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MATHEMATICAL MODELS FOR THE TRANSMISSION OF

MALARIA WITH SEASONALITY AND IVERMECTIN

ZHIHONG ZHAO, SHAOCHUN LI, YULAN LU

Abstract. Ivermectin has shown good effects for malaria control in clinical

trial stages because it can kill mosquitoes feeding on recently treated individu-

als. In this article, we formulate and analyze a novel delay malaria transmission
model taking into account seasonality and ivermectin. We show that the dy-

namics of the model is totally determined by the basic reproduction ratio R0;

that is, malaria will gradually die out if R0 < 1 and will persist if R0 > 1.
Numerically, we verify the obtained theoretical results and evaluate the effect

of ivermectin by related data of Kenya. We find that our simulation of the

impact agrees with the prediction of the existing clinical trials in which it
takes at least 25 years to eliminate malaria from Kenya with malaria control

measures intact.

1. Introduction

Malaria is an acute febrile disease caused by Plasmodium microorganisms spread
to humans by infected adult female Anopheles mosquitoes. The disease accounts
for 241 million infectious in 87 malaria endemic countries and 627,000 deaths world-
wide, with about 80% of malaria deaths occurring in children under 5 years of age
in 2020 [33]. Moreover, 95% and 96% of malaria cases and deaths occur in Africa.

Mosquitoes as a major vector of malaria transmission have long been of interest
to entomologists. Since the life cycle of mosquitoes is strongly correlated with
season, then the trend toward malaria is most likely to follow the climate pattern
[1, 10]. For instance, warmer temperature, which increases mosquito activity and
lifespan, lead to mosquito bites more frequently. In addition, the temperature
sensitivity of malaria parasites to mosquito hosts has long been established [15, 19].

After a long period of anti-malarial interventions, we found that Plasmodium
falciparum infection prevalence in endemic Africa halved and the incidence of clin-
ical disease fell by 40% between 2000 and 2015. Indoor residual spraying and
insecticide-treated nets, the most widespread intervention, were by far the largest
contributor (68% of cases averted) from 2000 to 2015 [4]. But still below target
levels, there is an urgent need for additional tools to treat and control malaria, with
the development of Plasmodium resistance to insecticides and drugs [20].

Ivermectin is a blocking drug that targets the vector itself, it works primarily
by binding to glutamate-gated chlorine channels in nerve and muscle, leading to
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hyperpolarization, paralysis and death of the invertebrate, including mosquitoes,
and might inhibiting sporozoite development [6, 7]. It is the only avermectin class
of endectocides that is available for human use from 1987 [6], and more than 416.8
million treatments have been distributed for mass drug administrations (MDA) to
eliminate onchocerciasis and lymphatic filariasis in 2020 [16]. Higher doses is well
tolerated in human beings up to 2000 µg/kg. It can be seen that ivermectin has
an excellent safety profile [25]. Several experiments have shown that the mosquito-
cidal effect of 150-200 µg/kg single doses of ivermectin are short-lived around 5-6
days [7]. Three doses of 300 µg/kg given over 3 days has a mosquitocidal effect
in humans for 28 days against Anopheles gambiae sensu stricto [25]. It can be
seen through those studies that ivermectin can reduce lifespan of mosquitoes, that
means they are less likely to live long enough to complete sporogony and become in-
fectious. Furthermore, unlike traditional vector control tools (e.g. indoor residual
spraying and long-lasting insecticidal nets), ivermectin can reduce the likelihood
of cross-resistance with existing insecticides [24, 25]. These results indicate that
ivermectin has many attractive qualities as a novel malaria control tool, it targets
mosquitoes regardless of feeding location or time. As mentioned above, we intend to
formulate a mathematical model to investigate the impact of ivermectin on malaria
transmission.

The earliest malaria transmission model was the Ross-McDonald model [21]. On
this basis, extensive research have been developed to study malaria transmission
dynamics including different factors, such as seasonality, time- delay, impact of var-
ious control strategies, spatial effects, stage structure of mosquitoes and humans
and so on, see e.g. [2, 5, 9, 22, 30, 32] and references therein. Recently, [18] mod-
elled the effect of ivermectin on malaria transmission control by ordinary differential
equations and the results showed that ivermectin was significantly more effective in
malaria control compared to the no-intervention state. In this paper, we formulate
a novel delay malaria transmission model taking into account seasonality and iver-
mectin, use the theoretical approach to analyze our model’s dynamical behavior
and study the long-term effect of ivermectin on malaria transmission experiments
in Kenya. We hope that our work will provide theoretical guidance for the control
of malaria transmission using ivermectin in the future.

The rest of this article is structured as follows. In Section 2, we derive a delay
malaria transmission model with seasonality a and ivermectin, and present some
properties, such as positivity and boundedness of solutions. The basic reproduction
ratio R0 is discussed and use R0 to analyze the threshold dynamics of the model in
Section 3. In Section 4, we demonstrate the validity of our theory by examining the
long- term behavior of malaria transmission in Kenya and present an analysis of
the effect of ivermectin for malaria control. Finally, in Section 5, a brief summary
and discussion are given.

2. Model Formulation

In this section, we propose a seasonal effect of delay malaria transmission model
taking into account the treatment and ivermectin. First, we denote the total popu-
lation size of humans and mosquitoes by Nh(t) and Nv(t), respectively. We classify
the human population into five subclasses: susceptible Sh(t), exposed Eh(t), infec-
tious Ih(t), treated Th(t) and recovered Rh(t) (those who recovered through treat-
ment or recovered naturally, of which they were still slightly infectious). Mosquito
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populations are divided into two categories: susceptible Sv(t) and infectious Iv(t).
Meanwhile, the time Plasmodium in completing its development in the mosquito
and migrate to the salivary glands, known as the external incubation period (EIP).
Let τ be the length of the EIP. Thus,

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Th(t) +Rh(t),

Nv(t) = Sv(t) + Iv(t− τ).
(2.1)

If a susceptible human Sh is bitten by an infectious mosquito, then the human
progresses through the exposed Eh, infectious Ih. The infected humans enter the
recovery class Rh either through natural recovery or treatment. However, recov-
ered humans becomes susceptible after losing immunity. Susceptible mosquitoes Sv
become infected when they bite infectious, treated or recovered humans, and once
infected they move into infectious class Iv. Then, the infection rates per susceptible
human is

cβ(t)
Nv(t)

