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DYNAMIC BEHAVIOR OF A STOCHASTIC SIR EPIDEMIC

MODEL WITH VERTICAL TRANSMISSION

XIAO-BING ZHANG, SU-QIN CHANG, HAI-FENG HUO

Abstract. This article concerns the dynamic behavior of a stochastic SIR

epidemic model with vertical transmission. We present sufficient conditions

which can determine the extinction and persistence in mean of the epidemic.
Also we discuss the asymptotic behavior of the stochastic model around the

endemic equilibrium of the corresponding model. Moreover, sufficient condi-

tions for the existence of stationary distribution are established. The results
are illustrated by numerical simulations.

1. Introduction

The SIR epidemic models is one of the most important epidemic models, which
was first proposed by Kermack and Mckendrick [17], and has been extended in
many ways according to the different infection characteristics and control methods
(see [1, 2, 14, 26, 38, 40, 44] and the references therein). For many infectious dis-
eases in nature, there are both horizontal and vertical transmission. These include
such human diseases as rubella, herpes simplex, hepatitis B, Chagas disease and
AIDS (see [21, 4] and the references therein). For human and animal diseases,
horizontal transmission typically occurs through direct or indirect physical contact
with infectious hosts, or through disease vectors such as mosquitos, ticks, or other
biting insects. Vertical transmission is defined as the infection of newborns by
their mother. For instance, vertical transmission is the main cause of HIV infec-
tion in children. Recently, the studies of epidemic models incorporating vertical
transmission have become one of the important topic in the mathematical theory
of epidemiology (see [3, 4, 5, 6, 9, 10, 12, 18, 25, 31, 33, 36, 39] and the references
therein). For example, Busenberg and Cooke [4] constructed and analyzed vari-
ous compartmental models with vertical transmission to gain insight on the role of
vertical transmission in disease epidemics.

In classical SIR model, the population is divided into the susceptible S, the
infective I, and the removed R. When there is vertical transmission, the newborns
of the infectious may be susceptible or infectious. Ma et al. [27] introduced vertical
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transmission to SIR model and established the model

dS(t)

dt
= b(1−m)(S(t) +R(t))− βS(t)I(t) + pbII(t)− dS(t),

dI(t)

dt
= βS(t)I(t) + qbII(t)− dII(t)− γI(t),

dR(t)

dt
= γI(t)− dR(t) +mb(S(t) +R(t)),

(1.1)

where b represents the birth rate of S and R, d denotes the death rate of S and R, bI
represents the birth rate of I, dI denotes the death rate of I, β denotes the average
number of adequate contacts with susceptible for an infective individual per unit
time, γ denotes the recovery rate from I to R, p stands for the probability that a
child who is born from infectious mother is susceptible, q stands for the probability
that a child who is born from infectious mother is infected, m denotes a fraction of
vaccinated for newborns of S,R. Besides, all value are assumed to be nonnegative
and 0 < m < 1, p+ q = 1. Obviously, when p = 1, that is, q = 0, there exists only
horizontal transmission. Moreover, they assumed that the birth rate and the death
rate are equal, namely b = d and bI = dI . This implies that the population size
N = S+ I +R is constant, denoted N = 1. Under these assumptions, system (1.1)
becomes the system

dS(t)

dt
= b(1−m)(1− I)− βSI + pbII − bS,

dI(t)

dt
= βSI − pbII − γI.

(1.2)

For system (1.2), the basic reproduction number is R0 = β(1−m)
pbI+γ . It has a

disease-free equilibrium E0 = (1 − m, 0) and endemic equilibrium E∗ = (S∗, I∗),

where S∗ = 1−m
R0

, I∗ = b(pbI+γ)(R0−1)
β(b(1−m)+γ) . When R0 < 1, the disease-free equilibrium

E0 is globally asymptotically stable, and therefore, the disease will die out in the
end. When R0 > 1, E0 is unstable and the endemic equilibrium E∗ is globally
asymptotically stable, namely, the disease will prevail in population. These results
of system (1.2) were investigated in [27].

In the real world, epidemic models are always affected by the environmental
noise [28]. Thus, it is necessary to study how the environmental white noise affects
dynamic behavior of the epidemic model. To this end, many stochastic models have
been established (see [7, 8, 11, 15, 22, 23, 24, 30, 32, 34, 35, 37, 42, 43] and the
references therein).

In this article, we assume that the transmission coefficient β is disturbed by
environmental noise. In this case, we replace βdt with βdt + σdB(t) as [7, 11],
where B(t) is a standard Brownian motion with intensity σ > 0. Then, we obtain
the stochastic version of system (1.2),

dS(t) = [b(1−m)(1− I)− βSI + pbII − bS]dt− σSIdB(t),

dI(t) = [βSI − pbII − γI]dt+ σSIdB(t).
(1.3)

This article is organized as follows. In section 2, we prove that there is a unique
global positive solution of system (1.3). In section 3, we establish sufficient condition
for the disease to die out. The condition for the disease being persistent in mean
is given in Section 4. In section 5, we discuss asymptotic behavior of system (1.3)
around the endemic equilibrium (S∗, I∗) of the corresponding deterministic system
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(1.2). In section 6, we show that there exists a unique stationary distribution for
system (1.3). Finally, some conclusions are presented.

