying
2
2∗ ≤ ι < 1, 1 ≤ ϑ < 2∗, we have(∫

RN
|u|2

∗
dx
)1/2∗

≤ C‖u‖ιD1,2(RN )‖u‖
1−ι

Lϑ,
ϑ(N−2)

2 (RN )
,

for any u ∈ D1,2(RN ).

Equation (1.1) is variational and its solutions are the critical points of the func-
tional defined in D1,2(RN ) by

Ib(u) =
1

2
‖u‖2D1,2(RN ) −

µ

2

∫
RN

Φ(x/|x|)|u|2

|x|2
dx+

b

4
‖u‖4D1,2(RN ) −

1

2∗

∫
RN
|u|2

∗
dx.

It is easy to see that the functional Ib ∈ C1(D1,2(RN ),R). It is easy to see that if
u ∈ D1,2(RN ) is a critical point of Ib, i.e.,

0 = 〈I ′b(u), ϕ〉

=
(

1 + b‖u‖2D1,2(RN )

)∫
RN
∇u∇ϕdx

− µ
∫
RN

Φ
( x
|x|

) uϕ
|x|2

dx−
∫
RN
|u|2

∗−2uϕdx,

for all ϕ ∈ D1,2(RN ).

3. Proof of Theorem 1.1

We separate the proof of Theorem 1.1 into two parts: (i) radially symmetric
solution; (ii) nonradial solution.

Proof of Theorem 1.1. (radially symmetric solution).

Step 1. Note that µ ∈ (0,ΛΦ). Applying Lemma 2.2 with ϑ = 2, we obtain(∫
RN
|u|2

∗
dx
)1/2∗

≤ C‖u‖2ιΦ ‖u‖
2(1−ι)
L2,N−2(RN )

, (3.1)

for u ∈ D1,2(RN ). Let {un} ⊂ D1,2
rad(RN ) be a minimizing sequence of SΦ, that is

‖un‖2Φ → SΦ as n→∞,
and ∫

RN
|un|2

∗
dx = 1.

According to (3.1), there exists C > 0 such that for any n it holds

‖un‖L2,N−2(RN ) ≥ C > 0.
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On the other hand, we note that {un} is bounded in D1,2
rad(RN ) and

D1,2
rad(RN ) ↪→ L2∗

(RN ) ↪→ L2,N−2(RN ).

Then
‖un‖L2,N−2(RN ) ≤ C,

Hence, there exists C0 > 0 such that for any n it holds

C0 ≤ ‖un‖L2,N−2(RN ) ≤ C−1
0 .

From above inequality, we deduce that for any n ∈ N there exist σn > 0 and
xn ∈ RN such that

1

σ2
n

∫
B(xn,σn)

|un(y)|2dy ≥ ‖un‖2L2,N−2(RN ) −
C

2n
≥ C1 > 0.

Let vn(x) = σ
N−2

2
n un(σnx). By scaling invariance, we have

‖vn‖2Φ → SΦ, as n→∞,∫
RN
|vn|2

∗
dx = 1,

and ∫
B( xnσn ,1)

|vn(y)|2dy =
1

σ2
n

∫
B(xn,σn)

|un(y)|2dy ≥ C1 > 0. (3.2)

Hence, we assume that

vn ⇀ v in D1,2
rad(RN ), vn → v a.e. in RN , vn → vin Lqloc(RN )

for all q ∈ [2, 2∗).

Step 2. We show that {xnσn } is bounded. Suppose on the contrary that xn
σn
→ ∞

as n → ∞. By the boundedness of {un} in D1,2
rad(RN ), we have ‖vn‖D1,2(RN ) =

‖un‖D1,2(RN ) ≤ C. It follows from the uniform decay estimates of radial functions
that

|vn(x)| ≤ C

|x|N−2
2

‖vn‖D1,2(RN ) ≤
C

|x|N−2
2

, a.e. RN .

For
√

C1

|B(0,1)| > ε > 0, there exists M > 0 for any n > M it holds

|vn(x)| ≤ C3

|xnσn − 1|N−2
2

≤ ε, x ∈ Bc(0, |xn
σn
− 1|).

Note that B(xnσn , 1) ⊂ Bc(0, |xnσn − 1|). Then∫
B( xnσn ,1)

|vn(y)|2dy ≤ ε2

∫
B( xnσn ,1)

dy = ε2|B(
xn
σn
, 1)| = ε2|B(0, 1)| < C1.

This contradicts (3.2). Hence, {xnσn } is bounded. There exists R > 0 such that∫
B(0,R)

|vn(y)|2dy ≥
∫
B( xnσn ,1)

|vn(y)|2dy ≥ C1 > 0.

