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EXISTENCE OF SOLUTIONS FOR NON-LOCAL ELLIPTIC

SYSTEMS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL

NONLINEARITIES

YANG YANG, QIAN YU HONG, XUDONG SHANG

Abstract. In this work, we establish the existence of solutions for the non-
linear nonlocal system of equations involving the fractional Laplacian,

(−∆)su = au+ bv +
2p

p+ q

∫
Ω

|v(y)|q

|x− y|µ
dy|u|p−2u

+ 2ξ1

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u|2

∗
µ−2u in Ω,

(−∆)sv = bu+ cv +
2q

p+ q

∫
Ω

|u(y)|p

|x− y|µ
dy|v|q−2v

+ 2ξ2

∫
Ω

|v(y)|2
∗
µ

|x− y|µ
dy|v|2

∗
µ−2v in Ω,

u = v = 0 in RN \ Ω,

where (−∆)s is the fractional Laplacian operator, Ω is a smooth bounded

domain in RN , 0 < s < 1, N > 2s, 0 < µ < N , ξ1, ξ2 ≥ 0, 1 < p, q ≤ 2∗µ and

2∗µ = 2N−µ
N−2s

is the upper critical exponent in the Hardy-Littlewood-Sobolev

inequality. The nonlinearities can interact with the spectrum of the fractional

Laplacian. More specifically, the interval defined by the two eigenvalues of the
real matrix from the linear part contains an eigenvalue of the spectrum of the

fractional Laplacian. In this case, resonance phenomena can occur.
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1. Introduction and statement of main results

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω (at least C2),
N > 2s and s ∈ (0, 1). We consider the following nonlinear doubly nonlocal systems
involving the fractional Laplacian,

(−∆)su = au+ bv +
2p

p+ q

∫
Ω

|v(y)|q

|x− y|µ
dy|u|p−2u

+ 2ξ1

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u|2

∗
µ−2u in Ω,

(−∆)sv = bu+ cv +
2q

p+ q

∫
Ω

|u(y)|p

|x− y|µ
dy|v|q−2v

+ 2ξ2

∫
Ω

|v(y)|2
∗
µ

|x− y|µ
dy|v|2

∗
µ−2v in Ω,

u = v = 0, in RN \ Ω,

(1.1)

where µ ∈ (0, N) , ξ1, ξ2 ≥ 0, 1 < p, q ≤ 2∗µ and 2∗µ = 2N−µ
N−2s is the upper criti-

cal exponent in the Hardy-Littlewood-Sobolev inequality. (−∆)s is the fractional
Laplacian operator defined as

(−∆)su(x) = −P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy

where P.V. denotes the Cauchy principal value. The fractional Laplacian is the
infinitesimal generator of Lévy stable diffusion process and appears in physical
phenomena, stochastic processes, fluid dynamics, dynamical systems, elasticity, ob-
stacle problems, chemical reactions in liquids and American options in finance. For
more details, we refer to [2, 15].

For a measurable function u : RN → R, we define the Gagliardo seminorm

[u]s :=
(∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

.

Now, we introduce the fractional Sobolev space (which is a Hilbert space)

Hs(RN ) = {u ∈ L2(RN ) : [u]s <∞},

with the norm ‖u‖Hs = (‖u‖2L2 + [u]2s)
1/2. Let

X(Ω) := {u ∈ Hs(RN ) : u = 0 a.e. in RN\Ω}.



EJDE-2019/90 SOLUTIONS FOR NON-LOCAL ELLIPTIC SYSTEMS 3

It holds that X(Ω) ↪→ Lr(Ω) continuously for r ∈ [1, 2∗s] and compactly for r ∈
[1, 2∗s), where 2∗s = 2N

N−2s . Due to the fractional Sobolev inequality, X(Ω) is a
Hilbert space with the inner product

〈u, v〉X :=

∫
R2N

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|N+2s

dx dy,

which induces the norm ‖ · ‖X = [·]s. We shall denote by µ1 and µ2 the real
eigenvalues of the matrix

A :=

(
a b
b c

)
, a, b, c ∈ R.

Without loss of generality, we will assume µ1 ≤ µ2. The spectrum of (−∆)s, with
boundary condition u = 0 in RN \ Ω, will be denoted by σ((−∆)s), which consists
of the sequence of the eigenvalues {λk,s} satisfying

0 < λ1,s < λ2,s ≤ λ3,s ≤ · · · ≤ λj,s ≤ λj+1,s ≤ . . . , λk,s →∞, as k →∞,

and are characterized by

λ1,s = inf
u∈X(Ω)\{0}

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy∫

RN |u(x)|2dx
,

λk+1,s = inf
u∈Pk+1\{0}

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy∫

RN |u(x)|2dx
,

where

Pk+1 = {u ∈ X(Ω) : 〈u, ϕj,s〉X = 0, j = 1, 2, . . . , k},
and ϕk,s denotes the eigenfunction associated with the eigenvalue λk,s, for each
k ∈ N. The following results are true (see [30, 31, 33]).

(i) If u ∈ X(Ω) is a λ1,s-eigenfunction (u is an eigenfunction corresponding to
λ1,s ), then either u(x) > 0 a.e. in Ω or u(x) < 0 a.e. in Ω;

(ii) If λ ∈ σ((−∆)s) \ {λ1,s} and u is a λ-eigenfunction, then u changes sign in
Ω, and λ has finite multiplicity.

(iii) ϕk,s ∈ C0,σ(Ω) for some σ ∈ (0, 1) and the sequence {ϕk,s} is an orthonor-
mal basis in both L2(Ω) and X(Ω).

Remark 1.1. For fixed k ∈ N we can assume λk,s < λk+1,s, otherwise we can
suppose that λk,s has multiplicity l ∈ N, that is

λk−1,s < λk,s = λk+1,s = · · · = λk+l−1,s < λk+l,s ,

and we denote λk+l,s = λk+1,s.

In a pioneering paper [3], Brézis and Nirenberg studied the problem

−∆u = |u|2
∗−2u+ λu in Ω; u = 0 on ∂Ω,

where 2∗ = N+2
N−2 . They proved the existence of nontrivial solutions for λ > 0, N > 4

by developing some skillful techniques in estimating the Minimax level. This kind
of Brézis-Nirenberg problems has been extensively studied (see, e.g. [4, 6, 7, 5, 10,
17, 20, 21, 19, 18, 37, 36, 39] and references therein). Recently, many well-known
Brézis-Nirenberg results in critical local equations have been extended to semilinear
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equations with fractional Laplacian. Specially, we refer to [31, 32, 34, 35], where
the following critical fractional Laplacian problem

(−∆)su = |u|2
∗
s−2u+ λu in Ω; u = 0 in RN\Ω,

was investigated, and a nontrivial weak solution was obtained under the following
assumptions:

(i) 2s < N < 4s and λ is sufficiently large;
(ii) N = 4s and λ is not an eigenvalue of (−∆)s in Ω;

(iii) N ≥ 4s.

For the Laplacian with nonlocal Choquard nonlinearity, Gao and Yang [13] stud-
ied the Brézis-Nirenberg type problem

−∆u = λu+
(∫

Ω

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u in Ω; u = 0, in RN\Ω. (1.2)

where Ω is a bounded domain in RN . They proved the existence, multiplicity and
nonexistence results for a range of λ. Moreover, in [14], they also studied a class of
critical Choquard equations

−∆u =
(∫

Ω

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u+ λf(u), in Ω.

Some existence and multiplicity results were obtained under suitable assumptions
on different types of nonlinearities f(u). For details and recent works we refer to
[1, 25] and the references therein. For fractional Laplacian with nonlocal Choquard
nonlinearity, D’Avenia, Siciliano and Squassina in [9] considered the following frac-
tional Choquard equation

(−∆)su+ ωu = (Kα ∗ |u|q)|u|q−2u, in RN , (1.3)

where N ≥ 3, s ∈ (0, 1), ω ≥ 0, α ∈ (0, N) and q ∈ ( 2N−α
N , 2N−α

N−2s ). In particularly,

when ω = 0, α = 4s and q = 2, then problem (1.3) becomes a fractional Choquard
equation with upper critical exponent in the sense of Hardy-Littlewood-Sobolev
inequality as follows:

(−∆)su =
(∫

Ω

|u|2

|x− y|4s
dy
)
u, in RN . (1.4)

They obtained regularity, existence, nonexistence of nontrivial solutions problems
(1.3) and (1.4). Mukherjee and Sreenadh [28] extended the study of (1.2) to frac-
tional Laplacian equation.

