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THIRD-ORDER NONLOCAL PROBLEMS WITH
SIGN-CHANGING NONLINEARITY ON TIME SCALES

DOUGLAS R. ANDERSON, CHRISTOPHER C. TISDELL

Abstract. We are concerned with the existence and form of positive solutions
to a nonlinear third-order three-point nonlocal boundary-value problem on

general time scales. Using Green’s functions, we prove the existence of at least

one positive solution using the Guo-Krasnoselskii fixed point theorem. Due
to the fact that the nonlinearity is allowed to change sign in our formulation,

and the novelty of the boundary conditions, these results are new for discrete,

continuous, quantum and arbitrary time scales.

1. Statement of the problem

We will develop an interval of λ values whereby a positive solution exists for the
following nonlinear, third-order, three-point, nonlocal boundary-value problem on
arbitrary time scales

(px∆∆)∇(t) = λf(t, x(t)), t ∈ [t1, t3]T, (1.1)

αx(ρ(t1))− βx∆(ρ(t1)) =
∫ ξ2

ξ1

a(t)x(t)∇t,

x∆(t2) = 0, (px∆∆)(t3) =
∫ η2

η1

b(t)(px∆∆)(t)∇t, (1.2)

where: p is a left-dense continuous, real-valued function on T with p > 0; λ > 0 is
a real scalar;

(H1) the real scalars α, β > 0 and the three boundary points satisfy t1 < t2 <
t3 ∈ T such that

0 <
∫ σ2(t3)

ρ(t1)

∫ t2

u

∆r
p(r)

∆u+
β

α

∫ t2

ρ(t1)

∆r
p(r)

<∞;

(H2) the points ξi, ηi ∈ T satisfy

ρ(t1) < ξ1 < ξ2 < t2, ρ(t1) ≤ η1 < η2 ≤ t3;
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(H3) the left-dense continuous real-valued functions on T satisfy a, b ≥ 0 with

0 <
∫ ξ2

ξ1

a(t)∇t < α and 0 <
∫ η2

η1

b(t)∇t < 1;

(H4) the continuous function f : [ρ(t1), σ2(t3)]T× [0,∞) → (−∞,∞) is such that

lim
x→+∞

f(t, x)
x

unif= +∞, t ∈ [ξ1, t2]T;

(H5) there exist left-dense continuous functions y, z : [ρ(t1), σ2(t3)]T → (0,∞)
and a continuous function h : [0,∞) → (0,∞) such that

−y(t) ≤ f(t, x) ≤ z(t)h(x), 0 <
∫ t3

ρ(t1)

(z(s) + y(s))∇s <∞.

Third-order differential equations, though less common in applications than
even-order problems, nevertheless do appear, for example in the study of quan-
tum fluids; see Gamba and Jüngel [11]. Here we approach third-order problems
on general time scales, namely on any nonempty closed subset of the real line, to
include the discrete, continuous, and quantum calculus as special cases. Boundary
value problems on time scales that utilize both delta and nabla derivatives, such
as the one here, were first introduced by Atici and Guseinov [5]. Three-point and
right-focal boundary value problems, in both the continuous and discrete cases,
have been addressed in [1, 2, 3, 4], by Eloe and McKelvey [9], and recently by
Graef and Yang [12, 13], Sun [23], and Wong [25]. For more on existence of solu-
tions to boundary value problems, see [7, Chapters 4 and 6-9], Davis, Erbe, and
Henderson [8], Erbe and Wang [10], the text by Guo and Lakshmikantham [14],
Henderson [15], Henderson and Thompson [17], Lan [19, 20], Ma and Thompson
[22], and Zhang and Liu [26]. Problem (1.3), (1.4) is an extension of the continuous
and discrete discussions of third-order right-focal boundary value problems to time
scales, and by the addition of the nonhomogeneous nonlocal boundary conditions
and the allowance of sign changes in the nonlinearity f , problem (1.1), (1.2) is
introduced for the first time on any time scale, including R, Z, and the quantum
time scale. One could also consider a third-order problem with derivatives in the
order of nabla, nabla, delta, but the results would be similar; other permutations
of nablas and/or deltas lead to a Green function that is less easy to calculate.