Since the embedding D1,2
rad(RN ) ↪→ Lrloc(RN ), r ∈ [2, 2∗) is compact, we deduce that

v 6≡ 0.

Step 3. Set

h(t) = t2
∗
, t ≥ 0.
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It is easy to see that h(t) is a convex function. By h(0) = 0 and l ∈ [0, 1], we know

h(lt) = h(lt+ (1− l) · 0) ≤ lh(t) + (1− l)h(0) = lh(t).

For t1, t2 ∈ [0,∞), applying last inequality, we obtain

h(t1) + h(t2) = h
(

(t1 + t2)
t1

t1 + t2

)
+ h
(

(t1 + t2)
t2

t1 + t2

)
≤ t1
t1 + t2

h
(
t1 + t2

)
+

t2
t1 + t2

h(t1 + t2)

= h(t1 + t2).

Step 4. We claim that vn → v strongly in D1,2(RN ). It follows from Brézis-Lieb
type lemma [2] that

‖v‖2Φ + lim
n→∞

‖vn − v‖2Φ = lim
n→∞

‖vn‖2Φ = SΦ,α,

lim
n→∞

∫
RN
|vn|2

∗
dx = lim

n→∞

∫
RN
|vn − v|2

∗
dx+

∫
RN
|v|2

∗
dx.

Therefore,

1 = lim
n→∞

∫
RN
|vn|2

∗
dx

= lim
n→∞

∫
RN
|vn − v|2

∗
dx+

∫
RN
|v|2

∗
dx

≤ S−
2∗
2

Φ lim
n→∞

‖vn − v‖2
∗

Φ + S
− 2∗

2

Φ ‖v‖2
∗

Φ

≤ S−
2∗
2

Φ

(
lim
n→∞

‖vn − v‖Φ + ‖v‖Φ
)2∗

= 1.

Therefore, all the inequalities above have to be equalities. We know that

lim
n→∞

‖vn − v‖2
∗

Φ + ‖v‖2
∗

Φ =
(

lim
n→∞

‖vn − v‖Φ + ‖v‖Φ
)2∗

.

This further gives: either limn→∞ ‖vn − v‖Φ = 0 or ‖v‖Φ = 0.
From v 6≡ 0, so we have ‖v‖Φ 6= 0. Then

lim
n→∞

‖vn − v‖Φ = 0.

We can choose v ≥ 0.
There exists C > 0 such that v̄ = Cv satisfies

−∆v̄ − µΦ(x/|x|)
|x|2

v̄ = |v̄|2
∗−1, x ∈ RN .

The proof is complete. �

To study the nonradial solution of equation (1.1), we need the following result.

Lemma 3.1 ([6]). Let X be a closed subspace of H1(SN−1). Suppose that the
embedding X ⊂ Lq(SN−1) is compact. Then the restriction of function K on X,
K|X satisfies the Palais-Smale condition. Furthermore, if X is infinite dimensional,
then K|X has a sequence of critical points φk in X, such that

∫
SN−1 |φk|qdϑ → ∞

as k →∞.
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Proof of Theorem 1.1. (nonradial solutions). It is easy to see that

u(x) = |x|
2−N

2 φ
( x
|x|

)
(3.3)

solves equation (1.3), if and only if φ is a solution of the equation

−∆ϑφ+
(N − 2)2

4
φ− µΦφ = |φ|2

∗−2φ, in SN−1. (3.4)

The energy functional of equation (3.4) is

K(φ) =
1

2

∫
SN−1

|∇φ|2dϑ+
(N − 2)2

8

∫
SN−1

|φ|2dϑ− µ

2

∫
SN−1

Φ|φ|2dϑ

− 1

2∗

∫
SN−1

|φ|2
∗
dϑ

and

〈K ′(φ), ϕ〉 =

∫
SN−1

∇φ∇ϕdϑ+
(N − 2)2

4

∫
SN−1

φϕdϑ− µ
∫
SN−1

Φφϕdϑ

−
∫
SN−1

|φ|2
∗−2φϕdϑ.

Suppose that G = O(k) × O(m) ⊂ O(N), where k + m = N , then H1
G(SN−1) is

an infinite dimensional closed subspace of H1(SN−1), and H1
G(SN−1) is compactly

embedded in Lq(SN−1) for every q ∈ [1, 2(N−1)
N−3 ), see [6].

Since 2∗ ∈ [1, 2(N−1)
N−3 ), so we have that H1

G(SN−1) is compactly embedded in

L2∗
(SN−1). Applying Lemma 3.1 with X = H1

G(SN−1) and q = 2∗, then we
have that K|H1

G(SN−1) has a sequence of critical points φk in H1
G(SN−1), such that∫

SN−1 |φk|2
∗
dϑ→∞ as k →∞.