Throughout this paper, unless otherwise specified, we let (Ω,F , {F}t≥0,P) be a
complete probability space with a filtration {F}t≥0 satisfying the usual conditions
(i.e. it is increasing and right continuous while F0 contains all P-null sets) and we
let B(t) be a scalar Brownian motion defined on the probability space. We denote
a ∨ b = max(a, b), a ∧ b = min(a, b) and Rn+ = {x ∈ Rn : xi > 0 for 1 ≤ i ≤ n}.

In general, the d-dimensional stochastic system is

dX(t) = f(t,X(t))dt+ g(t,X(t))dWt, (1.4)

where f(t, x) is an function in Rd defined on [t0,∞] × Rd, and g(t, x) is an d ×m
matrix, f , g are locally Lipschitz functions in x, and Wt is an m-dimensional
standard Wiener process defined on the above probability space.

We denote by C2,1(Rd × [t0,∞];R+) the family of all nonnegative functions
V (x, t) defined on Rd × [t0,∞] such that they are continuously twice differentiable
in x and once in t. The differential operator L of (1.4) is defined [28] by

L =
∂

∂t
+

d∑
i=1

fi(t)
∂

∂xi
+

1

2

d∑
i,j=1

[gT (x, t)g(x, t)]ij
∂2

∂xi∂xj
. (1.5)

If L acts on a function V ∈ C2,1(Rd × [t0.,∞];R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace[gT (x, t)Vxxg(x, t)],

where Vt(x, t) = ∂V
∂t , Vx(x, t) = ( ∂V∂x1

, . . . , ∂V∂xd
), Vxx = ( ∂2V

∂xixj
)d×d. By Itô’s formula,

if x(t) ∈ Rd, then dV (x, t) = LV (x, t)dt+ Vx(x, t)g(x, t)dWt.

2. Existence of uniqueness of positive solution

For a stochastic differential equation to have a unique global solution (i.e. no
explosion in a finite time) for any initial value, the coefficients of the equation
are generally required to satisfy the linear growth condition and local Lipschitz
condition [28]. However, the coefficients of system (1.3) do not satisfy the linear
growth condition, though they are locally Lipschitz continuous, so the solution of
system (1.3) may explode at a finite time. It is therefore necessary to prove the
solution of system (1.3) is positive and global.

Theorem 2.1. For any given initial value (S(0), I(0)) ∈ R2
+, system (1.3) has a

unique global positive solution (S(t), I(t)) ∈ R2
+ for all t ≥ 0 with probability one,

namely
P{(S(t), I(t)) ∈ R2

+ ∀t ≥ 0} = 1.

Proof. Obviously, the coefficients of system(1.3) are locally Lipschitz continuous.
It is known that for any given initial value (S(0), I(0)) ∈ R2

+, there is a unique local
solution (S(t), I(t)) on t ∈ [0, τe), where τe is the explosion time [28]. Let k0 ≥ 1 be
sufficiently large such that S(0) and I(0) all lie within the interval [1/k0, k0]. For
each integer k ≥ 0, define the stopping time

τk = inf{t ∈ [0, τe) : min{S(t), I(t)} ≤ 1

k
or max{S(t), I(t)} ≥ k},

where throughout this paper we set inf ∅ =∞ (as usual ∅ denotes the empty set).
Apparently, τk is increasing as k →∞. Set τ∞ = limk→∞ τk, when τ∞ ≤ τe a.s. If
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we can show that τ∞ =∞ a.s., then τe =∞ and (S(t), I(t)) ∈ R2
+ a.s. for all t ≥ 0.

In other words, to complete the proof all we need to show is that τ∞ = ∞ a.s. If
this statement is false, then there exist a pair of constants T ≥ 0 and δ ∈ (0, 1)
such that

P{τ∞ ≤ T} > δ.

Hence there is an integer k1 ≥ k0 such that

P{τk ≤ T} > δ ∀k ≥ k1. (2.1)

Define a function V : R2
+ → R+ by

V (S(t), I(t)) = (S − 1− ln(S)) + (I − 1− ln(I)).

The nonnegativity of this function can be seen from u− 1− lnu ≥ 0, for all u > 0.
Let k ≥ k0 and T ≥ 0 be arbitrary. For 0 ≤ t ≤ τk ∧T . Applying Itô’s formula (see
e.g. [28]), we have

dV =
(
1− 1

S

)
dS +

1

2S2
(dS)2 +

(
1− 1

I

)
dI +

1

2I2
(dI)2

= LV dt+ σ(I − S)dB(t),
(2.2)

where LV is defined by

LV =
(
1− 1

S

)
[b(1−m)(1− I)− βSI + pbII − bS] +

σ2I2

2

+
(
1− 1

I

)
[βSI − pbII − γI] +

σ2S2

2

= b(1−m)(1− I)− βSI + pbII − bS −
b(1−m)(1− I)

S
+ βI

− pbII

S
+ b+ βSI − pbII − γI − βS + pbI + γ +

σ2I2

2
+
σ2S2

2

= b(1−m)(1− I)− bS − b(1−m)(1− I)

S
+ βI − pbII

S
+ b

− γI − βS + pbI + γ +
σ2I2

2
+
σ2S2

2

≤ b(1−m)(1− I) + βI + b+ pbI + γ +
σ2I2

2
+
σ2S2

2

≤ b(1−m) + β + b+ pbI + γ + σ2 := K.