Clearly there are other approaches to the existence of positive solutions for dy-
namic equations on time scales than those featured in this work; for alternative ap-
proaches to the existence of solutions and multiple solutions to dynamic equations
on time scales, consult, for example, Bohner and Luo [6], Henderson [16], Ma, Du,
and Ge [21], and Tisdell, Drábek, and Henderson [24]. Underlying our technique,
however, will be Green’s function for the homogeneous, third-order, three-point
boundary-value problem

(px∆∆)∇(t) = 0, t ∈ [t1, t3]T, (1.3)

αx(ρ(t1))− βx∆(ρ(t1)) = x∆(t2) = (px∆∆)(t3) = 0. (1.4)

Green’s function for (1.3), (1.4) will be defined on [ρ(t1), σ2(t3)]T, nonnegative on
[ρ(t1), σ2(t3)]T contingent on the distance between boundary points, nondecreasing
on [ρ(t1), t2]T, and nonincreasing on [t2, σ2(t3)]T, as will be shown in the following
lemmas.
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Lemma 1.1. Green’s function corresponding to the problem (1.3), (1.4) is given
by

G(t, s)

=


s ∈ [ρ(t1), t2]T :


∫ t

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r) : t < s∫ s

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r) : t ≥ s

s ∈ [t2, σ2(t3)]T :


∫ t

ρ(t1)

∫ t2
u

∆r
p(r)∆u+ β

α

∫ t2
ρ(t1)

∆r
p(r) : t < s∫ t

ρ(t1)

∫ t2
u

∆r
p(r)∆u+

∫ t

s

∫ u

s
∆r
p(r)∆u+ β

α

∫ t2
ρ(t1)

∆r
p(r) : t ≥ s.

(1.5)

Proof. We follow the approach given, for example, in Kelley and Peterson [18,
Chapter 5]. As the Cauchy function y(·, s) satisfies the homogeneous time-scale
initial-value problem

(py∆∆(·, s))∇(t) = 0, y(s, s) = 0, y∆(s, s) = 0, y∆∆(ρ(s), s) = 1/p(ρ(s))

it is easy to verify that y(t, s) =
∫ t

s

∫ u

s
∆r
p(r)∆u. Thus the Green function takes the

form

G(t, s) =


s ∈ [ρ(t1), t2]T :

{
u1(t, s) : t < s

v1(t, s) : t ≥ s

s ∈ [t2, σ2(t3)]T :

{
u2(t, s) : t < s

v2(t, s) : t ≥ s,

where ui(t, s)+y(t, s) = vi(t, s) and vi(·, s) satisfy (px∆∆)∇(t) = 0, for i = 1, 2. Let
s ∈ [ρ(t1), t2]T. Then the boundary conditions are αu1(ρ(t1), s)−βu∆

1 (ρ(t1), s) = 0
for t < s and v∆

1 (t2, s) = (pv∆∆
1 (·, s))(t3) = 0 for s ≤ t. Solving for v1, we see that

v1(t, s) = k(s) for some function k. Since u1 = v1−y, αu1(ρ(t1), s) = βu∆
1 (ρ(t1), s)

for these s implies that

k(s) =
∫ s

ρ(t1)

∫ s

u

∆r
p(r)

∆u+
β

α

∫ s

ρ(t1)

∆r
p(r)

.

Thus for s ∈ [ρ(t1), t2]T,

G(t, s) =

{∫ t

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r) : t < s∫ s

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r) : t ≥ s.

Now let s ∈ [t2, σ2(t3)]T, so that the boundary conditions are αu2(ρ(t1), s) −
βu∆

2 (ρ(t1), s) = u∆
2 (t2, s) = 0 for t < s and (pv∆∆

2 (·, s))(t3) = 0 for s ≤ t. Clearly

u2(t, s) = −q(s)
( ∫ t

ρ(t1)

∫ t2

u

∆r
p(r)

∆u+
β

α

∫ t2

ρ(t1)

∆r
p(r)

)
for some function q. Using the fact that v2 = u2 + y and the remaining boundary
condition yields q(s) ≡ −1 and

G(t, s) =


∫ t

ρ(t1)

