
DESIGN AND PERFORMANCE ANALYSIS OF HARDWARE

ACCELERATOR FOR DEEP NEURAL NETWORK IN

HETEROGENEOUS PLATFORM.

by

Md Syadus Sefat, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Engineering
August 2018

Committee Members:

Semih Aslan, Chair

Apan Qasem, Co-chair

Bahram Asiabanpour

Damian Valles

COPYRIGHT

by

Md Syadus Sefat

2018

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement. Use
of this material for financial gain without the author’s express written permission
is not allowed.

Duplication Permission

As the copyright holder of this work I, Md Syadus Sefat , authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

Dedicated to my parents whose love and sacrifice have brought me here.

ACKNOWLEDGEMENTS

I would like to express my gratitude towards Dr. Semih Aslan and Dr. Apan Qasem

for their continuous support, guidance, and encouragement throughout the course

of this thesis. I would also like to thank Dr. Damian Valles and Dr. Bahram

Asiabanpour for agreeing to be in the thesis committee and for their valuable

comments. I would like to express my gratitude to the CAPI team, IBM Austin,

for their constant support. I would thank specially to JT Kellington, Thomas

Fuchs, Curt Wollbrink of IBM Austin and Mark Paluszkiewicz of Xilinx for their

guidance and support throughout the development of the accelerator.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiii

CHAPTER

1.INTRODUCTIONI.

1. .1.1 Motivation

21.2 Challenges .

31.3 Contributions .

4. .1.4 Thesis Overview

6. .PREVIOUS WORK .II.

62.1 Evaluation of Neural Network Methods

7.2.2 Acceleration of Deep Neural Networks

92.3 Distinction from Previous Work

11III. BACKGROUND .

11.3.1 Deep Neural Network (DNN)

173.2 Zynq SoC .

19. .3.3 HLS

203.4 Power 8 and CAPI .

24. .IV. SOC IMPLEMENTATION .

244.1 Two-Layer Fully Connected Neural Net

vi

26.4.2 Acceleration in Xilinx Zynq SoC

29.COHERENT ACCELERATOR IMPLEMENTATION .V.

295.1 The Psl-AFU Interface .

31.5.1.1 Accelerator Command Interface

32.5.1.2 Accelerator Buffer Interface

325.1.3 PSL Response Interface

335.1.4 Accelerator Control Interface

33. .5.2 State Machine Design for CAPI Interface and Data transfer

36.5.3 Detailed Implementation of the State Machine:

43.5.4 Simplified Data-flow in Accelerator

44.5.5 Computational Unit Design

55VI. DESIGN OPTIMIZATIONS .

556.1 Optimization in HLS and Resource Hierarchy

56.6.2 Resource Conscious Matrix Multiplier Design (V3)

61. .6.3 Batched Computation

65. . . .6.4 Batched Matrix Multiplication Implementation in CAPI

656.4.1 Batched Matrix Multiplication V1

676.4.2 Batched Matrix Multiplication V2

68.6.5 Analysis of Batched Computation in V2

696.6 Variable Size Matrix Multiplication

74. .6.7 ReLU

74. .6.8 PSL-Cache

76VII. EVALUATION .

76. .7.1 Experimental Setup

767.2 Validation .

vii

77. .7.3 Resource Utilization

79. .7.4 Power Analysis

827.5 Timing Analysis and Timing Constraints

847.6 Performance Analysis .

887.7 Design Comparison .

89. .VIII. CONCLUSIONS

91. .APPENDIX SECTION

94REFERENCES .

viii

LIST OF TABLES

Table Page

5.1 Interface details . 30

6.1 Batched matrix multiplication distribution numbers 64

6.2 Matrix multiplication distribution when K = 3 64

6.3 Matrix multiplication distribution when K = 4 64

6.4 Batched computation Analysis . 68

7.1 Resource utilization config-1 . 77

7.2 Resource utilization config-2 . 78

7.3 Resource utilization config-3 . 79

7.4 Power analysis of 32x32 computation unit hardware 80

7.5 Power consumption estimation on on-chip components 81

7.6 Timing statistics to optimize and fix timing violations 83

7.7 Performance with non-blocking implementation 86

7.8 Performance with blocking implementation 86

7.9 Performance with multiple computational unit 87

7.10 Comparison with previous work . 88

ix

LIST OF FIGURES

Figure Page

2.1 Neural Network Accelerator Architecture of DianNao [1] 7

2.2 Neural Network Accelerator Architecture Caffeine [2] 8

3.1 Neural Network Architecture . 12

3.2 Gradient flow in layers . 14

3.3 Zync SoC Architecture [3] . 18

3.4 Memory access trends (modified and redrawn [4]) 21

3.5 Power8 CAPI architecture . 22

3.6 Software Hardware Components . 22

4.1 Two-layer neural network . 24

4.2 Architecture in zynq SoC . 26

4.3 Addresses of AXI memory mapped device 27

4.4 Zynq implementation . 28

5.1 CAPI System Architecture. 29

5.2 AFU Block Diagram . 30

5.3 AFU Interface . 31

5.4 Command Interface . 31

5.5 Accelerator Buffer Interface . 32

5.6 PSL Response Interface . 32

5.7 Accelerator Control Interface . 33

5.8 State Machine of CAPI data transfer 34

5.9 Detailed Flow diagram of START_WORK 36

5.10 Timing Diagram for the state: START_WORK 37

5.11 Wed structure in host application . 37

x

5.12 WED descriptor elements in simulation 38

5.13 Command request for reading stripe1 and stripe2 data 39

5.14 Pointers for Stripe1 and Stripe2 data 39

5.15 Algorithm implemented for data receiving 40

5.16 Timing diagram in the WAITING FOR STRIPES state. 40

5.17 Algorithm to to write data for data 41

5.18 Valid command issue . 42

5.19 Write data timing diagram . 42

5.20 Write data timing diagram; response valid signal 43

5.21 Simplified Data-flow in accelerator 43

5.22 Matrix multiplier hardware design . 44

5.23 Data flow for matrix multiplication 45

5.24 Addition stages in adder row . 46

5.25 Control and status signal of adders 47

5.26 Data flow in adders row . 48

5.27 Hardware design of matrix-multiplier V2 49

5.28 Data Flow in Dot Matrix Multiplier V2 51

5.29 Control and status signals for the adders in hardware block 52

5.30 Data flow in adders row for V2. matrix multiplier 53

6.1 Module hierarchy for resource utilization 55

6.2 Performance profile in optimized pipe-lined design 55

6.3 Performance profile in unoptimized design 55

6.4 Matrix multiplier hardware design V3 56

6.5 Control and Status signal in adders row in V3 hardware block 58

6.6 Data flow in the AD1 adder row . 59

6.7 Data flow in AD2 adder row . 60

xi

6.8 Dummy matrices. 61

6.9 Subdivision of matrices. 62

6.10 Resultant Out matrix. 62

6.11 Resultant matrix multiplications. 63

6.12 Elements of Out matrix . 63

6.13 Batched computation V1 . 65

6.14 Batched computation V2 . 67

6.15 Computational block . 69

6.16 Zero padding of elements . 70

6.17 Zero padding of elements in simulation 70

6.18 Computational block with zero padded data 71

6.19 matrixA in simulation . 73

6.20 matrixB in simulation . 73

6.21 matrixC in simulation . 73

6.22 Hardware ReLU functioning timing diagram 74

6.23 Hardware ReLU functioning timing diagram 74

7.1 Power analysis of PSL-AFU hardware 80

7.2 Execution timing in non-blocking strategy 85

7.3 Execution timing in blocking strategy 85

xii

ABSTRACT

This thesis describes a new flexible approach to implementing energy-efficient

DNN accelerator on FPGAs. Our design leverages the Coherent Accelerator Pro-

cessor Interface (CAPI) which provides a cache-coherent view of system memory to

attached accelerators. Computational kernels are accelerated on a CAPI-supported

Kintex FPGA board. Our implementation bypasses the need for device driver code

and significantly reduces the communication and I/O transfer overhead. To im-

prove the performance of the entire application, we propose a collaborative model

of execution in which the control of the data flow within the accelerator is kept

independent, freeing-up CPU cores to work on other parts of the application. For

further performance enhancements, we propose a technique to exploit data locality

in the cache, situated in the CAPI Power Service Layer (PSL). Finally, we develop

a resource-conscious implementation for more efficient utilization of resources and

improved scalability. Compared with the previous work, our architecture achieves

both improved performance and better power efficiency.

xiii

I. INTRODUCTION

1.1 Motivation

In recent years, the rapid growth of data in the digital world is occurring at

an exponential rate. This increase in data (i.e., video, image, speech) from nu-

merous sources such as social media is creating the need for extracting knowledge

base from the data by using data analytics with Machine Learning (ML) tools.

Among the different ML algorithms, deep learning algorithms are achieving the

state-of-art in solving many real-time tasks such as image detection and clas-

sification, image recognition and tagging, natural language recognition, pattern

recognition, fraud detection, targeted marketing, autonomous driving, intelligent

gaming, fraud detection and monitoring, and financial forecasting [5] [6] [7]. Be-

cause of the ability to train and classify data with high accuracy, the deep neural

network (DNN) methods have been demonstrated to be widely used methods for

various applications including image classification, face detection, video analysis,

speech recognition, and document processing [8]. Optimized DNN algorithms are

becoming major components in many modern applications and they are attracting

enthusiastic interest from both academia [5] [7] [9] and industry like Google [10],

Facebook [11], and Baidu [12].

To process a sample of data (e.g., image), DNN requires to work on millions

of parameters and billions of operations [13] [14]. As DNN includes one or more

fully connected layers, it is a massive memory and computation intensive workload

for the Central Processing Unit (CPU). To accelerate the computation process,

numerous software platforms have been released, primarily targeting the power-

hungry CPUs. Graphics Processing Units (GPUs), which are designed with higher

throughput and memory bandwidth, generally require a considerable amount of

power and can sometimes be constrained by memory capacity. Memory constraint

and power requirement are critical issues for DNNs, particularly for those running

1

inferences tasks on edge devices. In this context, re-configurable FPGA hardware

accelerators offer a potential alternative platform in the existing DNN system

which exhibits a tunable balance among performance, power consumption, and

programmability [15]. Hardware acceleration of neural networks is a promising

research direction [16, 14, 2]. Although currently FPGAs cannot deliver the raw

compute power demanded by large-scale deep learning applications, accelerated

implementations generally yield better energy efficiency in the form of improved

performance/watt [17].

1.2 Challenges

Hardware acceleration of DNNs poses significant challenges. Real-world DNNs

are constructed with millions of model parameters requiring hundreds of megabytes

of storage for each layer, which far exceeds the capabilities of current FPGAs. As

a result, accelerated implementations incur high I/O overhead and performance

is often dominated by data transfer time over a low-bandwidth I/O bus such as

PCIe. In traditional HW-SW collaboration paradigm, the accelerator is attached

as a memory-mapped I/O device. A device driver performs the virtual to physi-

cal address translation and delivers the addresses of the pinned kernel buffer to

the accelerator. The developers need to develop a device driver according to the

hardware specification.

Another major obstacle with FPGA acceleration, CNN or otherwise, is the time

to development. There are two methods of designing an accelerator in FPGA. First

one is designing an accelerator using a traditional Register Transfer Level (RTL)

tool and the second one is using a High-Level Synthesis (HLS) tool. Designing

in RTL is a tedious process but gives greater flexibility to the developers for

creating lower-level decisions, which maximizes the efficiency and performance of

the designed architecture. On the other hand, designing an accelerator in HLS is

easier and it is less prone to errors.

Recent introduction of high-level synthesis tools, such as OpenCL and Vivado

HLS has increased FPGA programmability with respect to data path represen-

2

tation. Nonetheless, a custom FPGAs still requires writing device driver code to

access memory-mapped I/O and communicate with the CPU, which can signifi-

cantly add to the development time.

In traditional systems, when an accelerator finishes its computation, it writes

the data in the kernel space. Then a device driver copies the data from kernel space

to the user space, generates a pointer to the data and passes it to the application.

Thus, the same data is copied twice. The recent development in OpenCL environ-

ment provides the runtime platform for the FPGA which manages the SW-HW

communication. However,in that case the underlying semantics in the FPGA needs

to be those of the OpenCL. This does not give a good flexibility to incorporate

customized hardware design within the FPGA.

1.3 Contributions

This thesis represents the design and implementation of a complete hardware ac-

celerator solution for Deep Neural Network for training as well as inference phase.

Our implementation is realized on a (1) System on Chip (SoC) FPGA device and

on a (2) coherent FPGA which utilizes IBM’s Coherent Accelerator Processor In-

terface (CAPI). The CAPI technology, recently introduced by IBM through its

OpenPower initiative, enables coherent connection to custom acceleration engines

within a heterogeneous compute unit. CAPI adds an Effective-to-Real-Address

Translator (ERAT) within the Power Service Layer (PSL) that translates the

addresses, eliminating the need for address translation at the FPGA end. Further-

more, in CAPI, the pointer to the user space data is sent from the application

directly to the FPGA, thereby avoiding any extraneous copying of data from ker-

nel to user space. We develop an efficient and flexible DNN implementation that

leverages these CAPI features and bypasses the need for device driver code and

significantly reduces the communication and I/O transfer overhead.

In both implementations, a software implements the generic neural network

model then accelerates the computation by off-loading the computation to the

FPGA hardware accelerator. Currently, both the RTL and HLS methods have

3

been used for designing the hardware accelerator separately. Since, among all the

computations, the matrix multiplication calculation requires the most computa-

tional resources, on both heterogeneous platforms, hardware design is mostly fo-

cused on vector product calculations. Rest of the calculations have been performed

on CPUs for both SoC and CAPI machines. Experimental evaluation on the two

platforms show that implementation with coherent accelerators can not only yield

significant performance improvements but also produce higher performance/watt.

To summarize, the main contributions of the thesis include:

• New flexible approach to implement DNN in a heterogeneous system

• A new hardware architecture design for DNN to leverage the Coherent Ac-

celerator Processor Interface which provides a cache-coherent view of the

system memory. To the best of our knowledge, this is the first such design

• Optimization of the hardware unit to implement a resource-conscious design

for matrix-multiply on the FPGA

• Design of a batched computational unit to work with large weight matrices

of DNN

• Optimize the hardware to work with weight matrices of any size

• A DNN solution that focuses on multiple computational kernels including

vector product and activation layers

• Implementation of a general software-hardware framework that will enable

many further optimizations

1.4 Thesis Overview

The thesis is presented in several chapters. Chapter 2 introduces neural net-

works and presents essential background on POWER8 CAPI architecture, Zynq

SoC, and HLS. Chapter 3 explores related works and finds out the scope of con-

tribution in DNN accelerator design. Chapter 4 describes the methodology for

implementing software hardware co-work framework. The section also describes

4

our DNN implementation for Zynq SoC. Chapter 5 describes the hardware ar-

chitecture design for AFU in CAPI system. Our core hardware design for matrix

multiplication is described on chapter 5. Chapter 6 introduces resource-conscious

and optimized hardware designs. Chapter 6 also talks about our approach towards

batched computation. Chapter 7 evaluates the performance of our hardware ar-

chitecture. Chapter 9 concludes the thesis and points out some future scopes.

5

II. PREVIOUS WORK

2.1 Evaluation of Neural Network Methods

Being inspired by nature such as biology, the human brain, etc., researchers have

developed AI and ML techniques such as artificial neural network, evolutionary

algorithms and cellular automata [18]. Among all the biology-inspired algorithms,

CNNs are most successful regarding accuracy in classification. An experiment in

neurobiology started the history of the CNN where, Hubel and Wiesel [19] found

that neurons in the visual cortex at different stages activate some specific patterns

and ignore others. Inspired by the findings of Hubel and Wiesel, Fukushima [20]

proposed a model of multilayer neural network which succeeded in recognizing

simple patterns. According to Schmidhuber [21], the first feedforward network

that was successful in training neural network was developed by Lvakhnenko and

Lapa in 1966. The first kind of neural networks were feedforward type, where

information only flowed in the forward direction, from the output of one layer to

input of next layer. Subsequently, researchers started using the multilayer neural

network, using unsupervised learning approach through backpropagation [22].

Until mid-2000s, neural networks ware not heavily used in ML algorithms, as

there were no good optimization tools available to minimize the error. It has

been found that the elementary optimization tool, the gradient descent algorithm,

performs really poorly in minimizing the error rate [23]. The accuracy of multilayer

network increased when statistical methods like support vector machine were used

for optimization [24]. The early 2010s have seen a rapid development of DNN-

based applications [25] with the work of Microsoft’s speech recognition systems

in 2011 [26] and AlexNet system for image recognition in 2012 [27]. One of the

factors to confluence the success of deep learning is believed to be the availability

of compute capacity [25]. As a result of the current on-going research, there are

several open-source frameworks for DNN that have been released by researchers

6

such as TensorFlow [28], Caffe [29], Theano [30], Torch [31], CNTK [32], etc.

Among these frameworks, TensorFlow is the most popular one, which implements

the DNN algorithm in C/C++ and python.

2.2 Acceleration of Deep Neural Networks

DNN, being a computationally intensive algorithm, makes FPGA as the best

candidate to accelerate the computation. Dang and Skadron have shown that for

a specific type of data mining application, frequent itemset mining (FIM), FPGA

gets 3.2x speedup over a six-core CPU and also shows better energy efficiency

[33]. Moreover, the contributions in [34], [35], [36] distributed the workload in

FPGA and thus accelerated various algorithms such as KNN, K-means, SVM and

produced higher efficiency.

Mahajan et al. proposed TABLA [37], a template-based framework for accel-

erating ML algorithms. They proposed to accelerate mathematical operations by

creating and utilizing Verilog templates so that the high level of abstraction of

those templates could be used in solving statistical operations by the program-

mer.

input

neuron

synapse

weight	

*	

neuron
output

+	

synapses
*	

+	

table	

x

x

ai
bi

hidden
layer

output
layer

Figure 9. Full hardware implementation of neural networks.