(2.3)

In view of (2.3), from (2.2) we obtain

dV ≤ Kdt+ σ(I − S)dB(t). (2.4)

We can now integrate both sides of (2.4) from 0 to T ∧ τk and then take the
expectations, yields

E[V (S(T ∧ τk), I(T ∧ τk))] ≤ V (S(0), I(0)) +KE(T ∧ τk).

Hence
E[V (S(T ∧ τk), I(T ∧ τk))] ≤ V (S(0), I(0)) +KT. (2.5)

Set Ωk = {τk ≤ T} for k ≥ k1 and by (2.1), we have P (Ωk) ≥ δ. Note that for
every ω ∈ Ωk, there is at least one of S(τk, ω) and I(τk, ω) equals either k or 1

k .
Therefore, V (S(τk, ω), I(τk, ω)) is no less than either

k − 1− ln k or
1

k
− 1− ln

1

k
=

1

k
− 1 + ln k.
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Thereby, one can see that

V (S(τk, ω), I(τk, ω)) ≥ (k − 1− ln k) ∧ (
1

k
− 1 + ln k)

It then follow from (2.5) that

V (S(0), I(0)) +KT ≥ E[V (S(T ∧ τk), I(T ∧ τk))]

≥ E[IΩk(ω)V (S(τk, ω), I(τk, ω))]

≥ δ
[
(k − 1− ln k) ∧

(1

k
− 1 + ln k

)]
,

where IΩk(ω) is the indicator function of Ωk. Letting k →∞ leads to a contradiction

∞ > V (S(0), I(0)) +KT =∞.
Hence, we must have τ∞ =∞ a.s. This completes the proof. �

Remark 2.2. Theorem 2.1 and S + I +R = 1 imply that the region Λ = {(S, I) :
S > 0, I > 0, S + I ≤ 1} is a positively invariant set of system (1.3). Then from
now on, we assume the initial value (S(0), I(0)) ∈ Λ.

3. Extinction

For deterministic epidemic models, we are interested in two things. One is when
the disease will die out; the other is when the disease will prevail. Next, we will
discuss the extinction of system in this section but leave its persistence to the next
section. For convenience we introduce the following notation

S̄ =
1

t

∫ t

0

S(u)du, Ī =
1

t

∫ t

0

I(u)du,

MS
t =

1

t

∫ t

0

S(u)dB(u), M I
t =

1

t

∫ t

0

I(u)dB(u).

Lemma 3.1 (see [28]). Let M = {Mt}t≥0 be a real-valued continuous local mar-
tingale vanishing at t = 0 and 〈M,M〉t is the quadratic variation of M = {Mt}t≥0.
Then

lim
t→+∞

〈M,M〉t =∞ a.s. ⇒ lim
t→+∞

Mt

〈M,M〉t
= 0 a.s.,

and

lim sup
t→+∞

〈M,M〉t
t

<∞ a.s. ⇒ lim
t→+∞

Mt

t
= 0 a.s.

Theorem 3.2. Let (S(t), I(t)) be the solution of system (1.3) with initial value
(S(0), I(0)) ∈ Λ. If

R̃0 = R0 −
σ2(1−m)2

2(pbI + γ)
=
β(1−m)

pbI + γ
− σ2(1−m)2

2(pbI + γ)
< 1 and σ2 ≤ β

1−m
, (3.1)

then

lim sup
t→+∞

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1) < 0 a.s., (3.2)

namely I(t) tends to zero exponentially almost surely. In other words, the disease
dies out with probability one. In addition

lim
t→+∞

I(t) = 0, lim
t→+∞

S(t) = (1−m) a.s.
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Proof. Note that

d(S + I)

dt
= b(1−m)− bS − (b(1−m) + γ)I, (3.3)

we have

S̄ = (1−m)− b(1−m) + γ

b
Ī − ϕ(t), (3.4)

where

ϕ(t) =
1

b
(
S(t) + I(t)

t
− S(0) + I(0)

t
)

and limt→+∞ ϕ(t) = 0 a.s.
By the Itô’s formula, we have

d ln I(t) = [βS − (pbI + γ +
σ2

2
S2)]dt+ σSdB(t).

Then

ln I(t)

t
=

ln I(0)

t
+ βS̄ − (pbI + γ)− σ2

2

1

t

∫ t

0

S2(u)du+ σMS
t

≤ ln I(0)

t
+ βS̄ − (pbI + γ)− σ2

2
S̄2 + σMS

t

=
ln I(0)

t
+ β

(
(1−m)− b(1−m) + γ

b
Ī − ϕ(t)

)
− (pbI + γ)

− σ2

2

(
(1−m)− b(1−m) + γ

b
Ī − ϕ(t)

)2

+ σMS
t

= β(1−m)−
(
pbI + γ +

σ2(1−m)2

2

)
− (b(1−m) + γ)(β − σ2(1−m))

b
Ī − σ2(b(1−m) + γ)2

2b2
Ī2 + ψ(t)