According to (3.3), we know that v̄k(x) = |x| 2−N2 φk( x
|x| ) are solutions of equation

(1.3), and
∫
RN |v̄k|

2∗
dx =

∫
SN−1 |φk|2

∗
dϑ→∞ as k →∞. �

4. Proof of Theorem 1.3

Define

Jb = Ib|D1,2
rad(RN ), c = inf

Υ∈Γ
max
t∈[0,1]

Jb(Υ(t)),

where

Γ = {Υ ∈ C([0, 1], D1,2
rad(RN ))|Υ(0) = 0, Jb(Υ(1)) < 0}.

It is easy to see that Jb possesses the mountain pass geometry, there exists {un} ⊂
D1,2

rad(RN ) such that

Jb(un)→ c > 0 and J ′b(un)→ 0 as n→∞.

And {un} is uniformly bounded in D1,2
rad(RN ).

The Nehari manifold on D1,2
rad(RN ) is defined by

Nb = {u ∈ D1,2
rad(RN )|〈J ′b(u), u〉 = 0, u 6= 0},

and
¯̄c = inf

u∈Nb
Jb(u) and c̄ = inf

u∈D1,2
rad(RN )

max
t≥0

Jb(tu).
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With minor change the proof of [27, Theorem 4.2], we can show that

¯̄c = c̄ = c.

Lemma 4.1. Assume the assumptions in Theorem 1.3 hold. Then for each u ∈
D1,2

rad(RN ) \ {0}, there exists a unique tu > 0 such that tuu ∈ Nb. Moreover,
Jb(tuu) = maxt≥0 Jb(tu).

Proof. For each u ∈ D1,2
rad(RN ) \ {0}, and t ∈ (0,∞), we set

f1(t) = Jb(tu) =
t2

2
‖u‖2Φ +

bt4

4
‖u‖4D1,2(RN ) −

t2
∗

2∗

∫
RN
|u|2

∗
dx,

f ′1(t) = t‖u‖2Φ + bt3‖u‖4D1,2(RN ) − t
2∗−1

∫
RN
|u|2

∗
dx.

This implies that f ′1(·) = 0 if and only if

t2−2∗
‖u‖2Φ + bt4−2∗

‖u‖4D1,2(RN ) =

∫
RN
|u|2

∗
dx.

Set
f2(t) = t2−2∗

‖u‖2Φ + bt4−2∗
‖u‖4D1,2(RN ).

We know that limt→0 f2(t) = ∞, limt→∞ f2(t) = 0 and f2(·) is strictly decreasing
on (0,∞). Then there exists a unique 0 < tu <∞ such that

f2(t)


<
∫
RN |u|

2∗
dx, tu < t <∞,

=
∫
RN |u|

2∗
dx, t = tu,

>
∫
RN |u|

2∗
dx, 0 < t < tu.

This is showing that tuu ∈ Nb. Moreover,

f ′1(t)


< 0, tu < t <∞,
= 0, t = tu,

> 0, 0 < t < tu.

This shows that f1(·) admits a unique critical point tu on (0,∞) such that f1(·)
takes the maximum at tu.

To prove the uniqueness of tu, let us assume that 0 < t̄ < ¯̄t satisfy f ′1(t̄) =
f ′1(¯̄t) = 0. We obtain ∫

RN
|u|2

∗
dx = f2(t̄) = f2(¯̄t).

Since 0 < t̄ < ¯̄t, the above equality leads to the contradiction: u = 0. Hence, for
each u ∈ D1,2

rad(RN ) \ {0}, there exists a unique tu > 0 such that tuu ∈ Nb. �

Lemma 4.2. Assume that the assumptions in Theorem 1.3 hold. Let {un} be a

(PS)c sequence of Jb at c > 0. Then up to a subsequence, un ⇀ u in D1,2
rad(RN )

with u 6≡ 0 being a weak solution of equation (1.1).

Proof. It is easy to see that {un} is uniformly bounded in D1,2
rad(RN ). In order to

see that u is a weak solution of Jb, we recall

un ⇀ u in D1,2
rad(RN ), un → u a.e. in RN , un → u in Lrloc(RN )

for all r ∈ [2, 2∗). Moreover, there exists A ∈ R, such that

lim
n→∞

‖un‖2D1,2(RN ) = A. (4.1)
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Then by Fatou’s lemma,

‖u‖2D1,2(RN ) ≤ A.