8x8 16x16 32x32 32x4 64x8 128x16

0
1

2
3

4
5

Critical Path (ns)
Area (mm^2)
Energy (nJ)

Figure 10. Energy, critical path and area of full-hardware layers.

neuron to a neuron of the next layer, and from one synap-
tic latch to the associated neuron. For instance, an execution
time of 15ns and an energy reduction of 974x over a core
has been reported for a 90-10-10 (90 inputs, 10 hidden, 10
outputs) perceptron [38].

4.2 Maximum Number of Hardware Neurons ?
However, the area, energy and delay grow quadratically with
the number of neurons. We have synthesized the ASIC ver-
sions of neural network layers of various dimensions, and
we report their area, critical path and energy in Figure 10.
We have used Synopsys ICC for the place and route, and the
TSMC 65nm GP library, standard VT. A hardware neuron
performs the following operations: multiplication of inputs
and synapses, addition of all such multiplications, followed
by a sigmoid, see Figure 9. A Tn × Ti layer is a layer of Tn

neurons with Ti synapses each. A 16x16 layer requires less
than 0.71 mm2, but a 32x32 layer already costs 2.66 mm2.
Considering the neurons are in the thousands for large-scale
neural networks, a full hardware layout of just one layer
would range in the hundreds or thousands of mm2, and thus,
this approach is not realistic for large-scale neural networks.

For such neural networks, only a fraction of neurons and
synapses can be implemented in hardware. Paradoxically,
this was already the case for old neural network designs

Tn#

NBin%

SB%

NFU)1%

M
em

ory#Interface#

NFU)2% NFU)3%

Inst.#

DM
A#

DM
A# Inst.#

Tn#x#Tn#

NBout%

Control#Processor#(CP)#

Instruc:ons#

Inst.#

DM
A#

Tn#

Figure 11. Accelerator.

such as the Intel ETANN [18] at the beginning of the 1990s,
not because neural networks were already large at the time,
but because hardware resources (number of transistors) were
naturally much more scarce. The principle was to time-
share the physical neurons and use the on-chip RAM to
store synapses and intermediate neurons values of hidden
layers. However, at that time, many neural networks were
small enough that all synapses and intermediate neurons
values could fit in the neural network RAM. Since this is no
longer the case, one of the main challenges for large-scale
neural network accelerator design has become the interplay
between the computational and the memory hierarchy.

5. Accelerator for Large Neural Networks
In this section, we draw from the analysis of Sections 3 and
4 to design an accelerator for large-scale neural networks.

The main components of the accelerator are the fol-
lowing: an input buffer for input neurons (NBin), an out-
put buffer for output neurons (NBout), and a third buffer
for synaptic weights (SB), connected to a computational
block (performing both synapses and neurons computations)
which we call the Neural Functional Unit (NFU), and the
control logic (CP), see Figure 11. We first describe the NFU
below, and then we focus on and explain the rationale for the
storage elements of the accelerator.

5.1 Computations: Neural Functional Unit (NFU)

The spirit of the NFU is to reflect the decomposition of
a layer into computational blocks of Ti inputs/synapses and
Tn output neurons. This corresponds to loops i and n for
both classifier and convolutional layers, see Figures 5 and
Figure 7, and loop i for pooling layers, see Figure 8.

Arithmetic operators. The computations of each layer
type can be decomposed in either 2 or 3 stages. For classifier
layers: multiplication of synapses × inputs, additions of all

Figure 2.1: Neural Network Accelerator Architecture of DianNao [1]

In [1], the author presented an ASIC design for neural network acceleration

called DianNao. As seen in Figure 2.1, the main components of the ASIC ac-

7

celerator include an input buffer for input neurons (NBin), an output buffer for

output neurons (NBout), a buffer for weight matrices (SB), a computational unit

(NFU) and the Control process (CP). Computation in the NFU is performed at

NFU layers in different stages. In this implementation, the NFU unit is designed

to accumulate only 16 output neurons which calculates the sum of products of 16

inputs (x) with 16 weights values. The buffers are connected with DMA units to

transfer the data to the off-chip DRAM. CP generates instruction sets for each

layer of computation.

Sharma et al. proposed a framework called DnnWeaver that automatically gen-

erates a synthesizable accelerator by the Caffe framework for a specific pair of

DNN and FPGA from some given combinations. The proposed Instruction Set

Architecture (ISA) toolset ensures a better FPGA hardware memory utilization

and data reuse [16].

Figure 5: Scalable accelerator architecture design

4
5

20
21

17
16

1
0

0 1 ... 4 5 16 17 ... 20 21

0 16 1 17 4 20 5 21

Data
DRAM Addr. x0 x4 ... x10 x14 x40 x44 ... x50 x54

x0 x4 x8 xc x10 x14 x18 x1c
Data

DRAM Addr.

d) Row-major data layout in DRAM space

e) Proposed data layout in DRAM spaceb) A piece of data tile
(input feature maps)

c) Physical data layout in on-chip buffer per BRAM bank

Data tile of input featu
is buffered in BRAM

10

15
14

Input feature map 0
Input feature map 1

a) A logical 3D data layout

13
12

9
8

Figure 6: Bandwidth optimization by DRAM layout reorganization

Figure 7: Effective FPGA DRAM bandwidth

output feature maps; and 2) parallelism in processing multiple in-
put feature maps for each output feature map. Figure 5 presents
an overview of our scalable accelerator architecture, together with
corresponding buffers. Each PE is an arithmetic multiplication of
input feature map pixels and corresponding weights. An array of
adder trees sums up the convolution results. The total number of
PEs is defined by 𝑇𝑚 × 𝑇𝑛 in Table 4.

We also implement the pooling layer using a max-pooling with
kernels that are defined through software parameters, and a ReLU
function for the activation layer. Either of them could be bypassed
if there is no such layer following a convolution layer.

To achieve a pipeline initial interval (II) of 1, i.e., each PE pro-
cesses one input data every cycle, we use a polyhedral-based op-
timization framework [30] to optimize the pipelining schedule by
permuting the parallel loop levels to the innermost levels to avoid
loop carried dependence. We also use the double buffering tech-
nique to prefetch the next data tile for each PE so that the com-
putation time can overlap with the data transfer overhead from the
device DRAM to FPGA’s BRAM.

4.3 Accelerator Bandwidth Optimization
Since the FCN layer is bandwidth sensitive, we need to be care-

ful about the accelerator bandwidth optimization. In order to have
a sense of effective FPGA DRAM bandwidth under different mem-
ory access patterns, we test it on the latest Kintex Ultrascale KU060
FPGA as a representative with Xilinx SDAccel 2015.3 flow. Fig-
ure 7 plots the effective DRAM bandwidth under different memory
access burst lengths and bit-widths. We make two observations
in efficient FPAG DRAM bandwidth utilization. First, the effec-
tive FPGA bandwidth (‘Y’ axis) goes up with the increase of burst
length (‘X’ axis) and finally flattens out above some burst length
threshold. Limited burst length will greatly degrade actual band-
width performance, like 1GB/s on 1KB memory burst access. Sec-
ond, longer interface bit-width can achieve higher peak bandwidth.
The maximum effective bandwidth of 10GB/s (about 83% of theo-
retical 12.8GB/s) can be only reached at 512 bit-width and above,
when the burst length is above 128KB.
Off-chip bandwidth optimization opportunity. As analyzed ear-
lier, the burst length and bit-width of DRAM interface are two
dominating factors for FPGAs’ effective bandwidth. However, the
widely used data tiling technique usually results in a discontinuous
DRAM access for the row-major data layout in DRAM. We illus-
trate this using an example in Figure 6. Figure 6.a) describes 4 input
feature maps in a logical 3-dimension representation, each with a
size of 4 × 4. Each dimension is tiled by 2 so that each tile has
2× 2× 2 = 8 elements in total. The first tile of input feature maps
is shown in Figure 6.b). Figure 6.d) presents its corresponding data

layout in DRAM in a row-major representation, which results in 4
discontinues blocks. Therefore, it requires 4 DRAM accesses, each
with a burst length of 2 floating points. This results in a pretty low
memory bandwidth utilization and can greatly degrades the overall
performance, especially for the bandwidth-intensive FCN layers.
On-chip buffer access optimization opportunity. BRAM banks
are usually organized for maximum parallel data access from mas-
sive parallel PEs. As illustrated in Figure 6.c), elements (0, 1, 4, 5)
from input feature map 0 should be put in bank 0, while elements
(16, 17, 20, 21) from input feature map 1 should be put in bank 1.
However, such requirements would cause on-chip bank write con-
flicts using the original DRAM organization in Figure 6.d). When
loading continuous data blocks (0, 1) from DRAM to BRAM (sim-
ilar for other pairs), they will be written to the same bank 0, which
causes bank write conflicts and introduces additional overhead.
Optimization. To improve the effective memory bandwidth, we
reorganize the DRAM layout as illustrated in Figure 6.e). First, we
move the data for an entire tile to a continuous space to improve
the memory burst length and bit-width. Second, we interleave the
data for different BRAM banks to reduce bank read/write conflicts.

5. DESIGN SPACE EXPLORATION
In this section we discuss how to find the optimal solution of

mapping a CNN/DNN onto our accelerator architecture. We ex-
plore the design space by revising a roofline model for accurate
early-stage performance estimation.

5.1 Revised Roofline Model for Caffeine
The roofline model [31] is initially proposed in multicore sys-

tems to provide insight analysis of attainable performance by re-
lating processors’ peak computation performance and the off-chip
memory traffic. It is first introduce in [13] to the FPGA accelera-
tor design for the CONV layers in CNN. Each implementation in
the roofline model is described/bounded by two terms. First, the
computation-to-communication (CTC) ratio, as in the ‘X’ axis of
Figure 8(b) and Figure 9(b), features the number of operations per
DRAM byte access. Second, computational performance, as in the
‘Y’ axis of Figure 8(b) and Figure 9(b), features the peak compu-
tation performance provided by available computational resources.

The key defect of the original roofline model used in [13] is that
it ignores the fact input/output/weight arrays have different data
volumes in each tile, and thus have different burst lengths and ef-
fective bandwidths. As proposed in [13], the original total number
of DRAM access in one layer’s computation is given by the fol-
lowing equation, where 𝛽 denotes the size of input/output/weight
data tile, and 𝛼 denotes the number of times of data transfer for
input/output/weight data.
𝐷𝑅𝐴𝑀_𝐴𝑐𝑐𝑒𝑠𝑠 = 𝛼𝑖𝑛 ⋅ 𝛽𝑖𝑛 + 𝛼𝑤𝑔ℎ𝑡 ⋅ 𝛽𝑤𝑔ℎ𝑡 + 𝛼𝑜𝑢𝑡 ⋅ 𝛽𝑜𝑢𝑡 (1)

In fact, Equation 1 does not accurately model the total DRAM
traffic. For example, as shown in Figure 7, the effective band-
width on 1KB burst DRAM access is only 1GB/s, 10x lower than
the maximum effective bandwidth 10GB/s. Therefore, the original
roofline model becomes extremely inaccurate in bandwidth sensi-
tive workloads because it actually takes 10x longer time to make
the data transfer than expected. So we would like to multiply a
normalization factor of 10x on the original DRAM traffic.

Figure 2.2: Neural Network Accelerator Architecture Caffeine [2]

Zhang et al. proposed Caffeine, a hardware/software co-designed library for ac-

celerating the whole CNN on FPGA [2]. They introduced a uniform convolutional

matrix-multiplication for the convolution layer as well as a fully connected layer.

They focused on memory access organization. Figure 2.2 represents an overview

8

of Caffeine hardware architecture. The main components of the architecture are

three buffer units: Input Buffer, Weight Buffer, Output Buffer, systolic arrays of

PEs, ReLU unit, and POOL unit. Each PE is an arithmetic multiplication of in-

put feature and corresponding weights. The ReLU of a max-pooling unit can be

bypassed if there is no such layer in the neural network. Due to design complex-

ity and FPGA resource constraints, they implemented only 32 PEs in the KU060

FPGA.

2.3 Distinction from Previous Work

Compared to previous research, the proposed approach in this thesis is different

in methodology and perspective. The existing method in the previous research

requires the design of Processing Engine (PE) that works as processing unit cores

in the FPGA [16], [2]. These methods need to develop specific instructions set ar-

chitectures for the PEs. The CPU maps the PEs for particular tasks and performs

the task scheduling for accelerating the DNN computation. The process requires

the design of device drivers for communication between the CPU and PEs. Then,

the CPU communicates with the accelerator to control and manage data flow

between the CPU and accelerator, and among PEs, thus the CPU remains busy

while accelerator performs the computation operation.

In both implementations, instructions/configurations of PEs, input features,

and weight matrices are kept in the FPGA device DRAM, and then from the

DRAM, the data are transferred from DRAM to the on-chip BRAM and only

then arithmetic operations are performed on the data. To get the data from the

system memory to the DRAM of the FPGA data is first copied from the user

space to the kernel space and then from kernel space, the data is transferred to

the FPGA DRAM. Thus these conventional FPGA system creates I/O overhead

for the DNN application.

There have been a plethora of previous works on FPGA deployment for the

CNN computation. However, these works do not exploit the cache-coherent view

of system memory with the attached accelerator to access the data. In [38], the au-

9

thors claimed that the CAPI technology simplifies the software design by enabling

the FPGA to access to the main memory.

In this thesis work, instead of controlling the operations in the accelerator from

the CPU, the control of the data flow within the accelerator is kept independent. In

the proposed architecture, through the use of CAPI, CPU only needs to transfer

the pointer to the user space data. The accelerator then initializes transferring

the data from the system memory to the accelerator and upon receiving the data

starts the computation. As the operation in the accelerator does not need control

signals from the CPU, the proposed architecture reduces the workload of the CPU.

Also, there is reduced I/O overhead as the system does not have to copy data from

user space to kernel space, from kernel space to FPGA off-chip DRAM and from

off-chip DRAM to off-chip BRAM.

10

III. BACKGROUND

3.1 Deep Neural Network (DNN)

The immense amount of increase in the data flow from numerous untapped

sources has increased the extent of computation in today’s digital computing sys-

tems and requires some analytics system to analyze these data to extract informa-

tion. Most of the data analytic systems heavily depend on the ML algorithms. Any

typical ML algorithm works in two phases. In the first phase, training phase, the

system works on some known samples of the labeled dataset and forms a hypoth-

esis iteratively. In the second phase, prediction phase, the system classifies a new

test dataset using that hypothesis. Figure 3.1 shows the pictorial view of a typical

neural network algorithm with fully connected layers. A typical deep learning net-

work framework consists of several layers, each having some parameter matrices

called weight matrices, which perform in sequence [39]. Each node of any layer is

activated by some specific activation function such as sigmoid, tanh, ReLU (Recti-

fied Linear Unit), Leaky ReLU, maxout and ELU (Exponential Linear Unit). After

being triggered by the activation function, it produces an output. Each layer works

on a specific feature from its previous layer to learn the feature. Each of the lay-

ers is initialized with the given weights and then goes through forward pass and

backward pass. In forward propagation, a loss function is evaluated, an output is

calculated from the layers which is fed to the next layer. In backward propagation,

gradients of the parameter matrices are calculated (i.e., Jacobian matrix), weight

matrices in different hidden layers are updated iteratively to minimize the loss

function. In general, when a forward pass occurs a huge amount of data is cached

in the memory, and during backpropagation, those values are used for updating

the loss function and other parameters.

11

Input layer
Hidden
Layer 1

Hidden
Layer 2

Output
layer

Forward Propagation

Backward Propagation

Figure 3.1: Neural Network Architecture

Let us consider a neural network with L layers. The weight matrix in the (l−1)th

layer is denoted by wl. The weight from the kth neuron in the (l − 1)th layer to

the jth neuron in the lth layer is given by wl
jk. The bias and activation in the lth

layer of jth neuron is represented by blj and alj. The activation of the jth neuron in

lth layer depends on the activation of (l − 1)th layer and the weight matrix and is

expressed as follows:

ali = σ

(∑
k

ωl
jk
al−1 + blj

)
, (3.1)

where, σ (x) is the activation function. In vectorized notation form, equation 3.1

can be written as follows:

al = σ(wlal−1 + bl). (3.2)

While computing the activation function we calculate the intermediate quantity

z where, in matrix form, zl ≡ wlal−1+ bl. We consider zl to be the weighted input

12

to the lth layer. In a layer l, zl has the components:

zlj =
∑
k

wl
jka

l−1
k + blj. (3.3)

The final target of a neural network is to find the weights and biases so that the

output from the network approximates the training labels or the outputs. This

target is achieved by calculation a cost function or loss function and minimizing

that cost function.