∫ t2
u

∆r
p(r)∆ + β

α

∫ t2
ρ(t1)

∆r
p(r) : t < s∫ t

ρ(t1)

∫ t2
u

∆r
p(r)∆ +

∫ t

s

∫ u

s
∆r
p(r)∆u+ β

α

∫ t2
ρ(t1)

∆r
p(r) : t ≥ s

for s ∈ [t2, σ2(t3)]T. �
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Remark 1.2. As in (1.5) and the proof above, throughout the rest of the paper
we take

u2(t) :=
∫ t

ρ(t1)

∫ t2

u

∆r
p(r)

∆u+
β

α

∫ t2

ρ(t1)

∆r
p(r)

. (1.6)

Lemma 1.3. Green’s function (1.5) corresponding to the problem (1.3), (1.4) sat-
isfies

0 < G(t, s) ≤ G(t2, s) ≤ u2(t2)
for (t, s) ∈ [ρ(t1), σ2(t3)]T × (ρ(t1), σ2(t3)]T if and only if (H1) holds; that is,
u2(σ2(t3)) > 0.

Proof. Fix s ∈ (ρ(t1), t2]T. Then u1(ρ(t1), s) = β
α

∫ s

ρ(t1)
∆r
p(r) > 0 and u1(·, s) is

increasing, so that 0 < u1(t, s) ≤ u1(s, s) for t ∈ [ρ(t1), s)T. But u1(s, s) ≡ v1(t, s)
for t ∈ [t2, σ2(t3)]T. It follows that G(t2, s) ≥ G(t, s) > 0 for s ∈ (ρ(t1), t2]T
and t ∈ [ρ(t1), σ2(t3)]T. Now fix s ∈ [t2, σ2(t3)]T. The branch u2 is positive at
ρ(t1), increases until t2, and then decreases until s. We then switch to branch v2,
which continues to decrease, so that v2(t, s) ≥ v2(σ2(t3), s). As a function of s,
v2(σ2(t3), s) is also decreasing, whence v2(t, s) ≥ v2(σ2(t3), σ2(t3)) = u2(σ2(t3)) for
u2 given in (1.6). Thus G(t2, s) ≥ G(t, s) for s ∈ [t2, σ2(t3)]T and t ∈ [ρ(t1), σ2(t3)]T
as well, and G(t, s) > 0 for s ∈ [t2, σ2(t3)]T and t ∈ [ρ(t1), σ2(t3)]T if and only if
(H1) holds. �

Remark 1.4. If T = Z, α = 1, β = 0, and p(t) ≡ 1, then the necessary and
sufficient condition for the Green function to be positive is t2− t1− 1 ≥ t3− t2; see
[2].

Lemma 1.5. Assume (H1). For any (t, s) ∈ [ρ(t1), σ2(t3)]T × (ρ(t1), σ2(t3)]T, the
Green function (1.5) corresponding to the problem (1.3), (1.4) satisfies, using (1.6),

u2(t)
u2(t2)

≤ G(t, s)
G(t2, s)

≤ 1.

Proof. The right-hand inequality follows from the previous lemma. For the left-
hand inequality, we proceed by analyzing branches of the Green function (1.5). For
fixed t ∈ [ρ(t1), s)T and s ∈ (t, t2]T,

G(t, s)
G(t2, s)

=

∫ t

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r)∫ s

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r)

=: φ(s).

Then

φ∇(s)

=
(t− s)

(∫ t

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r)

)
+

(
t− ρ(t1) + β

α

) ∫ s

t

∫ s

u
∆r
p(r)∆u

pρ(s)
(∫ s

ρ(t1)

∫ s

u
∆r
p(r)∆u+ β

α

∫ s

ρ(t1)
∆r
p(r)

) (∫ ρ(s)

ρ(t1)

∫ ρ(s)

u
∆r
p(r)∆u+ β

α

∫ ρ(s)

ρ(t1)
∆r
p(r)

) .
The denominator of φ∇ is clearly positive, so consider the numerator,

ψ(s) := ψ1(s) + ψ2(s)

:= (t− s)
∫ t

ρ(t1)

∫ s

u

∆r
p(r)