We claim that ‖u‖2D1,2(RN ) = A. To obtain a contradiction, we assume that

‖u‖2D1,2(RN ) < A. Since un ⇀ u weakly in D1,2
rad(RN ), we know that for each

ϕ ∈ D1,2
rad(RN )

lim
n→∞

∫
RN
∇un∇ϕdx− µ

∫
RN

Φ
( x
|x|

)unϕ
|x|2

dx

=

∫
RN
∇u∇ϕdx− µ

∫
RN

Φ
( x
|x|

) uϕ
|x|2

dx

(4.2)

and

lim
n→∞

∫
RN
|un|2

∗−2unϕdx =

∫
RN
|u|2

∗−2uϕdx. (4.3)

From limn→∞〈J ′b(un), ϕ〉 = 0, we have

0 = lim
n→∞

(1 + b‖un‖2D1,2(RN ))

∫
RN
∇un∇ϕdx− µ

∫
RN

Φ
( x
|x|

)unϕ
|x|2

dx

−
∫
RN
|un|2

∗−2unϕdx.

Applying (4.1), we obtain

0 = (1 + bA)

∫
RN
∇un∇ϕdx− µ

∫
RN

Φ
( x
|x|

)unϕ
|x|2

dx−
∫
RN
|un|2

∗−2unϕdx.

By using (4.2), (4.3) and ‖u‖2D1,2(RN ) < A, we know that

〈J ′b(u), u〉 < 0. (4.4)

On the other hand, we have

〈J ′b(tu), tu〉 = f ′1(t)t = t2‖u‖2Φ + bt4‖u‖4D1,2(RN ) − t
2∗
∫
RN
|u|2

∗
dx, (4.5)

Applying Lemma 4.1, there exists a unique t0 > 0 satisfying f ′1(t0) = 0, which
implies that

〈J ′b(t0u), t0u〉 = f ′1(t0)t0 = 0 (4.6)

Now, we show that t0 < 1. Combining (4.4) and (4.5), we know that f ′1(1) < 0.
Taking tε > 0 small enough in (4.5), we know f ′1(tε)tε > 0, which implies f ′1(tε) >
0. According to Intermediate value theorem, there exists t1 ∈ (tε, 1) such that
f ′1(t1) = 0. By using the uniqueness of t0, we have

t0 = t1 ∈ (tε, 1) (4.7)

From (4.5)-(4.7), we obtain

c = Jb(t0u)

= Jb(t0u)− 1

4
〈J ′b(t0u), t0u〉

=
t20
4
‖u‖2Φ +

(1

4
− 1

2∗
)
t2

∗

0

∫
RN
|u|2

∗
dx

<
1

4
‖u‖2Φ +

(1

4
− 1

2∗
) ∫

RN
|u|2

∗
dx
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≤ 1

4
lim
n→∞

‖un‖2Φ +
(1

4
− 1

2∗
)

lim
n→∞

∫
RN
|un|2

∗
dx

= lim
n→∞

Jb(un)− 1

4
lim
n→∞

〈J ′b(un), un〉 = c

which is a contradiction. Then

lim
n→∞

‖un‖2D1,2(RN ) = A = ‖u‖2D1,2(RN ).

Thus for any ϕ ∈ D1,2(RN ), we obtain

lim
n→∞

〈J ′b(un), ϕ〉 = 0 = 〈J ′b(u), ϕ〉.

The proof is complete. �

The following result implies the non-vanishing of (PS)c sequence.

Lemma 4.3. Assume that all the assumptions descripted in Theorem 1.3 hold. Let
{un} be a (PS)c sequence of Jb at c > 0. Then

lim
n→∞

∫
RN
|un|2

∗
dx > 0.

Proof. It is easy to see that {un} is uniformly bounded in D1,2
rad(RN ). Then there

exists a constant 0 < C <∞ such that ‖un‖Φ ≤ C.
Suppose on the contrary that

lim
n→∞

∫
RN
|un|2

∗
dx = 0. (4.8)

According to (4.8) and the definition of (PS)c sequence, we obtain

c+ o(1) =
1

2
‖un‖2Φ +

b

4
‖un‖4D1,2(RN ) and o(1) = ‖un‖2Φ + b‖un‖4D1,2(RN ).

This implies c+ o(1) = − 1
4‖un‖

2
Φ, which contradicts 0 < c. �

Proof of Theorem 1.3. (i) Note that {un} is a bounded sequence of Jb at level c in

D1,2
rad(RN ). Up to a subsequence, we assume

un ⇀ u in D1,2
rad(RN ), un → ua.e. in RN , un → u in Lrloc(RN )

for all r ∈ [2, 2∗). Let vn(x) = σ
N−2

2
n un(σnx). We assume that

vn ⇀ v in D1,2
rad(RN ), vn → v a.e. in RN , vn → v in Lqloc(RN )

for all q ∈ [2, 2∗). From Lemma 4.3, we have

lim
n→∞

∫
RN
|un|2

∗
dx > 0.