C(w, b) ≡ 1

n

∑
x

‖y(x)− a‖2. (3.4)

Here, w is the notation for the weight matrices of the whole network, b is the

notation for the biases of the whole network, n is the total number of output, and

a is the output in vector format. The cost, C (w, b) or the loss function is expressed

in terms of mean squared error. To find out the minimum value of the loss function,

gradient descent algorithm is applied where the gradient of different parameters

in the network are repeatedly calculated, and the parameters are updated to the

opposite direction of the loss function. For the weight matrices w and bias vectors

b, the ∇C has the components ∂C/∂w(l) and ∂C/∂b(l). For a mini batch of data

for m samples out of n samples, the updates of the parameters are performed by

using the following rule:

wl → wl
′
= wl − η

m

∑
j

∂CXj

∂wl
(3.5)

bl → bl
′
= bl − η

m

∑
j

∂CXj

∂bl
, (3.6)

13

Here, η is the learning rate and the sums are performed within the mini batch

samples. In a neural network, the network tries to understand how a change in

weights and biases affects the cost function. In the forward pass, the weighted

inputs and outputs are calculated and in backward pass, the gradient of the pa-

rameters in different layers are calculated. To find out the gradients of weights,

biases and activation function, chain rule is applied from the rightmost layers to

the leftmost layers. That is, it finds the partial derivatives of the weights and

biases, ∂C/∂wl
jk, and ∂C/∂blj from output layer (L) towards the first layer.

w (L)

a (L -1)

b (L -1)

z (L)

y

a (L)
C

w (L-1)

a (L -2)

b (L -2)

z(L-1)

Figure 3.2: Gradient flow in layers

To demonstrate gradient flow in the chain rule, let us consider for a single

training sample with a single neuron in the last layer, the cost function is defined

by Co =
(
a(L) − y

)2 where y is the corresponding output and a(L) = σ(w(L)a(L−1)+

b(L)) is activation in the last layer which is dependent on the activation of the

previous layer and weight and bias of the layer L. To find out the change in the

cost C with respect to w, chain rule is applied.

∂Co

∂w(L)
=

∂Co

∂a(L)
∂a(L)

∂z(L)
∂z(L)

∂w(L)
(3.7)

By knowing the cost function, derivative of C with respect to a is found by

∂Co

∂a(L)
= 2

(
a(L) − y

)
(3.8)

14

∂a(L)

∂z(L)
= σ′ (3.9)

∂z(L)

∂w(L)
= a(L−1) (3.10)

Equation 3.9, expresses the the influence of w in layer L on the cost function

for a single training sample. To find the overall influence for all training sample,

average value is taken over all the partial derivatives of C with respect to w.

∂C

∂w(L)
=

1

n

n−1∑
k=0

∂Ck

∂w(L)
(3.11)

The left side of equation 3.11 is one of the components of the gradient vector

∇C. Similarly, we can find the influence of b on C as follows:

∂Co

∂b(L)
=

∂Co

∂a(L)
∂a(L)

∂z(L)
∂z(L)

∂b(L)
(3.12)

Here, ∂z(L)/∂b(L) = 1

To find generalized equations for a network, let us consider layer L consists of

nL neurons and layer L− 1 consists of nL−1 neurons.

Co =

nL−1∑
j=0

(
a
(L)
j − yj

)2
(3.13)

z
(L)
j =

∑
k

w
(L)
jk a

(L−1)
k + bLj . (3.14)

15

∂Co

∂w
(L)
jk

=
∂Co

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂w
(L)
jk

(3.15)

∂Co

∂a
(L−1)
k

=

nL−1∑
j=0

∂Co

∂a
(L)
j

∂a
(L)
j

∂z
(L)
j

∂z
(L)
j

∂a
(L−1)
k

(3.16)

To find out the fundamental operation that will be performed in the back prop-

agation let us consider an intermediate quantity, δlj which is a measure of error in

the jth neuron in the lth layer.

δlj ≡
∂C

∂zlj
(3.17)

The quantity δl denotes the vectors associated with errors in layer l. In the bac-

kpropagation algorithm, for each of the layers in neural network, δl is calculated

and using this parameter ∂C/∂wl
jk and ∂C/∂blj is calculated. Using equation 3.9,

error in the output layer (L), δL, is found by applying chain rule and is given by

δLj =
∂C

∂aLj
σ′(zLj). (3.18)

Provided that the cost function is known, δl is calculated by using Hadamard

product and zLj which is calculated during the forward propagation. In matrix

format equation 3.18 can be written as

δL = ∇aC � σ′(zL). (3.19)

Here, ∇aC is a vector quantity whose component are given by the partial deriva-

16

tives, ∂C/∂aLj . Error terms in the L − 1 layer is found by using δL and weight

matrix wL.

δL−1 = ((wL)T δL)� σ′(zL−1) (3.20)

Here, wLT is the transpose of weight matrix wL in the Lth layer. For any layer

l, the error vector is found by δl where, δl = (wl+1)
T
δl+1� σ′(zl). Here, (wl+1)

T is

the transpose of weight matrix wl+1 in the (l + 1)th layer. Using the δl parameter

the equation for rate of change of C with respect to bias. By applying the chain

rule we find

∂C

∂b
(l)
j

=
∂C

∂z
(l)
j

∂z
(l)
j

∂b
(l)
j

=
∂C

∂z
(l)
j

= δlj, (3.21)

where, ∂z(l)j /∂b
(l)
j = 1. Again, similarly using the chain rule, equating for the rate

of change of cost with respect to weight is found by equation 3.22.

∂C

∂wl
jk

= al−1k δlj. (3.22)

3.2 Zynq SoC

This section gives a brief introduction to FPGA, SoC, HLS and CAPI archi-

tectures. FPGA is a semiconductor device that includes configurable logic blocks,

block Random Access Memories (RAMs) and Digital System Processing (DSP)

blocks that are connected through programmable interconnects. FPGA has fine-

grained, low-latency memory with higher bandwidth, which helps to make a flex-

ible and customizable hardware accelerator.

17

Zynq-7000 All Programmable SoC Data Sheet: Overview

DS190 (v1.11) June 7, 2017 www.xilinx.com
Product Specification 6

Figure 1 illustrates the functional blocks of the Zynq-7000 architecture. For more information on the functional blocks, see
UG585, Zynq-7000 AP SoC Technical Reference Manual.

X-Ref Target - Figure 1

Figure 1: Architectural Overview

2x USB

2x GigE

2x SD

Zynq-7000 All Programmable SoC

I/O
Peripherals

IRQ

IRQ

EMIO

SelectIO
Resources

DMA 8
Channel

CoreSight
Components

Programmable Logic

DAP

DevC

SWDT

DMA
Sync

Notes:
1) Arrow direction shows control (master to slave)
2) Data flows in both directions: AXI 32-Bit/64-Bit, AXI 64-Bit, AXI 32-Bit, AHB 32-Bit, APB 32-Bit, Custom
3) Dashed line box indicates 2nd processor in dual-core devices

ACP

256K
SRAM

Application Processor Unit

TTC

System-
Level

Control
Regs

GigE

CAN

SD
SDIO

UART

GPIO

UART
CAN

I2C

SRAM/
NOR

ONFI 1.0
NAND

Processing System

Memory
Interfaces

Q-SPI
CTRL

USB

GigE

I2C

USB

SD
SDIO

SPI
SPI

Programmable Logic to
Memory Interconnect

MMU

FPU and NEON Engine

Snoop Controller, AWDT, TimerGIC

32 KB
I-Cache

ARM Cortex-A9
CPU

ARM Cortex-A9
CPU MMU

FPU and NEON Engine

Config
AES/
SHA

XADC
12-Bit ADC

Memory
Interfaces

512 KB L2 Cache & Controller

OCM
Interconnect

DDR2/3,
DDR3L,
LPDDR2

Controller

DS190_01_072916

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

M
IO

Clock
Generation

Reset

Central
Interconnect

General-Purpose
Ports

High-Performance Ports

Figure 3.3: Zync SoC Architecture [3]

In this thesis, Xilinx Zynq-7000 family SoC device is used. The Zynq- 7000

SoC device enables the integration of software programmability and hardware

programmability in an ARM-based processor with Xilinx FPGA [40]. The SoC is

equipped with Cortex-A9 dual-core ARM processor with 28-nm Artix-7 FPGA.

All the computational task of the neural network implementation is done in the

Programmable System (PS), Cortex-A9 processor except for the dot-product cal-

culation. The dot-product calculation task is done in the Programmable Logic

(PL) in FPGA section of the SoC. In Figure 3.3, a block diagram of Zynq SoC

architecture is shown. A central interconnect maintains interconnection between

different parts of the PS and also between PS an PL sections of the SoC. There are

four high-performance Advanced eXtensible Interface (AXI) master-slave interface

ports which provide high bandwidth data transfer between PL and PS. The ARM

processor initializes the data transfer (read and write requests) between PS and

PL. There is an accelerator coherency port through which the AXI master in the

18

PL section can read and write data in the ARM memory address space. Each of

the Cortex-A9 processors contains the snoop control unit which maintains level-1

caches and a shared level-2 cache, and the coherency between them.

3.3 HLS

Traditionally, hardware description language (HDL) such as Verilog, VHSIC Hard-

ware Description Language (VHDL) is used to design a logic circuit for program-

ming FPGA. The HDL code is abstracted to register transfer level (RTL) of the

logic, which a hardware engineer designs to implement using parallel mode of oper-

ation with combinational and sequential logic. Programming in RTL is very close

to programming in gate level logic, and thus gives the programmer a very good

controllability of the hardware. Implementation of an algorithm in RTL requires

a good amount of effort in formulating a finite state machine, break down the

algorithm into the logic level, and parallelizing and pipelining different blocks of

the algorithm, and thus the whole process is time-consuming. High-level synthesis

(HLS) tool gives the opportunity to the programmer with a high level of abstrac-

tion to program in a high-level programming language such as C, C++, SystemC

and compiles to HDL level under some programming constraints (i.e., without

dynamic memory allocation) [41], [42], [43]. HLS tools also provide the capability

for co-synthesis of the designed algorithm to verify the design. It also provides the

option to optimize the design using parallelism and pipe-lining [44], [45], [46].

The HLS tool of Xilinx is integrated with the Xilinx’s Vivado design method-

ology and the Intellectual Property (IP) block generated from the HLS tool is

realized by the Vivado Design Suite for the Zynq 7000 series SoC. In this thesis,

the HLS tool is used for designing the hardware accelerator using C language for

the Zynq SoC, thus enabling the automated generation of RTL architecture to be

implemented in the FPGA.

19

3.4 Power 8 and CAPI

In the fast-growing high-performance computing environment, acceleration is

the key factor that researchers can use in performing data analytics. IBM’s Power

8 processor architecture, which supports OpenPOWER environment (allows open

licensing environment) [47], is designed by focusing on big data analysis. It has a

larger memory bandwidth around the processor, which makes it possible to process

big data in real-time. With lower latency and higher bandwidth, it can transfer

data through its Generation 3 PCIe I/O bus. Multi-threading is another feature

for which the Power 8 processor is being chosen by data centers. Also, being an

"OpenPOWER" system, it attracts researchers to develop their application by

collaborating with the greater community.

In a traditional SoC system, programmers have to take the overhead of manag-

ing I/O mapping for maintaining the communication and for maintaining memory

mapping between PS and PL. On the other hand, the Power 8 system removes this

overhead by introducing a coherent processor accelerator interface (CAPI), which

allows part of any task to be completed in an accelerator. Also in a traditional

SoC, there exists an overhead for any processor for translating between a virtual

address and physical address. But in the Power 8 CAPI system, in the accelerator

there exists an Effective-to-Real-Address Translator (ERAT) that translate be-

tween physical and virtual address, there is no need to translate between a virtual

address and physical address. In the Power 8 system, the accelerator effectively

acts as a thread. It has the flexibility of attaching devices across the PCIe bus

coherently. The overhead of running things across the I/O bus is that the soft-

ware stack needs to communicate with the device driver. In other systems, even

if the I/O has a higher bandwidth, it still requires a large amount of CPU to

communicate with the device driver.

20

Memory

 Device Driver PCIE

Processor

Accelerator

Traditional Acceleration

Processor

CAPI

Memory

Accelerator

CAPI

Figure 3.4: Memory access trends (modified and redrawn [4])

In the CAPI paradigm, the part of any algorithm that needs to be accelerated is

kept in a functional unit of FPGA is called the Accelerator Function Unit (AFU).

The whole purpose of an AFU is to facilitate an application with a higher-density

computational unit to maximize the overall performance. The CAPI architecture

in the Power 8 system enables the system to use the AFU unit as a coherent peer

to the Power 8 processors. The Coherent Accelerator Processor Proxy (CAPP)

unit maintains coherency protocol between the AFU and the cores of the Power 8

processor. The CAPP unit maintains architectural coherency for the AFU across

the virtual memory space. The Power Service Layer (PSL) from IBM that is

maintained in the FPGA, which maintains the connection between the CAPP unit

across the PCIe bus. The communication between the processor core and PSL is

maintained by the Power 8 processor and the PSL, thus allowing the programmer

to concentrate on the algorithm. In Figure 3.5, a block diagram of the architecture

is shown. The AFU contains a cache of 256 KB, and the accelerator can direct

any algorithm running on the cores of Power 8 processors to access the cache. The

accelerator uses an unchanged virtual address space that an application uses with

full access. Any application needs to send a processing element to the AFU that

contains a Work Element Descriptor (WED), which contains the whole description

of the application that needs to be accelerated in the AFU. The WED element can

also contain any pointer to memory on which the accelerator performs necessary

21

operations.

Power8 Server

User Application

Power 8
System

CAPI Enabled
Operating
System

CAPP PCIe PSL

FPGA

Accelerator
Function
Unit (AFU)

Figure 3.5: Power8 CAPI architecture

S/W
Compiler

CAPI
libcxl

Application
Software

CAPI
Enabled

O/S

Xilinx
Vivado

Application
Hardware

VHDL, Verilog,
System Verilog

CAPI reference
design

from FPGA
manufacturer Xilinx &

3rd party
IP

IBM
PSL

Figure 3.6: Software Hardware Components

On the software side programmers need to include a CAPI library called "libcxl"

which facilitates several functions to connect and communicate with the CAPI

device in the Power 8 system. Figure 3.6 shows all required software and hardware

units. PSL communicates with the AFU through the following interfaces: AFU

command interface, AFU buffer interface, PSL response interface, AFU Memory

Mapped Input Output (MMIO) interface, and AFU control interface. Using AFU

command interface the AFU makes service requests to the PSL, while through

22

the PSL response interface PSL reports about the service requests. Using the

buffer interface PSL and AFU transfer data between them and through the MMIO

interface software running on the host can get access to the registers of the AFU.

AFU manages the control states of PSL using the AFU control interface.

23

IV. SOC IMPLEMENTATION

Accelerator for multilayer neural network is designed and implemented in two

different heterogeneous systems, i.e., Xilinx Zynq SoC and IBM Power 8 system.

4.1 Two-Layer Fully Connected Neural Net

This thesis presents, hardware accelerator for two-layer neural network. The

network takes N-dimensional inputs and classifies into C classes. It has a hidden

layer of dimension H and Rectified Linear Unit (ReLU) nonlinearity layer after first

the FC layer. The ReLU computes f (x) = max (0, x).This nonlinear unit helps

to trigger on and off the neurons of the previous layer. It helps to converge to a

solution more quickly [48]. L2-regularization is used for updating weight matrices

to reduce the variance in the model. The network is trained with softmax classifier

[49] function. The softmax layer is added behind the last fully connected layer.

This layer computes the raw class score i.e. Ci into a class probability Pi according

to the computation Pi = eCi/
∑

k e
Ck .

input
1st FC
Layer

ReLU
2nd FC
Layer

Softmax output

Figure 4.1: Two-layer neural network

Figure 4.1 shows the layers of a two-layer neural network considered in this

thesis. A simplified algorithm used for training the neural network is given below:

In Algorithm 1, the weight matrices are initialized with randomly generated

numbers from -1 to 1 and the biases are initialized with zero values. The training

data is divided into two parts, training input data set and the validation dataset.

The number of iteration that the training session will be run for optimization

is pre-set by the value of iteration number. Batch size determines the number

of training examples will be used per iteration. Fist minibatch of input data is

created. Then the in the loss function, the gradient decent operation is performed

24

Algorithm 1 TWO LAYER NEURAL NET
1: function loss(X, y) . X - input, y - output
2: N,D = shape (X)
3: Temp1 = X dot W1 + b1
4: Temp2 = max (0, T emp1)
5: Score = Temp2 dot W2 + b2
6: Score_Exp = exp (Score)
7: Probs = Score_Exp/sum (Score_Exp)
8: Log_Prob = −log (probs (0..N) , y− = 1)
9: Loss_1 = sum (Log_Prob)

10: Loss_2 = (sum (W12)) + sum (W22)) /2
11: Loss = Loss_1 + Loss_2
12: Grad_score = (probs[(0..N) , y]− = 1) /N
13: Grad_W2 = Transp (Temp2) dot Grad_score
14: Grad_b2 = sum (Grad_score)
15: Grad_H = Grad_score dot Transp (W2)
16: Grad_H = 0 if Temp2 <= 0
17: Grad_W1 = Transp (X) dot Grad_H
18: Grad_b1 = sum (Grad_H)
19: Grad_W2 = Grad_W2 + reg_coeff ∗W2
20: Grad_W1 = Grad_W1 + reg_coeff ∗W1
21: end function
22: function train(X, y,X_val, y_val, numofiter, batchsize) . X - input, y -

output
23: Num_train = X.shape[0]
24: for iter = 0 to num_of_iter do
25: indx = random ((0..Num_train) , batch_size)
26: X_batch, y_batch = X[indx], y[indx]
27: Grad = LOSS (X_batch, y_batch)
28: W1,W2, b1, b2+ = η ∗ (Grad_W1, Grad_W2, Grad_b1, Grad_b2)
29: end for
30: end function

25

on the minibatch of data to find out the weight matrices that minimized the

mean squared errors. In the loss function, in forward pass, the weight matrices are

multiplied with the input matrices to perform the linear regression. This generates

the class scores. The scores are then passed through the ReLU activation function

and class probabilities are calculated. Then, in the backward pass the gradient on

the weight matrices are calculated.

From the algorithm, it can be found that the highly computational unit of the

two-layer net is the calculation of the dot-products used in the loss function, which

is repeatedly performed to minimize the sum squared error. Therefore, acceleration

is proposed for the dot-product calculations.