Regarding a system of equations, in [12, 11, 22, 26], the authors studied elliptic
systems involving fractional Laplacian and critical growth nonlinearities, which
extended the Brézis and Nirenberg results for variational systems. Particularly, in
[26], Miyagaki and Pereira studied the fractional elliptic system

(−∆)su = au+ bv +
2p

p+ q
|u|p−2u|v|q + 2ξ1u|u|p+q−2 in Ω,

(−∆)sv = bu+ cv +
2q

p+ q
|u|p|v|q−2v + 2ξ2v|v|p+q−2 in Ω,

u = v = 0 in RN \ Ω,

extending [11] by means of the Linking theorem when

λk−1,s ≤ µ1 < λk,s ≤ µ2 < λk+1,s, if k ≥ 1.
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In this case, resonance and double resonance phenomena can occur. Using Nehari
manifold techniques, Giacomoni, Mukherjee and Sreenadh [16] established the ex-
istence and multiplicity results of weak solutions for the fractional elliptic systems
involving Choquard type nonlinearities,

(−∆)su = λ|u|q−2u+
(∫

Ω

|v(y)|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u in Ω,

(−∆)sv = δ|v|q−2v +
(∫

Ω

|u(x)|2
∗
µ

|x− y|µ
dy
)
|v|2

∗
µ−2v in Ω,

u = v = 0 in RN \ Ω,

where λ, δ > 0 are real parameters and 1 < q < 2.
Motivated by [26, 12], we continue to study the fractional elliptic systems involv-

ing Choquard type nonlinearities and focus our attention on the existence results
for problem (1.1) under the conditions that (i) ξ1 = ξ2 = 0, 1 < p, q < 2∗µ, (ii)
ξ1 = ξ2 = 0, p = q = 2∗µ, (iii) ξ1, ξ2 > 0, p = q = 2∗µ respectively. Our main results
are the following:

Theorem 1.2. Assume that ξ1 = ξ2 = 0, 1 < p, q < 2∗µ, b ≥ 0 and µ2 < λ1,s.
Then (1.1) admits a positive solution.

Theorem 1.3. Assume that ξ1 = ξ2 = 0, p = q = 2∗µ, b ≥ 0 and 0 < µ1 ≤ µ2 <
λ1,s. Then (1.1) admits a nonnegative solution, provided that either

(i) N ≥ 4s, or
(ii) 2s < N < 4s and µ1 is large enough.

Theorem 1.4. Assume that ξ1, ξ2 > 0, p = q = 2∗µ and 0 < λk−1,s < µ1 < λk,s ≤
µ2 < λk+1,s, for some k ∈ N. Then (1.1) admits a nontrivial solution, if one of the
following conditions holds,

(i) N ≥ 4s,
(ii) 2s < N < 4s and µ1 is large enough.

The outline of this paper is as follows: Section 2 contains the functional setting
and some abstract critical point theorems. In section 3, we obtain a positive solu-
tion for problem (1.1) when the nonlinearity is subcritical. In section 4, when the
nonlinearity has the critical growth, we obtain a nonnegative solution by the Moun-
tain Pass theorem. In section 5, when the nonlinearity interacts with the fractional
Laplacian spectrum, we show a convergence criterion for the (PS)c sequence and
obtain a nontrivial solution by the Linking theorem. We will consider the following
notation for the product space S × S := S2 and

w+(x) := max{w(x), 0}, w−(x) := min{w(x), 0},
for positive and negative part of a function w. Consequently we obtain w = w+ +
w−. During chains of inequalities, universal constants will be denoted by the same
letter C even if their numerical value may change from line to line.

2. Preliminaries

2.1. Functional setting. The starting point to the variational approach to prob-
lem (1.1) is the following well-known Hardy-Littlewood-Sobolev inequality, which
leads to a new type of critical problem with nonlocal nonlinearities driven by the
Riesz potential.
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Proposition 2.1 ([24, Theorem 4.3]). Let t, r > 1 and 0 < µ < N with 1
t + µ

N + 1
r =

2, f ∈ Lt(RN ) and h ∈ Lr(RN ). There exists a sharp constant C(t,N, µ, r),
independent of f, h such that∫

RN

∫
RN

f(x)h(y)

|x− y|µ
dx dy ≤ C(t,N, µ, r)‖f‖Lt(RN )‖h‖Lr(RN ). (2.1)

If t = r = 2N
2N−µ then

C(t,N, µ, r) = C(N,µ) = π
µ
2

Γ(N2 −
µ
2 )

Γ(N − µ
2 )

{Γ(N2 )

Γ(N)

}−1+ µ
N

.

In this case, there is equality in (2.1) if and only if f ≡ (constant)h and

h(x) = A(γ2 + |x− a|2)
−(2N−µ)

2

for some A ∈ C, 0 6= γ ∈ R and a ∈ RN .

Remark 2.2. For u ∈ Hs(RN ), let f = h = |u|p, by Hardy-Littlewood-Sobolev
inequality, ∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|µ
dx dy

is well defined for all p satisfying

2µ :=
(2N − µ

N

)
≤ p ≤

(2N − µ
N − 2s

)
:= 2∗µ.

Now, with Proposition 2.1, we can consider the Hilbert space given by the prod-
uct space

Y (Ω) := X(Ω)×X(Ω),

which is equipped with the inner product

〈(u, v), (ϕ,ψ)〉Y := 〈u, ϕ〉X + 〈v, ψ〉X
and the norm

‖(u, v)‖Y := (‖u‖2X + ‖v‖2X)1/2.

Lm(Ω) × Lm(Ω)(m > 1) is a Banach space equipped with the standard product
norm

‖(u, v)‖Lm×Lm := (‖u‖2Lm + ‖v‖2Lm)1/2.

Recall that

µ1|U |2 ≤ (AU,U)R2 ≤ µ2|U |2, for all U := (u, v) ∈ R2. (2.2)

By a solution of (1.1), we mean a weak solution, that is, a pair of functions (u, v) ∈
Y (Ω) such that

〈(u, v), (ϕ,ψ)〉Y −
∫

Ω

(A(u, v), (ϕ,ψ))R2dx−
∫

Ω

∂F

∂u
ϕdx−

∫
Ω

∂F

∂v
ψdx = 0,

for all (ϕ,ψ) ∈ Y (Ω), where

F (u, v) =
2

p+ q

∫
Ω

|v(y)|q

|x− y|µ
dy|u|p +

1

2∗µ

[
ξ1

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u|2

∗
µ

+ ξ2

∫
Ω

|v(y)|2
∗
µ

|x− y|µ
dy|v|2

∗
µ

]
.

(2.3)
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Define the functional Js : Y (Ω)→ R by setting

Js(U) ≡ Js(u, v) =
1

2

∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

− 1

2

∫
RN

(A(u, v), (u, v))R2dx−
∫

Ω

F (U)dx,

whose Fréchet derivative is

J ′s(u, v)(ϕ,ψ)

=

∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y)) + (v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+2s
dx dy

−
∫

Ω

(A(u, v), (ϕ,ψ))R2dx− 2p

p+ q

∫
Ω

|u(x)|p−2u(x)|v(y)|q

|x− y|µ
ϕdx dy

− 2q

p+ q

∫
Ω

|u(x)|p|v(y)|q−2v(y)

|x− y|µ
ψ dx dy

− 2ξ1

∫
Ω

|u(x)|2
∗
µ−2u(x)|u(y)|2

∗
µ

|x− y|µ
ϕdx dy

− 2ξ2

∫
Ω

|v(x)|2
∗
µ |v(y)|2

∗
µ−2v(y)

|x− y|µ
ψ dx dy,

for every (ϕ,ψ) ∈ Y (Ω).

2.2. Abstract critical point theorems. We will prove Theorems 1.3 and 1.4
using the following abstract critical point theorems, respectively.

Theorem 2.3 (Mountain Pass theorem [40, Theorem 2.10]). Let X be a Banach
space, J ∈ C1(X,R), e ∈ X and r > 0 be such that ‖e‖ > r and

b := inf
‖u‖=r

J(u) > J(0) ≥ J(e).

If J satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

Then c is a critical value of J .

Theorem 2.4 (Linking theorem [40, Theorem 2.12]). Let X be a real Banach space
with X = V ⊕W , where V is finite dimensional. Suppose J ∈ C1(X,R) and

(i) There are constants ρ, α > 0 such that J |∂Bρ∩W ≥ α, and
(ii) There is an e ∈ ∂Bρ ∩W and constants R1, R2 > ρ such that J |∂Q ≤ 0,

where

Q = (BR1 ∩ V )⊕ {re, 0 < r < R2}.
Then J possesses a (PS)c sequence where c ≥ α can be characterized as

c = inf
h∈Γ

max
u∈Q

J(h(u)),

where Γ = {h ∈ C(Q,X) : h = id on ∂Q}.