Nh(t)

Iv(t)

Nv(t)
= cβ(t)

Iv(t)

Nh(t)
,

where c is the probability of a mosquito infecting a human, β(t) represents the aver-
age number of bites per mosquito at time t. By the same idea of model formulation
as in [3], we see that the number of newly occurred infectious mosquitoes at time t
is given by

bβ(t− τ)
Ih(t− τ) + σ1Th(t− τ) + σ2Rh(t− τ)

Nh(t− τ)
Sv(t− τ)e

∫ t
t−τ µv(s)ds,

where b is the probability of a human infecting a mosquito, σ1 is the ratio between
the probability of transmission from a treated person to a susceptible mosquito and
the probability of transmission from an infected person and σ2 is the ratio between
the probability of transmission from a recovered person to a susceptible mosquito
and the probability of transmission from an infected person. µv(t) represents nat-
ural mortality rate of mosquitoes.

Mosquitoes leave the total population through natural death and death caused
by ivermectin. Mosquito mortality due to ivermectin is mainly determined by
vaccination rate of ivermectin and the concentration of ivermectin [24]. Clinical
trials investigating have shown that three doses of 300 µg/kg given over 3 days
has a mosquitocidal effect in humans for 28 days against Anopheles gambiae sensu
stricto [25]. Therefore, we suppose that the mosquito mortality due to ivermectin
is a monthly periodic function, which is denoted by dv(t). Let κ be the vaccination
rate of ivermectin. Then the mosquito mortality due to ivermectin can be described
as

dv(t)β(t)
κNh(t)

Nh(t)
= dv(t)κβ(t).

Following the above assumptions, we obtain the transmission diagram, see Figure
1:



4 Z. ZHAO, S. LI, Y. LU EJDE-2022/28

Figure 1. Transmission diagram of malaria among human

and mosquito. Here M1 = cβ Iv(t)
Nh(t) , M2 = bβ(t −

τ) Ih(t−τ)+σ1Th(t−τ)+σ2Rh(t−τ)
Nh(t−τ) Sv(t − τ)e−

∫ t
t−τ µv(s)dz and M3 =

dv(t)κβ(t) + µv(t).

Accordingly, we obtain the following malaria transmission model with time delay

dSh(t)

dt
= Λh + ρhRh(t)− dhSh(t)− cβ(t)

Iv(t)

Nh(t)
Sh(t),

dEh(t)

dt
= cβ(t)

Iv(t)

Nh(t)
Sh(t)− dhEh(t)− νhEh(t),

dIh(t)

dt
= νhEh(t)− dhIh(t)− δhIh(t)− γhIh(t)− αhIh(t),

dTh(t)

dt
= αhIh(t)− dhTh(t)− ehTh(t),

dRh(t)

dt
= γhIh(t) + ehTh(t)− dhRh(t)− ρhRh(t),

dSv(t)

dt
= Λv(t)− bβ(t)

H(t)

Nh(t)
Sv(t)− dv(t)κβ(t)Sv(t)− µv(t)Sv(t),

dIv(t)

dt
= bβ(t− τ)

H(t− τ)

Nh(t− τ)
Sv(t− τ)e−

∫ t
t−τ µv(s)ds − dv(t)κβ(t)Iv(t)

− µv(t)Iv(t),

(2.2)

where Λv(t), β(t), µ(t) are positive 12-month periodic continuous function. It is

easy to see that e−
∫ t
t−τ µv(s)ds is positive 12-month periodic function and H(t) =

Ih(t)+σ1Th(t)+σ2Rh(t). Explicit description of the parameters of model (2.2) are
given in Table 1.

2.1. Positivity and boundedness of solutions. Let C := C
(
[−τ, 0],R7

)
, C+ =

C
(
[−τ, 0],R7

+

)
. Define ‖φ‖ =

∑7
i=1 ‖φi‖∞, where ‖φi‖∞ = max−τ≤θ≤0 |φi(θ)| and

φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7) ∈ C. Then, (C,C+) is an ordered Banach space , and
C+ is an internally non-empty normal cone of C. For any given continuous function
u : [−τ, σφ) → R7 with σφ > 0, we define ut ∈ C for t ≥ 0 by ut(θ) = u(t + θ) for
all θ ∈ [−τ, 0].
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Table 1. Biological description of model (2.2) parameters.

Parameters Biological significance
Λh Recruitment rate for human population
ρh The probability of moving from recovered to susceptible
dh Natural death rate for humans
c Transmission probability of malaria from mosquitoes to

susceptible humans
β(t) Biting rate of mosquitoes
νh The transmission rate of humans from the exposed state

to the infectious state
δv Malaria death rate for humans
γh The probability of natural recovery of infectious humans

rehabilitation
αh The probability of infectious population receiving

treatment
eh Probability of recovery by receiving treatment

Λv(t) Recruitment rate for mosquitoes population
b Transmission probability of malaria from humans to

susceptible mosquitoes
σ1 Ratio between the probability of transmission from a

treated person to a susceptible mosquito and the
probability of transmission from an infected person

σ2 Ratio between the probability of transmission from a
recovered person to a susceptible mosquito and the
probability of transmission from an infected person

dv(t) Ivermectin-induced mortality of mosquitoes
κ Ivermectin vaccination rate

µv(t) Natural mortality rate of mosquitoes
τ The time required for Plasmodium to develop and mature

in mosquitoes

Lemma 2.1. For any φ ∈ C+, model (2.2) has a unique non-negative solution
u(t, φ) with u(0, φ) = u0 = φ such that ut(φ) ∈ C+ on t ∈ [0,∞), and all solutions
are ultimately bounded.

Proof. For any φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7) ∈ C+, system (2.2) can be written as

u̇ = f(t, u),

u(0, φ) = φ,
(2.3)

where the vector field f(t, u) is generated by the right side of system (2.2). Since
f(t, u) is continuous in (t, u) ∈ R+×C+ and Lipschitz in u on each compact subset
of R×C+, so it then follows from [11, Theorems 2.2.1 and 2.2.3] that model (2.2) has
a unique solution u(t, φ) with u0 = φ on its maximum interval [0, σφ) of existence.