= (pbI + γ)(R̃0 − 1)− (b(1−m) + γ)(β − σ2(1−m))

b
Ī

− σ2(b(1−m) + γ)2

2b2
Ī2 + ψ(t),

(3.5)

where the first inequality is according to Schwarz inequality, and

ψ(t) =
ln I(0)

t
− (β − σ2(1−m))ϕ(t)− σ2(b(1−m) + γ)

b
ϕ(t)Ī

− σ2

2
ϕ2(t) + σMS

t

≤ ln I(0)

t
+
(
β + σ2(1−m) +

σ2(b(1−m) + γ)

b

)
|ϕ(t)| − σ2

2
ϕ2(t)

+ σMS
t ,

and

ψ(t) ≥ ln I(0)

t
−
(
β + σ2(1−m) +

σ2(b(1−m) + γ)

b

)
|ϕ(t)| − σ2

2
ϕ2(t)

+ σMS
t .

According to Lemma 3.1,

lim
t→+∞

MS
t = lim

t→+∞

1

t

∫ t

0

S(u)dB(u) = 0 a.s.
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In addition limt→+∞ ϕ(t) = 0 a.s. Hence, we have limt→+∞ ψ(t) = 0 a.s.

If σ2 ≤ β
1−m , then from (3.5) it follows that

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1) + ψ(t),

which together with the property of ψ(t) imply

lim sup
t→+∞

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1).

We therefore obtain the desired assertion (3.2).
In view of (3.2),

lim sup
t→+∞

ln I(t)

t
≤ −κ,

then for a arbitrary small positive constant ε1 < − (pbI+γ)(R̃0−1)
2 , −κ, there exists

a positive constant T1 = T1(ω) and a set Ωε1 such that P (Ωε1) ≥ 1 − ε1 and
ln I(t) ≤ −ε1t for t ≥ T1, ω ∈ Ωε1 . That is,

I(t) ≤ e−ε1t for t ≥ T1, ω ∈ Ωε1 .

Letting t→∞ and ε1 → 0 deduce

lim sup
t→+∞

I(t) ≤ 0 a.s.

which together with the positive of the solution implies limt→+∞ I(t) = 0 a.s.
It follows from (3.3) that

d(S + I)

dt
≤ b(1−m)− b(S + I) + bme−ε1t for t ≥ T1, ω ∈ Ωε1 .

By the comparison theorem and arbitrariness of ε1, we obtain

lim sup
t→+∞

[S + I] ≤ b(1−m)

b
a.s. (3.6)

Similarly, we can obtain

d(S + I)

dt
≥ b(1−m)− b(S + I)− re−ε1t for t ≥ T1, ω ∈ Ωε1 .

Using the comparison theorem and arbitrariness of ε1,

lim inf
t→+∞

[S + I] ≥ b(1−m)

b
a.s. (3.7)

Combining (3.6) and (3.7) leads to

lim
t→+∞

[S + I] = (1−m) a.s.,

which implies limt→+∞ S(t) = (1−m) a.s. Whence the proof is complete. �

In Theorem 3.2 we require the noise intensity σ2 ≤ β
1−m . The following theorem

covers the case when σ2 > β
1−m .

Theorem 3.3. Let (S(t), I(t)) be the solution of system (1.3) with initial value
(S(0), I(0)) ∈ Λ. If

σ2 >
β

1−m
∨ β2

2(pbI + γ)
, (3.8)
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then

lim sup
t→+∞

ln I(t)

t
≤ −pbI − γ +

β2

2σ2
< 0 a.s.,

namely I(t) tends to zero exponentially almost surely. In other words, the disease
dies out with probability one. In addition

lim
t→+∞

I(t) = 0, lim
t→+∞

S(t) = (1−m), a.s.

Proof. We use the same notation as in the proof of Theorem 3.2. From (3.5), we
have

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1) + f(Ī) + ψ(t), (3.9)

where

f(x) , −σ
2(b(1−m) + γ)2

2b2
x2 − (b(1−m) + γ)(β − σ2(1−m))

b
x

= −σ
2(b(1−m) + γ)2

2b2
(x+

b(β − σ2(1−m))

(b(1−m) + γ)σ2
)2 +

(β − σ2(1−m))2

2σ2
.

Under condition (3.8), it is easy to confirm that − b(β−σ
2(1−m))

(b(1−m)+γ)σ2 < 1 and f(x) reaches

its maximum value (β−σ2(1−m))2

2σ2 at x = − b(β−σ
2(1−m))

(b(1−m)+γ)σ2 in the interval [0, 1].

Consequently, from (3.9) we have

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1) +

(β − σ2(1−m))2

2σ2
+ ψ(t)

= β(1−m)− (pbI + γ +
σ2(1−m)2

2
) +

(β − σ2(1−m))2

2σ2
+ ψ(t)

=
β2

2σ2
− (pbI + γ) + ψ(t).

Therefore,

lim sup
t→+∞

ln I(t)

t
≤ −pbI − γ +

β2

2σ2
< 0 a.s.

The rest of the proof is the same to Theorem 3.2. �

Remark 3.4. We refer to condition (3.6), which tells us the disease will die out if

R̃0 < 1 for noise small. While if white noise is large enough such that the condition
(3.6) is satisfied, then the disease will also die out even if R0 > 1, which never
happen in the corresponding deterministic system. In other words, the conditions
for I(t) to become extinct in the stochastic model are weaker than in the corre-
sponding deterministic model. The following two example illustrate these results
more explicitly.