Remark 2.5. Here ∂Q is the boundary of Q relative to the space V ⊕ span{e},
and when V = {0}, this theorem refers to the usual Mountain Pass theorem. We
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recall that if J |V ≤ 0 and J(u) ≤ 0 for all u ∈ V ⊕ span{e} with ‖u‖ ≥ R, then J
satisfies (ii) for R large enough. Fixed k ∈ N, define the following subspaces

V = span{(0, ϕ1,s), (ϕ1,s, 0), (0, ϕ2,s), (ϕ2,s, 0), . . . , (0, ϕk−1,s), (ϕk−1,s, 0)},

W = V ⊥ = (Pk)2.

3. Case 1 : ξ1 = ξ2 = 0, 1 < p, q < 2∗µ

3.1. Proof of Theorem 1.2. Let Ω be a bounded domain and suppose that b ≥ 0
and

µ2 < λ1,s. (3.1)

Consider the function I : Y (Ω)→ R defined by

I(U) :=
1

2
‖U‖2Y −

1

2

∫
Ω

(AU,U)R2dx.

We shall minimize the functional I restricted to the set

M := {U = (u, v) ∈ Y (Ω) :

∫
Ω

∫
Ω

|u+(x)|p|v+(y)|q

|x− y|µ
dx dy = 1}.

By (3.1) the embedding X(Ω) ↪→ L2(Ω) (with the sharp constant λ1,s), we have

I(U) ≥ 1

2
min{1, (1− µ2

λ1,s
)}‖U‖2Y ≥ 0. (3.2)

Define
I0 := inf

M
I,

and let (Un) = (un, vn) ⊂ M be a minimizing sequence for I0. Then I(Un) =
I0 + on(1) ≤ C, for some C > 0 (where on(1) → 0, as n → ∞) and consequently
by (3.2), we obtain

[un]2s + [vn]2s = ‖un‖2X + ‖vn‖2X = ‖Un‖2Y ≤ C ′.
Hence, there are two subsequences of {un} ⊂ X(Ω) and {vn} ⊂ X(Ω) (that we will
still label as un and vn) such that Un = (un, vn) converges to some U = (u, v) in
Y (Ω) weakly and

[u]2s ≤ lim inf
n

∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy, (3.3)

[v]2s ≤ lim inf
n

∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dx dy . (3.4)

Now we will show that U := (u, v) ∈M. Indeed, since (Un) ⊂M, we have∫
Ω

∫
Ω

|u+
n (x)|p|v+

n (y)|q

|x− y|µ
dx dy = 1.

In view of the compact embedding X(Ω) ↪→ Lr(Ω) for all r < 2∗s = 2N
N−2s , as

1 < p, q < 2∗µ, we obtain∫
Ω

∫
Ω

|u+
n (x)|p|v+

n (y)|q

|x− y|µ
dx dy →

∫
Ω

∫
Ω

|u+(x)|p|v+(y)|q

|x− y|µ
dx dy, as n→∞,

thus
∫

Ω

∫
Ω
|u+(x)|p|v+(y)|q

|x−y|µ dx dy = 1 and consequently U := (u, v) ∈ M with u, v 6=
0. We now show that U = (u, v) is a minimizer for I onM and both components u, v
are nonnegative. By passing to the limit in I(Un) = I0 + on(1), where on(1) → 0
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as n → ∞, using (3.3), (3.4) and the strong convergence of (un, vn) to (u, v) in
(L2(Ω))2, as n → ∞, we conclude that I(U) ≤ I0. Moreover, since U ∈ M and
I0 = infM I ≤ I(U), we achieve that I(U) = I0. This proves the minimality of
U ∈M. On the other hand, we let

G(U) =

∫
Ω

∫
Ω

|u+(x)|p|v+(y)|q

|x− y|µ
dx dy − 1,

where U = (u, v) ∈ Y (Ω). Note that G ∈ C1 and since U ∈M,

G′(U)U = (p+ q)

∫
Ω

∫
Ω

|u+(x)|p|v+(y)|q

|x− y|µ
dx dy = p+ q 6= 0,

hence, by Lagrange Multiplier theorem, there exists a multiplier ζ ∈ R such that

I ′(U)(ϕ,ψ) = ζG′(U)(ϕ,ψ), ∀(ϕ,ψ) ∈ Y (Ω). (3.5)

Taking (ϕ,ψ) = (u−, v−) := U−in (3.5), we obtain

‖U−‖2Y =

∫
R2N

u+(x)u−(y) + u−(x)u+(y)

|x− y|N+2s
dx dy

+

∫
R2N

v+(x)v−(y) + v−(x)v+(y)

|x− y|N+2s
dx dy +

∫
Ω

(AU,U−)R2dx.

Using this formula in the expression of I(U−), we have

I(U−) =
b

2

∫
Ω

(v+u− + u+v−)dx+
1

2

∫
R2N

u+(x)u−(y) + u−(x)u+(y)

|x− y|N+2s
dx dy

+
1

2

∫
R2N

v+(x)v−(y) + v−(x)v+(y)

|x− y|N+2s
dx dy ≤ 0,

since b ≥ 0, u− ≤ 0 and u+ ≥ 0. Furthermore,

I(U−) ≥ 1

2
min

{
1, (1− µ2

λ1,s
)
}
‖U−‖2Y ≥ 0,

we obtain U− = (u−, v−) = (0, 0) and therefore u, v ≥ 0. We now prove the
existence of a positive solution to (1.1). Using again (3.5), we see that

‖U‖2Y −
∫

Ω

(AU,U)R2dx− ζ(p+ q) = 0

and since U ∈M, we conclude that

I0 = I(U) =
ζ(p+ q)

2
> 0,

Then by (3.5), U satisfies the following system, weakly,

(−∆)su = au+ bv +
2pI0
p+ q

∫
Ω

∫
Ω

|u|p−1|v|q

|x− y|µ
dx dy in Ω,

(−∆)sv = bu+ cv +
2qI0
p+ q

∫
Ω

∫
Ω

|u|p|v|q−1

|x− y|µ
dx dy in Ω,

u = v = 0 in RN\Ω.

Now using the homogeneity of the system, we obtain τ > 0 such that W = (I0)τU
is a solution of (1.1). Since b ≥ 0 and u, v ≥ 0, we obtain, in the weak sense,

(−∆)su ≥ au, in Ω;
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(−∆)sv ≥ cv, in Ω;

u ≥ 0, v ≥ 0, in Ω;

u = v = 0, in RN\Ω.

By the strong maximum principle [23, Theorem 2.5] we conclude that u, v > 0 in
Ω.

4. Case 2: ξ1 = ξ2 = 0, p = q = 2∗µ

To obtain a nonnegative solution to the system (1.1), we recall the functional

Js(U) ≡ Js(u, v)

=
1

2

∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

− 1

2

∫
RN

(A(u, v), (u, v))R2dx− 1

2∗µ

∫
Ω

∫
Ω

|u+(x)|2
∗
µ |v+(y)|2

∗
µ

|x− y|µ
dx dy,

whose Fréchet derivative is

J ′s(u, v)(ϕ,ψ)

=

∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y)) + (v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+2s
dx dy

−
∫

Ω

(A(u, v), (ϕ,ψ))R2dx−
∫

Ω

∫
Ω

|u+(x)|2
∗
µ−1|v+(y)|2

∗
µ

|x− y|µ
ϕdx dy

−
∫

Ω

∫
Ω

|u+(x)|2
∗
µ |v+(y)|2

∗
µ−1

|x− y|µ
ψ dx dy,

(4.1)

for (ϕ,ψ) ∈ Y (Ω).

4.1. Minimizers and some estimates. We shall use the definition

Ss := inf
u∈X(Ω)\{0}

Ss(u),

where

Ss(u) :=

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy

(
∫
RN |u(x)|2∗sdx)2/2∗s

is the associated Rayleigh quotient. We also define the following related minimizing
problems:

SHs = inf
u∈X(Ω)\{0}

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy

(
∫

Ω

∫
Ω
|u(x)|2

∗
µ |u(y)|2

∗
µ

|x−y|µ dx dy)1/2∗µ

,

S̃Hs = inf
(u,v)∈Y (Ω)\{(0,0)}

∫
R2N

|u(x)−u(y)|2+|v(x)−v(y)|2
|x−y|N+2s dx dy

(
∫

Ω

∫
Ω
|u(x)|2

∗
µ |v(y)|2

∗
µ

|x−y|µ dx dy)1/2∗µ

.

Proposition 4.1. (i) ([8, Lemma 2.15]) The constant SHs is achieved by u if
and only if u is of the form

C(
t

t2 + |x− x0|2
)
N−2s

2 , x ∈ RN ,
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for some x0 ∈ RN , C > 0 and t > 0. Also it satisfies

(−∆)su =
(∫

RN

|u|2
∗
µ

|x− y|µ
dy
)
|u|2

∗
µ−2u, in RN .

and this characterization of u also provides the minimizers for Ss.
(ii) ([16, Lemma 2.5])

SHs =
Ss

C(N,µ)1/2∗µ
.