Similar to the proof of Theorem 1.1 Steps 1 and 2, we deduce that v 6≡ 0. From
Lemma 4.2, we know v ∈ Nb. We show that vn → v strongly inD1,2

rad(RN ). Applying
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Brézis-Lieb lemma [2], we obtain

c = lim
n→∞

Jb(vn)− lim
n→∞

1

2∗
〈J ′b(vn), vn〉

= lim
n→∞

(1

2
− 1

2∗
)
‖vn‖2Φ + lim

n→∞

(1

4
− 1

2∗
)
‖vn‖4D1,2(RN )

≥
(1

2
− 1

2∗
)
‖v‖2Φ +

(1

4
− 1

2∗
)
‖v‖4D1,2(RN )

= Jb(v) ≥ c.

(4.9)

Thus, the inequalities above have to be equalities. We know that

lim
n→∞

‖vn‖2Φ = ‖v‖2Φ.

By Brézis-Lieb lemma again, we have

lim
n→∞

‖vn‖2Φ − lim
n→∞

‖vn − v‖2Φ = ‖v‖2Φ,

which implies

lim
n→∞

‖vn − v‖2Φ = 0.

Using (4.9) again, we know that Jb(v) = c. This implies that v attains the minimum
of Jb at c. Moreover, we can choose v ≥ 0. The principle of symmetric criticality
implies that the critical point of Jb is also a critical point of Ib.

(ii) For each L > 1, define

vL(x) =

{
v(x) if v(x) ≤ L,
L if v(x) > L.

For β = 2∗/2 > 1. Set φ = vv
2(β−1)
L . It is easy to see that φ ∈ D1,2

rad(RN ).
We know that v is a nonnegative solution of equation (1.1). Then(

1 + b‖v‖2D1,2(RN )

)∫
RN
∇v∇ϕdx− µ

∫
RN

Φ
( x
|x|

) vϕ
|x|2

dx =

∫
RN
|v|2

∗−2vϕdx.

Plugging φ into above equation, we obtain(
1 + b‖v‖2D1,2(RN )

)∫
RN
∇v∇φdx− µ

∫
RN

Φ
( x
|x|

) vφ
|x|2

dx =

∫
RN
|v|2

∗−2vφdx.

A direct calculation yields∫
RN
∇v∇φdx ≥

∫
RN

v
2(β−1)
L |∇v|2dx. (4.10)

Notice that

|∇(vvβ−1
L )|2 = v

2(β−1)
L |∇v|2 + (β − 1)2v2v

2(β−2)
L |∇vL|2 + 2(β − 1)vv2β−3

L ∇v∇vL.

Then one has ∫
RN

v2v
2(µ−2)
L |∇vL|2dx ≤

∫
RN

v
2(µ−1)
L |∇v|2dx,∫

RN
vv2µ−3
L ∇v∇vLdx ≤

∫
RN

v
2(µ−1)
L |∇v|2dx.

Therefore, ∫
RN
|∇(vvβ−1

L )|2dx ≤ β2

∫
RN

v
2(β−1)
L |∇v|2dx. (4.11)
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It follows from (4.10) and (4.11) that

1

β2

∫
RN
|∇(vvβ−1

L )|2dx ≤
∫
RN
∇v∇φdx.

Hence,∫
RN
|v|2

∗−2|vvβ−1
L |2dx =

(
1 + b‖v‖2D1,2(RN )

)∫
RN
∇v∇φdx− µ

∫
RN

Φ
( x
|x|

) vφ
|x|2

dx

≥
∫
RN
∇v∇φdx− µ

∫
RN

Φ
( x
|x|

) vφ
|x|2

dx

≥ 1

β2

∫
RN
|∇(vvβ−1

L )|2dx− µ
∫
RN

Φ
( x
|x|

) |vvβ−1
L |2

|x|2
dx

≥
( 1

β2
− µ

ΛΦ

)
‖vvβ−1

L ‖2Φ.

Then, combining above inequality and Moser iteration technique, we deduce that

v ∈ L2∗· 2∗2 (RN ). �

5. Proof of Theorem 1.4

5.1. Perturbation equation. In this subsection, we look equation (1.1) as a per-
turbation of (1.3). The energy functional of equation (1.3) is

I0(u) =
1

2
‖u‖2Φ −

1

2∗

∫
RN
|u|2

∗
dx.

Set
J0 = I0|D1,2

rad(RN ),

and define
c0 = inf

Υ∈Γ0

max
t∈[0,1]

J0(Υ(t)),

where Γ0 = {Υ ∈ C([0, 1], D1,2
rad(RN ))|Υ(0) = 0, J0(Υ(1)) < 0}. The Nehari mani-

fold is
N0 = {u ∈ D1,2

rad(RN )|〈J ′0(u), u〉 = 0, u 6= 0},
and

c̄0 = inf
u∈D1,2

rad(RN )
max
t≥0

J0(tu) and ¯̄c0 = inf
u∈N0

J0(u).