For any φ ∈ C+ with φi(0) = 0, it is obvious that fi(t, φ) ≥ 0 for i=1,2,3,4,5,6,7.
By [26, Theorem 5.2.1 and Remark 5.2.1], the unique solution u(t, φ) of model (2.2)
with u0 = φ satisfies ut(φ) ∈ C+ for all t ∈ [0, σφ).
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From the first equation of (2.1) and model (2.2), we have

dNh(t)

dt
= Λh − dhNh(t)− δhIh(t) ≤ Λh − dhNh(t),

dSv(t)

dt
≤ Λv(t)− dv(t)κβ(t)Sv(t)− µv(t)Sv(t),

dIv(t)

dt
≤ bβ(t− τ)Sv(t− τ)− dv(t)κβ(t)Iv(t)− µv(t)Iv(t),

(2.4)

when t ∈ [0, σφ). Thus, Sh(t), Eh(t), Ih(t), Th(t), Rh(t), Sv(t), Iv(t) are bounded
on [0, σφ), which implies that σφ →∞ by [11, Theorem 2.3.1].

Note that the linear equation dN̂h(t)
dt = Λh − dhN̂h(t) has a globally stable equi-

librium point N̂∗h = Λh
dh

, it follows from the comparison principle that

lim sup
t→∞

(Sh(t) + Eh(t) + Ih(t) + Th(t) +Rh(t)) ≤ N̂∗h =
Λh
dh
.

This means that Sh(t), Eh(t), Ih(t), Th(t), Rh(t) are ultimately bounded. Similarly,
we have Sv(t) is ultimately bounded by the second inequation of (2.4).

Let

gh = max
t>τ

g(t) and gl = min
t>τ

g(t),

where g(t) is any bounded function on [τ,∞). From the seventh equation of model
(2.2), we have

dIv(t)

dt
≤ bβhShv −

(
dlvκβ

l + µlv
)
Iv(t),

Then, Iv(t) is ultimately bounded for t > τ . This implies that all solutions of the
model (2.2) are ultimately bounded. �

3. Threshold dynamics

3.1. Basic reproduction ratios. To deduce the basic reproduction ratio R0 for
the model (2.2), we need to find the disease-free state of the model (2.2). Let
Eh = Ih = Th = Rh = Iv = 0, we obtain

dSh(t)

dt
= Λh − dhSh(t),

dSv(t)

dt
= Λv(t)− dv(t)κβ(t)Sv(t)− µv(t)Sv(t).

(3.1)

Model (3.1) has a unique positive disease-free periodic solution

E0 = (S∗h, 0, 0, 0, 0, 0, S
∗
v (t), 0),

where S∗h = Λh
dh

, and

S∗v (t) =
[ ∫ t

0

Λ(r)e
∫ r
0
dv(s)κβ(s)+µv(s)dsdr +

∫ ω
0

Λ(r)e
∫ r
0
dv(s)κβ(s)+µv(s)dsdr

e
∫ ω
0
dv(r)κβ(r)+µv(r)dr − 1

]
× e−

∫ t
0
dv(r)κβ(r)+µv(r)dr.
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Following the basic reproduction ratio theory developed by [34], we first linearize
model (2.2) at the disease-free periodic solution E0, then we obtain

dEh(t)

dt
= cβ(t)Iv(t)− ãEh(t),

dIh(t)

dt
= νhEh(t)− b̃Ih(t),

dTh(t)

dt
= αhIh(t)− c̃Th(t),

dRh(t)

dt
= γhIh(t) + ehTh(t)− d̃Rh(t),

dIv(t)

dt
= bβ(t− τ)

H(t− τ)

S∗h
S∗v (t− τ)e−

∫ t
t−τ µv(s)ds − g̃(t)Iv(t),

(3.2)

where ã = dh + νh, b̃ = dh + δh + γh + αh, c̃ = dh + eh, d̃ = dh + ρh, g̃(t) =
dv(t)κβ(t) + µv(t).

Let C̄ := C([−τ, 0],R5) and C̄+ := C([−τ, 0],R5
+), then (C̄, C̄+) is an ordered

Banach space. Let F : R→ L(C,R5) be a map and V (t) be a 5×5 matrix function
on R. For any t ∈ R and φ = (φ1, φ2, φ3, φ4, φ5)T ∈ C̄, one has

F (t)φ =


cβ(t)φ5(0)

0
0
0

bβ(t− τ) Ih(−τ)+σ1Th(−τ)+σ2Rh(−τ)
S∗
h

S∗v (t− τ)e−
∫ t
t−τ µv(s)ds


and

V (t) =


ã 0 0 0 0

−νh b̃ 0 0 0
0 −αh c̃ 0 0

0 −γh −eh d̃ 0
0 0 0 0 g̃(t)

 .

Then the linear system (3.2) can be written as

du(t)

dt
= (F (t)− V (t))u(t), t ≥ 0,

where u(t) = (Eh(t), Ih(t), Th(t), Rh(t), Iv(t))
T . The internal evolution of individ-

uals in the infectious compartments is governed by the linear ordinary differential
system:

du

dt
= −V (t)u(t).

Let Φ(t, s), t ≥ s, be the evolution matrix of the above linear system. For each
s ∈ R, Φ(t, s) satisfies

dΦ(t, s)

dt
= −V (t)Φ(t, s), t ≥ s and Φ(s, s) = I,
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where I is the 5× 5 identity matrix. It then follows that

Φ(t, s) =


e−ã(t−s) 0 0 0 0

a21e
−b̃(t−s) e−b̃(t−s) 0 0 0

a31e
−c̃(t−s) a32e

−c̃(t−s) e−c̃(t−s) 0 0

a41e
−d̃(t−s) a42e

−d̃(t−s) a43e
−d̃(t−s) e−d̃(t−s) 0

0 0 0 0 e−
∫ t
s
g̃(ξ)dξ

 ,

where a21 = νh(t − s), a31 = 1
2αhνh(t− s)2, a32 = αh(t − s), a41 = 1

6αhνheh(t −
s)3 + 1

2γhνh(t− s)2, a42 = 1
2αheh(t− s)2 + γh(t− s) and a43 = eh(t− s).