(iii) ([16, Lemma 2.6]) S̃Hs = 2SHs .

Now we construct auxiliary functions and make some estimates with the help of
Proposition 4.1. From [34], consider the family of function {Uε} defined as

Uε(x) = ε−
(N−2s)

2 u∗(
x

ε
), x ∈ RN ,

where u∗(x) = u( x

S
1
2s
s

), u(x) = ũ(x)
‖u‖

L
2∗s

and ũ = α(β2 + |x|2)−
N−2s

2 with α ∈ R\{0}

and β > 0 are fixed constants. Then for each ε > 0, Uε satisfies

(−∆)su = |u|2
∗
s−2u in RN ,

in addition, ∫
RN

∫
RN

|Uε(x)− Uε(y)|2

|x− y|N+2s
dx dy =

∫
RN
|Uε|2

∗
sdx = S

N
2s
s .

Without loss of generality, we assume 0 ∈ Ω and fix δ > 0 such that B4δ ⊂ Ω.
Let η ∈ C∞(RN ) be such that 0 ≤ η ≤ 1 in RN , η ≡ 1 in Bδ and η ≡ 0 in RN\B2δ.
For ε > 0, we define the function

uε(x) = η(x)Uε(x),

for x ∈ RN . We have the following results for uε in [34, Propositions 21, 22] and
[31, Proposition 7.2].

Proposition 4.2. Let s ∈ (0, 1) and N > 2s. Then, the following estimates hold
as ε→ 0: ∫

R2N

|uε(x)− uε(y)|2

|x− y|N+2s
dx dy ≤ S

N
2s
s +O(εN−2s), (4.2)∫

RN
|uε|2

∗
sdx = S

N
2s
s +O(εN ), (4.3)

∫
RN
|uε|2dx ≥


Csε

2s +O(εN−2s) if N > 4s,

Csε
2s| log ε|+O(ε2s) if N = 4s,

Csε
N−2s +O(ε2s) if 2s < N < 4s,

(4.4)

for some positive constant Cs depending on s,∫
RN
|uε|dx = O(ε

N−2s
2 ). (4.5)

Remark 4.3. Using Proposition 4.1(ii), Inequality (4.2) can be written as∫
R2N

|uε(x)− uε(y)|2

|x− y|N+2s
dx dy ≤ S

N
2s
s +O(εN−2s)

= C(N,µ)
N−2s
2N−µ ·

N
2s (SHs )

N
2s +O(εN−2s).

(4.6)
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Proposition 4.4 ([16, Proposition 2.8]). The following estimate holds∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dx dy ≥ C(N,µ)

N
2s (SHs )

2N−µ
2s −O(εN ). (4.7)

Now consider the minimization problem

Ss,λ = inf
v∈X(Ω)\{0}

Ss,λ(v),

where

Ss,λ(v) =

∫
R2N

|v(x)−v(y)|2
|x−y|N+2s dx dy − λ

∫
RN |v(x)|2dx( ∫

Ω

∫
Ω
|v(x)|2

∗
µ |v(y)|2

∗
µ

|x−y|µ dx dy
)1/2∗µ .

Lemma 4.5. Let N > 2s and s ∈ (0, 1). Then the following facts hold.

(i) For N ≥ 4s, we have Ss,λ(uε) < SHs for all λ > 0, provided ε > 0 is
sufficiently small.

(ii) For 2s < N < 4s, there exists λs > 0 such that for all λ > λs, we have
Ss,λ(uε) < SHs , provided ε > 0 is sufficiently small.

Proof. Case 1: N > 4s. By (4.4), (4.6) and (4.7), we infer that

Ss,λ(uε) ≤
C(N,µ)

N−2s
2N−µ ·

N
2s (SHs )

N
2s +O(εN−2s)− λCsε2s +O(εN−2s)(

C(N,µ)
N
2s (SHs )

2N−µ
2s −O(εN )

)1/2∗µ
≤ SHs − λCsε2s +O(εN−2s)

< SHs , if λ > 0, and ε > 0 is sufficiently small.

Case2: N = 4s.

Ss,λ(uε) ≤
C(N,µ)

N−2s
2N−µ ·

N
2s (SHs )

N
2s +O(εN−2s)− λCsε2s| log ε|+O(ε2s)(

C(N,µ)
N
2s (SHs )

2N−µ
2s −O(εN )

)1/2∗µ
≤ SHs − λCsε2s| log ε|+O(ε2s)

< SHs , if λ > 0, and ε > 0 is sufficiently small.

Case 3: 2s < N < 4s.

Ss,λ(uε) ≤
C(N,µ)

N−2s
2N−µ ·

N
2s (SHs )

N
2s +O(εN−2s)− λCsεN−2s +O(ε2s)(

C(N,µ)
N
2s (SHs )

2N−µ
2s −O(εN )

)1/2∗µ
≤ SHs + εN−2s(O(1)− λCs) +O(ε2s),

< SHs ,

for all λ > 0 large enough (λ ≥ λs), ε > 0 sufficiently small. This completes the
proof. �

4.2. Compactness convergence.

Lemma 4.6 (Boundedness). The (PS)c sequence {(un, vn)} ⊂ Y (Ω) is bounded.

Proof. From (2.2) and the definition of λ1,s, we have

C + C‖ (un, vn) ‖Y ≥ Js (un, vn)− 1

2 · 2∗µ
J ′s (un, vn)(un, vn)
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=
(1

2
− 1

2 · 2∗µ

)
‖ (un, vn) ‖2Y

−
(1

2
− 1

2 · 2∗µ

)∫
RN

(A(un, vn), (un, vn))R2 dx

≥
(1

2
− 1

2 · 2∗µ

)
(1− µ2

λ1,s
)‖(un, vn)‖2Y .

Since µ2 < λ1,s, the assertion follows. �

Proposition 4.7. Let s ∈ (0, 1), N > 2s and 0 < µ < N . If {un}, {vn} are

bounded sequences in L
2N
N−2s (Ω) such that un → u, vn → v almost everywhere in Ω

as n→∞, we have∫
Ω

∫
Ω

|un(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy −

∫
Ω

∫
Ω

|(un − u)(x)|2
∗
µ |(vn − v)(y)|2

∗
µ

|x− y|µ
dx dy

→
∫

Ω

∫
Ω

|u(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dx dy,

as n→∞.

Proof. From fractional Sobolev embedding,

|un|2
∗
µ − |un − u|2

∗
µ ⇀ |u|2

∗
µ , (4.8)

|vn|2
∗
µ − |vn − v|2

∗
µ ⇀ |u|2

∗
µ , (4.9)

in L
2N

2N−µ (Ω) as n→∞. By Proposition 2.1, we have∫
Ω

|un(y)|2
∗
µ − |(un − u)(y)|2

∗
µ

|x− y|µ
dy ⇀

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy, (4.10)∫

Ω

|vn(y)|2
∗
µ − |(vn − v)(y)|2

∗
µ

|x− y|µ
dy ⇀

∫
Ω

|v(y)|2
∗
µ

|x− y|µ
dy, (4.11)

in L
2N
µ (Ω) as n→∞. On the other hand, notice that∫
Ω

∫
Ω

|un(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy −

∫
Ω

∫
Ω

|(un − u)(x)|2
∗
µ |(vn − v)(y)|2

∗
µ

|x− y|µ
dx dy

=

∫
Ω

∫
Ω

(|un(x)|2
∗
µ − |(un − u)(x)|2

∗
µ)(|vn(y)|2

∗
µ − |(vn − v)(y)|2

∗
µ)

|x− y|µ
dx dy

+

∫
Ω

∫
Ω

(|un(x)|2
∗
µ − |(un − u)(x)|2

∗
µ)|(vn − v)(y)|2

∗
µ

|x− y|µ
dx dy

+

∫
Ω

∫
Ω

(|vn(x)|2
∗
µ − |(vn − v)(x)|2

∗
µ)|(un − u)(y)|2

∗
µ

|x− y|µ
dx dy.

(4.12)

From boundness of {un} and {vn} in L
2N

2N−µ (Ω), we have |un−u|2
∗
µ ⇀ 0, |vn−v|2

∗
µ ⇀

0 in L
2N

2N−µ (Ω) as n→∞. From (4.8)–(4.12), the result follows. �

Next we give a compactness result, which is crucial for applying Theorem 2.3 to
our functional Js.
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Lemma 4.8. If {(un, vn)} ⊂ Y (Ω) is a (PS)c sequence for the functional Js with

c <
N + 2s− µ

2N − µ
(SHs )

2N−µ
N+2s−µ ,

then {(un, vn)} has a convergent subsequence.