We can show that c0 = c̄0 = ¯̄c0.

Lemma 5.1. Assume that the assumptions in Theorem 1.4 hold. Then the energy
functional J0 satisfies the following properties

(M1) There exist ρ, ι > 0 such that if ‖u‖D1,2(RN ) = ρ, then J0(u) ≥ ι, and

e0 ∈ D1,2
rad(RN ) exists such that ‖e0‖D1,2(RN ) > ρ and J0(e0) < 0.

(M2) There exists v0 6≡ 0 such that J0(v0) = c0 := minΥ∈Γ0
maxt∈[0,1] J0(Υ(t)),

where Γ0 = {Υ ∈ C([0, 1], D1,2
rad(RN ))|Υ(0) = 0, J0(Υ(1)) < 0}.

(M3) c0 = inf{J0(u)|‖J ′0(u)‖D−1,2(RN ) = 0, u ∈ D1,2
rad(RN ) \ {0}}.

(M4) There exists a path Υ0(t) ∈ Γ0 passing through v0 at t = t0 and satisfying

J0(v0) > J0(Υ0(t)) for all t 6= t0.

(M5) The set S := {u ∈ D1,2
rad(RN )|‖J ′0(u)‖D−1,2(RN ) = 0, J0(u) = c0} is compact

in D1,2
rad(RN ) with the strong topology up to dilations in RN .
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Proof. As in Theorem 1.3, we have (M1)–(M4).
(M5) Note that J0 is invariant by dilations. It follows from Theorem 1.3 that

the weak convergence of the dilated subsequence can be upgraded into strong con-
vergence. This further implies that the set S is compact in D1,2

rad(RN ) with the
topology up to dilations in RN . �

5.2. Perturbation method. We define a modified mountain pass level of Jb

cb := min
Υ∈ΓM

max
t∈[0,1]

Jb(Υ(t)),

where

ΓM = {Υ ∈ Γ0 : sup
t∈[0,1]

‖Υ(t)‖D1,2(RN ) ≤M} with

M = 2{sup
u∈S
‖u‖D1,2(RN ), sup

t∈[0,1]

‖Υ(t)‖D1,2(RN )} fixed.

By the choice of M , Υ0 ∈ ΓM , we have c0 = minΥ∈ΓM maxt∈[0,1] J0(Υ(t)). becasue
ΓM ( Γ0, the standard mountain pass theorem becomes unavailable.

Lemma 5.2. Let b > 0. Then limb→0 cb = c0.

Proof. For b > 0, it is easy to obtain cb ≥ c0. We take e0 = Tv0 in (M1), where

T > (2∗/2)
1

2∗−1 . Then Υ0(t) ∈ C([0, 1], D1,2
rad(RN )) defined as

Υ0(t) = te0 = tTv0,

and t0 = 1
T in (M4). We know that

lim
b→0

cb = lim
b→0

Jb(Υ0(t)) ≤ J0(Υ0(t)) + lim
λ→0

b

4
‖Υ0(t)‖4D1,2(RN ) = J0(v0) = c0.

�

For any d > 0, and any subset A of D1,2
rad(RN ), we set

Ad :=
⋃
u∈A

Bd(u),

where Bd(u) := {v ∈ D1,2
rad(RN )|‖u− v‖D1,2(RN ) ≤ d}.

Lemma 5.3. Let d > 0 and {uj} ⊂ Sd. Then there exists {σj} such that

‖ūj‖D1,2(RN ) = ‖uj‖D1,2(RN )

where ūj(x) = σ
N−2

2
j uj(σjx). Up to a subsequence, ūj ⇀ ū ∈ S2d.

Proof. Let {uj} ⊂ Sd. From Sd and Lemma 5.1 (M5), there exists wj ∈ S such
that

‖uj − wj‖D1,2(RN ) ≤ d.

From (M5), there exists {σj} such that w̄j ∈ S,where w̄j(x) = σ
N−2

2
j wj(σjx). It is

easy to prove that w̄j → w̄ ∈ S. And

‖ūj‖D1,2(RN ) = ‖uj‖D1,2(RN ), ‖ūj − w̄j‖D1,2(RN ) = ‖uj − wj‖D1,2(RN ) ≤ d.
For j large enough, we have

‖ūj − w̄‖D1,2(RN ) = ‖ūj − w̄j + w̄j − w̄‖D1,2(RN )

≤ ‖ūj − w̄j‖D1,2(RN ) + ‖w̄j − w̄‖D1,2(RN ) ≤ 2d.
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This shows that {ūj} is bounded. Up to a subsequence, we assume that ūj ⇀ ū

in D1,2
rad(RN ). Note that B2d(w̄) is weakly closed in D1,2

rad(RN ). We obtain ū ∈
B2d(w̄) ⊂ S2d. �

Lemma 5.4. Let d1 := 1
2

√
2·2∗

2∗−2c0 and d ∈ (0, d1). Suppose that there exist se-

quences bj > 0, bj → 0, and {uj} ⊂ Sd satisfying

lim
j→∞

Jbj (uj) ≤ c0 and lim
j→∞

‖J ′bj (uj)‖D−1,2(RN ) = 0.