Let Cω be the ordered Banach space of all ω-periodic continuous functions from
R to R5, and equipped with the maximum norm ‖.‖∞ and the positive cone C+

ω :=
{υ ∈ Cω : υ(t) ≥ 0, for t ∈ R}. We suppose that υ(s) ∈ Cω is the initial distribution
of infectious individuals in this periodic environment. Then for any given s ≥
0, F (t − s)υt−s is the distribution of newly infected individuals at time t − s,
which is produced by the infectious individuals who were introduced over the time
interval [t − s − τ, t − s]. Then Φ(t, t − s)F (t − s)υt−s is the distribution of those
infected individuals who were newly infected at time t−s and remain in the infected
compartments at time t. It follows that∫ ∞

0

Φ(t, t− s)F (t− s)υt−sds =

∫ ∞
0

Φ(t, t− s)F (t− s)υ(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those
infected individuals υ(s) introduced at the previous time to t. We define a linear
operator L : Cω → Cω as follows

[Lυ](t) =

∫ +∞

0

Φ(t, t− s)F (t− s)υ(t− s+ ·)ds, for any t ∈ R, υ ∈ Cω,

where L is called the next infection operator. It then follows from [34] that the
basic reproduction ratio R0 for system (3.2) is defined as the spectral radius of
operator L, that is R0 = ρ(L).

For a given t ≥ 0, let P (t) be the solution maps of system (3.2), that is P (t)φ =
vt(φ) = v(t, φ), where v(t, φ) is the unique solution of system (3.2) with v0 = φ ∈ C.
Then P := P (ω) is the Poincaré map associated with system (3.2). Let r(P ) be
the spectral radius of P . By [34, Theorem 2.1], we have the following result.

Lemma 3.1. R0 − 1 has the same sign as r(P )− 1.

To study the relationship between the global properties of system (3.2) and R0,
we need to prove the existence of the exponential positive solution of system (3.2).
For this purpose, we first define a phase space:

Y := R× [C((−τ, 0),R)]3 ×R,
Y + := R× [C((−τ, 0),R+)]3 ×R.

Similar to the proof of Lemma 2.1, we can obtain the following result.

Lemma 3.2. For a φ ∈ Y +, system (3.2) has a unique non-negative solution
v(t, φ) ∈ Y + with v0 = φ for all t ≥ 0.

For a given t ≥ 0, let P̂ (t) be the solution maps of system (3.2) on Y . The fol-

lowing lemma indicates that that the periodic semi-flow P̂ (t) is eventually strongly
positive.
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Lemma 3.3. For φ ∈ Y + \ {0}, the solution v(t, φ) with v0 = φ of system (3.2)

satisfies vi(t, φ) > 0 for all t > τ , i = 1, 2, 3, 4, 5 and hence, P̂ (t)φ � 0 for all
t > τ .

Proof. For a given φ = (φ1, φ2, φ3, φ4, φ5) ∈ Y + \ {0}, let

v(t, φ) = (v1(t), v2(t), v3(t), v4(t), v5(t)).

If v1(0) > 0, by solving system (3.2), for all t > 0, we obtain

v1(t) = e−ãt
(
v1(0) +

∫ t

0

cβ(ξ)v5(ξ)eãξdξ
)
≥ e−ãtv1(0) > 0,

v2(t) = e−b̃t
(
v2(0) +

∫ t

0

νhv1(ξ)eb̃ξdξ
)
≥ e−b̃t

(∫ t

0

νhv1(ξ)eb̃ξdξ
)
> 0.

Similarly, we can obtain in turn

v3(t) = e−c̃t
(
v3(0) +

∫ t

0

αhv2(ξ)ec̃ξdξ
)
> 0,

v4(t) = e−d̃t
(
v4(0) +

∫ t

0

(eh + γh)v3(ξ)ed̃ξdξ
)
> 0,

When t > τ , we find that

v5(t) = e−
∫ t
0
g̃(ξ)dξv5(0)

+ e−
∫ t
0
g̃(ξ)dξ

∫ t

0

bβ(ξ − τ)
Hh(ξ − τ)

S∗h
S∗v (ξ − τ)e−

∫ ξ
ξ−τ µv(z)dze

∫ ξ
0
µv(z)dzdξ

> 0.

That implies

(v1(t), v2(t), v3(t), v4(t), v5(t)) > (0, 0, 0, 0, 0) for all t > τ. (3.3)

By similar discussion, we obtain (3.3) when vi(0) > 0 for i = 2, 3, 4, 5. Then we

obtain P̂ (t) is strongly positive on Y + for t > τ . �

Furthermore, P̂ := P̂ (ω) is the Poincaré map associated with system (3.2). Let

r(P̂ ) be the spectral radius of P̂ . Choose an integer n0 > 0 such that n0ω > τ .

By Lemma 3.3, we see that P̂n0 = P̂ (n0ω) is strongly positive. Following [11,

Theorem 3.6.1], the linear operator P̂n0 is compact on Y +. Since r(P̂n0) = r(P̂ )n0

and according to the Krein-Rutman theorem, we obtain that r(P̂ ) is a simple
eigenvalue and having a strongly positive eigenvector. By [13, Lemma 3.8], we have

r(P ) = r(P̂ ). From [35], we have the following result.

Lemma 3.4. Let µ = ln r(P )
ω . Then there exists a positive ω-periodic function v∗(t)

such that u∗(t) = eµtv∗(t) is a positive solution of linear system (3.2).

3.2. Equilibrium stability. In this part, we establish a threshold-type result on
the global dynamics of model (2.2) in terms of R0. Let

X := C([−τ, 0],R7
+),

X0 := {φ ∈ X : φi(0) > 0 for any i ∈ 2, 3, 4, 5, 7},
∂X0 := X\X0 = {φ ∈ X : φ2(0)φ3(0)φ4(0)φ5(0)φ7(0) = 0},
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where φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7).

Theorem 3.5. If R0 > 1, then model (2.2) exists a positive ω -periodic solution,
and there exist a positive real number η > 0 such that the solution (Sh(t), Eh(t),
Ih(t), Th(t), Rh(t), Sv(t), Iv(t)) ∈ X with Sh(0) > 0, Eh(0) > 0, Ih(0) > 0, Th(0) >
0, Rh(0) > 0, Sv(0) > 0, Iv(0) > 0 satisfies

lim inf
t→∞

(Eh(t), Ih(t), Th(t), Rh(t), Iv(t)) ≥ (η, η, η, η, η).