Proof. Let (u0, v0) be the weak limit of {(un, vn)} and define wn := un − u0,
zn := vn−v0, then we know wn ⇀ 0, zn ⇀ 0 in X(Ω) and wn → 0 a.e. in Ω, zn → 0
a.e. in Ω as n → ∞. Moreover, by [29, Lemma 5] and the Brézis-Lieb lemma, we
know that

‖un‖2X = ‖wn‖2X + ‖u0‖2X + on(1), ‖vn‖2X = ‖zn‖2X + ‖v0‖2X + on(1),

‖un‖2L2 = ‖wn‖2L2 + ‖u0‖2L2 + on(1), ‖vn‖2L2 = ‖zn‖2L2 + ‖v0‖2L2 + on(1).

By Proposition 4.7, we obtain∫
Ω

∫
Ω

|u+
n (x)|2

∗
µ |v+

n (y)|2
∗
µ

|x− y|µ
dx dy =

∫
Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy

+

∫
Ω

∫
Ω

|u+
0 (x)|2

∗
µ |v+

0 (y)|2
∗
µ

|x− y|µ
dx dy

+ on(1).

Consequently,

c← Js(un, vn)

=
1

2

∫
R2N

|un(x)− un(y)|2 + |vn(x)− vn(y)|2

|x− y|N+2s
dx dy

− 1

2

∫
RN

(A(un, vn), (un, vn))R2dx− 1

2∗µ

∫
Ω

∫
Ω

|u+
n (x)|2

∗
µ |v+

n (y)|2
∗
µ

|x− y|µ
dx dy

≥ 1

2

(∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

|u0(x)− u0(y)|2

|x− y|N+2s
dx dy

+

∫
R2N

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

|v0(x)− v0(y)|2

|x− y|N+2s
dx dy

)
− µ2

2

(∫
RN
|wn|2dx+

∫
RN
|zn|2dx+

∫
RN
|u0|2dx+

∫
RN
|v0|2dx

)
− 1

2∗µ

(∫
Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy +

∫
Ω

∫
Ω

|u+
0 (x)|2

∗
µ |v+

0 (y)|2
∗
µ

|x− y|µ
dx dy

)
+ on(1);

therefore,

c ≥ Js(u0, v0) +
1

2

(∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy

+

∫
R2N

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

)
− µ2

2

(∫
RN
|wn|2dx+

∫
RN
|zn|2dx

)
− 1

2∗µ

∫
Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy + on(1).

(4.13)

From the boundedness of Palais-Smale sequences (see Lemma 4.6) and compact
embedding theorems, we have (u0, v0) weakly in Y (Ω), (un, vn) → (u0, v0) a.e. in
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Ω and strongly in Lr(Ω)× Lr(Ω) for 1 ≤ r < 2∗s. Then

|u+
n |2
∗
µ ⇀ |u+

0 |2
∗
µ in L

2N
2N−µ (Ω),

|v+
n |2

∗
µ ⇀ |v+

0 |2
∗
µ in L

2N
2N−µ (Ω)

and

|u+
n |2
∗
µ−1 ⇀ |u+

0 |2
∗
µ−1 in L

2N
N+2s−µ (Ω),

|v+
n |2

∗
µ−1 ⇀ |v+

0 |2
∗
µ−1 in L

2N
N+2s−µ (Ω),

as n→∞. By Proposition 2.1, the Riesz potential defines a linear continuous map

from L
2N

2N−µ (Ω) to L
2N
µ (Ω) which gives∫

Ω

|u+
n (y)|2

∗
µ

|x− y|µ
dy ⇀

∫
Ω

|u+
0 (y)|2

∗
µ

|x− y|µ
dy in L

2N
µ (Ω),∫

Ω

|v+
n (y)|2

∗
µ

|x− y|µ
dy ⇀

∫
Ω

|v+
0 (y)|2

∗
µ

|x− y|µ
dy in L

2N
µ (Ω),

as n→∞. Combining all these, we obtain∫
Ω

|u+
n (y)|2

∗
µ |v+

n (x)|2
∗
µ−1

|x− y|µ
dy ⇀

∫
Ω

|u+
0 (y)|2

∗
µ |v+

0 (x)|2
∗
µ−1

|x− y|µ
dy in L

2N
N+2s (Ω),∫

Ω

|v+
n (y)|2

∗
µ |u+

n (x)|2
∗
µ−1

|x− y|µ
dy ⇀

∫
Ω

|v+
0 (y)|2

∗
µ |u+

0 (x)|2
∗
µ−1

|x− y|µ
dy in L

2N
N+2s (Ω),

(4.14)

as n→∞. Since, for any ϕ,ψ ⊂ X(Ω),

0← J ′s(un, vn)(ϕ,ψ)

=

∫
R2N

(un(x)− un(y))(ϕ(x)− ϕ(y)) + (vn(x)− vn(y))(ψ(x)− ψ(y))

|x− y|N+2s
dx dy

−
∫

Ω

(A(un, vn), (ϕ,ψ))R2dx−
∫

Ω

∫
Ω

|v+
n (y)|2

∗
µ |u+

n (x)|2
∗
µ−1ϕ(x)

|x− y|µ
dx dy

−
∫

Ω

∫
Ω

|u+
n (x)|2

∗
µ |v+

n (y)|2
∗
µ−1ψ(y)

|x− y|µ
dx dy

Passing to the limit as n→∞, we obtain∫
R2N

(u0(x)− u0(y))(ϕ(x)− ϕ(y)) + (v0(x)− v0(y))(ψ(x)− ψ(y))

|x− y|N+2s
dx dy

−
∫

Ω

(A(u0, v0), (ϕ,ψ))R2dx−
∫

Ω

∫
Ω

|v+
0 (y)|2

∗
µ |u+

0 (x)|2
∗
µ−1ϕ(x)

|x− y|µ
dx dy

−
∫

Ω

∫
Ω

|u+
0 (x)|2

∗
µ |v+

0 (y)|2
∗
µ−1ψ(y)

|x− y|µ
dx dy = 0,

(4.15)

which means that (u0, v0) is a weak solution of (1.1).
Taking ϕ = u0, ψ = v0 as a test function in equation (4.15), we have∫

R2N

|u0(x)− u0(y)|2 + |v0(x)− v0(y)|2

|x− y|N+2s
dx dy

=

∫
Ω

(A(u0, v0), (u0, v0))R2dx+ 2

∫
Ω

∫
Ω

|u+
0 (x)|2

∗
µ |v+

0 (y)|2
∗
µ

|x− y|µ
dx dy,
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so for 0 < µ < N ,

Js(u0, v0) =
N + 2s− µ

2N − µ

∫
Ω

∫
Ω

|u+
0 (x)|2

∗
µ |v+

0 (y)|2
∗
µ

|x− y|µ
dx dy ≥ 0. (4.16)

Using (4.13), (4.16) and
∫
RN |wn|

2dx→ 0,
∫
RN |zn|

2dx→ 0, as n→∞, we obtain

c ≥ 1

2

(∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

)
− 1

2∗µ

∫
Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy + on(1).

(4.17)

Since (u0, v0) is a weak solution of (1.1), (u0, v0) must be a critical point of Js
which gives 〈J ′s(u0, v0), (u0, v0)〉 = 0, hence

on(1) = 〈J ′s(un, vn), (un, vn)〉

= 〈J ′s(u0, v0), (u0, v0)〉+

∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy

+

∫
R2N

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy − 2

∫
Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy

+ on(1)

=

∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy

− 2

∫
Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy + on(1).

(4.18)

From (4.18), there exists a nonnegative constant l such that∫
R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy +

∫
R2N

|zn(x)− zn(y)|2

|x− y|N+2s
dx dy → l,∫

Ω

∫
Ω

|w+
n (x)|2

∗
µ |z+

n (y)|2
∗
µ

|x− y|µ
dx dy → l

2
,

as n→∞. Thus from (4.17), we obtain

c ≥ N + 2s− µ
4N − 2µ

l. (4.19)

By the definition of the best constant S̃Hs , we have∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

≥ S̃Hs
(∫

Ω

∫
Ω

|u(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dx dy

) N−2s
2N−µ

,

which yields l ≥ S̃Hs ( l2 )
N−2s
2N−µ . Thus we have either l = 0 or

l ≥ 1

2
N−2s

N+2s−µ
(S̃Hs )

2N−µ
N+2s−µ .