4.2 Acceleration in Xilinx Zynq SoC

Figure 4.2: Architecture in zynq SoC

The proposed framework of the neural network distributes the computation of

DNN between the CPU and the accelerator. The hardware accelerator architecture

is proposed for two platforms, IMB CAPI and Zynq SoC. In this section, the

accelerator architecture in Zynq SoC platform is proposed. In Figure 4.2, the

main modules of the proposed accelerator and the interconnection and interface

among the modules are shown. The most expensive computation part of multilayer

26

neural network, the dot product calculation in FP32 between two matrices is

accelerated in the Hls_accel module. The accelerator is designed in HLS and

imported into the design. The rest of the calculations are performed in the ZYNQ

Processing System block, which includes a Cortex-A9 ARM processor CPU. The

element of the two matrices is first written in the DDR3 memory using a DMA

controller. When the data is written in the DDR3 memory, the data is passed to

the accelerator, and the accelerator starts functioning. The accelerator writes its

output to the Direct Memory Access (DMA) through AXI interconnect. The CPU

controls the accelerator through an AXI control interface bus. All the modules

in the accelerator is designed using HLS and realized in RTL for the accelerator.

So, all the modules except the ZYNQ Processing System block are initialized

as hardware in the FPGA. These modules are initialized to the cortex Cortex-A9

processor as AXI memory mapped devices. To communicate with these devices the

processor needs to know the addresses of these devices. If the addresses are not

correctly assigned to the devices, then the processor won’t be able to communicate

with them. The memory addresses of the memory mapped AXI devices are shown

in Figure4.3. To be able to transfer data form the accelerator processor needs to

write and read data in the address between 0x43C00000 to 0x43C0FFFF.

Figure 4.3: Addresses of AXI memory mapped device

The addresses table that has been assigned to the modules are translated for

the Zynq SoC. The hierarchy of the functions performed on the SoC is shown in

the block diagram in Figure 4.4. The Cortex-A9 processor starts the main func-

tion and starts executing the neural network. As mentioned in the algorithm, for

minimizing the squared error, the loss function is executed. In the loss function

27

main()

Neural_Net()

loss_function()

dot_product()

init_dma()

setup HW accelerator () :
1. setup interrupt in ARM

2. send start signal to accelerator

start HW accelerator () :
1. transfer matrices to accelerator

2. wait for the acceelerator to finish

start HW accelerator () :
1. transfer data from accelerator to

DMA

Continue other calculation in
loss_function()

Figure 4.4: Zynq implementation

its necessary to calculate the dot-products. As, the dot-product is calculated in

the hardware accelerator and the accelerator needs access to the memory. The

init_dma() function is called to initialize the AXI DMA interconnect to be able

to read and write data form memory. The processor initializes its interrupt service

routine for receiving interrupt from the hardware accelerator. Then the proces-

sor sends start signal to the accelerator to transfer data from the memory to the

hardware accelerator. Upon receiving the data, the accelerator performs the com-

putation and when it finishes the computation it sends a signal to the processor.

Then the processor controls the accelerator to write the computed result in the

memory. When the accelerator finishes writing the result, it sends an interrupt

signal to the processor to continue the rest of the computation.

28

V. COHERENT ACCELERATOR IMPLEMENTATION

This chapter introduces the system architecture development and state machine

organization for data transmission within CAPI interface. The POWER8 proces-

sor includes a symmetric multiprocessor (SMP) bus interconnection fabric which

enables the various units to share system memory and communicate coherently.

In the POWER8 processor system, PCIe Host Bridge (PHB) provides connec-

tivity to PCIe Gen3 I/O links. There are memory controller (MC) blocks and a

coherent accelerator processor proxy (CAPP) block along with the PHB which

enable memory coherency, data transfer, as well as interrupt system and address

translation for the PCIe attached accelerator [50]. The CAPI system architecture

is depicted in Figure 5.1. This chapter describes the interface details of CAPI and

the algorithm details for proper PSL-AFU communication.

FPGA AFU

POWER Service Layer
Address Translation, Cache

Coherency, Inturrept, Fault Handling

Control
Signals Data

PHB

CAPP

core(s)

PCIe

Memory

MC

SMP bus fabric

Figure 5.1: CAPI System Architecture.

5.1 The Psl-AFU Interface

The PSL-AFU interface communicates with the accelerator logic running on the

FPGA. Through this interface, the PSL offers service to the FPGA and responses

to any request made by the FPGA. In our accelerator design, the communication

between PSL and AFU is maintained using five interface channels. The communi-

cation is established using different handshake signals. The hardware programmer

has to generate and check the signals in different ports of the interfaces of AFU for

maintaining the communication. The interface channels are broadly categorized

as follows:

29

1. Accelerator Command Interface

2. Accelerator Buffer Interface

3. PSL Response Interface

4. Accelerator MMIO Interface

5. Accelerator Control Interface/ Job Interface

These interfaces allow the software stack to control the accelerator state and

allow the accelerator to access the data in the system memory. Table 5.1 summa-

rizes the interfaces with the source and destination information along with brief

description of the interfaces.

Table 5.1: Interface details

Interface From To Details

Command Interface Accelerator PSL Send Service request

Buffer Interface PSL, Accelerator Accelerator, PSL Transfer Data

Response Interface PSL Accelerator Reports Status about service requests

MMIO Interface Software Accelerator Reads Register within accelerator

Control Interface PSL Accelerator Control state of accelerator

Buffer In

Response

Buffer out

Command Out

AFU_work

wed

clock
enabled

reset

Figure 5.2: AFU Block Diagram

In our design, the interfaces are sub-grouped into two categories: Input, and

Output. There is an unit inside the AFU named AFU_work which connects with

either one or both of the ’in’ and ’out’ sub-categories of the interface. Some of the

30

important subdivisions of each of the interfaces are shown in Figure 5.3.

Command Interface
Command Interface In

Command Interface Out

Buffer Interface

Buffer Interface In

Buffer Interface Out

MMIO Interface

MMIO Interface In

MMIO Interface Out

Job / Control Interface

Job / Control Interface In

Job / Control Interface Out

enabledrunning

wedaddress

Figure 5.3: AFU Interface

5.1.1 Accelerator Command Interface

Through the accelerator command interface the AFU logic sends command to

the PSL. This interface works in a synchronous way. The AFU_work unit com-

municates with the PSL via the command Interface Out bus. For each of the

command, a valid signal is issued from the AFU. All the individual commands are

assigned with 8-bit tag numbers. The PSL uses these tag numbers in its subse-

quent operations while serving for each of the commands. The tag number is used

by the Buffer Interface and by the Response Interface for updating the status

notification. The command code bus informs the PSL about the action it needs to

perform. IBM has specified some specific codes for the PSL. The command ad-

dress bus holds the effective addresses of shared memory. The lay out Command

Interface is shown in Figure 5.4.

Command Interface out

 Command valid

 Command tag [0:7]

 Command code [0:12]

 Command address [0:63]

 Command size [0:11]
 Figure 5.4: Command Interface

31

5.1.2 Accelerator Buffer Interface

Buffer Interface in

 Buffer Read valid

 Buffer Read tag [0:7]

 Buffer Read address [0:5]

 Buffer Write valid

 Buffer Write tag [0:7]

 Buffer Write address [0:5]

 Buffer Write data [0:511]

Buffer Interface out

 Buffer Read latency [0:3]

 Buffer Read data [0:511]

 Buffer Read parity [0:7]
 Figure 5.5: Accelerator Buffer Interface

Buffer Interface is responsible for transferring data between PSL and AFU.

After receiving a valid command with a specific tag, buffer interface reads or writes

data from and to the AFU. The buffer interface can read or write simultaneously.

While transferring data half line of data (512-bits) is read or written through the

buffer interface, buffer interface in or buffer interface out. The read operation is

performed in pipe-lined style. The Buffer Read/ Write valid signal is issued when

a valid data is present in the interface. The Buffer Read/ Write tag indicates

the command tag number for which the PSL is responding through the buffer

interface. The port description of the buffer interface is shown in Figure 5.5.

5.1.3 PSL Response Interface

Response Interface

 Response valid

 Response tag [0:7]

 Response [0:7]

Figure 5.6: PSL Response Interface

The response interface is responsible for signaling the completion of different

commands by the PSL requested from the AFU. This interface helps out in main-

32

taining the control flow. The structure of response interface is shown in Figure

5.6. The response valid signal is issued when a valid response is present in the in-

terface. The response tag indicates the tag number of the command for which the

response has been generated. In the Response bus, response codes are transferred.

The definitions of the response codes are generated by IBM.

5.1.4 Accelerator Control Interface

Control / Job Interface

 Job valid

 Job Command [0:7]

 Job address [0:63]

 clock

Figure 5.7: Accelerator Control Interface

Through the accelerator control interface, the state of the AFU is monitored and

controlled. The working unit of AFU is also monitored and controlled through this

interface. The valid signal is issued for one cycle for a command. The PSL sends the

control commands to the work element unit of the PSL through the Job Command

Interface. The PSL mainly resets and starts the AFU through this bus. Through

the 64-bit job address bus, the WED information is passed from the PSL to the

AFU and lastly to the AFU_work unit of AFU.

5.2 State Machine Design for CAPI Interface and Data transfer

A state machine has been designed to maintain the control flow in the AFU. For

streaming the data from the host memory to the PSL and from the PSL to the host

memory, different interfaces from PSL-AFU is used. By checking different signals

and by setting values on different buses and ports the state machine translates

from one state to another.

33

Start work
Waiting for

WED
Request
stripes

Waiting for
stripes

Increment
offset

Dot Matrix
Request

Write
Command

Write Buffer
Write

Response
Done

Figure 5.8: State Machine of CAPI data transfer

At first, the PSL resets the state machine via the control interface with a RESET

command. After being reset by the PSL, the state machine of the AFU initializes

its state in the START WORK state. Then, it waits for receiving the WED via the

control interface in theWAITING FOR WED state. When it gets a WED element,

it knows the effective address of the data on the shared memory. In the REQUEST

STRIPES state, the AFU make requests through the command interface to read

data from memory. After making the request, in the WAITING FOR STRIPES

state, the state machine observes the ports and buses of the response interface and

buffer interface. When it receives a buffer valid signal, it takes the data via the

buffer interface. After receiving the data from shared memory, different register

values are updated in the INCREMENT OFFSET state. By cycling the states,

REQUEST STRIPES, WAITING FOR STRIPES, and INCREMENT OFFSET,

the FPGA receives the data from the shared memory. When all the data is on

the on-chip memory of FPGA, the state machine performs the computation in

the Dot Matrix state. The work unit inside the AFU performs the computation

and stores the result of the computation in a buffer. After the completion of the

computation, the state machine transfers the state to the Request write command

state. Through the command interface, it makes a write request to the PSL to

write data from AFU buffer to the memory. After making the write request, the

state machine waits for the buffer valid signal to be high for one cycle. When it gets

the buffer valid signal it writes the data through the buffer interface. By looping

34

through several cycles of REQUEST WRITE COMMAND, WRITE BUFFER and

WRITE RESPONSE states the state machine completes sending all the data from

the buffer.

35

5.3 Detailed Implementation of the State Machine:

START_WORK
Set: offest = 0
offset_w = 0

cmmd_out.cmd = READ_CL_NA
cmmd_out.tag = rqst read
cmmd_out.address= wed

cmmd_out.valid = 1
current_state = WATING_FOR_WED

WAITING FOR WED
Set: cmmd_out.valid = 0

resp_valid &
resp_tag==

rqst read

buff_valid &
buff.in_tag ==

rqst read

Y

REQUEST STRIPE

Set:
Cmmd_out.valid=1

Cmmd_out.size=128
Cmmd_out.cmd=RD_CL_NA

cmmd_out.tag==
rqst read

Y
Cmmd_out.tag = stripe1_read

Cmmd_out.address =
wed.stripe1 + offset

N

Cmmd_out.tag = stripe2_read
Cmmd_out.address = wed.stripe2

+ offset

set reg:
 wed.size = buff_in.write_data [0:63]
wed.stripe1 = buff_in.write [64:127]

 wed.stripe2 = buff_in.write [128:191]
 wed.stripe3 = buff_in.write [192:255]

Y

NN

WAITING FOR STRIPE

INCREMENT OFFSET

Figure 5.9: Detailed Flow diagram of START_WORK

After getting a reset signal from the PSL, the AFU resets its states. Several

command tags are enumerated for different kinds of command requests at the

beginning of the execution of the states. In the START WORK state, it sets the

registers, offset and offset_w to their initial values. These two registers count the

offset that needs to be added with the stripe1, srtripe2 and stripe3 addresses for

reading and writing data from and to the correct addresses. This state also sets the

different ports of the command out interface. First, the command is sent to read

data from memory with a command READ_CL_NA. The command is attached

with a tag that was enumerated in the beginning of execution. The address is set

36

Figure 5.10: Timing Diagram for the state: START_WORK

with the value that is received through the address bus of the job in interface

while resetting the state machine. After setting all the ports of command interface

the command out valid signal is set for one cycle. In Figure 5.10, START_WORK

state is shown. A 32-bit register, current_state, holds the current state of the state

machine. After getting a reset signal from the PSL, the WED information is passed

to the command_out.address bus to read the WED descriptor from memory. In

this case, the WED address is 6e3200. The size of the WED descriptor is 64 (0x40)

bytes which are also passed through the command out interface.

Figure 5.11: Wed structure in host application

37

The address of the WED descriptor is a pointer which holds the WED structure.

The pointer is generated in the host application and passed to the PSL. Here, in

Figure 5.11, the WED pointer generated from the host application is 0x6e3200

which is the exact value that the PSL got in its wed register through the Job in

address bus. The WED descriptor contains the total 5 pointers to different data:

size, stripe1, stripe2, stripe3, and size_A. From the START_WORK state, the

state machine transfers its current state to WAITING_FOR_WED state. In this

state, buffer interface is checked for a buffer in write valid signal. When the WED

descriptor is read from memory and is available on the buffer interface, the value

of the descriptor is stored on some registers in the FPGA.

Figure 5.12: WED descriptor elements in simulation

In Figure 5.12, the contents of the wed_descriptor register are shown. When

the write valid signal is high, the wed_descriptor register is updated. Values of

the pointers for the data size, stripe1, stripe2, stripe3 (which in this state machine

has been declared as parity) and size_A are received as 0x4000 (DEC 16384),

0x6b3c80, 0x6c3d00, 0x6d3d80, and 0x4000 (DEC 16384) which exactly match

with the WED descriptor that has been sent from the host application. When the

response valid signal is high, the state machine transfers its state to the REQUEST

STRIPE state. In Figure 5.13, it is shown that from this state, using the command

interface, data read request is sent for reading stripe1 and stripe2 data from the

38

Figure 5.13: Command request for reading stripe1 and stripe2 data

shared memory. In Figure 5.14 the addresses of stripes are shown.

Figure 5.14: Pointers for Stripe1 and Stripe2 data

In Figure 5.13, the timing diagram shows that when a valid response is available

in the response buffer, first the AFU makes a request to the PSL to read the

data from memory pointed by the address of stripe1 register and then makes the

request to read data for the stripe2 register. When both requests are made with

two different command tags through the command interface, the state machine

goes to the next state to wait for the data to come through the buffer interface.

39

WAITING FOR STRIPE

resp_tag ==
stripe1_read &&
resp_valid == 1

Cmmd_out_valid= 0

Buff_in_write_val

!
buff_in.wrt_val

==0

strp_rcvd &&
flag_strp1 &&

strip2flag_strip1 flag_strip2

strp_rcvd=1

INCREAMENT OFFSET

offset + 128 < reqst.size

DOTMATRIX

Y

resp_tag ==
stripe1_read &&
resp_valid == 1

Y

N N
N

Store stripe1 and
stripe2 data

Y

N

REQUEST STRIPE Y

N

Y

N

Y

Figure 5.15: Algorithm implemented for data receiving

When the data are available in the buffer interface, the response_valid signal

goes high. In the WAITING FOR STRIPES state, the state machine waits for

the response valid signal to go high. When it finds that the response valid signal is

high, depending on the value of the response tag it either receives data for stripe 1

or for stripe 2. After receiving the data from memory, it is buffered in the on-chip

buffer of the FPGA.

Figure 5.16: Timing diagram in the WAITING FOR STRIPES state.

After storing the data in the stripe1 buffer and stripe2 buffer, offset to the ad-

40

dresses are incremented for receiving next stripes. From the INCREMENT OFF-

SET state, the state is transferred to the REQUST STRIPES for requesting next

stripes. This process repeats for receiving all the data for matrices. After receiving

data for matrices, the state machine goes to the state of the computation. After

finishing the computation, the result is stored in a buffer named stripe3.

DOTMATRIX

Set:
Cmd_out.cmd
Cmd_out.addrs
Cmd_out.tag

Cmd_out.valid

WRITE_BUFFER

Cmd_out.valid = 0

buff_in.read_valid &&
buff_in.read_addr==0

buff_in.read_valid &&
buff_in.read_addr==0

write_buff = strp3[indx][0:511];
buff_low=1

write_buff = strp3[indx][512:1023]
buff_high=1

buff_low &&
buff_high

WRITE_RESPONSE

resp.valid

offset_wrt+128 <
rqst.size

offset_w += 128
indx_w+=1

WRITE_COMMAND

DONE
Reset the HW

Y

N

Y

N

Y

N

Figure 5.17: Algorithm to to write data for data

In the WRITE COMMAND state, using the command interface write request

is made with the command code WRITE_NA. Command address is assigned

with the value that was sent from the application in the WED descriptor. A valid

command is created when a valid signal is made for one cycle. The timing diagram

is presented in Figure 5.18.

41

Figure 5.18: Valid command issue

Every time a data write command is completed, the value of the offset register,

offset_w, is increased for finding the next address to where data is to be written.

The register, index_w counts the index number for calculating the total amount

of data that has been written in the memory.