Then there exists a sequence {σj} such that ‖ūj‖D1,2(RN ) = ‖uj‖D1,2(RN ), where

ūj(x) = σ
N−2

2
j uj(σjx). Up to a subsequence, {ūj} converges to ū ∈ S.

Proof. Let limj→∞ ‖J ′bj (uj)‖D−1,2(RN ) = 0 and {uj} be bounded. From Lemma

5.3, up to a subsequence, ūj ⇀ ū ∈ S2d. From d1, we know that ū 6≡ 0.

Let ūj(x) = σ
N−2

2
j uj(σjx). We have

lim
j→∞

Jbj (ūj) = lim
j→∞

Jbj (uj) ≤ c0.

For all ϕ ∈ D1,2
rad(RN ), we obtain

|〈J ′bj (ūj), ϕ〉|
= |〈J ′bj (uj), ϕ̄〉|
≤ ‖J ′bj (uj)‖D−1,2(RN )‖ϕ̄‖D1,2(RN )

= o(1)‖ϕ̄‖D1,2(RN ),

where ϕ̄ = σ
−N−2

2
j ϕ(x/σj). Note that ‖ϕ̄‖D1,2(RN ) = ‖ϕ‖D1,2(RN ). We know that

‖J ′bj (ūj)‖D−1,2(RN ) → 0 as j →∞,

which further implies

〈J ′0(ū), ϕ〉 = lim
j→∞
〈J ′bj (ūj), ϕ〉 −

bj
4
‖ūj‖4D1,2(RN ) = 0.

This shows that ‖J ′0(ū)‖D−1,2(RN ) = 0.

It follows from ūj ∈ S2d that

lim
j→∞
〈J ′0(ūj), ϕ〉 = lim

j→∞
〈J ′bj (ūj), ϕ〉 − lim

j→∞
bj‖ūj‖2D1,2(RN )

∫
RN
∇ūj(x)∇ϕ(x)dx

= o(1)‖ϕ‖D1,2(RN ).

On the other hand,

c0 ≥ lim
j→∞

Jbj (ūj)

= lim
j→∞

J0(ūj) + lim
j→∞

bj
4
‖ūj‖4D1,2(RN )

= lim
j→∞

J0(ūj).

(5.1)

So {ūj} is a (PS)m sequence for J0 with m := limj→∞ J0(ūj). Up to a subsequence,
ūj ⇀ ū and

J0(ū) =
1

2
‖ū‖2Φ −

1

2∗

∫
RN
|ū|2

∗
dx
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=
(1

2
− 1

2∗
)
‖ū‖2Φ

≤
(1

2
− 1

2∗
)

lim inf
j→∞

‖ūj‖2Φ

= lim inf
j→∞

(
J0(ūj)−

1

2∗
〈J ′0(ūj), ūj〉

)
= m.

It follows from (M3) that m ≥ J0(ū) ≥ c0. From (5.1), one has m = J0(ū) = c0,
which implies ū ∈ S. �

Set

mb := max
t∈[0,1]

Jb(Υ0(t)). (5.2)

Then cb ≤ mb. It is easy to see that limb→0mb ≤ c0. From this inequality and
Lemmas 5.2 and 5.4 , one has

lim
b→0

cb = lim
b→0

mb = c0.

We define

Jmbb = {u ∈ D1,2
rad(RN )|Jb(u) ≤ mb}.

Proposition 5.5. Let d2, d3 > 0 satisfying d3 < d2 < d1. Then there exist ι > 0
and b̃ > 0 depending on d2, d3 such that for b ∈ (0, b̃), it holds

‖J ′b(u)‖D−1,2(RN ) ≥ ι, u ∈ Jmbb ∩ (Sd2\Sd3).

Proof. Suppose on the contrary that d2, d3 > 0 satisfying d3 < d2 < d1, there exist

sequences {bj} with limj→∞ bj = 0, and {uj} ∈ J
mbj
bj
∩ (Sd2 \ Sd3) such that

lim
j→∞

Jbj (uj) ≤ c0 and lim
j→∞

‖J ′bj (uj)‖D−1,2(RN ) = 0.