In the latter case, by Proposition 4.1(iii), from (4.19) we obtain

c ≥ N + 2s− µ
2N − µ

(SHs )
2N−µ
N+2s−µ
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which contradicts with the fact that c < N+2s−µ
2N−µ (SHs )

2N−µ
N+2s−µ . Thus l = 0, and

‖(un − u0, vn − v0)‖Y → 0,

as n→∞. This completes the proof. �

4.3. Mountain pass geometry.

Lemma 4.9. Suppose µ2 < λ1,s. The functional Js satisfies

(i) There exist β, ρ > 0 such that Js(u, v) ≥ β, if ‖(u, v)‖Y = ρ;
(ii) There exists (e1, e2) ∈ Y (Ω)\{(0, 0)} with ‖(e1, e2)‖Y > ρ such that Js(e1, e2) ≤

0.

Proof. (i) From the definition of S̃Hs , we obtain∫
Ω

∫
Ω

|u+(x)|2
∗
µ |v+(y)|2

∗
µ

|x− y|µ
dx dy ≤ 1

(S̃Hs )2∗µ
‖(u, v)‖2·2

∗
µ

Y . (4.20)

Combining this with (2.2) and the definition of λ1,s, we obtain

Js(u, v) ≥ 1

2
(1− µ2

λ1,s
)‖(u, v)‖2Y −

1

2∗µ(S̃Hs )2∗µ
‖(u, v)‖2·2

∗
µ

Y .

Since 2 < 2 · 2∗µ and thus, some β, ρ > 0 can be chosen such that Js(u, v) ≥ β for
‖(u, v)‖Y = ρ.

(ii) Choose (ũ0, ṽ0) ∈ Y (Ω)\{(0, 0)} with ũ0 > 0, ṽ0 > 0 a.e. Then

Js(tũ0, tṽ0) =
t2

2

∫
R2N

|ũ0(x)− ũ0(y)|2 + |ṽ0(x)− ṽ0(y)|2

|x− y|N+2s
dx dy

− t2

2

∫
RN

(A(ũ0, ṽ0), (ũ0, ṽ0))dx

− t2·2
∗
µ

2∗µ

∫
Ω

∫
Ω

|ũ0(x)|2
∗
µ |ṽ0(y)|2

∗
µ

|x− y|µ
dx dy.

Choosinig t > 0 sufficiently large, the assertion follows. �

4.4. Proof of Theorem 1.3.

Lemma 4.10. If (u, v) ⊂ Y (Ω) is a critical point of Js, then (u−, v−) = (0, 0).

Proof. By choosing ϕ := u− ∈ X(Ω) and ψ := v− ∈ X(Ω) as test functions in (4.1)
and using the elementary inequality

(w1 − w2)(w−1 − w
−
2 ) ≥ (w−1 − w

−
2 )2 for all w1, w2 ∈ R,

we obtain∫
R2N

(u(x)− u(y))(u−(x)− u−(y)) + (v(x)− v(y))(v−(x)− v−(y))

|x− y|N+2s
dx dy

≥
∫
R2N

(u−(x)− u−(y))2 + (v−(x)− v−(y))2

|x− y|N+2s
dx dy.

Now, note that, since b ≥ 0 and w− ≤ 0 and w+ ≥ 0, it holds∫
RN

(A(u, v), (u−, v−))R2dx ≤
∫
RN

(A(u−, v−), (u−, v−))R2dx.

In fact, it follows that

(A(u, v), (u−, v−))R2 = (A(u−, v−), (u−, v−))R2 + b(v+u− + u+v−),
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≤ (A(u−, v−), (u−, v−))R2 .

In turn, from the formula for J ′s(u, v)(u−, v−), it follows that

J ′s(u, v)(u−, v−) ≥
∫
R2N

(u−(x)− u−(y))2 + (v−(x)− v−(y))2

|x− y|N+2s
dx dy

−
∫

Ω

(A(u−, v−), (u−, v−))R2dx

≥ I(u−) + I(v−),

where we have set

I(w) :=

∫
R2N

|w(x)− w(y)|2

|x− y|N+2s
dx dy − µ2

∫
Ω

|w|2dx = ‖w‖2X − µ2‖w‖2L2(Ω).

On the other hand, by the definition of λ1,s, we have

I(w) ≥ (1− µ2

λ1,s
)‖w‖2X ,

which finally yields the inequality

J ′s(u, v)(u−, v−) ≥ (1− µ2

λ1,s
)(‖u−‖2X + ‖v−‖2X).

Since {(u, v)} ⊂ Y (Ω) is a critical point of Js, we obtain J ′s(u, v)(u−, v−) = 0, from
which that assertion immediately follows. �

From Lemma 4.9 and the Mountain Pass theorem, there exists a (PS)c sequence
{(un, vn)} ⊂ Y (Ω) such that Js(un, vn) → c and J ′s(un, vn) → 0 in Y (Ω), at the
minimax level

c = inf
γ∈Γ

max
t∈[0,1]

Js(γ(t)),

where

Γ = {γ ∈ C([0, 1], Y (Ω)) : γ(0) = (0, 0) and Js(γ(1)) ≤ 0}.
Let uε ≥ 0 as in Proposition 4.2, fix ε > 0 sufficiently small such that Lemma 4.5
holds, by (2.2), for every t ≥ 0, we obtain

Js(tuε, tuε) ≤ t2‖uε‖2X − µ1t
2‖uε‖2L2 −

t2·2
∗
µ

2∗µ

∫
Ω

∫
Ω

|uε(x)|2
∗
µ |uε(y)|2

∗
µ

|x− y|µ
dx dy := f(t).

It is easy to verify that f(t) attains its maximum at

t∗ =
[ ‖uε‖2X − µ1‖uε‖2L2∫

Ω

∫
Ω
|uε(x)|2

∗
µ |uε(y)|2

∗
µ

|x−y|µ dx dy

] 1
2·2∗µ−2

.

By the definition of Ss,λ(v) and Lemma 4.5, we have

c ≤ sup
t≥0

Js(tuε, tuε)

≤ f(t∗)

=
N + 2s− µ

2N − µ

[ (‖uε‖2X − µ1‖uε‖2L2)

(
∫

Ω

∫
Ω
|uε(x)|2

∗
µ |uε(y)|2

∗
µ

|x−y|µ dx dy)1/2∗µ

] 2N−µ
N+2s−µ

=
N + 2s− µ

2N − µ
(Ss,µ1

(uε))
2N−µ
N+2s−µ
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<
N + 2s− µ

2N − µ
(SHs )

2N−µ
N+2s−µ ,

if one of the following two conditions holds,

(i) N ≥ 4s and µ1 > 0, or
(ii) 2s < N < 4s and µ1 is large enough.

Therefore, from Lemma 4.8, {(un, vn)} has a convergent subsequence, and Js has

a critical value c ∈ (0, N+2s−µ
2N−µ (SHs )

2N−µ
N+2s−µ ). Moreover, from Lemma 4.10, we con-

clude that the solution is nonnegative.

5. Case 3: ξ1, ξ2 > 0, p = q = 2∗µ

In this case, the function Js : Y (Ω)→ R is

Js(U) ≡ Js(u, v)

=
1

2

(∫
R2N

|u(x)− u(y)2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy

)
− 1

2

∫
RN

(A(u, v), (u, v))R2dx− 1

2∗µ

(∫
Ω

∫
Ω

|u(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dx dy

+ ξ1

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dx dy + ξ2

∫
Ω

∫
Ω

|v(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dx dy

)
,

whose Fréchet derivative is

J ′s(u, v)(ϕ,ψ)

=

∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y)) + (v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+2s
dx dy

−
∫

Ω

(A(u, v), (ϕ,ψ))R2dx−
∫

Ω

∫
Ω

|u(x)|2
∗
µ−2u(x)|v(y)|2

∗
µ

|x− y|µ
ϕdx dy

−
∫

Ω

∫
Ω

|u(x)|2
∗
µ |v(y)|2

∗
µ−2v(y)

|x− y|µ
ψ dx dy − 2ξ1

∫
Ω

∫
Ω

|u(x)|2
∗
µ−2u(x)|u(y)|2

∗
µ

|x− y|µ
ϕdx dy

− 2ξ2

∫
Ω

∫
Ω

|v(x)|2
∗
µ |v(y)|2

∗
µ−2v(y)

|x− y|µ
ψ dx dy,

for (ϕ,ψ) ∈ Y (Ω). Meanwhile,

F (u, v) =
1

2∗µ

[ ∫
Ω

|v(y)|2
∗
µ

|x− y|µ
dy|u|2

∗
µ + ξ1

∫
Ω

|u(y)|2
∗
µ

|x− y|µ
dy|u|2

∗
µ + ξ2

∫
Ω

|v(y)|2
∗
µ

|x− y|µ
dy|v|2

∗
µ

]
.