Proof. Let Q(t) : X → X be the solution maps of model (2.2), that is Q(t)φ =
u(t, φ) = ut(φ), t ≥ 0, where u(t, φ) is the unique solution of the model (2.2) with
u0 = φ ∈ X. Then Q := Q(ω) is the Poincaré map associated with model (2.2),
and Qn = Q(nω). It is easy to find that Q(t) (X0) ⊂ X0 for all t ≥ 0. Now, we
prove that Q(t) is uniformly persistent with respect to (X0, ∂X0).

Let M1 = (S∗h, 0, 0, 0, 0, S
∗
v0, 0), where S∗v0(θ) = S∗v (θ) for θ ∈ [−τ, 0]. Then

Q(t)M1 = M1 for all t ≥ 0. Since limφ→M1
‖Q(t)φ−Q(t)M1‖ = 0 uniformly for

t ∈ [0, ω], for any given ε > 0, there exists a positive real number δ = δ(ε) such
that for any φ satisfying ‖φ−M1‖ < δ, we have

‖Q(t)φ−Q(t)M1‖ ≤ ε, for t ∈ [0, ω].

We proceed with the following two claims.

Claim 1. lim supn→∞ ‖Qn(φ)−M1‖ ≥ δ for all φ ∈ X0. Suppose by contradiction
that lim supn→∞ ‖Qn(ψ)−M1‖ < δ for some ψ ∈ X0. Then, there exists an integer
N ≥ 1 such that‖Qn(ψ) − M1‖ < δ for all n ≥ N . For any t ≥ Nω, letting
t = nω + t′ with n ≥ N and t′ ∈ [0, ω), we have

‖Q(t)ψ −Q(t)M1‖ = ‖Q(t′)(Qn(ψ))−Q(t′)M1‖ < ε.

Then for all t ≥ Nω,

S∗h − ε < Sh(t, ψ) < S∗h + ε, S∗v (t)− ε < Sv(t, ψ) < S∗v (t) + ε,

0 < Eh(t, ψ), Ih(t, ψ), Th(t, ψ), Rh(t, ψ), Iv(t, ψ) < ε.

We also have the inequalities

Sh(t, ψ)

Nh(t, ψ)
≥ S∗h − ε
S∗h + 5ε

= 1− 6ε

S∗h + 5ε
and

Sv(t, ψ)

Nh(t, ψ)
≥ S∗v (t)− ε

S∗h + 5ε
.

Then from model (2.2), for t ≥ Nω + τ , we have

dEh(t)

dt
≥ cβ(t)

(
1− 6ε

S∗h + 5ε

)
Iv(t)− (dh + νh)Eh(t),

dIh(t)

dt
= νhEh(t)− (dh + δh + γh + αh) Ih(t),

dTh(t)

dt
= αhIh(t)− (dh + eh)Th(t),

dRh(t)

dt
= γhIh(t) + ehTh(t)− (dh −m)Rh(t),

dIv(t)

dt
≥ bβ(t− τ)

H(t− τ)

S∗h + 5ε
(S∗v (t− τ)− ε)e−

∫ t
t−τ µv(s)dz

− (dv(t)κβ(t) + µv(t))Iv(t).

(3.4)
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Let Pε be the solution map of the perturbed linear periodic system

dĒh(t)

dt
= cβ(t)

(
1− 6ε

S∗h + 5ε

)
Īv(t)− (dh + νh)Ēh(t),

dĪh(t)

dt
= νhĒh(t)− (dh + δh + γh + αh)Īh(t),

dT̄h(t)

dt
= αhĪh(t)− (dh + eh)T̄h(t),

dR̄h(t)

dt
= γhĪh(t) + ehT̄h(t)− (dh +m)R̄h(t),

dĪv(t)

dt
= bβ(t− τ)

H̄(t− τ)

S∗h + 5ε
(S∗v (t− τ)− ε)e−

∫ t
t−τ µv(s)dz

− (dv(t)κβ(t) + µv(t))Īv(t),

with Pε := Pε(ω). Since R0 > 1, limε→0+ r(Pε) = r(P ) > 1, there exists a suf-
ficiently small ε > 0 such that ε < min{mint∈[0,ω] S

∗
v (t), S∗h} and r(Pε) > 1. By

Lemma 3.4, there is a positive ω-periodic function v∗ε (t) such that v̄ε(t) = eλtv∗ε (t)

is a solution of above perturbed linear periodic system, where λ = ln r(Pε)
ω > 0.

Then we have v̄ε(t) → +∞ as t → +∞. And because of the system (3.4), the
comparison principle implies that

lim
t→∞

(Eh(t, ψ), Ih(t, ψ), Th(t, ψ), Rh(t, ψ), Ih(t, ψ)) = (∞,∞,∞,∞,∞,∞),

which leads to a contradiction.
By claim 1 above, we can see that M1 is an isolated invariant set for Q in X,

and W s(M1) ∩X0 = ∅, where W s(M1) is the stable set of M1 for Q.

Claim 2. M∂ = {φ ∈ ∂X0 : φi(0) = 0, i = 2, 3, 4, 5, 7}, where M∂ := {φ ∈ ∂X0 :
Qn(φ) ∈ ∂X0, for n ≥ 0}. Clearly, it suffices to prove that for any ϕ ∈M∂ ,

(Eh(t, ϕ), Ih(t, ϕ), Th(t, ϕ), Rh(t, ϕ), Ih(t, ϕ)) = (0, 0, 0, 0, 0)

holds for all t ≥ 0. Suppose not, then there exists some t0 ≥ 0 such that Eh(t0, ϕ) >
0 or Ih(t0, ϕ) > 0 or Th(t0, ϕ) > 0 or Rh(t0, ϕ) > 0 or Iv(t0, ϕ) > 0.

Assuming that Eh(t0, ϕ) > 0, then by the second equation of the model (2.2) we

know that dEh
dt ≥ −(dh + νh)Eh(t) and

Eh(t, ϕ) ≥ Eh(t0, ϕ)e(dh+νh)(t0−t) > 0, for t > t0.

Following the third equation of the model (2.2) we know that

Ih(t, ϕ) >

∫ t

t0

νhEh(s, ϕ)e(s−t)(dh+δh+γh+αh)ds > 0, for all t > t0.