∆u+ (t− ρ(t1))
∫ s

t

∫ s

u

∆r
p(r)

∆u

+
β

α

(
(t− s)

∫ s

ρ(t1)

∆r
p(r)

+
∫ s

t

∫ s

u

∆r
p(r)

∆u
)
.
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Note that ψ(t) = 0; the first part satisfies

ψ∇1 (s) =
(t− ρ(t1))ν(s)

pρ(s)
−

∫ t

ρ(t1)

∫ s

u

∆r
p(r)

∆u = −
∫ t

ρ(t1)

∫ ρ(s)

u

∆r
p(r)

∆u ≤ 0

for s ∈ (t, t2]T, while the second part satisfies

ψ2(s) ≤
β

α

(
(t− s)

∫ s

ρ(t1)

∆r
p(r)

+
∫ s

t

∫ s

t

∆r
p(r)

∆u
)

=
β

α
(t− s)

∫ t

ρ(t1)

∆r
p(r)

≤ 0.

Therefore, the whole numerator satisfies ψ(s) ≤ 0, so that φ∇ ≤ 0 and φ is nonin-
creasing as a function of s. Thus φ(s) ≥ φ(t2) for s ∈ (t, t2]; in other words,

G(t, s)
G(t2, s)

≥ G(t, t2)
G(t2, t2)

=
u2(t)
u2(t2)

.

For s ∈ [ρ(t1), t2]T and t ∈ [s, σ2(t3)]T,

G(t, s)
G(t2, s)

≡ 1 ≥ u2(t)
u2(t2)

.

If s ∈ [t2, σ2(t3)]T and t ∈ [ρ(t1), s)T, then

G(t, s)
G(t2, s)

=
u2(t)
u2(t2)

.

Finally, if s ∈ [t2, σ2(t3)]T and t ∈ [s, σ2(t3)]T, then

G(t, s)
G(t2, s)

=
u2(t) +

∫ t

s

∫ u

s
∆r
p(r)∆u

u2(t2)
≥ u2(t)
u2(t2)

.

�

2. Exploring the nonlocal problem

In this section we turn our attention to the problem

(px∆∆)∇(t) = λy(t), t ∈ [t1, t3]T, (2.1)

with nonlocal boundary conditions (1.2), where y is as in (H5), and λ > 0. Assume
(H2) and (H3), and and use (1.6) to define

D := u2(t2)
(
1−

∫ η2

η1

b(t)∇t
)( ∫ ξ2

ξ1

a(t)∇t− α
)
< 0. (2.2)

Lemma 2.1. Assume (H1) through (H5). Then the nonhomogeneous dynamic
equation (2.1) with boundary conditions (1.2) has a unique solution x∗, where for
t ∈ [ρ(t1), σ2(t3)]T,

x∗(t) = λ
( ∫ t3

ρ(t1)

G(t, s)y(s)∇s+A(y)u2(t) +B(y) (u2(t2)− u2(t))
)

(2.3)

holds, where: G(t, s) is the Green function (1.5) of the boundary-value problem
(1.3), (1.4); and the functionals A and B are defined using (1.6) by

A(y) :=
1
D

∣∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t+ u2(t2)

(
α−

∫ ξ2

ξ1
a(t)∇t

)
∫ η2

η1
b(t)

(∫ t3
t
y(s)∇s

)
∇t

∫ ξ2

ξ1
a(t)

(∫ t3
ρ(t1)

G(t, s)y(s)∇s
)
∇t

∣∣∣∣∣∣ ,
(2.4)
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B(y) :=
1
D

∣∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t∫ η2

η1
b(t)

(∫ t3
t
y(s)∇s

)
∇t

∫ ξ2

ξ1
a(t)

(∫ t3
ρ(t1)

G(t, s)y(s)∇s
)
∇t

∣∣∣∣∣∣ . (2.5)

Proof. For y as in (H5), we show that the function x∗ given in (2.3) is a solution
of (2.1) with conditions (1.2) only if A(y) and B(y) are given by (2.4) and (2.5),
respectively. If x∗ is a solution of (2.1), (1.2), then

x∗(t) = λ

∫ t

ρ(t1)