Figure 5.19: Write data timing diagram

After making the write request command through the command interface, the

flag buffer_in.read_valid is made high to pass the data to the PSL through the

buffer interface. In Figure 5.19, the timing diagram has been shown. When the

data is passed through the buffer interface, response valid signal is checked for

confirmation of data write validity. When a response valid signal is received, the

42

value in the offset_w register is added to the current address, and index_w register

is also increased. The timing diagram is shown in Figure 5.20. Then, the state is

transferred to to COMMAND_WRITE state, and the three states are looped

through until all the data is written in the memory.

Figure 5.20: Write data timing diagram; response valid signal

5.4 Simplified Data-flow in Accelerator

PSL
Packed buffer Un-packed buffer

Change
Endian On-Chip

Memory
or Buffer

Packed buffer Un-packed buffer

Change
Endian

Computational
Unit

Data Management Unit (DMU)

AFU

Figure 5.21: Simplified Data-flow in accelerator

In the hardware accelerator, data comes from the shared memory through the

PSL to the on-chip memory of the FPGA. Depending on the design of the AFU,

the memory can be BRAM type or sparse LUT RAM type. Inside the AFU there

is a Data Management Unit (DMU) which manages the data to be structured and

stored correctly in the AFU. The PSL represents the data in big-endian format

whereas the accelerator works on the little-endian format. So the data is swapped

to make it little-endian format. Through the buffer interface, the AFU receives

the data in a packed format of m bytes where the maximum packed data size that

PSL can buffer at a time is 128 bytes. To use the data in the computational unit,

the data is transformed from the packed to the unpacked structure. After this

43

process, the data is stored in the on-chip memory of the FGPA. In Figure 5.21,

simplified data flow in the DMU of AFU is shown.

5.5 Computational Unit Design

c[0] c[n]

matrix B (nxn)

r[0] r[1]r[n]

r[0] r[1]r[n]

r[0]

r[n]

matrix A (nxn)

c[0] c[1]c[n]

c[0] c[1]c[n]

matrix C (nxn)

r[0]

r[0]

c[0] c[n]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8]c[n-1] c[n]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[n-1] r[n]

+

X X X X X X X X X XX

+ + + + +

r[0]

c[0]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8]c[n-1] c[n]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[n-1] r[n]

+

X X X X X X X X X XX

+ + + + +

r[n]

c[n]

Matrix C

Figure 5.22: Matrix multiplier hardware design

The computational unit mainly contains computational blocks. The computational

blocks perform the operation of multiplication and accumulation (MAC). One of

the core computations of DNN algorithm is matrix multiplication. In this section

hardware design for matrix multiplier is discussed.

Matrix Multiplication V.1: In matrix multiplication between two matrices,

matrixA and matrixB, generate an element at C (i, j) in the resultant matrix,

44

matrixC. The elements of ith row in the first matrixAre multiplied with jth column

elements of second matrixAnd the element wise multiplication results are summed

together to get the final element in the resultant matrix. In the first attempt of

implementing matrix multiplier, for each of the elements in the resultant matrix,

matrixC, a number of multiplier and adders are initialized in the hardware. For a

(n× n) matrix, for each element in the resultant matrix, n number of multipliers

are initialized and n/2 number of adders are initialized. The figure 5.22, shows the

hardware architecture. In this implementation, each of the hardware block for the

different elements in the output matrix works in parallel. It is mandatory for this

design that all the data for matrixA and matrixB are present in the on-chip buffer

of FPGA.

Figure 5.23: Data flow for matrix multiplication

Here, in this timing diagram dot matrix multiplication of two (32× 32)matrices,

matrixA and matrixB is performed. All the elements of matrixA and matrixB have

the floating value 1.0 (in IEEE 754 single precision format 0x3f800000). The output

status signal mul_status is high when all the hardware blocks finish their jobs. In

this case all the blocks finished their work at the same time. The result is buffered

in matrixC.

To reduce the number of adders that are required to generate final result from

the adders, the number is reused by using a buffering arrangement and re-using

the adders. In this fashion number of stages required to complete the addition is

45

log2 (n) where the total number of adders is n .

 S1 S2 S3 S4 S5 S6 S7 S8

+
A1

+
A2

+
A3 A4

+ +
A5

+
A6

+
A7

+
A8

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16

 S1 S2 S3 S4

+
A1

+
A2

+
A3 A4

+ +
A5

+
A6

+
A7

+
A8

S1� S2 S3 S4 S5 S6 S7 S8

 S1 S2

+
A1

+
A2

+
A3 A4

+ +
A5

+
A6

+
A7

+
A8

S1� S2 S3 S4

 S1

+
A1

+
A2

+
A3 A4

+ +
A5

+
A6

+
A7

+
A8

S1� S2

STAGE 1

STAGE 2

STAGE 3

STAGE 4

Figure 5.24: Addition stages in adder row

For a row of 8 adders, the stages are shown in the figure. The outputs of earlier

stages are passed to the input in the next stages. Here, 8 adders arrangement is

shown. For 8 adders total 4 stages are required to get the final summation result

form the adders row. In the first stage, the input to the adders, m1, m2, .. m16

are received from the output of the multipliers. The adders produce output S1,

S2 S8. These outputs from stage 1 are passed to the input of the first 4

adders in the second stage. The second stage produces output S1 through S4.

These outputs are passed to the inputs of first 2 adders and thus in stage 4 the

final result is found from the first adder, A1’s output. For a (n× n) matrix, total

number of multipliers required is (n× n× n) and total number of adders required

46

is (n× n× n/ 2) .

Figure 5.25: Control and status signal of adders

The timing diagram in Figure 5.25 shows the start time and completing of

addition computation time for a 16 adders arrangement in a hardware block.

Here, total number of stage is 5. The time of starting an adder is indicated by the

signal start_sum, and the completion time is signaled by sum_done. When the

start_sum signal is high for an adder it starts computation. When the result is

available in an adder’s output it generates a high signal. When the adders input

ports get the data from multipliers output, the first stage starts. For the first

stage, all the adders are started at the same time. And the sum_done signal is

high almost at the same time for all the adders meaning all the adders completes

their addition almost at the same time. Then the data are passed from output of

the adders and transferred to the input of the adders and second stage starts. The

data are passed from the output to the input in a sequential order. When a new

input is available in a adder, the adders are made to reset by giving a low pulse

in the start_sum signal. All the adders are reset in a sequential order one after

another. In this fashion, in the first stage all the 16 adders work. In the second

stage, 8 adders get reset pulse sequentially, in third stage, 4 adders get reset pulse

sequentially, 4th stage get 2 and finally in 5th stage it finishes the computation.

47

Figure 5.26: Data flow in adders row

In Figure 5.26, data flow in the input of adders are shown. The buffer temp1 hold

the input values for the adders. The buffers temp1[0] and temp1[1] are the inputs

for adder1; similarly the others are also assigned to the rest of the adders.The

buffers in1 and in2 hold the input for the hardware blocks. They are mapped to

the input of multiplier array. The first input of adder 1 are from the multiplication

of first element of the in1 and in2 buffer. The first element in the in1 buffer is

0x3f800000 (1.0 in IEEE 754 format) and the first element in the in2 buffer is

0x42000000 (32.0 in IEEE 754 format). The first input in the adder1 is 32.0 (32.0∗

1.0). Similarly, the second element in the in1 buffer is 0x40000000 (2.0 in IEEE

754 format) and the second element in the in2 buffer is 0x41f80000 (31.0 in IEEE

754 format). The second input in the adder1 is 62.0 (31.0∗ 2.0). To understand the

data flow easily, the radix of the first 4 register buffers are made floating point.

When the addition in the first adder (32.0 + 62.0 = 94.0) and the addition in the

second adder (90.0+116.0 = 206.0) are completed, the two input buffer registers

to adder 1, temp1[0] and temp1[1] are updated with the output value from the

adder 1 and adder 2. So, in the first stage, the contents 0f temp1[0] and temp1[1]

are replaced by 0x42bc0000 (94.0) and 0x434e0000 (206.0). In a similar fission, in

the first stage, 16 buffer registers in temp1 are updated in a sequential manner 2

pairs at a time one after another. In the second stage, 8 buffers are updated and

48

in final stage the first 2 buffers for adder 1 are updated.

Matrix Multiplication V.2:

r[0]

r[n]

matrix A (nxn)

c[0] c[1]c[n]

c[0] c[1]c[n]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8]c[n-1] c[n]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[n-1] r[n]

+

X X X X X X X X X XX

+ + + + +

r[0]

c[0]

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8]c[n-1] c[n]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[n-1] r[n]

+

X X X X X X X X X XX

+ + + + +

r[0]

c[n]

Matrix C

r[0]

r[n]

matrix C (nxn)

c[0] c[1]c[n]

c[0] c[1]c[n]

c[0] c[n]

matrix B (nxn)

r[0] r[1]r[n]

r[0] r[1]r[n]

VDB

r[0]

c[0] c[n]

Figure 5.27: Hardware design of matrix-multiplier V2

In the V.1 matrix multiplier design, the number of adders and multipliers re-

quired becomes high when n is a big number. All the FPGAs are resource con-

strained. In most of the cases its impossible to instantiate this large number of

adders and multipliers in the design. Keeping in mind that FPGAs are resource

constrained the next design has been made. To our best knowledge the existing

FPGA community has not applied the technique described here. Instead of hav-

ing hardware blocks for each of the data points of the output matrix, adders and

multipliers are instantiated for one single row. Then data are passed to the same

hardware block for calculating the next row of the output matrix. For this imple-

mentation its necessary to have data of one multiplicand to be on the memory of

FPGA.

The Figure 5.27 shows the basic configuration of the V2 multiplier. It has a

computational row (VCB) which contains all the computational hardware blocks.

For a (n× n) matrix multiplication, the computational row contains n number of

hardware blocks. Each of the hardware blocks contains n number of multiplier and

n/2 number of adders. Each of the hardware blocks contains two n dimensional

buffers. The buffer contains the row elements and column elements of the two

49

matrices which are to be multiplied. Elements of the first buffer are multiplied

with the elements of the second buffer. The second buffer of the hardware blocks

(marked in orange) contains different column elements of the second matrices.

The row of the first matrix is copied to all the first buffers of the hardware blocks.

With one stage of multiplication and log2 (n/2) stages of addition the final result

is found in each for each of the blocks. In this design all the hardware blocks

work in parallel to get the final result on the computational row. The result is

buffered in the computational row. From the computational row buffer, the result

is transferred to the store space of matrixC. After completion of the computation

for the first row of matrixC, the second row of the matrixA is passed to the

second buffer of each of the hardware blocks in the computation row. Then the

computation is performed and the output from the computation row is passed to

the memory space of matrixC.

In Figure 5.28 matrix multiplication of two 32 × 32 matrices, maritxA and

matirxB is performed. All the elements of matrixA and matrixB have the floating

value 1.0 (in IEEE 754 single precision format 0x3f800000). The output status

signal mul_status is high when all the hardware blocks finish their jobs. The

computational row computes for a single row at a time and passes the data to the

rows of matrixC sequentially one after another. The result is buffered in matrixC.

50

Figure 5.28: Data Flow in Dot Matrix Multiplier V2

There is an encoder block which supplies the correct row elements from matrixA

to the hardware block. In this case, matrixA contains 1.0 to 32.0 in the first row,

33.0 to 64.0 in the second row and so forth in the subsequent rows. Depending on

the value of the select_encoder output of the encoder block changes. The hardware

block has a counter to count which row of matrixA is being used for the current

computation. The hardware block sends the select signal depending on the value

of the counter to the encoder block and receive corresponding row of matrixA.

Upon receiving the row elements of matrixA, it passes the data to in1[0:31][31:0]

buffer and then the hardware block performs computation. When the computation

is completed status signal goes high for one cycle and the data in the out buffer

51

get transferred to matrixC.

The second version design of our dot matrix multiplier has improved adders’

utilization and arrangement. In the first version, in each stage of addition compu-

tation, the adder’s enable signal (start_sum) were assigned sequentially one after

another. A counter is enabled to count the stage and a second counter counts

the adder numbers in different stages and resets and enables the adder one after

another. In the second version of the design all the counters are enabled and reset

at the same time and works parallelly. Thus, a greater parallelism is gained than

the first version with in the hardware blocks.

Figure 5.29: Control and status signals for the adders in hardware block

The timing diagram in Figure 5.29 shows the start time and completing of

addition computation time for a 16 adders arrangement in a hardware block.

Here, the total number of stage is 5. The enable signal of an adder is indicated by

the signal start_sum, and the completion time is signaled by sum_done. When

the start_sum signal is high for a adder it starts computation. When the result

is available in an adder’s output it generates a high signal in the sum_done bus.

When the adders input ports get the data from multipliers output, the first stage

52

starts. For the first stage, all the adders are started at the same time. And the

sum_done is signal is high almost at the same time for all the adders meaning all

the adders complete their addition almost at the same time. Then the data are

passed from output of the adders and transferred to the input of the adders and

second stage starts. The data are passed from the output to the input in a single

clock cycle. When a new input is available in an adder, the adders are made to reset

by giving a low pulse in the start_sum signal. In the second stage the first 8 adders

are reset parallely altogether at the same time. The remaining other 8 adders are

made disabled by putting low signal in the start_sum bus. In this fashion, in

the first stage all the 16 adders work. In second stage, the remaining 8 adders (0

through 7) get reset pulse sequentially, in third stage, 4 adders (0 through 3) get

reset pulse sequentially, 4th stage get 2 adders (0 and 1) and finally in 5th stage

the 0th adder gets reset pulse. When the adder completes the computation the

sum_done[0] becomes high and finally after transferring the data form adder[0]

the adder is disabled by putting a low signal in the start_sum[0] register.

Figure 5.30: Data flow in adders row for V2. matrix multiplier

In this timing diagram, data flow in the input of adders are shown. The buffer

temp1 hold the input values for the adders. temp1[0] and temp1[1] are the inputs

for adder1, similarly the others are also assigned to the rest of the adders. in1

53

and in2 holds the input for the hardware blocks. They are mapped to the input

of multiplier array. The first inputs of adder 1 are from the multiplication of first

element of in1 and in2 buffer. The first element in the in1 buffer is 0x3f800000 (1.0

in IEEE 754 format) and the first element in the in2 buffer is 0x42000000 (32.0

in IEEE 754 format). The first input in the adder1 is 32.0 (32.0×1.0). Similarly,

the second element in the in1 buffer is 0x40000000 (2.0 in IEEE 754 format) and

the second element in the in2 buffer is 0x41f80000 (31.0 in IEEE 754 format).

The second input in the adder1 is 62.0 (31.0×2.0). To understand the data flow

easily, the radix of the first 4 register buffers are made floating point. When the

addition in the first adder (32.0 + 62.0 = 94.0) and the addition in the second

adder (90.0+116.0 = 206.0) are completed, the two input buffer registers to adder

1, temp1[0] and temp1[1] are updated with the output value from the adder 1

and adder 2. So, in the first stage the, temp1[0] and temp1[1] are replaced by

0x42bc0000 (94.0) and 0x434e0000 (206.0). In a similar fission, in the first stage,

16 buffer registers in temp1 are updated parallelly at the same time. In the second

stage 8 buffers are updated altogether at the same time and in final the first 2

buffers for adder 1 are updated.

54

VI. DESIGN OPTIMIZATIONS

6.1 Optimization in HLS and Resource Hierarchy

For optimized accelerator implementation in SoC, loop pipe-lining optimization

in the HSL is used. This is a key performance optimization technique in the HLS

flow. This optimization facilitates parallelism across loop iterations. From the ac-

celerator, data is streamed from and into the DDR3 memory. In this streaming

process pipe-lining optimization is used. Another loop pipe-lining optimization

is used while calculating the dot-product. The resource utilization in Figure 6.1

shows that the optimized PL design is expected to use 160 DSP blocks, 13723

Flip-Flops (FFs), 23757 Look-Up-Tables (LUTs) and it takes 4269 clock cycles to

complete the computation.

Figure 6.1: Module hierarchy for resource utilization

Figure 6.2: Performance profile in optimized pipe-lined design

Figure 6.3: Performance profile in unoptimized design

55

From Figures 6.2 and 6.3, it is observed that the total 365,640 of clock cycles

needed by the accelerator in case of the unoptimized accelerator, which is much

bigger than for the optimized design with just 4,269 clock cycles. Unpipelined L1,

L2 loops are responsible for higher latency in the unoptimized design. Multilayer

neural network implementation in the Xilinx Zynq SoC shows about 13x times

faster dot-product calculations in the loss function of the neural net, which results

in the faster calculation in backpropagation.

6.2 Resource Conscious Matrix Multiplier Design (V3)

r[0]

r[n]

matrix A (nxn)

c[0] c[1]c[n]

c[0] c[1]c[n]

r[0]

r[n]

matrix C (nxn)

c[0] c[1]c[n]

c[0] c[1]c[n]

c[0] c[n]

matrix B (nxn)

r[0] r[1]r[n]

r[0] r[1]...............r[n]
comp row (1xn)

r[0]

c[0] c[n]

 m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15]

 c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13] c[14] c[15]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[9] r[10] r[11] r[12] r[13] r[14] r[15]
X X X X X X X X X X X X X X XX

 c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8] c[9] c[10] c[11] c[12] c[13] c[14] c[15] .. c[31]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[9] r[10] r[11] r[12] r[13] r[14] r[15] .. r[31]

+ + + +
A21 A22 A23 A24

S1 S2 S3 S4 S5 S6 S7 S8

S1 S2 S3 S4 S5 S6 S7 S8

+ + + + + + + +
A1 A2 A3 A4 A5 A6 A7 A8

r[0]

c[0]

Figure 6.4: Matrix multiplier hardware design V3

In the resource conscious dot matrix multipliers design, the number of multiplier

and adders are decreased. In a hardware block which computes for a 32x32 kernel,

the number of multipliers and adders in each hardware blocks are reduced to 16

and 12 instead of 32 and 16. Thus, it utilizes less area in the FPGA and also as a

result of utilizing less area it consumes less power.