5.1. Minimizers. For notational convenience, if (u, v) ∈ Y (Ω), we set

B(u, v) :=

∫
Ω

∫
Ω

|u(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dx dy,

and let

S̃Hξ = inf
(u,v)∈Y (Ω)\{(0,0)}

∫
R2N

|u(x)−u(y)|2+|v(x)−v(y)|2
|x−y|N+2s dx dy

(B(u, v) + ξ1B(u, u) + ξ2B(v, v))
1/2∗µ

. (5.1)
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Remark 5.1. Let T (u, v) := |u|2
∗
µ |v|2

∗
µ + ξ1|u|2·2

∗
µ + ξ2|v|2·2

∗
µ . It is clear that

T (u, v)1/2∗µ is 2-homogeneous, i.e.

T ($U) = $2·2∗µT (U), ∀U ∈ R2, ∀$ ≥ 0.

There exists a constant M > 0 satisfying

T (u, v)1/2∗µ ≤M(|u|2 + |v|2), for all u, v ∈ R, (5.2)

where M is the maximum of the function T (u, v)1/2∗µ attained in some (s0, t0) of
the compact set {(s, t) : s, t ∈ R, |s|2 + |t|2 = 2}. Let m = M−1, we have that

T (s0, t0)1/2∗µ = m−1(s2
0 + t20). (5.3)

The following basic inequality is proved in [16, Lemma 2.3].

Proposition 5.2. For u, v ∈ L
2N

2N−µ (RN ), we have∫
RN

∫
RN

|u(x)|p|v(y)|p

|x− y|µ
dx dy

≤
(∫

RN

∫
RN

|u(x)|p|u(y)|p

|x− y|µ
dx dy

)1/2(∫
RN

∫
RN

|v(x)|p|v(y)|p

|x− y|µ
dx dy

)1/2

,

where µ ∈ (0, N) and p ∈ [2µ, 2
∗
µ].

The following result shows the relation between SHs and S̃Hξ . The proof is similar

to [26, Lemma 2.3].

Lemma 5.3. Let Ω be a smooth bounded domain, then S̃Hξ = mSHs . Moreover, if

g0 realizes SHs , then (s0g0, t0g0) realizes S̃Hξ , for some s0, t0 > 0.

Proof. Let {gn} ⊂ X(Ω)\{0} be a minimizing sequence for SHs and consider the
sequence (ũn, ṽn) = (s0gn, t0gn). Substituting (ũn, ṽn) in quotient (5.1), we obtain

(s2
0 + t20)‖gn‖2X

(s
2∗µ
0 t

2∗µ
0 + ξ1s

2·2∗µ
0 + ξ2t

2·2∗µ
0 )1/2∗µB(gn, gn)1/2∗µ

≥ S̃Hξ .

Consequently by (5.3), it follows that

m
‖gn‖2X

B(gn, gn)1/2∗µ
≥ S̃Hξ . (5.4)

Taking the limit in (5.4), we obtain

mSHs ≥ S̃Hξ .

To prove the reversed inequality, let {(un, vn)} be a minimizing sequence for S̃Hξ .
We set un = rnvn for rn > 0. By Proposition 5.2, we obtain

‖(un, vn)‖2Y(
B(un, vn) + ξ1B(un, un) + ξ2B(vn, vn)

)1/2∗µ ≥ (1 + 1
r2
n

)SHs(
1

r
2∗µ
n

+ ξ1 + ξ2
1

r
2·2∗µ
n

)1/2∗µ . (5.5)

Now, by inequality (5.2), we obtain

m
( 1

r
2∗µ
n

+ ξ1 + ξ2
1

r
2·2∗µ
n

)1/2∗µ
≤ 1 +

1

r2
n

. (5.6)
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Hence, using inequalities (5.5) and (5.6), we have

‖(un, vn)‖2Y
(B(un, vn) + ξ1B(un, un) + ξ2B(vn, vn))

1/2∗µ
≥ mSHs .

Therefore, passing to the limit in the above inequality, the desired reversed inequal-
ity is obtained. �

5.2. Compactness convergence.

Lemma 5.4 (Boundedness). The (PS)c sequence {(un, vn)} ⊂ Y (Ω) is bounded.

Proof. Let Un ∈ Y (Ω) be a (PS)c sequence, we have

Js(Un)− 1

2
〈J ′s(Un), Un〉 = (2∗µ − 1)

∫
Ω

F (Un)dx ≤ C̃1(1 + ‖Un‖Y ) , (5.7)

for some positive constant C̃1. From (2.2),

Js(Un) +
1

2
〈J ′s(Un), Un〉

= ‖Un‖2Y −
∫

Ω

(A(u, v), (u, v))R2dx− (2∗µ + 1)

∫
Ω

F (Un)dx

≤ ‖Un‖2Y − µ1‖Un‖2L2 − (2∗µ + 1)

∫
Ω

F (Un)dx

≤ C̃2(1 + ‖Un‖Y ),

(5.8)

for some positive constant C̃2. Recalling that 2∗s > 2, by Hölder’s inequality and
[38, Lemma 2.2], we obtain

‖un‖2L2 ≤ |Ω|
2s
N ‖un‖2L2∗s ≤ C̃3

(∫
Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dx dy

)1/2∗µ
,

‖vn‖2L2 ≤ |Ω|
2s
N ‖vn‖2L2∗s ≤ C̃4

(∫
Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy

)1/2∗µ
,

for some positive constant C̃3 and C̃4. Combining with (5.7), we can obtain

‖Un‖2L2 ≤ C̃5

((∫
Ω

∫
Ω

|un(x)|2
∗
µ |un(y)|2

∗
µ

|x− y|µ
dx dy

)1/2∗µ

+
(∫

Ω

∫
Ω

|vn(x)|2
∗
µ |vn(y)|2

∗
µ

|x− y|µ
dx dy

)1/2∗µ
)

≤ C̃5

(∫
Ω

F (Un)dx
)1/2∗µ

≤ C̃6(1 + ‖Un‖Y )1/2∗µ ,

(5.9)

for some positive constants C̃5 and C̃6. Hence, by (5.7)-(5.9),

‖Un‖2Y ≤ C̃7(1 + ‖Un‖Y ) + C̃8(1 + ‖Un‖Y )1/2∗µ ,

for some positive constant C̃7 and C̃8. Therefore, the sequence {Un} is bounded. �

Since {Un} is bounded in Y (Ω), up to a subsequence, still denoted by Un, there
exists U = (u0, v0) ∈ Y (Ω) such that

Un ⇀ U in Y (Ω),
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Un ⇀ U in L2∗s (Ω)× L2∗s (Ω), (5.10)

Un → U a.e in Ω,

Un → U in Lr(Ω)× Lr(Ω), for all r ∈ [1, 2∗s). (5.11)

In addition, we have the following relations:

Lemma 5.5. (i) Js(U) = (2∗µ − 1)
∫

Ω
F (U)dx ≥ 0.

(ii) Js(Un) = Js(U) + 1
2‖Un − U‖

2
Y −

∫
Ω
F (Un − U)dx+ o(1).

(iii) ‖Un − U‖2Y = 2 · 2∗µ
∫

Ω
F (Un − U)dx+ o(1).

Proof. (i) Since |un|2
∗
µ ⇀ |u0|2

∗
µ , |vn|2

∗
µ ⇀ |v0|2

∗
µ in L

2N
2N−µ (Ω) as n→∞, by (4.14),

we obtain
∇F (Un) ⇀ ∇F (U) in L

2N
N+2s (Ω)× L

2N
N+2s (Ω). (5.12)

So for any Θ ∈ Y (Ω),
∫

Ω
(∇F (Un),Θ)R2dx→

∫
Ω

(∇F (U),Θ)R2dx, we have

J ′s(Un)(Θ) = o(1). (5.13)

Passing to the limit in (5.13) as n → ∞, and combining with the above conver-
gences, we obtain

〈U,Θ〉Y −
∫

Ω

(AU,Θ)R2dx−
∫

Ω

(∇F (U),Θ)R2dx = 0, ∀Θ ∈ Y (Ω),

which means U is a weak solution of problem (1.1).
Notice that the nonlinearity F is 2 · 2∗µ-homogeneous, particularly, we have

(∇F (U), U)R2 = uFu(U) + vFv(U) = 2 · 2∗µF (U), ∀U = (u, v) ∈ R2. (5.14)

Combining this with J ′s(U)U = 0, we reach conclusion (i).
(ii) By Lemma 5.4 and the Brézis-Lieb Lemma, we have

‖Un‖2Y = ‖Un − U‖2Y + ‖U‖2Y + o(1), (5.15)

‖Un‖2L2∗s = ‖Un − U‖2L2∗s + ‖U‖2
L2∗s + o(1). (5.16)

By Proposition 4.7, we obtain∫
Ω

F (Un)dx =

∫
Ω

F (U)dx+

∫
Ω

F (Un − U)dx+ o(1), as n→∞. (5.17)

Therefore, using that Un → U in Lr(Ω)×Lr(Ω), for all r ∈ [1, 2∗s), by the definition
of Js, (5.15), (5.16) and (5.17), we deduce (ii).