G(t, s)y(s)∇s+ λ

∫ t3

t

G(t, s)y(s)∇s+Au2(t) +B(u2(t2)− u2(t))

for some constants A and B. Taking the delta derivative with respect to t yields

x∗∆(t) = λ

∫ t

ρ(t1)

G∆(t, s)y(s)∇s+λ
∫ t3

t

G∆(t, s)y(s)∇s+A
∫ t2

t

∆r
p(r)

−B
∫ t2

t

∆r
p(r)

;

since p times the delta derivative of this expression is

(px∗∆∆)(t) = −λ
∫ t3

t

y(s)∇s−A+B,

we see that (2.1) holds. It is also clear that x∗∆(t2) = 0 is satisfied. To meet the
other two boundary conditions in (1.2), we must have at ρ(t1) that

αBu2(t2) =
∫ ξ2

ξ1

a(t)
(
λ

∫ t3

ρ(t1)

G(t, s)y(s)∇s+Au2(t)+B(u2(t2)−u2(t))
)
∇t, (2.6)

while at t3 we have

−A+B =
∫ η2

η1

b(t)
(
− λ

∫ t3

t

y(s)∇s−A+B
)
∇t. (2.7)

Combining (2.6) and (2.7), we arrive at the system of equations

A

∫ ξ2

ξ1

a(t)u2(t)∇t+B
[ ∫ ξ2

ξ1

a(t) (u2(t2)− u2(t))∇t− αu2(t2)
]

= −λ
∫ ξ2

ξ1

a(t)
( ∫ t3

ρ(t1)

G(t, s)y(s)∇s
)
∇t

and

A
[ ∫ η2

η1

b(t)∇t− 1
]

+B
[
1−

∫ η2

η1

b(t)∇t
]

= −λ
∫ η2

η1

b(t)
( ∫ t3

t

y(s)∇s
)
∇t.

The determinant of the coefficients of A and B is D, given by (2.2), which is
negative, and by elementary linear algebra we verify (2.4) and (2.5) with λ factored
out. Also note that A(y) > B(y) > 0 since D < 0 and

A(y)−B(y) =

∫ η2

η1
b(t)

( ∫ t3
t
y(s)∇s

)
∇t

1−
∫ η2

η1
b(t)∇t

.

�

Corollary 2.2. Assume (H1) through (H5). Then the unique solution x∗ as in
(2.3) of the problem (2.1), (1.2) satisfies x∗(t) ≥ 0 for t ∈ [ρ(t1), σ2(t3)].
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Proof. From Lemma 1.3 we know that on the Green function (1.5) satisfies G(t, s) ≥
0. Assumption (H3) applied to (2.4) and (2.5) imply that A(y) > B(y) > 0. �

Lemma 2.3. Assume (H1) through (H5). Then the unique solution x∗ as in (2.3)
of the problem (2.1), (1.2) satisfies

θ‖x∗‖ ≤ x∗(t) ≤ λθΘ on [ρ(t1), σ2(t3)]T,

where using (1.6) we take

θ := min
{
u2(ρ(t1))
u2(t2)

,
u2(σ2(t3))
u2(t2)

}
∈ (0, 1), ‖x∗‖ := max

t∈[ρ(t1),σ2(t3)]T
x∗(t) = x∗(t2),

(2.8)
and

Θ :=
1
θ
u2(t2)

(
1 + Ā

) ∫ t3

ρ(t1)

y(s)∇s (2.9)

for

Ā :=
1
D

∣∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t+ u2(t2)

(
α−

∫ ξ2

ξ1
a(t)∇t

)
∫ η2

η1
b(t)∇t u2(t2)

∫ ξ2

ξ1
a(t)∇t

∣∣∣∣∣∣ .
Proof. ¿From previous work, it is clear that for all t ∈ [ρ(t1), σ2(t3)]T,

x∗(t) ≤ x∗(t2) = λ
( ∫ t3

ρ(t1)

G(t2, s)y(s)∇s+A(y)u2(t2)
)
.