Example 3.5. Choose the parameters in system (1.3) as follows:

b =
1

70
, bI =

1

60
, β = 0.15, p = 0.1, m = 0.1, γ = 0.1, σ = 0.3 . (3.10)

Note that

R̃0 =
β(1−m)

pbI + γ
− σ2(1−m)2

2(pbI + γ)
= 0.9693
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and σ2 − β
1−m = −0.0767, then by Theorem 3.2, the solution (S(t), I(t)) of system

(1.3) satisfies

lim sup
t→+∞

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1) = −0.0031 a.s.,

lim
t→+∞

S(t) = (1−m) = 0.9 a.s.,

with any initial value (S(0), I(0)) ∈ Λ. That is I(t) will tend to zero exponentially
with probability one. Besides, for the corresponding deterministic model (1.2)

R0 =
β(1−m)

pbI + γ
= 1.3279,

then the endemic equilibrium (S∗, I∗) = (0.6778, 0.0281) is globally asymptotically
stable in Λ. Using the method in [13], we give the simulations shown in Figure 1
to support our results.

0 200 400 600 800 1000
0.4

0.5

0.6

0.7

0.8

0.9

t

 S
(t

) deterministic

stochastic

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

t

I(
t)

deterministic

stochastic

Figure 1. Paths S(t) and I(t) for models (1.2) and (1.3). The
parameters are as in (3.10) with σ = 0.3.

Example 3.6. We choose the same parameters as in Example 3.5 but increase

σ to 0.5. Note that σ2 > β
1−m ∨

β2

2(pbI+γ) = 0.0833, then by Theorem 3.3, the

solution(S(t), I(t)) of system (1.3) satisfies

lim sup
t→+∞

ln I(t)

t
≤ −pbI − γ +

β2

2σ2
= −0.0567 a.s.,

lim
t→+∞

S(t) = (1−m) = 0.9 a.s.

That is I(t) will tend to zero exponentially with probability one. For the corre-
sponding deterministic model (1.2), since the other parameters are the same as in
Example 3.5, the dynamic behavior of model (1.2) is the same as in Example 3.5.
The simulations shown in Figure 2 support our results.

4. Persistence

Lemma 4.1 (see [16]). Let f ∈ C[[0,∞) × Ω, (0,∞)], F ∈ C[[0,∞) × Ω, R] and

limt→+∞
F (t)
t = 0 a.s.
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Figure 2. Path S(t) and I(t) for models (1.2) and (1.3). The
parameters are as in (3.10) with σ = 0.5.

(i) If there exist positive constants λ0, λ such that

ln f(t) ≥ λt− λ0

∫ t

0

f(u)du+ F (t) a.s.

for all t > 0, then

lim inf
t→+∞

1

t

∫ t

0

f(u)du ≥ λ

λ0
a.s.

(ii) If there exist positive constants λ0, λ such that

ln f(t) ≤ λt− λ0

∫ t

0

f(u)du+ F (t) a.s.

for all t > 0, then

lim sup
t→+∞

1

t

∫ t

0

f(u)du ≤ λ

λ0
a.s.

Theorem 4.2. If

R̃0∗ = R0 −
σ2

2(pbI + γ)
> 1, σ2 ≤ β

1−m
,

then for any initial value (S(0), I(0)) ∈ R2
+, the solution of system (1.3) satisfies

lim sup
t→+∞

Ī ≤ b(pbI + γ)(R̃0 − 1)

(b(1−m) + γ)[β − σ2(1−m)]
a.s.,

lim inf
t→+∞

S̄ ≥ (1−m)− (pbI + γ)(R̃0 − 1)

β − σ2(1−m)
a.s.,

and

lim inf
t→+∞

Ī ≥ b(pbI + γ)(R̃0∗ − 1)

β(b(1−m) + γ)
a.s.,

lim sup
t→+∞

S̄ ≤ (1−m)− (pbI + γ)(R̃0∗ − 1)

β
a.s.,
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where

R̃0∗ =
β(1−m)

pbI + γ
− σ2

2(pbI + γ)
< R̃0 =

β(1−m)

pbI + γ
− σ2(1−m)2

2(pbI + γ)
.

Proof. If R̃0 > 1 and σ2 ≤ β
1−m , then from (3.5) we have

ln I(t)

t
≤ (pbI + γ)(R̃0 − 1)− (b(1−m) + γ)(β − σ2(1−m))

b
Ī + ψ(t).

By the Lemma 4.1, we have

lim sup
t→+∞

Ī ≤ b(pbI + γ)(R̃0 − 1)

(b(1−m) + γ)[β − σ2(1−m)]
a.s.

This means that for any ε2 > 0 (ε2 <
b(pbI+γ)(R̃0−1)

(b(1−m)+γ)[β−σ2(1−m)] ), there is a T2(ω) such

that for t > T2(ω),

Ī ≤ b(pbI + γ)(R̃0 − 1)

(b(1−m) + γ)(β − σ2(1−m))
+ ε2.