Figure 6.4 shows the basic configuration of the resource conscious multiplier,

V3. It has a computational row (comp row) which contains all the computational

hardware blocks. For a n×n matrix multiplication, the computational row con-

56

tains n number of hardware blocks. Each of the hardware blocks contains n/2

multipliers and 3n/8 adders. Each of the hardware blocks contains two n dimen-

sional input buffers. The buffer contains the row elements and column elements of

the two matrices which are to be dot producted. Elements of the first buffer are

multiplied by the elements of the second buffer. The second buffer of the hard-

ware blocks (marked in green) contains different columns elements of the second

matrix, matrixB. The row of the first matrix is copied to the first buffer of a hard-

ware blocks. The column elements are copied to the second buffer of a hardware

block. The adder row is divided into two parts the first part, the AD1 contains

n/4 adders and second part, the AD2 contains n/8 adders. Initially, the first half

of the input data is passed to the input of the multipliers. After completing the

computation in the multipliers in one cycle, the result is transferred to the AD1

adders input. The result from the AD1 adders output are transferred to the AD2

adders input. In the meantime, the second portion of the input data is transferred

to the input buffer of the multipliers. The output of the multiplier row is available

to pass to the input of the the AD1 adders. After transferring the data from the

AD1 adders output to the AD2 adders input, the AD1 adders row takes data from

the output of the multiplier row. The final result is available after two stages of

multiplication and log2 (n/4) + log2 (n/8) stages of addition. In this design all

the hardware blocks work in parallel to get the final result on the computational

row. The result is buffered in the computational row. From the computational row

buffer, the result is transferred to the store space of matrixC. After completion of

the computation for the first row of matrix C, the second row of matrixA is passed

to the second buffer of each of the hardware blocks in the computation row. Then

the computation is performed and the output from the computation row is passed

to the memory space of matrixC.

57

Figure 6.5: Control and Status signal in adders row in V3 hardware block

Figure 6.5 shows the timing diagram of a 32×32matrix multiplication computa-

tion. The timing diagram is generated while computing dot matrix multiplication

of the dimension of 32 × 32. The timing diagram shows the start time and com-

pletion time for a 12 adders arrangement (8 in the AD1 and 4 in the AD2 section)

in a hardware block. Here, the total number of addition computation stages in the

AD1 is 3 and the AD2 is 2. The enable signal of an adder is indicated by the signal

AD1_start & AD2_start, and the completion time is signaled by AD1_done &

AD2_done. The first stage computation begins when the AD1 adders input ports

get the data from the multipliers output. For the first stage, all the adders are

started at the same time. The AD1_done signal is high almost at the same time.

When the first stage computation is complete, the result from the output of the

AD1 adders are passed to the input of the AD2 adders. The second stage addition

starts in the AD1 adders and the first stage computation starts in the AD2 adders.

The data are passed from the output to the input in a single clock cycle. When a

58

new input is available in an adder, the adders are made to reset by giving a low

pulse in the AD1_start & AD2_start registers. In the second stage, after receiving

the data from the output of the multiplier in the second phase, the adders in the

AD1 are reset in parallel. In the third stage, the remaining 4 adders (0 through

3) are reset sequentially, in third stage, 2 adders (0 and 1) are reset in parallel.

When the adder completes the computation the AD1_done[0] and AD2_done[0]

becomes high. The registers AD1_cmplt and AD2_cmplt are high when both the

AD1 adders and the AD2 adders complete the computation.

Figure 6.6: Data flow in the AD1 adder row

In Figure 6.6, data flow in the input and output of the AD1 adders are shown.

The bufferAD1_in holds the input values for the adders. AD1_in[0] andAD1_in[1]

are the inputs for adder1; the remaining adders are assigned in the same way. The

buffers in1 and in2 hold the input for the hardware blocks. The buffer in1 con-

59

tains the floating point numbers 1.0 through 32.0 and in2 contains the numbers

32.0 through 1.0. In the first phase, the result of multiplication in in1 and in2 is

fed to the input of adder. The buffers In_mul_buff_1 and In_mul_buff_2 are

the input buffers for the multiplier row. The multiplier row contains 16 multipliers

in the row. The input of the multiplier array receives the data in two phases. In

the first phase, the first 16 elements from the buffer in1 and in2 are copied to the

in_mul_buffer_1 and in_mul_buff_2 respectively. The output from the multi-

pliers are buffered in the buffer out_mul_buff. The element wise multiplication

of 1.0 through 16.0 from buffer in1 with 32.0 to 17.0 from buffer in2 produces

the result { 32.0, . . . , 272.0} in the buffer out_mul_buff which is transferred to

the AD1_in buffer. The result of the first state multiplication is produced and

buffered in the AD1_out buffer and then which is transferred to the input of the

AD2 adders.

Figure 6.7: Data flow in AD2 adder row

The first stage inputs of adder 1 are 32.0 and 62.0 totalling 94.0, which is

assigned to the input of first adder in the AD2. In similar fashion the other inputs

of the AD2 adders are assigned. In Figure 6.7, data flow in AD2 is shown. The

addition operation in the AD1 adders and in the AD2 goes in parallel and finally

the output is received from the AD1_out[0] buffer.

60

6.3 Batched Computation

The designed matrix multipliers in the computational unit described in the

earlier chapter utilize a number of resources (LUTs & FFs) in the FPGA. In all

designs, when the size of the computational unit increases to support a larger

matrix, the resource utilization also increases. However, FPGAs have a fixed and

limited number of resources. Due to these resource constraints, it is impossible to

instantiate a computational unit in the FPGA beyond a certain limit in the matrix

size. But in reality, we may need to compute for a larger size matrix. To serve this

purpose, a batched version of matrix multiplication strategy is developed in this

section. It is assumed that the FPGA has a computational unit that can compute

matrix multiplication with a specific matrix size. Let’s define this computational

unit as a kernel. The kernel would be used for computing the larger matrix mul-

tiplication. For developing this strategy, let’s consider two (4 × 4) matrices, X

and Y. The first matrix contains capital letters from A through P and the second

matrix contains small letters from a through p. The matrices are shown in Figure

6.8.

A B C D

E F G H

I J K L

M N O P

a e i m

b f j n

c g k o

d h l p

X = Y =

Figure 6.8: Dummy matrices.

Each matrix is subdivided into 4 batches. The first matrix is batched into X1,

X2, X3, and X4; the second matrix is batched into Y1, Y2, Y3, and Y4. The batched

matrices are shown in Figure 6.9.

61

A B

E F

C D

G H

I J

M N

K L

O P

X1 = X2 = X3 = X4 =

a e

b f

i m

j n

c g

d h

k o

l p

Y1 = Y2 = Y3 = Y4 =

Figure 6.9: Subdivision of matrices.

The result of the matrix multiplication between the two 4× 4 matrices, X and

Y, is found by Out matrix shown in Figure 6.10.

Aa + Bb + Cc + Dd Ae + Bf + Cg + Dh Ai + Bj + Ck + Dl Am + Bn + Co + Dp

Ea + Fb + Gc + Hd Ee + Ff + Gg + Hh Ei + Fj + Gk + Hl Em + Fn + Go + Hp

Ia + Jb + Kc + Ld Ie + Jf + Kg + Lh Ii + Jj + Kk + Ll Im + Jn + Ko + Lp

Ma + Nb + Oc + Pd Me + Nf + Og + Ph Mi + Nj + Ok + Pl Mm + Nn + Oo + Pp

Out =

Figure 6.10: Resultant Out matrix.

If we examine the expressions for Out (1, 1) and Out (2, 1) elements in the Out

matrix, we will find that the Out (1, 1) element is given by the expression Aa+Bb+

Cc+Dd and the Out (2, 1) element is given by the expression Ea+Fb+Gc+Hd

. If we group the first two elements in the (1,1) expression with the first two

elements in the (2,1) expression, we will find that this combination matches the

result of matrix multiplication of X1 and Y1. In the same way, if we group the

second two elements in the Out (1, 1) expression with the first two elements in the

Out (2, 1) expression, we will find out that this matches with the result of matrix

multiplication of X2 and Y3. The resultant matrix multiplications are shown in

Figure 6.11.

62

Cd+Dd Cg+Dh

Gc+Hd Gg+Hh

X2Y3 =

Aa+Bb Ae+Bf

Ea+Fb Ee+Ff

X1Y1 =

Figure 6.11: Resultant matrix multiplications.

Finally, it turns out that performing element-wise addition between X1Y1 and

X2Y3 generates the 2× 2 matrix whose elements are exactly the same as the el-

ements of the 1st quadrant of the matrix Out. The 2nd, 3rd, and 4th quadrant

elements are found by element-wise addition between the matrices X1Y2 and

X2Y4, X3Y1 and X4Y3, X3Y2 and X4Y4. The elements of the Out matrix are

shown in Figure 6.12.

X1Y1 + X2Y3 X1Y2 + X2Y4

X3Y1 + X4Y3 X3Y2 + X4Y4

Out =

Figure 6.12: Elements of Out matrix

If the kernel size is n × n and the matrix size is N × N , then total number of

matrix multiplications needed for computing N × N matrix with n × n kernel is

found by k3 , where k = N/n . The number of additions required for the batched

computation is found by (k − 1) k2.

In batched computation, the multiplicand matrices are chunked into sub-matrices.

The total number of sub-matrices is found by 2k2. In Table 6.1, number of multipli-

cations and additions for different k is shown. In table 6.2 and 6.3, the distribution

of computation is shown.

63

Table 6.1: Batched matrix multiplication distribution numbers

#k # Dot Matrix
Multiplication

Addition
Stages

2 8 4
3 27 18
4 64 48
5 125 100
6 216 180
7 343 294
8 512 448

Table 6.2: Matrix multiplication distribution when K = 3

X1Y1 + X2Y4

+ X3Y7

X1Y2 + X2Y5

+ X3Y8

X1Y3 + X2Y6

+ X3Y9

X4Y1 + X5Y4

+ X6Y7

X4Y2 + X5Y5

+ X6Y8

X4Y3 + X5Y6

+ X6Y9

X7Y1 + X8Y4

+ X9Y7

X7Y2 + X8Y5

+ X9Y8

X7Y3 + X8Y6

+ X9Y9

Table 6.3: Matrix multiplication distribution when K = 4

X1Y1 + X2Y5 + X3Y9 +

X4Y13

X1Y2 + X2Y6 + X3Y10 +

X4Y14

X1Y3 + X2Y7 + X3Y11 +

X4Y15

X1Y4 + X2Y8 + X3Y12 +

X4Y16

X5Y1 + X6Y5 + X7Y9 +

X8Y13

X5Y2 + X6Y6 + X7Y10 +

X8Y14

X5Y3 + X6Y7 + X7Y11 +

X8Y15

X5Y4 + X6Y8 + X7Y12 +

X8Y16

X9Y1 + X10Y5 + X11Y9

+ X12Y13

X9Y2 + X10Y6 + X11Y10

+ X12Y14

X9Y3 + X10Y7 + X11Y11

+ X12Y15

X9Y4 + X10Y8 + X11Y12

+ X12Y16

X13Y1 + X14Y5 + X15Y9

+ X16Y13

X13Y2 + X14Y6 +

X15Y10 + X16Y14

X13Y3 + X14Y7 +

X15Y11 + X16Y15

X13Y4 + X14Y8 +

X15Y12 + X16Y16

64

6.4 Batched Matrix Multiplication Implementation in CAPI

Depending on the availability of resources in an FPGA, the batched matrix

multiplication in CAPI can be designed in two different ways. Let’s consider the

intermediate matrix multiplication results as intermediate matrices. While design-

ing the multiplier, depending on the value of n, k, and the resources in the FPGA,

it is determined whether the intermediate matrices will be buffered or not. The

first method considers that there is not enough FFs or BRAM available that in-

termediate matrices and all the input chunks of memory can not be stored into

the FPGA. The second method considers there is enough resources available for

storing all the intermediate data and input matrices.

6.4.1 Batched Matrix Multiplication V1

CKU

MBU

MBU MBU

PSL ECU

CU

Matrix
Data

Matrix
Data

Matrix
Data

Matrix
Data

Matrix
Data

MBU

FPGA AFU

MBU

ACU

Figure 6.13: Batched computation V1

In the V1 batched computation, it is assumed that the FPGA does not have

enough resources to hold entire input matrices and intermediate matrices into the

FPGA. In V1, the hardware architecture (Fig. 6.13) inside the AFU consists of

computational kernel unit (CKU), a controller unit (CU), multi-ported buffer unit

(MBU), extra computational unit (ECU) and an address computing unit (ACU).

The CU unit in the AFU controls the data flow and communication between

65

the AFU and PSL layer. The two buffers, MBUs, for holding the data of input

matrices. The CKUs have specialized computational units such as dot block (DB)

and ReLu block (RB) for tackling the most common DNN operations. The DBs are

the largest computational blocks in the accelerator. An n×n DB kernel consists of

n vector dot block (VDB) units. Each VDB unit computes the vector dot product

of two vectors. The CKU unit completes the computation of matrix multiplication.

The CU unit controls the batched computation. As in this version there is not

enough memory to hold intermediate results, the CU unit uses the PSL’s cache

unit to read and write the data from and to the system memory while working on

the chunks of the data. After computing the intermediate matrix multiplication,

data is passed to the EKU unit for element wise multiplication. Depending on

the addition stages requirements, the control unit in the AFU requests input data

matrices through the PSL layer form the memory. When the addition is completed,

the control unit directs the PSL layer to write back the result into the memory in

a correct address. As storage buffer is limited the the AFU won’t be able to use

the same input chunk multiple time. So, the PSL may require reading the same

data i.e. X1 several times form the memory. The cache effect in the PSL layer

plays an important role in reading data from memory quickly.

The CU is responsible for extracting information from meta-data in WED and

maintaining the state of the hardware. The ECU is used in the batched computa-

tion for performing addition operations on intermediate data. The ACU calculates

the virtual address for reading and writing user space data to- and from- the shared

memory.

66

6.4.2 Batched Matrix Multiplication V2

CKU

MBU

MBU

MBU

PSL ECU

CU

Matrix
Data

Matrix
Data

Matrix
Data

Matrix
Data

Matrix
Data

MBU

FPGA AFU

MBU

ACU
CKU

CKU

MBU

MBU

MBU

Figure 6.14: Batched computation V2

In the V2 multiplication, it is assumed that the FPGA has enough resources to

hold entire input matrices and intermediate matrices into the FPGA. In V2, the

hardware architecture (Fig. 6.14) inside the AFU consists of 3 computational ker-

nel units (CKUs), a controller unit (CU), several multi-ported buffer unit (MBUs),

extra computational unit (ECU) and an address computing unit (ACU). The CU

unit in the AFU controls the data flow and communication between the AFU and

PSL layer. The MBUs are implemented as BRAMs for holding the data of input

chunk matrices, intermediate matrices and output chunk matrices. The CKU unit

has the same functionality as described in the previous section. In this version the

CKU units works in parallel on different chunk of input matrices. The CU unit

controls the batched computation. As in this version there is enough memory to

hold intermediate results, the MBUs holds the intermediate matrix multiplications

data. After computing the intermediate matrix multiplications, data is passed to

the EKU unit for element wise multiplication. Depending on the addition stages

requirements, the CU unit controlls the EKU unit to write the results into the

MBUs. From the MBUs data are passed to the PSL to write back to the system

67

memory.

6.5 Analysis of Batched Computation in V2

In this section we will find out the number of buffers required and execution time

for batched computation. We will find out the values in terms of k. For a batched

computation having the parameter k, number of batched input sub-matrices are

found by k2. So, to hold all the batched inputs we need 2× k2 buffers unit. Total

number of intermediate matrix multiplication is k3; we need k3 buffers to hold

the intermediate results. We need k2 buffers to hold the output chunks. So the

total number of buffers required is 3k2 + k3. In Table 6.4, total number of buffer

required and computation time for different k is shown.

Table 6.4: Batched computation Analysis

k
#of int.

mul

of

add.

#of buff

for chunks

Total

buff

Matrix

size (N)

Comp.

time(ns)

2 8 4 12 23 64 3368

3 27 18 27 57 96 11272

4 64 48 48 115 128 26664

5 125 100 75 203 160 52040

6 216 180 108 327 192 89896

7 343 294 147 493 224 142728

8 512 448 192 707 256 213032

9 729 648 243 975 288 303304

10 1000 900 300 1303 320 416040

11 1331 1210 363 1697 352 553736

12 1728 1584 432 2163 384 718888

13 2197 2028 507 2707 416 913992

The KU115 FPGA has 4.5KB 2160 BRAM blocks. If we consider 32 × 32 size

68

batched matrices, a chunk-ed batched matrix takes 4.096KB space. So, using the

V2 version, without re-utilizing the MBUs, our design can compute batched mul-

tiplication of size 352× 352 having k=11.

6.6 Variable Size Matrix Multiplication

In the earlier chapters, fixed size matrix multiplier kernels are designed. A n×n

computational kernel works on a n×nmatrix data. But, it is not always the case in

DNN computation that the kernel will receive n×n size matrix data. Depending on

the batch size in the DNN layers and number of hidden layers, the matrix size may

vary. This section of the thesis discusses the approach to compute a reduced size

matrix multiplication in the existing kernel. If we look into a computational row

in our designed matrix multiplier, we will find out that it consists of n number of

computational blocks which computes the vector dot product of two n dimensional

vectors. Figure 6.15 shows a computational block. The buffers, buf1 and buf2, hold

the vectors, between which dot product is calculated.