From (M5), there exists sequence {σj} such that

{ūj} ∈ J
mbj
bj
∩ (Sd2 \ Sd3), lim

j→∞
Jbj (ūj) ≤ c0,

lim
j→∞

‖J ′bj (ūj)‖D−1,2(RN ) = 0,

where ūj(x) = σ
N−2

2
j uj(σjx). Hence, we can apply Lemma 5.4 and the existence of

ū ∈ S such that ūj → ū in D1,2
rad(RN ). As a consequence, dist(ūj ,S)→ 0 as j →∞.

This is a contradiction with ūj 6∈ Sd3 . �

Proposition 5.6. For any d > 0, there exists δ > 0 such that if b > 0 small
enough, then

Jb(Υ0(t)) ≥ cb − δ implies Υ0(t) ∈ Sd, t ∈ [0, 1].

The proof of the above proposition follows by repeating the proof of [16, Propo-
sitions 4].

Proposition 5.7. For any d ∈ (0, d1), there exist b0 > 0 and a sequence {uj} ⊂
Jmbb ∩ Sd such that ‖J ′b(uj)‖D−1,2(RN ) → 0 as j →∞, for all b ∈ (0, b0).

The proof of the above proposition follows from a discussion in [4, Propositions
5.3], by Propositions 5.5 and 5.6.
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Proof of Theorem 1.4. (i) Suppose on the contrary that u ∈ D1,2(RN )\{0} is a
solution of (1.1). It follows from 2∗ = 4 and b ≥ S−2 that

〈I ′b(u), u〉 = ‖u‖2D1,2(RN ) − µ
∫
RN

Φ(x/|x|)|u|2

|x|2
dx+ b‖u‖4D1,2(RN ) −

∫
RN
|u|2

∗
dx

≥ ‖u‖2D1,2(RN ) − µ
∫
RN

Φ(x/|x|)|u|2

|x|2
dx+ b‖u‖4D1,2(RN ) − S

−2‖u‖4D1,2(RN )

≥ ‖u‖2D1,2(RN ) − µ
∫
RN

Φ(x/|x|)|u|2

|x|2
dx > 0.

This is a contradiction.
(ii) Suppose on the contrary that u ∈ D1,2(RN )\{0} is a solution of (1.1). Ap-

plying Young’s inequality and

b >
2∗ − 2

2

(ΛΦ − µ
ΛΦ

) 4−2∗
2∗−2

(4− 2∗

2

) 4−2∗
2∗−2

S−
2∗

2∗−2 ,

we have (
1− µ

ΛΦ

)
‖u‖2D1,2(RN ) + b‖u‖4D1,2(RN )

≤ ‖u‖2D1,2(RN ) − µ
∫
RN

Φ(x/|x|)|u|2

|x|2
dx+ b‖u‖4D1,2(RN )

=

∫
RN
|u|2

∗
dx

≤ S− 2∗
2 ‖u‖2

∗

D1,2(RN )

=
[
S−

2∗
2

( 2b

2∗ − 2

) 2−2∗
2 ‖u‖4−2∗

D1,2(RN )

][( 2b

2∗ − 2

) 2∗−2
2 ‖u‖2(2∗−2)

D1,2(RN )

]
≤ 4− 2∗

2

[
S−

2∗
2

( 2b

2∗ − 2

) 2−2∗
2 ‖u‖4−2∗

D1,2(RN )

] 2
4−2∗

+
2∗ − 2

2

[( 2b

2∗ − 2

) 2∗−2
2 ‖u‖2(2∗−2)

D1,2(RN )

] 2
2∗−2

=
4− 2∗

2
S−

2∗
4−2∗

(2∗ − 2

2b

) 2∗−2
4−2∗ ‖u‖2D1,2(RN ) + b‖u‖4D1,2(RN ).

which is a contradiction.
(iii) Taking d ∈ (0, d1), by Proposition 5.7, there exists b0 > 0 such that for all

λ ∈ (0, b0), there exists a Palais-Smale sequence {uj} ⊂ Sd/2. By applying (M5),

there exists sequence {σj} such that {ūj} ⊂ Sd/2 where ūj(x) = σ
3−2s

2
j uj(σjx).

Clearly, {ūj} is bounded in D1,2
rad(RN ). Then by Lemma 5.4, up to a subsequence,

there exists ū ∈ S d2 ·2 = Sd such that ūj ⇀ ū. Then we obtain ‖J ′b(ū)‖D−1,2(RN ) = 0.
It follows from d ∈ (0, d1) that ū 6≡ 0. Hence ū is a nontrivial critical point of Jb.
The principle of symmetric criticality implies that the critical point of Jb is also a
critical point of Ib. �
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