For t ∈ [ρ(t1), σ2(t3)]T, from Lemma 1.3 and Lemma 1.5, the Green function (1.5)
satisfies

G(t, s)
G(t2, s)

≥ u2(t)
u2(t2)

≥ min
{u2(ρ(t1))

u2(t2)
,
u2(σ2(t3))
u2(t2)

}
= θ ∈ (0, 1)

by (H1) and (1.6), and

x∗(t)

= λ
( ∫ t3

ρ(t1)

G(t, s)
G(t2, s)

G(t2, s)y(s)∇s+A(y)
u2(t)
u2(t2)

u2(t2) +B(y)(u2(t2)− u2(t))
)

≥ λ
( ∫ t3

ρ(t1)

θG(t2, s)y(s)∇s+A(y)θu2(t2)
)

= θ‖x∗‖.

Consequently, θ‖x∗‖ ≤ x∗(t) for all t ∈ [ρ(t1), σ2(t3)]T. For D in (2.2) and A(y) in
(2.4),

A(y)

=
1
D

∣∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t+ u2(t2)

(
α−

∫ ξ2

ξ1
a(t)∇t

)
∫ η2

η1
b(t)

(∫ t3
t
y(s)∇s

)
∇t

∫ ξ2

ξ1
a(t)

(∫ t3
ρ(t1)

G(t, s)y(s)∇s
)
∇t

∣∣∣∣∣∣
≤ 1
D

∣∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t+ u2(t2)

(
α−

∫ ξ2

ξ1
a(t)∇t

)
∫ η2

η1
b(t)∇t u2(t2)

∫ ξ2

ξ1
a(t)∇t

∣∣∣∣∣∣
∫ t3

ρ(t1)

y(s)∇s

= Ā

∫ t3

ρ(t1)

y(s)∇s <∞.
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As a result, for t ∈ [ρ(t1), σ2(t3)]T,

x∗(t) ≤ λ
( ∫ t3

ρ(t1)

G(t2, s)y(s)∇s+A(y)u2(t2)
)

≤ λu2(t2)(1 + Ā)
∫ t3

ρ(t1)

y(s)∇s

≤ λθΘ

using (2.8), (2.9), and (2.10). �

3. An existence result on cones

Let B denote the Banach space C[ρ(t1), σ2(t3)]T with the norm

‖x‖ = sup
t∈[ρ(t1),σ2(t3)]T

|x(t)|.

Define the cone P ⊂ B by

P = {x ∈ B : x(t) ≥ θ‖x‖ on [ρ(t1), σ2(t3)]T},

where θ is given in (2.8). Consider the related boundary-value problem

(px∆∆)∇(t) = λf∗(t, x(t)), t ∈ [t1, t3]T,

αx(ρ(t1))− βx∆(ρ(t1)) =
∫ ξ2

ξ1

a(t)x(t)∇t,

x∆(t2) = 0, (px∆∆)(t3) =
∫ η2

η1

b(t)(px∆∆)(t)∇t,

where

f∗(t, x(t)) := f(t, x†(t)) + y(t), x†(t) := max{x(t)− x∗(t), 0}, (3.1)

such that x∗ given in (2.3) is the solution of (2.1), (1.2), and y is from (H5).
For any fixed x ∈ P, x† ≤ x ≤ ‖x‖ and by (H5),∫ t3

ρ(t1)

G(t, s)f∗(s, x(s))∇s

≤
∫ t3

ρ(t1)

G(t2, s)
(
z(s)h(x†(s)) + y(s)

)
∇s

≤
(

max
0≤τ≤‖x‖

h(τ) + 1
) ∫ t3

ρ(t1)

G(t2, s) (z(s) + y(s))∇s <∞.

For A in (2.4) and using (2.10), we have

A(z + y) ≤ Ā

∫ t3

ρ(t1)

(z(s) + y(s))∇s;
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likewise for B in (2.5) and using (H5),

B(z + y)

=
1
D

∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t∫ η2

η1
b(t)

( ∫ t3
t

(z(s) + y(s))∇s
)
∇t

∫ ξ2

ξ1
a(t)

( ∫ t3
ρ(t1)

G(t, s)(z(s) + y(s))∇s
)
∇t

∣∣∣∣∣
≤ 1
D

∣∣∣∣∣
∫ η2

η1
b(t)∇t− 1

∫ ξ2

ξ1
a(t)u2(t)∇t∫ η2

η1
b(t)∇t u2(t2)

∫ ξ2

ξ1
a(t)∇t

∣∣∣∣∣
∫ t3

ρ(t1)

(z(s) + y(s))∇s

<∞.