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] c[8]c[n-1] c[n]

 r[0] r[1] r[2] r[3] r[4] r[5] r[6] r[7] r[8] r[n-1] r[n]

+

X X X X X X X X X XX

+ + + + +

buf1

buf2

Figure 6.15: Computational block

Let us consider that we are trying to compute matrix multiplication between

two matrices of size m×m where, m < n . Then the buffers in the computational

units will hold m number of elements. So, (n−m) number of elements will be in

unknown logical state. To use the kernel with m elements, our approach is to zero

69

(0) padding those extra (n−m) elements. So, (n−m) number of elements after

the mth element are zero padded in the buffers buf1 and buf2.

To reduce the latency of zero padding in a buffer in sequential manner, in our

design, an or gate is used for padding zeros in the buffer in parallel fashion.

Performing or operation with 0 keeps the buffer unchanged where the data is

present and places zeros in other places where the buffer has high z value, or the

buffer is in unknown logical state(X). Figure 6.16 shows the zero padding structure

with or gates.

or or or or or or or or

b0 0 b1 0 b2 0 b3 0 b4 0 X 0 X 0 Z 0

b0 b1 b2 b3 b4 X X Z

b0 b1 b2 b3 b4 0 0 0

in buf

out buf

0 padding

Figure 6.16: Zero padding of elements

Figure 6.17: Zero padding of elements in simulation

Figure 6.17 shows the zero-padding effect in simulation. The buffer in_buf1

takes the non-padded data and produces 0 padded data in the buffer out_buf1.

Similarly, in buffer in_buf2, the data that are in unknown stage (X) are made zero

by using padding in out_buf2.

70

c[0] c[1] c[2] c[3] c[4] 0 0 0 0 0 0

r[0] r[1] r[2] r[3] r[4] 0 0 0 0 0 0

+

X X X X X X X X X XX

+ + + + +

out_buf1

out_buf2

Figure 6.18: Computational block with zero padded data

When the buffers are padded with zero, the computational unit can perform

computation on small size matrix with the existing hardware arrangement. In

Figure 6.18, the computational block with zero padded buffer is shown. In this

arrangement, the buffer out_buf1 and out_buf2 are the output of zero padding

arrangement and these buffers hold the values of the two vectors. In the cur-

rent arrangement of computational row, if the computational block computes dot

product between vectors of size n, then it takes log2 (n) stages for the adders to

compute the output. For a reduced size vector with size m, it will take dlog2 (m1)e

stages. Thus, the total computational time decreases in calculating a vector dot

product is about (dlog2 (m1)e / log2 (n)× t times where, t = latency of 1 vector

dot product computation. If m is greater than n/2 then it takes same amount of

time as it takes for computing a vector dot product of size n . To compute a

m×m matrix it will take (n/m)× (dlog2 (m1)e/log2 (n))× t amount of cycles to

compute the final resultant matrix.

Let us consider the following matrices. We will find the matrix multiplication of

71

matrixA =

1.0 2.0 3.0 4.0 5.0

33.0 34.0 35.0 36.0 37.0

65.0 66.0 67.0 68.0 69.0

97.0 98.0 99.0 100.0 101.0

129.0 130.0 131.0 132.0 133.0

matrixB =

1.0 2.0 3.0 4.0 5.0

33.0 34.0 35.0 36.0 37.0

65.0 66.0 67.0 68.0 69.0

97.0 98.0 99.0 100.0 101.0

129.0 130.0 131.0 132.0 133.0

matrixC = matrixA ∗matrixB

matrixC =

1295.0 1310.0 1325.0 1340.0 1355.0

11695.0 11870.0 12045.0 12220.0 12395.0

22095.0 22430.0 22765.0 23100.0 23435.0

32495.0 32990.0 33485.0 33980.0 34475.0

42895.0 43550.0 44205.0 44860.0 45515.0

72

Figure 6.19: matrixA in simulation

Figure 6.20: matrixB in simulation

Figure 6.21: matrixC in simulation

The content of matrixA, matriB and matrixC is shown in Figure 6.19, 6.20

and 6.21. It took 362ns for the kernel to compute the multiplication computation.

It took about 68ns to compute the elements in each rows of matrix C with the

padding arrangement.

73

6.7 ReLU

As mentioned in chapter IV, a nonlinear function is applied after each FC layer

or convolution layer in DNN. These include sigmoid or hyperbolic tangent as well

as ReLU. ReLU has become popular in recent years due to its simplicity and

ability to enable fast training [25]. We designed a hardware ReLU unit for our

accelerator. As in our accelerator, we are working with IEEE 754 format single

precision data, the ReLU unit only checks the sign bit and passes the input data

to the output if the sign bit is 0 otherwise it replace the input data with 32-bit

zeros. Thus it accomplishes the functioning of a ReLU unit.

Figure 6.22: Hardware ReLU functioning timing diagram

Figure 6.23: Hardware ReLU functioning timing diagram

In Figures 6.22 and 6.23, the functioning of a 32 × 32 ReLU unit have been

shown with HEX and floating-point data. The hardware ReLU unit takes only

one clock cycle to complete its functioning.

6.8 PSL-Cache

To facilitate the cache coherent access to the system memory, the PSL and

CAPP unit contains cache lines which are used by the AFU. The CAPP unit

snoops the SMP fabric on behalf of the PSL. The latency to the fabric to response

is the same as other on-chip cache. In batched computational model (discussed

in the next chapter), there is an expectation of temporal locality. The AFU-PSL

74

command interface supports cache enabled reading. We explored the cache enabled

reading and found out that the cache enabled reading brings the data from system

memory to the AFU with 3x or more speed than the non cache enabled reading.

75

VII. EVALUATION

7.1 Experimental Setup

We evaluated our algorithm on two platforms. The first FPGA platform is

a CAPI-enabled POWER8 system which hosts a Xilinx Kintex Ultrascale 115

FPGA, with xcku-115-flva-2-3 chip on an Alpha Data ADM-PICE-KU115 board

with an X16 PCI-Express interface. The FPGA has 663360 CLB LUTs. The sec-

ond FPGA platform is an SoC system which houses a Xilinx Zynq SoC two ARM

cortex A9 processors.

We used Xilinx Vivado’s Out of Context (OOC) synthesis and implementation

feature for synthesis and route results for some of the modules. Utilizing the OOC

feature enabled us to synthesize the RTL design for which the pin numbers exceeds

the maximum pin numbers of the FPGA board. For nativity offloading, implement-

ing routing and placement of the architecture, non-project batch mode of design

flow has been used by using tcl scripting. To simulate the software-hardware in-

teraction in CAPI, PSLSE implements a client-server model, conceptually similar

to distributed system object component (DSOC) [51].

7.2 Validation

• We initialized our design with randomly generated weights and dimensions

for fully connected layers and hidden layers. For a fully connected layer, the

dimensions are number of input and output.

• We generated the golden output using a reference software implementation

that has been previously verified.

• We collected the test output with the accelerated hardware implementation.

• We compared the test output against the golden output collected from the

software implementation.

76

7.3 Resource Utilization

The primary metric to quantify the capacity in FPGA is the CLB utilization.

For our design, the CLB utilization is a function of the computational unit in

the architecture and data buffers to hold the data. When the design complexity

increases to the point that the FPGA’s dedicated routing blocks are insufficient,

Vivado uses LUTs for routing. Many a time increased CLB utilization can cause

a failure to meet the timing constraints. We have designed two kinds of imple-

mentation: LUT based and BRAM based. In our design, CLB utilization varies in

LUT based and BRAM based design. The BRAM based design fewer CLBs than

the LUT based design because in the LUT based design, data are stored in the

LUTs.

Table 7.1: Resource utilization config-1

Component Type Available Used % Util
CLB LUTs* 663360 12645 1.46
—–LUT as Logic 663360 9668 1.46
—–LUT as Memory 293760 0 0.00
CLB Registers 1326720 4290 0.32
—–Register as Flip Flop 1326720 3298 0.25
—–Register as Latch 1326720 992 0.07
CARRY8 82920 294 0.35
F7 Muxes 331680 164 0.05
F8 Muxes 165840 80 0.05
F9 Muxes 82920 0 0.00
DSP48E2 only 5520 64 1.16
Block RAM Tile 2160 0 0.00
—–RAMB36/FIFO* 2160 0 0.00
—–RAMB18 4320 0 0.00

We have reported resource utilization of computational block for three kinds of

implementation in our design. The three different kinds of computational blocks

perform the same arithmetic operations but with different hardware configura-

tions. The first kind of implementation considers adders tree in the design, the

77

Table 7.2: Resource utilization config-2

Component Type Available Used % Util
CLB LUTs* 663360 7681 1.16
—–LUT as Logic 663360 7681 1.16
—–LUT as Memory 293760 0 0.00
CLB Registers 1326720 4397 0.33
—–Register as Flip Flop 1326720 3901 0.29
—–Register as Latch 1326720 496 0.04
CARRY8 82920 248 0.30
F7 Muxes 331680 89 0.03
F8 Muxes 165840 12 <0.01
F9 Muxes 82920 0 0.00
DSP48E2 only 5520 64 1.16
Block RAM Tile 2160 0 0.00
—–RAMB36/FIFO* 2160 0 0.00
—–RAMB18 4320 0 0.00

second one has one row of adders, and the third one has two rows of adders. Table

7.1, shows the resource utilization for computation block with adder tree config-

uration. In this section, we will call the three configurations as config-1, config-2,

and config-3 respectively.

In Table 7.2 and 7.3, we presented the resource utilization for config-2 and

cnfig-3, respectively. Among all the resource types CLB utilization is an important

parameter as it plays a vital role in the complexity of the circuit when it is placed

and routed in the FPGA. It is observed from the tables that the implementation

with adder tree, config-1, utilizes more CLBs than the other two configurations.

It utilizes the same number of DSP blocks that the second configuration uses.

It is interesting to note that config-3 utilizes fewer CLB units as well as fewer

DSP blocks than the other two configurations. This kind of utilization behavior

is expected as config-3 uses fewer adders and multipliers and implements more

parallelism than the other two configurations.

78

Table 7.3: Resource utilization config-3

Component Type Available Used % Util
CLB LUTs* 663360 5373 0.81
—–LUT as Logic 663360 5373 0.81
—–LUT as Memory 293760 0 0.00
CLB Registers 1326720 4397 0.33
—–Register as Flip Flop 1326720 3901 0.29
—–Register as Latch 1326720 496 0.04
CARRY8 82920 248 0.30
F7 Muxes 331680 89 0.03
F8 Muxes 165840 12 <0.01
F9 Muxes 82920 0 0.00
DSP48E2 only 5520 32 0.58
Block RAM Tile 2160 0 0.00
—–RAMB36/FIFO* 2160 0 0.00
—–RAMB18 4320 0 0.00

7.4 Power Analysis

We back-annotated the switching activity using Vivado’s RTL simulation. Vi-

vado’s power estimation flow supports power estimation in-between synthesizing

and routing the design. We used both vectors-based and vector-less power esti-

mation in our design flow. The RTL simulation estimates dynamic leakage power

consumption at an ambient temperature of 25◦C. The power result also includes

device static power which measures the power consumption as a result of tran-

sistor leakage current. The dynamic design power measures the dynamic power

dissipation due to the input data pattern and the design’s internal activity, total

on-chip power and off-chip power.

79

Figure 7.1: Power analysis of PSL-AFU hardware

In Figure 7.1, power analysis summary has been shown for the PSL-AFU archi-

tecture. The generated power estimation does not consider the power consumption

of the computational unit. The estimation power summary report has been gener-

ated by Vivado using the vector-less approach. Total estimated power consumption

by the architecture is 7.502 W. About 50% of the estimated total power consump-

tion is dynamic power consumption. One interesting result of the estimated power

analysis is the observation that the BRAM portion consumes the most significant

portion of the dynamic power. The probable reason is that BRAMs are much larger

circuits than the LUTs and powering them at high frequency is quite expensive.

Another probable reason is that while the placement and routing process carries

on, the BRAM cells requires using many long-distance wires which may dissipate

significant amount of energy [52]. The power consumption in the PCI-E bus is

estimated as 296 mW which is 7% of total estimated dynamic power consumption.

Table 7.4: Power analysis of 32x32 computation unit hardware

Total On-Chip Power (W) 14.918

Dynamic (W) 13.335

Device Static (W) 1.583

80

In Table 7.5, estimation of power consumption by a 32x32 computational unit

has been shown. The computational unit performs a 32x32 matrix multiplication.

The computational unit consists of 32 computational blocks. Each of the compu-

tational blocks consists of several adders, multipliers, and several buffer rows. The

total estimated on-chip power consumption is 14.918 W, and total dynamic power

consumption is 13.335 W.

Table 7.5: Power consumption estimation on on-chip components

On-Chip Components Power (W)
Clocks 0.606
CLB Logic 1.427
—–LUT as Logic 1.382
—–Register 0.031
—–CARRY8 0.013
—–F7/F8 Muxes <0.001
—–Others 0.000
Signals 1.034
DSPs 0.261
I/O 10.002
Static Power 1.583
Total 14.912

Table, 7.5, shows the on-chip power consumption estimation on a computational

unit. The report is generated from an OOC synthesized architecture. One inter-

esting observation is that a large portion of the total dynamic power is consumed

in the I/O bus. As it is an OOC synthesized model, all input and output port

declarations of the computational unit got mapped onto the I/O pins. Although,

in actual implementation, the module will be instantiated in the PSL and there

will be no I/O power cost for the module. So, we can eliminate the I/O power cost

from the table. The total estimated power consumption will be 4.91 W. So with

a base performance of 23.88 GFLOPS, our design will have 4.863 GFLOPS/Watt

performance, and with a base performance of 77.5384 GFLOPS, our design will

have 15.791 GFLOPS/Watt performance.

81

7.5 Timing Analysis and Timing Constraints

A considerable amount of time has been spent to fix the timing violation in

the routed and placed design. The precise timing information of a critical path is

obtained only after placement and routing (PR). Placement process maps CLBs to

a valid location on the cells of the FPGA. The routing process allocates the routing

resources to nets to form the necessary wired connection among the CLBs. It takes

a considerable amount of time for a synthesis tool to complete the placement and

routing. The more complex a design is, the more it is prone to timing violation.

A typical sequential circuit’s functionality is governed by some timing con-

straints, i.e., setup-time and hold-time constraints. The setup-time constraint

ensures that no signal arrives at its destined flip-flop after the clock event and

hold-time constraint ensures that a signal does not arrive too early at its desti-

nation. The setup and hold-time violations are fixed by rerouting the design and

inserting buffers to minimize delay of the critical source and sink path. We focused

on the critical paths and redesigned the architecture to avoid a timing violation.

The timing report generated by Vivado shows the design improves the worst

negative slack (WNS) and total negative slack (TNS). The statistics for timing

violation data statistics are shown in Table 7.6, where Design Name denotes the

different customization of the design to minimize the timing violation. The table

reports TNS, WNS along with the TNS Failing Endpoints and the TNS Total End-

points. One interesting result we observed is that BRAM-based implementation

is less prone to timing violation than an LUT-based implementation. When the

worst negative slack is negative, the architecture violates the timing constraints.

The design V9 meets the timing constraints where WNS is positive, and TNS is

zero.

82

Table 7.6: Timing statistics to optimize and fix timing violations

Design Name WNS(ns) TNS(ns)
TNS Failing

Endpoints

TNS Total

Endpoints

v1 -0.069 -8.411 369 342569

v2 -0.741 -3626.4 14757 342607

V3 -0.197 -147.13 2508 345785

V4 -0.741 -3626.4 14757 342607

V5 -0.235 -124.37 1073 215135

V6 -0.132 -16.741 337 277057

V7 -0.92 -4298.9 14366 277051

V7 -0.313 -205.61 2483 277045

V8 -0.238 -90.52 885 218993

V9 0.007 0 0 221062

83

7.6 Performance Analysis

The purpose of the designed hardware is to provide a performance benefit to the

CPU in computing DNN algorithm. The recognized way of measuring computing

performance is to measure the floating-point operations per second (FLOPS). The

FLOP is defined as either multiplication or addition of single or double precision

floating point numbers. The theoretical limit of computation is found by peak

FLOP rating which is found by the sum of adders and multipliers multiplied by

the maximum operating frequency [53].

The performance time is derived from full-platform RTL behavioral simulation

of the architecture in CAPI HW-SW simulation using PSLSE. The design imple-

ments both DSP based implementation and non-DSP based implementation. For

designing the adders, we have used the blocking and clocked non-blocking adders.

The blocking adder’s core uses the DSP blocks that are available in the FPGA

and non-blocking adder cores are generated using System Verilog code.

In the previous chapters, we have discussed the design of computational blocks

which include five types of matrix multipliers for the DNN computation along

with the ReLU units. In the first category, the design has one adder and one

multiplier row with the un-parallel reset sequence in the adder (V1_unpa). The

second category includes the design where it has one adder and multiplier row

with parallel reset sequence in the adders (V1_pa). The third and fourth category

includes the resource-conscious design. The third one includes two rows of adders

and one row of the multiplier with un-parallel (V2_upna) reset sequence and the

fourth one with parallel sequence (V2_pa). The fifth one utilizes most resources.

It implements one row of multipliers and several rows of adders making an adder

tree (V3_tree).

In our design, a computational kernel unit includes 32 computational blocks.

Depending on the category of the computational blocks, the number of adder and

multiplier units changes. For the first and second category, each of the computa-

84

tional blocks includes 32 multipliers and 16 adders and for the third and fourth

category, each of the computational blocks includes 16 multipliers and 12 adders.

The computation time taken by the computational blocks are shown in the

following figures. Figure 7.2 and 7.3 presents the timing diagram with blocking

and non-blocking strategy and reports the execution time.