By the same argument, Th(t, ϕ) > 0 and Rh(t, ϕ) > 0 for any t > t0. Similar, it is
easy to see that

Iv(t, ϕ) >

∫ t

t0

bβ(s− τ)
H(s− τ, ϕ)

Nh(s− τ)
Sv(s− τ, ϕ)e

∫ s
s−τ µ(z)dze

∫ s
t

(dvκβ(z)+µ(z))dzds > 0,

when t > t0 + τ , where Nh(s − τ) = Sh(s − τ, ϕ) + Eh(s − τ, ϕ) + Ih(s − τ, ϕ) +
Th(s − τ, ϕ) + Rh(s − τ, ϕ). Thus, (Eh(t, ϕ), Ih(t, ϕ), Th(t, ϕ), Rh(t, ϕ), Ih(t, ϕ)) >
(0, 0, 0, 0, 0) for all t > t0 + τ . Then we can find some n > 0 with nω > t0 + τ such
that

(Eh(nω, ϕ), Ih(nω, ϕ), Th(nω, ϕ), Rh(nω, ϕ), Ih(nω, ϕ)) /∈M∂
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for all t > t0 + τ , which is a contradiction.
Similarly, when Ih(0) > 0 or Th(0) > 0 or Rh(0) > 0 or Iv(0) > 0, we can obtain

the same contradiction. Therefore, Claim 2 is proved. Moreover, from system
(3.1), we have Sh(t, φ)→ S∗h, Sv(t, φ)→ S∗v (t) as t→∞, i.e., Qn(φ)→M1. Thus,
cupψ∈M∂

ω(ψ) = {M1}. That means M1 cannot form a cycle in ∂X0.
By Claims 1 and 2 and the acyclicity theorem on uniform persistence for maps

[35, Theorem 1.3.1 and Remark 1.3.1], it follows that Q : X → X is uniformly
persistent with respect to (X0, ∂X0).

We can prove the practical uniform persistence, that is, there exists an η > 0
such that

lim inf
t→∞

min(Eh(t, φ), Ih(t, φ), Th(t, φ), Rh(t, φ), Iv(t, φ)) = lim inf
t→∞

p(Q(t)φ) ≥ η,

for all φ ∈ X0. The proof is quite standard, a more detailed display of a similar
reasoning can be found in [12]. �

Theorem 3.6. If R0 < 1 and δh = 0, the disease-free periodic solution E0 is
globally attractive for model (2.2) in X.

Proof. In view of model (2.2) and (3.1), there exists a sufficiently large integer
n > 0 with nω ≥ τ and a such that

Nh(t) ≥ N∗h − ε =
Λh
dh
− ε, Sv(t) ≤ S̄∗v (t) + ε, for all t ≥ nω − τ.

Therefore, for all t ≥ nω, we have

dEh(t)

dt
≤ cβ(t)Iv(t)− (dh + νh)Eh(t),

dIh(t)

dt
= νhEh(t)− (dh + γh + αh)Ih(t),

dTh(t)

dt
= αhIh(t)− (dh + eh)Th(t),

dRh(t)

dt
= γhIh(t) + ehTh(t)− (dh +m)Rh(t),

dIv(t)

dt
≤ bβ(t− τ)

H(t− τ)

N∗h − ε
(S∗v (t− τ) + ε)e−

∫ t
t−τ µv(s)ds

− (dv(t)κβ(t) + µv(t))Iv(t).
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Let Pε be the Poincaré map of the auxiliary system

dẼh(t)

dt
= cβ(t)Ĩv(t)− (dh + νh)Ẽh(t),

dĨh(t)

dt
= νhẼh(t)− (dh + γh + αh)Ĩh(t),

dT̃h(t)

dt
= αhĨh(t)− (dh + eh)T̃h(t),

dR̃h(t)

dt
= γhĨh(t) + ehT̃h(t)− (dh +m)R̃h(t),

dĨv(t)

dt
= bβ(t− τ)

H̃(t− τ)

N∗h − ε
(S∗v (t− τ) + ε)e−

∫ t
t−τ µv(s)ds

− (dv(t)κβ(t) + µv(t))Ĩv(t).

(3.5)

Since limε→0 r(Pε) = r(P ) < 1, we fix a sufficiently small ε ∈ (0, N∗h) and r(Pε) < 1.
In a similar manner, there is a positive ω-periodic function v∗ε (t) such that v̄ε(t) =

eλtv∗ε (t) is a positive solution of (3.5), where λ = ln r(Pε)
ω < 0.

Assuming that E∗0 = (Eh(t, ψ), Ih(t, ψ), Th(t, ψ), Rh(t, ψ), Ih(t, ψ)) is a positive
ω-periodic solution of system (3.2). we can choose a sufficiently large constant
K > 0 such that E∗0 ≤ Kv̄ε(t) for all t ∈ [nω, nω+ τ ]. It follows from [26, Theorem
5.1.1], we can get E∗0 ≤ Kv̄ε(t), for all t ≥ nω + τ . Thus, we have lim

t→∞
E∗ =

(Eh(t), Ih(t), Th(t), Rh(t), Iv(t)) = (0, 0, 0, 0, 0) when R0 < 1. Meanwhile, we can
obtain the following limit system for model (2.2):

dSh(t)

dt
= Λh − dhSh(t),

dSv(t)

dt
= Λv(t)− dv(t)κβ(t)Sv(t)− µv(t)Sv(t).

Because S∗h is globally asymptotically stable and S∗v (t) is globally attractive, we
have

lim
t→∞

(
Sh(t), Eh(t), Ih(t), Th(t), Rh(t), Sv(t), Iv(t)

)
=
(
S∗h, 0, 0, 0, 0, 0, S

∗
v (t), 0

)
by the chain transitive sets arguments [35, Theorem 1.2.1]. �

4. Study case

In this section, based on malaria data and clinical trial data of ivermectin in
malaria transmission control from Kenya, we estimate the values of parameters
related to malaria and invermectin-induced mortality of mosquitoes dv(t), Then,
the numerical fitted curve of malaria transmission cases is shown in Figure 3 and
4. Sensitivity analysis of the ivermectin vaccination rate κ and mosquito bite rate
β(t), and analysis of the effect of ivermectin vaccination rate, number of and timing
between vaccine intervention rounds on malaria transmission control are given in
Figure 7 and Figure 11, respectively.