Then from (3.6), we obtain

S̄ = (1−m)− b(1−m) + γ

b
Ī − ϕ(t), (4.1)

From this and (4.1),

S̄ ≥ (1−m)− b(1−m) + γ

b

( b(pbI + γ)(R̃0 − 1)

(b(1−m) + γ)(β − σ2(1−m))
+ ε2

)
− ϕ(t).

Letting t→∞ with ε2 arbitrary, we obtain

lim inf
t→+∞

S̄ ≥ (1−m)− (pbI + γ)(R̃0 − 1)

β − σ2(1−m)
a.s.

On the other hand,

ln I(t)

t

=
ln I(0)

t
+ βS̄ − (pbI + γ)− σ2

2

1

t

∫ t

0

S2(u)du+ σMS
t

≥ ln I(0)

t
+ βS̄ − (pbI + γ)− σ2

2
+ σMS

t

≥ ln I(0)

t
+ β((1−m)− b(1−m) + γ

b
Ī − ϕ(t))− (pbI + γ)− σ2

2
+ σMS

t

= β(1−m)−
(
pbI + γ +

σ2

2

)
− β b(1−m) + γ

b
Ī + Θ(t)

= (pbI + γ)[
β(1−m)

pbI + γ
− 1− σ2

2(pbI + γ)
]− β b(1−m) + γ

b
Ī + Θ(t)

= (pbI + γ)(R̃0∗ − 1)− β b(1−m) + γ

b
Ī + Θ(t),

where Θ(t) = ln I(0)
t − βϕ(t) + σMS

t and lim supt→+∞Θ(t) = 0 a.s. Then by the
Lemma 4.1, we have

lim inf
t→+∞

Ī ≥ b(pbI + γ)(R̃0∗ − 1)

β(b(1−m) + γ)
a.s.
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For any ∀ε3 > 0 (ε3 <
b(pbI+γ)(R̃0∗−1)
β(b(1−m)+γ) ), there is a T3(ω), such that

Ī ≥ b(pbI + γ)(R̃0∗ − 1)

β(b(1−m) + γ)
− ε3. (4.2)

Combining (4.1) and (4.2) leads to

S̄ ≤ (1−m)− b(1−m) + γ

b

(b(pbI + γ)(R̃0∗ − 1)

β(b(1−m) + γ)
− ε3

)
− ϕ(t).

Letting t→∞ and ε3 arbitrary, we obtain

lim sup
t→+∞

S̄ ≤ (1−m)− (pbI + γ)(R̃0∗ − 1)

β
a.s.

The proof is complete. �

Example 4.3. We keep all the system (1.3) parameters the same as in Example 3.5

except that σ is reduced to 0.05. Note that R̃0∗ = β(1−m)
pbI+γ −

σ2

2(pbI+γ) = 1.3156, and

σ2 − β
1−m = −0.1642. Then by Theorem 4.2, for any initial value (S(0), I(0)) ∈ Λ

the solution (S(t), I(t)) of system (1.3) satisfies

lim sup
t→+∞

1

t

∫ t

0

I(u)du ≤ b(pbI + γ)(R̃0 − 1)

(b(1−m) + γ)[β − σ2(1−m)]
= 0.0277 a.s.,

lim inf
t→+∞

1

t

∫ t

0

S(u)du ≥ (1−m)− (pbI + γ)(R̃0 − 1)

β − σ2(1−m)
= 0.6812 a.s.,

lim inf
t→+∞

1

t

∫ t

0

I(u)du ≥ b(pbI + γ)(R̃0∗ − 1)

β(b(1−m) + γ)
= 0.0271 a.s.,

lim sup
t→+∞

1

t

∫ t

0

S(u)du ≤ (1−m)− (pbI + γ)(R̃0∗ − 1)

β
= 0.6861 a.s.

That is to say, the disease will prevail. The simulations shown in Figure 3 support
our results.
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Figure 3. Paths S(t) and I(t) for model (1.2) and (1.3). The
parameters are as in 3.10 with σ = 0.05.
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Figure 4. Paths S(t) and I(t) for model (1.2) and (1.3). The
parameters are as in (3.10) with σ = 0.01.

To further illustrate the effect of the noise intensity σ on model (1.3), we keep
all the parameters of (1.3) unchanged but reduced σ to 0.01. In this case,

R̃0∗ =
β(1−m)

pbI + γ
− σ2

2(pbI + γ)
= 1.3274, σ2 − β

1−m
= −0.1666

which satisfy the assumption in Theorem 4.2. We give the simulations shown in
Figure 4. Comparing the Figure 3, with the noise getting smaller, the fluctuation
of the solution of system (1.3) is getting weaker.

5. Asymptotic behavior around the endemic equilibrium

For the deterministic system (1.2), the endemic equilibrium exists and is globally
asymptotically stable. However, for the stochastic system (1.3), there exists no
endemic equilibrium. In this section, we discuss how stochastic fluctuations affect
the endemic equilibrium (S∗, I∗) of the deterministic system (1.2).

Theorem 5.1. If R0 > 1, then for any given initial value (S(0), I(0)) ∈ Λ =
{(x, y) : x > 0, y > 0, x+ y ≤ 1} the solution of model (1.3) satisfies

lim sup
t→∞

1

t

∫ t

0

[b(S(u)− S∗)2 + [b(1−m) + γ](I(u)− I∗)2]du

≤ 1

2
σ2I∗

[b(1−m) + γ + b]

β
.