This allows us to define for y ∈ P the operator T : P → B for t ∈ [ρ(t1), σ2(t3)]T
by

(Tx)(t) := λ
( ∫ t3

ρ(t1)

G(t, s)f∗(s, x(s))∇s+A(f∗)u2(t) +B(f∗)(u2(t2)− u2(t))
)
,

(3.2)
using (2.4), (2.5), and (3.1).

Lemma 3.1. Assume (H1) through (H5). Then T : P → P is completely continu-
ous.

Proof. For any x ∈ P, Lemmas 1.3, 1.5 and Lemma 2.3 imply that (Tx)(t) ≥ θ‖Tx‖
on [ρ(t1), σ2(t3)]T, so that T (P) ⊆ P. By a standard application of the Arzela-
Ascoli Theorem, T is completely continuous. �

To establish an existence result we will employ the following fixed point theorem
due to Guo and Krasnoselskii [14], and seek a fixed point of T in P.

Theorem 3.2. Let E be a Banach space, P ⊆ E be a cone, and suppose that S1,
S2 are bounded open balls of E centered at the origin with S1 ⊂ S2. Suppose further
that L : P ∩ (S2 \ S1) → P is a completely continuous operator such that either

(i) ‖Ly‖ ≤ ‖y‖, y ∈ P ∩ ∂S1 and ‖Ly‖ ≥ ‖y‖, y ∈ P ∩ ∂S2, or
(ii) ‖Ly‖ ≥ ‖y‖, y ∈ P ∩ ∂S1 and ‖Ly‖ ≤ ‖y‖, y ∈ P ∩ ∂S2

holds. Then L has a fixed point in P ∩ (S2 \ S1).

Theorem 3.3. Assume (H1) through (H5). Then there exists λ∗ > 0 such that the
third-order nonlocal time scale boundary value problem (1.1), (1.2) has at least one
positive solution in P for any λ ∈ (0, λ∗).

Proof. By Lemma 3.1, T : P → P given by (3.2) is completely continuous. Take
S1 := {x ∈ B : ‖x‖ < Θ} for Θ given in (2.9), and let

λ∗ := min

{
1,

∫ t3
ρ(t1)

y(s)∇s

θ
(

max
0≤τ≤Θ

h(τ) + 1
) ∫ t3

ρ(t1)
(z(s) + y(s))∇s

}
.

Then for any x ∈ P ∩ ∂S1,

0 ≤ x†(s) ≤ x(s) ≤ ‖x‖ = Θ, s ∈ [ρ(t1), σ2(t3)]T,
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and, for Ā as in the statement of Lemma 2.3,

(Tx)(t) ≤ λ
( ∫ t3

ρ(t1)

G(t2, s)f∗(s, x(s))∇s+A(f∗)u2(t2)
)

≤ λ
(

max
0≤τ≤‖x‖

h(τ) + 1
) ∫ t3

ρ(t1)

G(t2, s) (z(s) + y(s))∇s

+ λĀ
(

max
0≤τ≤‖x‖

h(τ) + 1
)( ∫ t3

ρ(t1)

(
z(s) + y(s)

)
∇s

)
u2(t2)

≤ λ∗u2(t2)
(
1 + Ā

) (
max

0≤τ≤‖x‖
h(τ) + 1

) ∫ t3

ρ(t1)

(z(s) + y(s))∇s

≤ Θ = ‖x‖.

Hence ‖Tx‖ ≤ ‖x‖ for x ∈ P ∩ ∂S1. Pick Υ ∈ R such that Υ > 0 and

1 ≤ λΥθ
Θ + 1

∫ t2

ξ1

G(ξ1, s)∇s.