4.1. Parameter estimation. According to the information provided by World
Health Organization [28], the total population of Kenya in 2013 is Nh = 45519986
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and the average life expectancy of humans is 63.419 years. Thus, the human natural
death rate dh can be calculated as follows :

dh =
1

63.419× 12
≈ 0.0013 Month−1.

The recruitment rate Λh is:

Λh = dh × 45519986 ≈ 59813 Humans×Month−1.

The values of constant parameters for system (3.2) that do not heavily depend on
temperature are listed in Table 2 from [8, 14, 23, 27]. Next, we evaluate the periodic
parameters µ(t) and β(t) in system (3.2) by using the monthly mean temperature
data from 2002 to 2020 from [29], which is shown in Table 3.

Table 2. Parameter values.

parameters Values Dimension Sources
Λh 59175 Humans See text

ρh 0.01672 Month−1 [8, 14]

dh 0.0013 Month−1 See text
c 0.01 Dimensionless [8]

β(t) To be evaluated Month−1 See text

νh 3.344 Month−1 [8]

δh 0.002736 Month−1 [8]
αh 0.53 Dimensionless [23]
eh 0.85 Dimensionless [27]

γh 0.13984 Month−1 [8]

Λv(t) To be evaluated Month−1 See text
b 0.2 Dimensionless [8, 14]
σ1 0.5 Dimensionless Assumed
σ2 0.1 Dimensionless Assumed

µv(t) To be evaluated Month−1 See text
dv(t) To be evaluated Dimensionless Assumed
κ [0,1] Dimensionless Assumed
τ 9/30.4 Dimensionless [8]

Table 3. Monthly mean temperature of Kenya (in ◦C).

Month Jan. Feb. Mar. Apr. May Jun.
Temperature 25.50 26.28 26.74 26.11 25.05 24.06

Month Jul. Aug. Sep. Oct. Nov. Dec.
Temperature 23.44 23.83 24.59 25.37 25.08 25.03

It follows from [14] that the temperature dependent mosquito biting rate can be
expressed as:

β(C)

=
30.4

107.204− 13.3523C + 0.677509C2 − 0.0159732C3 + 0.000144876C4
Month−1

(4.1)
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where C represents temperature in ◦C. Substituting the temperatures in Table 3
into (4.1), the biting rate of mosquitoes can be approximated by

β(t) = 7.989 + 0.4487 cos(πt/6) + 0.7684 sin(πt/6)− 0.4603 cos(2πt/6)

− 0.2658 sin(2πt/6)− 0.09456 cos(3πt/6)− 0.03793 sin(3πt/6)

+ 0.01472 cos(4πt/6) + 0.02339 sin(4πt/6) + 0.004283 cos(5πt/6)

+ 0.05418 sin(5πt/6) Month−1.

Similarly, the temperature-dependent death rate of adult mosquitoes is given by
[14],

µv(C) = 30.4 + 29.564e(−C−278◦K
2.7035 ) Month−1. (4.2)

Then the death rate of adult mosquitoes can be fitted as

µv(t) = 3.058− 0.004607 cos(πt/6)− 0.005952 sin(πt/6) + 0.003278 cos(2πt/6)

+ 0.003186 sin(2πt/6) + 0.0008082 cos(3πt/6)− 0.0008577 sin(3πt/6)

− 0.0001089 cos(4πt/6)− 000007509 sin(4πt/6) + 0.0001428 cos(5πt/6)

− 0.0003749 sin(5πt/6) Month−1.

To estimate the maturation function of the mosquito, we suppose that the egg
deposition rate is a linear function of the biting rate [14],

Λv(t) = 5× β(t)×Nh Mosquitoes×Month−1.

In 2018, [25] studied safety and mosquitocidal efficacy of high-dose ivermectin
in Kenya adults. They found ivermectin 300 µg/kg per day for 3 days provided a
good balance between efficacy and tolerability, and reduced mosquito survival for
at least 28 days after treatment. It can be seen that this drug shows promise as a
potential new tool for malaria elimination. By fitting the data of mosquito survival
post treatment in [25], we obtain the ivermectin-induced mortality of mosquitoes
on post-treatment days 0, 2 + 4h, 7, 10, 14, 21 and 28, see Table 4.

Table 4. Ivermectin-induced mortality of mosquitoes.

Ivermectin test times (Day) 2+4h 7 10 14 21 28
Drug-induced mortality 0.7817 0.6782 0.4364 0.3156 0.1479 0.1105

And we can get the following fitted function for the mortality rate of mosquito
(see Figure 2)

dv(t) = 0.9668e−0.07611t.
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Figure 2. Ivermectin-induced mortality of mosquitoes.
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4.2. Model validation. From [17], We can get data on the monthly malaria cases
generated in Kenya from January 2013 to December 2020. From Figure 3, the
monthly reported numbers of malaria has pronounced seasonality in Kenya. Based
on the estimated parameter values above and the initial values: Sh(0) = 34850000,
Eh(0) = 13960, Ih(0) = 359300, Th(0) = 517200, Rh(0) = 12889000, Sv(0) =
247100000, Iv(0) = 1236000, we fit the Kenyan malaria cases by model (2.2). The
reported data, the third-order Fourier fitted function for these data and the simu-
lation result in Kenya from January 2013 to December 2015 are shown in Figure 3.
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Monthly Reported Case Fit Curves
Model prediction curve

Figure 3. Comparison between the reported malaria cases from
2013 to 2015 and the simulation cases form model (2.2).

The numbers of malaria in the future several years in Kenya is shown in Figure
4 with no further effective control measure is taken and the initial values:

Sh(0) = 37930000, Eh(0) = 53770, Ih(0) = 415200, Th(0) = 817200,

Rh(0) = 8820000, Sv(0) = 246300000, Iv(0) = 1597000.
(4.3)
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Figure 4. Malaria development trend by forecasting model (2.2).