Figure 7.2: Execution timing in non-blocking strategy

In Figure 7.2, the register buffer reg_matrixA contains the data of first vector

and reg_matrixB contains the data of second vector. Both vectors contain 32

single-precision floating-point data. Data of the first vector is 1.0 through 32.0

and data of the second vector is 32.0 down to 1.0. The flag register mulsum_stts

shows the computation status of the four categories of the computational blocks.

The first category with sequential resetting takes the longest time of 622.0 ns and

the second category takes the shortest time of 334.0 ns.

Figure 7.3: Execution timing in blocking strategy

85

As described in the earlier paragraph, reg_matrixA contains the data of first

vector and reg_matrixB contains the data of second vector. The timing diagram is

shown in Figure 7.3. Both vectors contain 32 single precision floating point data.

Data of the first vector is 1.0 through 32.0 and data of the second vector is 32.0

down to 1.0. The flag register mulsum_stts shows the computation status of the

four categories of the computational blocks. The first category with sequential

resetting takes the longest time of 530.0 ns and the second category takes the

shortest time of 82.0 ns.

The fifth category with adder tree configuration takes 26 ns to finish similar

computation.

Table 7.7: Performance with non-blocking implementation

Type
Execution

Time(ns)

Peak Performance

(GFLOPS)

Performance

(GFLOPS)

V1_unpa 622.0 70.7 3.24

V1_pa 334.0 70.7 6.03

V2_unpa 478.0 30.4 4.21

V2_pa 430.0 30.4 4.688

Table 7.8: Performance with blocking implementation

Type
Execution

Time(ns)

Peak Performance

(GFLOPS)

Performance

(GFLOPS)

V1_unpa 530.0 96.0 3.80

V1_pa 82.0 96.0 24.59

V2_unpa 210.0 44.8 9.60

V2_pa 130.0 44.8 15.50

v3_tree 26.0 128 77.54

86

Table 7.7 and 7.8 shows the theoretical peak and gained performance of different

variants of a single computational unit. With the resource utilization shown in

Table 7.1, 7.2 and 7.3, we designed out architecture two initiations of V1 and

V3 computational units and three initiations of V2 computational units. With

multiple initiations, for non-blocking implementations the performance values are

shown in Table 7.9.

Table 7.9: Performance with multiple computational unit

Type
Number of

Comp Unit

Peak Performance

(GFLOPS)

Performance

(GFLOPS)

V1_unpa 2 192.0 7.60

V1_pa 2 192.0 49.18

V2_unpa 3 134.4 28.8

V2_pa 3 134.4 46.50

v3_tree 2 256 155.08

87

7.7 Design Comparison

We compare out design with previous works [54] [55] [56] [57]. Compared with

the previous work, our architecture achieved highest performance and has better

power efficiency. At present out architecture uses 32-bit floating point data. The

projected results of previous implementation with different quantizations are pre-

sented in Table 7.10. Theoretically the fixed point operations requires less amount

of FPGA resources. Our future plat would be to use fixed point quantization to

gain better performance.

Table 7.10: Comparison with previous work

[54] [55] [56] [57] Ours

year 2010 2014 2015 2016 2018

Platform
Virtex5

SX240t

Zynq

XC7Z045

Virtex7

VX458t

Zynq

XC7Z045

CAPI

KU115

Clock (MHz) 120 150 100 150 250

Quantization
48-bit

fixed

16-bit

fixed

32-bit

float

16-bit

fixed

32-bit

float

Performance

(GOP/s)
16 23.18 61.62 136.97 155.08

Power(W) 14 8 18.61 9.63 9.82

Power

Efficiency

(GOP/s/W)

1.14 2.90 3.31 14.22 15.80

88

VIII. CONCLUSIONS

We implemented a DNN accelerator, which works on both training and inference

phases. The accelerator co-operates with the POWER8 CAPI system. The accel-

erator is designed for implementing both the dot product and the ReLU operation

in parallel. The CAPI interface is used for transferring data between the shared

memory and the on-chip buffer of the FPGA. The accelerator brings the data

from the shared memory, performs computation on the data and writes back the

result to the shared memory independently, without putting I/O overhead on the

processors. In traditional systems, the SW stack assists the accelerator device each

time the hardware reads data from or writes data to the system memory. Conse-

quently, the running application (and the CPU) remains busy communicating with

the hardware accelerator while the accelerator performs the memory transactions.

In our CAPI-based implementation, the accelerator can perform I/O transactions

independently. This allows the SW stack and the CPUs to perform other useful

tasks in the application while the HW is busy in I/O transactions. This collabo-

rative model, which improves overall utilization of computing resources, can also

be particularly beneficial for heterogeneous supercomputers running large-scale,

deep-learning applications. The designed hardware architecture offers better per-

formance/watt than previous implementations. Our optimized design with batched

computation model exhibits a high degree of temporal locality, and the use of PSL

cache significantly reduces the memory traffic and speeds up the PSL-AFU trans-

mission by 3x.

The accelerators presented in [2] [1] (accelerators which target to accelerate the

DNN computation) are similar in operations compared to our design. However,

these devices are meant to be used standalone with very lightweight processors

to control the flow, and our architecture is designed to work in an environment

of a shared memory cluster. Thus, it provides a unique design choice where the

concern of storing and moving data is essential.

89

Currently, our implementation works with FC layers though the hardware is

compatible to work on a CONV layer. The future work would be to implement

fully functional accelerators to work with CONV as well as FC layer. In this thesis,

we work on a randomly generated DNN model. One future goal would be to incor-

porate our design with established DNN platforms like AlexNet, GoogleNet, etc.

Another useful direction of our design is to develop software and hardware stack to

accelerate the DNN computation on multiple FPGAs. Collaborative work of mul-

tiple FPGAs can effectively increase the throughput of the network. Currently, we

are working on 32-bit floating-point data. Recent research has shown that reduced

quantization of weight data can achieve nearly state-of-the-art accuracy and per-

formance [58]. Future work will investigate the feasibility of using our accelerator

to accelerate the DNN computation with such representation. A recent study [59]

showed that the numerical values used in DNN could be compressed significantly

by pruning and encoding the non-zero-value indices in sparse weight matrices; the

experiment also showed that the storage requirement could be reduced by 35x by

using this kind of compression approach. In the future, we will work with sparse

representation of DNN values and accelerate the computation of DNN with sparse

values in FPGA hardware.

90

APPENDIX SECTION

Performance Computation

In this section, the calculation for performance gain has been shown. While calcu-

lating, the calculation takes into consideration of number of clock cycles required

for addition and multiplication operation along with the clock frequency. The cal-

culation also takes into consideration of total number of arithmetic operations

performed within execution time. Calculation:

Non-Blocking Computation:

V1_unpa peak:

Let, number of computational block, N_C = 32

For a computational block,

number of multipliers in a row,N_M= 32; multipliers in a row work n parallel;

number of clock cycles required to complete one multiplication operation C_M =

1;

number of adders in a row, N_A = 16; adders in a row work in parallel;

number of clock cycles required to complete one addition operation C_A = 16;

clock frequency, CLK = 250 Mhz;

number of cycles required to get data from the output of the multiplier to the

input of the adders and also from the output of adders to the input of adders

(adders row is re-utilized); input latency, In_L = 3;

peak performance =

N_C × ((N_M/(C_M + In_L)) + (N_A/(C_A+ In_L)))× CLK

= 32×((32/(1+3))+(16/(16+3)))×250 MHz = 70736 MFLOPS = 70.7 GFLOPS

V1_unpa :

32× (32+16 + (8+4+2+1))FLOP in 622 ns

= 2016 FLOP in 622 ns

= 3.24 GFLOPS

V1_pa peak:

91

Same as V1_unpa peak.

V1_pa :

32× (32+16 + (8+4+2+1))FLOP in 334 ns

= 2016 FLOP in 334 ns

= 6.03 GFLOPS

V2_unpa peak:

32 × ((16/(1 + 4)) + (12/(16 + 4))) × 250 MHz = 30400 MFLOPS = 30.40

GFLOPS

V2_unpa:

32× (16 + 16 + 8+ 8 + 4 + 2 + 1 +1 + (4+2+1)) FLOP in 430 ns

= 2016 FLOP in 478 ns

= 4.2175 GFLOPS

V2_pa:

32× (16 + 16 + 8+ 8 + 4 + 2 + 1 +1 + (4+2+1)) FLOP in 430 ns

= 2016 FLOP in 430 ns

= 4.688 GFLOPS

Blocking Computation:

V1_unpa peak:

32× ((32/(1+3))+ (16/(1+3)))× 250 MHz = 96000 MFLOPS = 96 GFLPOS

V1_unpa :

32× (32+16 + (8+4+2+1)) FLOP in 530ns

= 2016 FLOP in 530 ns

= 3.80 GFLOPS

V1_pa peak:

Same as V1_unpa peak.

V1_pa :

32× (32+16 + (8+4+2+1)) FLOP in 82ns

= 2016 FLOP in 82 ns

92

= 24.59 GFLOPS

V2_unpa peak:

32×((16/(1+4))+(12/(1+4)))×250 MHz = 44800 MFLOPS = 44.8 GFLOPS

V2_unpa:

32× (16 + 16 + 8+ 8 + 4 + 2 + 1 +1 + (4+2+1)) FLPO in 210 ns

= 2016 FLOP in 210 ns

= 9.6 GFLOPS

V2_pa:

32× (16 + 16 + 8+ 8 + 4 + 2 + 1 +1 + (4+2+1)) FLPO in 130ns

= 2016 FLOP in 130 ns

= 15.50 GFLOPS

V3_tree peak:

32× ((32 + (16 + 8 + 4 + 2 + 1))/2) × 250 MHz = 252000 MFLOPS = 252

GFLOPS

V3_tree:

32× (32 + 16 + 8 + 4 + 2 + 1) FLPO in 26 ns

= 2016 FLOP in 26 ns

= 77.54 GFLOPS

93

REFERENCES

[1] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-
nao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014.

[2] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
Uniformed Representation and Acceleration for Deep Convolutional Neural
Networks,” in Proceedings of the 35th International Conference on Computer-
Aided Design, ser. ICCAD ’16. New York, NY, USA: ACM, 2016, pp.
12:1–12:8. [Online]. Available: http://doi.acm.org/10.1145/2966986.2967011

[3] X. Zynq, “7000 all programmable soc overview,” DS190 (v1. 10)[(accessed on
2 November 2016)], 2016.

[4] “Accelerating applications in the enterprise with CAPI.” [Online]. Available:
https://openpowerfoundation.org/blogs/capi-drives-business-performance/

[5] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 1701–1708.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2014, pp.
580–587.

[8] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going Deeper with Embedded FPGA
Platform for Convolutional Neural Network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35. [Online].
Available: http://doi.acm.org/10.1145/2847263.2847265

[9] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for hu-
man action recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[10] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep
learning with cots hpc systems,” in International Conference on Machine
Learning, 2013, pp. 1337–1345.

[11] O. Yadan, K. Adams, Y. Taigman, and M. Ranzato, “Multi-gpu training of
convnets,” arXiv preprint arXiv:1312.5853, 2013.

[12] K. Yu, “Large-scale deep learning at baidu,” in Proceedings of the 22nd ACM
international conference on Information & Knowledge Management. ACM,
2013, pp. 2211–2212.

94

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2015, pp. 1–9.

[14] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s.
Seo, and Y. Cao, “Throughput-Optimized OpenCL-based FPGA Accelerator
for Large-Scale Convolutional Neural Networks,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 16–25. [Online].
Available: http://doi.acm.org/10.1145/2847263.2847276

[15] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping con-
volutional neural networks on fpgas: A survey and future directions,” arXiv
preprint arXiv:1803.05900, 2018.

[16] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From high-level deep neural models to FPGAs,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct. 2016, pp. 1–12.

[17] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock,
Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra et al., “Can fpgas beat
gpus in accelerating next-generation deep neural networks?” in Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2017, pp. 5–14.

[18] D. Floreano and C. Mattiussi, Bio-inspired artificial intelligence: theories,
methods, and technologies. MIT press, 2008.

[19] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” The Journal of
Physiology, vol. 160, no. 1, pp. 106–154.2, Jan. 1962. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/

[20] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
Cybernetics, vol. 36, no. 4, pp. 193–202, Apr. 1980. [Online]. Available:
https://link.springer.com/article/10.1007/BF00344251

[21] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, Jan. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608014002135

[22] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, May 2015. [Online]. Available: http://www.nature.com/
nature/journal/v521/n7553/full/nature14539.html?foxtrotcallback=true

95

[24] D. Decoste and B. Schölkopf, “Training invariant support vector machines,”
Machine learning, vol. 46, no. 1-3, pp. 161–190, 2002.

[25] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[26] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig,
X. He, J. Williams et al., “Recent advances in deep learning for speech research
at microsoft,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 8604–8608.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale ma-
chine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[29] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in Proceedings of the 22Nd ACM International
Conference on Multimedia, ser. MM ’14. New York, NY, USA: ACM,
2014, pp. 675–678. [Online]. Available: http://doi.acm.org/10.1145/2647868.
2654889

[30] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron,
N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano: new features and
speed improvements,” arXiv preprint arXiv:1211.5590, 2012.

[31] R. Collobert, C. Farabet, and K. Kavukcuoğlu, “Torch: Scientific computing
for luajit,” in NIPS Workshop on Machine Learning Open Source Software,
2008.

[32] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-learning
toolkit,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2016, pp. 2135–2135.

[33] V. Dang and K. Skadron, “Acceleration of Frequent Itemset Mining on FPGA
using SDAccel and Vivado HLS,” in 2017 IEEE 28th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), Jul.
2017, pp. 195–200.

[34] I. Stamoulias and E. S. Manolakos, “Parallel architectures for the knn classifier
design of soft ip cores and fpga implementations,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 2, p. 22, 2013.

[35] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, “FPGA implemen-
tation of K-means algorithm for bioinformatics application: An accelerated
approach to clustering Microarray data,” in 2011 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), Jun. 2011, pp. 248–255.

96

[36] M. Papadonikolakis and C. S. Bouganis, “A Heterogeneous FPGA Architec-
ture for Support Vector Machine Training,” in 2010 18th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines,
May 2010, pp. 211–214.

[37] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and
H. Esmaeilzadeh, “TABLA: A unified template-based framework for acceler-
ating statistical machine learning,” in 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Mar. 2016, pp. 14–26.

[38] M. Ito and M. Ohara, “A power-efficient fpga accelerator: Systolic array with
cache-coherent interface for pair-hmm algorithm,” in Low-Power and High-
Speed Chips (COOL CHIPS XIX), 2016 IEEE Symposium in. IEEE, 2016,
pp. 1–3.

[39] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-
tures in deep neural networks?” in Advances in neural information processing
systems, 2014, pp. 3320–3328.

[40] A. P. U. APU, “Zynq-7000 all programmable soc overview,” 2012.

[41] S. M. Loo, B. E. Wells, N. Freije, and J. Kulick, “Handel-C for rapid prototyp-
ing of VLSI coprocessors for real time systems,” in Proceedings of the Thirty-
Fourth Southeastern Symposium on System Theory (Cat. No.02EX540), 2002,
pp. 6–10.

[42] D. Pellerin and S. Thibault, Practical Fpga Programming in C, 1st ed. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2005.

[43] J. I. Villar, J. Juan, M. J. Bellido, J. Viejo, D. Guerrero, and J. Decaluwe,
“Python as a hardware description language: A case study,” in 2011 VII South-
ern Conference on Programmable Logic (SPL), Apr. 2011, pp. 117–122.

[44] J. Xu, N. Subramanian, A. Alessio, and S. Hauck, “Impulse C vs. VHDL for
Accelerating Tomographic Reconstruction,” in 2010 18th IEEE Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines,
May 2010, pp. 171–174.

[45] G. Lhairech-Lebreton, P. Coussy, and E. Martin, “Hierarchical and Multiple-
Clock Domain High-Level Synthesis for Low-Power Design on FPGA,” in
2010 International Conference on Field Programmable Logic and Applica-
tions, Aug. 2010, pp. 464–468.

[46] F. B. Muslim, A. Qamar, and L. Lavagno, “Low power methodology for an
ASIC design flow based on high-level synthesis,” in 2015 23rd International
Conference on Software, Telecommunications and Computer Networks (Soft-
COM), Sep. 2015, pp. 11–15.

[47] “Openpower.” [Online]. Available: https://openpowerfoundation.org/

[48] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified acti-
vations in convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

97

[49] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss for convo-
lutional neural networks.” in ICML, 2016, pp. 507–516.

[50] J. Stuecheli and et al., “CAPI: A coherent accelerator processor interface,”
IBM Journal of Research and Development, vol. 59, no. 1, pp. 7–1, 2015.

[51] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard,
O. Benny, B. Lavigueur, D. Lo, G. Beltrame, V. Gagné et al., “Parallel pro-
gramming models for a multiprocessor soc platform applied to networking
and multimedia,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 7, pp. 667–680, 2006.

[52] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “Reapr: Reconfig-
urable engine for automata processing,” in Field Programmable Logic and
Applications (FPL), 2017 27th International Conference on. IEEE, 2017,
pp. 1–8.

[53] M. Parker, “Understanding peak floating-point performance claims,” Techni-
cal White Paper WP-012220-1.0, 2014.

[54] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynami-
cally configurable coprocessor for convolutional neural networks,” in ACM
SIGARCH Computer Architecture News, vol. 38, no. 3. ACM, 2010, pp.
247–257.

[55] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 g-
ops/s mobile coprocessor for deep neural networks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2014, pp. 682–687.

[56] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,” in
Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[57] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song
et al., “Going deeper with embedded fpga platform for convolutional neural
network,” in Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 2016, pp. 26–35.

[58] M. Courbariaux, Y. Bengio, and J.-P. B. David, “Training deep neural
networks with binary weights during propagations. arxiv preprint,” arXiv
preprint arXiv:1511.00363, 2015.

[59] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

98