Proof. Define a C2-function V : (0, 1)× (0, 1)→ R+ by

V (S, I) =
[b(1−m) + γ + b]

β
V1 + V2,

where V1(I) = I − I∗ − I∗ ln I
I∗ , V2(S, I) = 1

2 (S − S∗ + I − I∗)2.
An application of the differential operator L to V1 yields

LV1 = (1− I∗

I
)(βSI − pbII − γI) +

1

2
σ2I∗S2

= (I − I∗)β(S − S∗) +
1

2
σ2I∗S2

≤ β(I − I∗)(S − S∗) +
1

2
σ2I∗.

(5.1)
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and
LV2 = (S − S∗ + I − I∗)[−[b(1−m) + γ](I − I∗)− b(S − S∗)]

= −b(S − S∗)2 − [b(1−m) + γ](I − I∗)2

− [b(1−m) + γ + b](I − I∗)(S − S∗).
(5.2)

Combining (5.1) and (5.2), we obtain

LV ≤ −b(S − S∗)2 − [b(1−m) + γ](I − I∗)2 +
1

2
σ2I∗

[b(1−m) + γ + b]

β
. (5.3)

Then
dV = LV dt− σ(I − I∗)SdB(t)

≤ −b(S − S∗)2 − [b(1−m) + γ](I − I∗)2

+
1

2
σ2I∗

[b(1−m) + γ + b]

β
− σS(I − I∗)dB(t).

(5.4)

Integrating both sides of (5.4) from 0 to t yields

V (t)− V (0) ≤
∫ t

0

[
− b(S(u)− S∗)2 − [b(1−m) + γ](I(u)− I∗)2

+
1

2
σ2I∗

[b(1−m) + γ + b]

β

]
du−

∫ t

0

σS(u)(I(u)− I∗)dB(u).

That is,

1

t

∫ t

0

[b(S(u)− S∗)2 + [b(1−m) + γ](I(u)− I∗)2]du

≤ 1

2
σ2I∗

[b(1−m) + γ + b]

β
− V (t)− V (0)

t
− 1

t

∫ t

0

σS(u)(I(u)− I∗)dB(u).

From the Lemma 3.1 it follows that

lim
t→∞

1

t

∫ t

0

σ(I(u)− I∗)S(u)dB(u) = 0 a.s.

which implies

lim sup
t→∞

1

t

∫ t

0

[b(S(u)− S∗)2 + [b(1−m) + γ](I(u)− I∗)2]du

≤ 1

2
σ2I∗

[b(1−m) + γ + b]

β
.

�

Remark 5.2. From Theorem 5.1, we have 1
2σ

2I∗ [b(1−m)+γ+b]
β → 0 as σ2 → 0. This

means that the solution of model (1.3) fluctuates around the endemic equilibrium
(S∗, I∗) of model (1.2) and with the values of σ2 decreasing, the difference between
them also decreases.

6. Stationary distribution

First, we give a definition about stationary distribution and some lemmas.
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Definition 6.1 (see [29, 19]). Let P (t,X0, ·) denote the probability measure in-
duced by X(t) = (S(t), I(t)) with initial value X0 = (S(0), I(0)); that is,

PX0(X ∈ B) = P{X(t) ∈ B : X(0) = X0} for any Borel set B ⊂ R2
+.

If there exists a probability measure π(·) on the measurable space (R2
+,B(R2

+)) such
that

lim
t→∞

PX0
(X ∈ B) = π(B) for any X0 ∈ R2

+,

we then say that model has a stationary distribution π(·).

Let X(t) be a regular time-homogeneous Markov process in Rn+ described by

dX(t) = b(X)dt+

k∑
r=1

σr(X)dBr(t).

The diffusion matrix is defined as

A(X) = (aij(x)), aij(x) =

k∑
r=1

σir(x)σjr(x).

To show the existence of a stationary distribution, we cite a known result from
Zhu and Yin [45, Remark 3.2, Theorems 3.13, 4.2 ,4.4]; see also [20].

Lemma 6.2. The Markov process X(t) has a unique stationary distribution π(·) if
there exists a bounded domain U ∈ Rd with regular boundary such that its closure
Ū ⊂ Rd, having the following properties:

(i) There exist some i = 1, 2, . . . , n, and a positive constant η such that aii(x) ≥
η for any x ∈ U .

(ii) There is a nonnegative C2-function V (x), and a neighborhood U such that
for some constants κ > 0, LV (x) < −κ, x ∈ Λ \ U .

Moreover, if f(·) is a function integrable with respect to the measure π(·), then

P
(

lim
T→∞

1

T

∫ T

0

f(Xx(t)) =

∫
Rd

f(x)π(dx)
)

= 1,

for all x ∈ Rd.

Theorem 6.3. Let the assumptions in Theorem 5.1 hold and

0 < Ψ < min(bS∗2, [b(1−m) + γ]I∗2). (6.1)

Then for any given initial value (S(0), I(0)) ∈ Λ, there exists a unique stationary

distribution π(·), and the solution of (1.3) is ergodic, where Ψ = 1
2σ

2I∗ [b(1−m)+γ+b]
β

and (S∗, I∗) is the unique endemic equilibrium of (1.2).