4.3. Long-term behavior. In this subsection, we verify of the theoretical results
by computing the basic reproduction R0 and simulating the long-term behavior of
the model (2.2) under the same set of parameter values as Figure 3 and initial values
(4.3) Assuming that vaccination rate κ = 0.2, we can obtain R0 = 1.0691 > 1, and
the images of Ih and Iv are shown in Figure 5. In this case, the disease persists and
eventually shows stable periodical fluctuations. If vaccination rate is increased to
κ = 0.7, then R0 = 0.7487 < 1. In this case, the long-term behavior of infectious
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mosquitoes and humans are shown in Figure 6, which implies that malaria will
eventually die out. These simulations are consistent with the results of Theorem
3.5 and Theorem 3.6.
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Figure 5. Long-term behaviors of the infectious compartments in
model (2.2) when R0 = 1.0691.

0 100 200 300 400 500

Time (Month)

0

1

2

3

4

5

In
fe

ct
io

us
 h

um
an

s

×105

0 100 200 300 400 500

Time (Month)

0

0.5

1

1.5

2

In
fe

ct
io

us
 m

os
qu

ito
es

×106

(a) (b)

Figure 6. Long-term behaviors of the infectious compartments in
model (2.2) when R0 = 0.7487.

4.4. Sensitivity analysis of R0. To explore the effectiveness of ivermectin vaccine
in the control of malaria, it is important to analyze the relationship between some
parameters of model (2.2) and R0. We mainly consider the effect of ivermectin
vaccination rate κ and mosquito bite rate β(t) on R0. We use the parameter values
in Table 2 and the initial values (4.3).

Firstly, we discuss the effect of ivermectin vaccination rate κ on R0. By keeping
the other parameter values the same as those in Table 2, we observe that R0 is a
decreasing function of κ and R0 < 1 when κ > 0.2837 (see Figure 7a). Therefore,
increasing the ivermectin vaccination rate can be an effective way to control malaria
transmission.

Then, to simulate the effect of the bite rate β(t) on R0, we make κ = 0 and

replace β(t) with β̂(t) = (1− q)β(t), where q can be considered as the efficiency of
people’s reduced mosquito bites. Under other parameter values the same as those
in Table 2, we observe that R0 is a decreasing function of q and R0 < 1 when
q > 0.1570 (see Figure 7b). That means malaria transmission gradually decreases
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and will eventually disappear completely by controlling the rate of mosquito bites.
Figure 8 gives the graph of R0 as a function of the parameters κ and q. It can be
seen that increasing the values of κ and q is helpful for reducing R0.
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Figure 7. Sensitivity analysis of R0. a Relationship between R0

and κ. b Relationship between R0 and q.
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Figure 8. Influence of κ and q on R0.

4.5. Analysis of the effect of ivermectin. In this section, we explore the effect
of ivermectin on malaria transmission in various regimens of use by model (2.2).
We mainly discuss the effect of ivermectin vaccination rate, number of and timing
between vaccine intervention rounds on malaria transmission control.

Figure 9 shows the effect of different ivermectin vaccination rate κ on Ih and Iv
by 1 month apart of vaccine intervention. We find that the higher value of κ is, the
lower level Ih and Iv can be reduced to, and when κ = 1, malaria disappears after
only about 300 months.

Since malaria transmission is seasonal in some areas, adjusting the frequency of
administration in line with the malaria transmission season could have an effect
on malaria transmission [24]. In addition, seasonal vaccine intervention is easier
to administer and also effect in reducing malaria outbreaks. We consider four
ivermectin regimens: 3 rounds given 1 month apart, 3 rounds given 2 month apart,
3 rounds given 3 month apart and 4 rounds given 1 month apart (three consecutive
daily doses of 300 µg/kg per day) and ivermectin vaccination rate κ = 0.7. As shown
in Figure 10, ivermectin has a significant effect on malaria transmission season,
the effect of continuous vaccines interventions is greater than that of intermittent
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Figure 9. Different κ correspond to different infection humans.

vaccines interventions and increases in the vaccines interventions frequency could
reduce malaria transmission season. As Kenya is a seasonal malaria transmission
country, Figure 10 also shows that the interventions will still have an impact in
year 2 and the impact trend is similar to Figure 3.8 in the Appendix of [24] (with
different doses of the drug).
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Figure 10. Impact of different ivermectin regimens on malaria control.

Using the four ivermectin regimens above, we simulate the long-term behaviors
of the infectious humans in Figure 11. We observe that the higher frequency of
vaccines interventions is, the lower level Ih(t) can be reduced to.
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Figure 11. Long-term impact of different ivermectin regimens
on malaria control.
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5. Discussion

Ivermectin is the only drug in the avermectin class of endectocides that is avail-
able for human use. It can reduce lifespan of mosquitoes, and also causes sec-
ondary behavioural and reproductive disturbances that could affect mosquito sur-
vival. Based on the experiment results obtained [6, 7, 25], we developed a delay
malaria transmission model incorporating seasonality and ivermectin. The basic
reproduction ratio R0 is derived by the theory developed in [34]. By appealing to
the theory of persistence of dynamical systems and the theory of chain transitive
sets, we obtained R0 is the threshold parameter for the extinction and persistence
of malaria. That is, if R0 < 1, then infective compartments approach zero even-
tually; if R0 > 1, then malaria will persist. Numerically, we have estimated all
constant and periodic parameters from some published data and studied malaria
transmission in Kenya. We verified our theoretical results by simulating the long-
term behavior of the solution. By showing a graph of how R0 varies with ivermectin
vaccination rate and bite rate, we found that it is possible to eliminate malaria from
Kenya when we combined ivermectin with tools to control bite rates. Furthermore,
it takes at least 25 years to eliminate malaria from Kenya with malaria control
measures intact (see Figure 9). We also simulated four ivermectin regimens and
found that the higher the dosing frequency is, the lower level Ih(t) can be decreased
to. Furthermore, our simulation of the effect in year 2 is similar to [24]. Thus, the
model is more realistic for the control of malaria transmission.

From the above analysis, we found that ivermectin may be effective in a malaria
transmission seasonal. At present, there are many ivermectin-related clinical trials
being conducted, for example: one in Guinea-Bissau, one in Thailand and a mul-
tisite study in Mozambique and Tanzania [24]. We expected to study the effect of
ivermectin by constructing a reasonable mathematical model with these relevant
clinical and entomological data, and combining with different transmission settings,
different malaria vectors, and different control measures in the future.
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