By (H4), for any t ∈ [ξ1, t2]T, there exists a constant K > 0 such that f(t, y) > Υy
for y > K. Pick Q := max

{
λ(Θ + 1),Θ + 1, K(Θ+1)

θ

}
. If S2 := {y ∈ B : ‖y‖ < Q},

then for any x ∈ P ∩ ∂S2 and t ∈ [ρ(t1), σ2(t3)]T,

x(t)− x∗(t) ≥ x(t)− λθΘ ≥ x(t)− λΘ
Q
x(t)

≥
(
1− λΘ

Q

)
x(t) ≥

(
1− λΘ

λ(Θ + 1)
)
x(t)

=
x(t)

Θ + 1
≥ 0.

Thus

min
t∈[ξ1,t2]T

(x(t)− x∗(t)) ≥ min
t∈[ξ1,t2]T

x(t)
Θ + 1

≥ θQ

Θ + 1
≥ K,

so that

min
t∈[ξ1,t2]T

(Tx)(t)

= min
t∈[ξ1,t2]T

λ
( ∫ t3

ρ(t1)

G(t, s)f∗(s, x(s))∇s+A(f∗)u2(t) +B(f∗)(u2(t2)− u2(t))
)

≥ λ

∫ t2

ξ1

G(ξ1, s)f∗(s, x(s))∇s

≥ λΥ
∫ t2

ξ1

G(ξ1, s)(x(s)− x∗(s))∇s ≥ λΥθQ
Θ + 1

∫ t2

ξ1

G(ξ1, s)∇s

=
λΥθ‖x‖
Θ + 1

∫ t2

ξ1

G(ξ1, s)∇s ≥ ‖x‖.

Hence for x ∈ P ∩ ∂S2 we have ‖Tx‖ ≥ ‖x‖. By Theorem 3.2, T has a fixed point
x such that Θ ≤ ‖x‖ ≤ Q. But then

x(t)− x∗(t) ≥ θΘ− λθΘ ≥ (1− λ)θΘ ≥ 0.
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As a consequence, this x solves the boundary-value problem(
px∆∆

)∇
(t) = λ(f(t, x(t)− x∗(t)) + y(t)), t ∈ [t1, t3]T,

αx(ρ(t1))− βx∆(ρ(t1)) =
∫ ξ2

ξ1

a(t)x(t)∇t,

x∆(t2) = 0, (px∆∆)(t3) =
∫ η2

η1

b(t)(px∆∆)(t)∇t.

Now set X(t) := x(t)− x∗(t) for x∗ given in (2.3). Then
(
px∆∆

)∇ =
(
pX∆∆

)∇ +(
px∗∆∆

)∇. As x∗ is the solution of (2.1), (1.2), we see that(
pX∆∆

)∇
(t) = λf(t,X(t)), t ∈ [t1, t3]T,

αX(ρ(t1))− βX∆(ρ(t1)) =
∫ ξ2

ξ1

a(t)X(t)∇t,

X∆(t2) = 0,
(
pX∆∆

)
(t3) =

∫ η2

η1

b(t)
(
pX∆∆

)
(t)∇t,

in other words, X is a positive solution of the third-order nonlocal time scale bound-
ary value problem (1.1), (1.2). �

As remarked in the Introduction, the results in this paper are new for ordinary
differential equations (when T = R) and for difference equations (when T = Z).

We now provide an example to illustrate that conditions (H1)–(H5) are naturally
satisfied.

Example 3.4. Consider for T = R and the following choices: t1 = 0, t2 = 1/2,
t3 = 1; p = 1; α = 1 = β; f(t, x) = t+ x2; ξ1 = 1/8, ξ2 = 1/4; η1 = 5/6, η2 = 7/8;
a(t) = t = b(t). Then, for h(x) := 1 + x2 with y = 1 and z = 1, the boundary
value problem (1.1), (1.2) has at least one positive solution in P for any λ ∈ (0, λ∗),
where λ∗ ≈ 0.232513.

With these choices, (1.1), (1.2) reduces to a third-order BVP involving an ordi-
nary differential equation. It is not difficult to verify that conditions (H1)–(H5) are
satisfied. In particular, note that

λ∗ = min
{

1,
5

8(2 + Θ2)

}
=

5
8(2 + Θ2)

≈ 0.232513.
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