Proof. To validate condition (ii), we use the nonnegative C2-function V (S, I) as
Theorem 5.1. From (5.3) it follows that

LV ≤ −b(S − S∗)2 − [b(1−m) + γ](I − I∗)2 +
1

2
σ2I∗

[b(1−m) + γ + b]

β

= −b(S − S∗)2 − [b(1−m) + γ](I − I∗)2 + Ψ.

Since
0 < Ψ < min(bS∗2, [b(1−m) + γ]I∗2),

the ellipsoid
b(S − S∗)2 + [b(1−m) + γ](I − I∗)2 = Ψ
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lies entirely in R2
+. One can then take U as any neighborhood of the ellipsoid

such that Ū ⊂ R2
+, where Ū is the closure of U . Thus, we have LV (S, I) < 0 for

(S, I) ∈ R2
+ \

−
U , which implies that condition (ii) in Lemma 6.2 is satisfied.

On the other hand, for system (1.3), the diffusion matrix is

A(S, I) = σ2S2I2

(
1 −1
−1 1

)
.

Since Ū ⊂ R2
+, it follows that a11(S, I) = σ2S2I2 ≥ min(S,I)∈Ū σ

2S2I2 > 0. We

have therefore verified condition (i) in Lemma 6.2. As a consequence, system (1.3)
has a stationary distribution π(·) and is ergodic. �
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Figure 5. Frequency histograms of S(t) at t = 3000 obtained
from 100000 simulations with: (a) σ = 0.1, (b) σ = 0.01, (c)
σ = 0.001, (d) σ = 0.0001.

Example 6.4. To verify the conditions mentioned in Theorem 6.3, we choose the
parameter values as follows:

b = 0.1, bI = 0.1, β = 0.15, p = 0.1, m = 0.1, γ = 0.1.

Furthermore, to display the effect of the noise intensity on the stationary dis-
tribution, let σ change from 0.1, 0.01, 0.001 to 0.0001. We find R0 = 1.2273,

min(bS∗2, [b(1−m)+γ]I∗2) = 0.0015. For convenience, Ψ(σ) = 1
2σ

2I∗ [b(1−m)+γ+b]
β ,
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Figure 6. Frequency histograms of I(t) at t = 3000 obtained
from 100000 simulations with: (a) σ = 0.1, (b) σ = 0.01, (c)
σ = 0.001, (d) σ = 0.0001.

we obtain Ψ(0.1) = 8.4795× 10−4, Ψ(0.01) = 8.4795× 10−6, Ψ(0.001) = 8.4795×
10−8, Ψ(0.0001) = 8.4795×10−10. Hence the desired conditions for the existence of
stationary distribution are satisfied. We have run the numerical simulation 100000
times and collected the values of S(t) and I(t) at t = 3000, and their distributions
are exhibited in Fig.5 and Fig.6. The distributions presented at Fig.5 and Fig.6 do
not change with time, hence they are stationary in nature. From Fig.5 and Fig.6,
we can see that the profile of the stationary distribution becomes steeper with the
noise intensity increasing.

7. Conclusions

In this paper, a stochastic SIR epidemic model with vertical infection is pre-

sented. When the noise is small, Theorem 3.2 shows that if R̃0 = R0− σ2(1−m)2

2(pbI+γ) < 1

the disease always dies out in the end, where R0 = β(1−m)
pbI+γ is the basic reproduction

number of the corresponding deterministic model (1.2)). However, when the noise is

large, Theorem 3.3 shows that the disease decays even if R̃0 > 1 (or R0 > 1). These
results imply that the noise can suppress the spread of the disease. On the other

hand, when the noise is small, Theorem 4.2 shows that if R̃0∗ = R0 − σ2

2(pbI+γ) > 1

the disease is persistent in mean. In addition, we discuss asymptotic behavior of
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the stochastic model (1.3) around the endemic equilibrium (S∗, I∗) of the determin-
istic model (1.2), Theorem 5.1 reveals that the solution of model (1.3) fluctuates
around the endemic equilibrium (S∗, I∗) of model (1.2) and with the values of σ2

decreasing, the difference between them also decreases. Moreover, we show that
when Theorem 5.1 holds, there exists a unique stationary distribution for system
(1.3) and the solution of system (1.3) is ergodic (see Theorem 6.3).

Finally we point out that some issues deserve further investigation. For instance,
we have established sufficient conditions of the extinction and persistence in mean
of the disease, as well as the existence of stationary distribution. However, obtain-
ing necessary and sufficient conditions of these problems remain open. Another
interesting continuation of this work might be to introduce independent random
perturbations into the model (1.3) as in [41] and have the model

dS(t) = [b(1−m)(S(t) +R(t))− βS(t)I(t) + pbII(t)− dS(t)]dt+ σ1S(t)dB1(t),

dI(t) = [βS(t)I(t) + qbII(t)− dII(t)− γI(t)]dt+ σ2I(t)dB2(t),

dR(t) = [γI(t)− dR(t) +mb(S(t) +R(t))]dt+ σ3R(t)dB3(t).

We leave these topics for a future work.
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