(iii) By (5.10), (5.12) and (5.14), we obtain∫
Ω

(∇F (Un)−∇F (U), Un − U)R2dx

=

∫
Ω

(∇F (Un), Un)R2dx−
∫

Ω

(∇F (U), U)R2dx+ o(1)

= 2 · 2∗µ
∫

Ω

F (Un)dx− 2 · 2∗µ
∫

Ω

F (U)dx+ o(1).

Therefore, using (5.17), we obtain∫
Ω

(∇F (Un)−∇F (U), Un − U)R2dx = 2 · 2∗µ
∫

Ω

F (Un − U)dx+ o(1). (5.18)

On the other hand,

o(1) = J ′s(Un)(Un − U) = J ′s(Un)(Un − U)− J ′s(U)(Un − U)
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= 〈Un, Un − U〉Y −
∫

Ω

(AUn, Un − U)R2dx−
∫

Ω

(∇F (Un), Un − U)R2dx

− 〈U,Un − U〉Y +

∫
Ω

(AU,Un − U)R2dx+

∫
Ω

(∇F (U), Un − U)R2dx

= 〈Un − U,Un − U〉Y −
∫

Ω

(A(Un − U), Un − U)R2dx

−
∫

Ω

(∇F (Un)−∇F (U), Un − U)R2dx.

Hence, from (5.11) and (5.18), it follows that

‖Un − U‖2Y = 2 · 2∗µ
∫

Ω

F (Un − U)dx+ o(1), as n→∞.

This completes the proof. �

In the next lemma, we prove a convergence criterion for the (PS)c sequences
which will play an important role in applying Theorem 2.4.

Lemma 5.6. Let N > 2s, 0 < µ < N and {Un} be a (PS)c sequence of Js with

c <
N + 2s− µ

2N − µ

( S̃Hξ
2

) 2N−µ
N+2s−µ

. (5.19)

Then, {Un} has a convergent subsequence.

Proof. We assume that

‖Un − U‖2Y → L, as n→∞. (5.20)

From Lemma 5.5(iii)

2 · 2∗µ
∫

Ω

F (Un − U)dx→ L, as n→∞,

and it is clear that L ∈ [0,∞). By the definition of S̃Hξ , we have

L ≥ S̃Hξ
(L

2

) 1
2∗µ

and consequently, either L = 0 or

L ≥
(1

2

) N−2s
N+2s−µ (S̃Hξ )

2N−µ
N+2s−µ .

In the latter case, from Lemma 5.5(iii), it follows that

1

2
‖Un − U‖2Y −

∫
Ω

F (Un − U)dx =
N + 2s− µ
2(2N − µ)

‖Un − U‖2Y + o(1).

Therefore, using Lemma 5.5(ii) and the above equality, we see that

Js(U) +
N + 2s− µ
2(2N − µ)

‖Un − U‖2Y = Js(U) +
1

2
‖Un − U‖2Y −

∫
Ω

F (Un − U)dx+ o(1)

= Js(Un) + o(1) = c+ o(1), as n→∞.

Then

c = Js(U) +
N + 2s− µ
2(2N − µ)

L ≥ N + 2s− µ
2(2N − µ)

L
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≥ N + 2s− µ
2(2N − µ)

(1

2

) N−2s
N+2s−µ (S̃Hξ )

2N−µ
N+2s−µ =

N + 2s− µ
2N − µ

( S̃Hξ
2

) 2N−µ
N+2s−µ ,

which contradicts (5.19). Thus L = 0 and therefore, by (5.20), we have

‖Un − U‖2Y → 0, as n→∞

and the assertion of Lemma 5.6 follows. �

5.3. Linking geometry.

Lemma 5.7. If F is a finite dimensional subspace of Y (Ω), there exists R > 0 large
enough such that Js(u, v) ≤ 0, for all (u, v) ∈ F with ‖(u, v)‖Y ≥ R and uv 6= 0.

Proof. Choose (ũ0, ṽ0) ∈ F with ũ0ṽ0 6= 0, then

Js(tũ0, tṽ0)

=
t2

2

∫
R2N

|ũ0(x)− ũ0(y)|2 + |ṽ0(x)− ṽ0(y)|2

|x− y|N+2s
dx dy

− t2

2

∫
RN

(A(ũ0, ṽ0), (ũ0, ṽ0))dx− t2·2
∗
µ

2∗µ

(∫
Ω

∫
Ω

|ũ0(x)|2
∗
µ |ṽ0(x)|2

∗
µ

|x− y|µ
dx dy

+ ξ1

∫
Ω

∫
Ω

|ũ0(x)|2
∗
µ |ũ0(x)|2

∗
µ

|x− y|µ
dx dy + ξ2

∫
Ω

∫
Ω

|ṽ0(x)|2
∗
µ |ṽ0(x)|2

∗
µ

|x− y|µ
dx dy

)
,

by choosing t > 0 large enough, the assertion follows. This concludes the proof. �

Lemma 5.8. If

λk−1,s < µ1 < λk,s ≤ µ2 < λk+1,s, for some k ≥ 1, (5.21)

then the functional Js satisfies:

(i) there exist α, ρ > 0 such that Js(u, v) ≥ α for all (u, v) ∈W with ‖(u, v)‖Y =
ρ;

(ii) if Q = (V ∩ BR(0)) ⊕ [0, R]e, where e ∈ W ∩ ∂B1(0) is a fixed vector,
Js(u, v) < 0 for all (u, v) ∈ ∂Q and R > ρ large enough.

Proof. Consider following subspace W = Zk ⊕H, where

Zk = span{(ϕk,s, 0), (0, ϕk,s)}, H = span{(ϕk+1,s, 0), (0, ϕk+1,s), . . .}.

If U ∈ W , we have that U = Uk + U with Uk ∈ Zk and U ∈ H. Since ‖U‖2Y =

‖Uk‖2Y + ‖U‖2Y , by (2.2) and (4.20), we have

Js(U) ≥ 1

2
(‖Uk‖2Y + ‖U‖2Y )− µ2

2
(‖Uk‖2(L2)2 + ‖U‖2(L2)2)− C(‖Uk‖2Y + ‖U‖2Y )2∗µ ,

where U = (u, v) and C := C(ξ1, ξ2) > 0 is a constant. Therefore, using that
Uk ∈ Zk ⊂W and U ∈ H, we obtain

‖Uk‖2(L2)2 ≤
1

λk,s
‖Uk‖2Y and ‖U‖2(L2)2 ≤

1

λk+1,s
‖U‖2Y .
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Consequently,

Js(U) ≥
(1

2
‖U‖2Y −

µ2

2
‖U‖2(L2)2

)
+
(1

2
‖Uk‖2Y −

µ2

2
‖Uk‖2(L2)2

)
− C(‖Uk‖2Y + ‖U‖2Y )2∗µ

≥ 1

2

(
1− µ2

λk+1,s

)
‖U‖2Y +

1

2

(
1− µ2

λk,s

)
‖Uk‖2Y − C‖Uk‖

2·2∗µ
Y

− C‖U‖2·2
∗
µ

Y .

(5.22)

Taking ‖U‖Y = ρ small enough, since ‖U‖2Y = ‖Uk‖2Y + ‖U‖2Y , we obtain that

‖Uk‖Y := y(ρ) and ‖U‖Y := z(ρ) ≡ z are small enough. Now consider the function

α(z) =
1

2

(
1− µ2

λk+1,s

)
z2 +

1

2

(
1− µ2

λk,s

)
y(ρ)2 − C(y(ρ)2·2∗µ + z2·2∗µ)

= h(z) +
1

2

(
1− µ2

λk,s

)
y(ρ)2 − Cy(ρ)2·2∗µ ,

where h(z) = 1
2

(
1− µ2

λk+1,s

)
z2 −Cz2·2∗µ . By (5.21), the maximum value of h(z), for

ρ sufficiently small, is given by

h :=
N + 2s− µ

2N − µ

( 1

2∗µC

) N−2s
N+2s−µ

(1

2
(1− µ2

λk+1,s
)
) 2N−µ
N+2s−µ

> 0,

which is independent of ρ and it is assumed at

z :=
( 1

2 · 2∗µC

) N−2s
2(N+2s−µ)

(
1− µ2

λk+1,s

) N−2s
2(N+2s−µ)

.

Therefore, it is possible to choose y(ρ) small enough, such that

α(z) = h− cy(ρ)2 − Cy(ρ)2·2∗µ ≥ h− (c+ C)y(ρ)2 > 0,

where c = 1
2 (µ2

λk
− 1) ≥ 0. Hence, by the estimate (5.22) and by the above infor-

mation, for ‖U‖Y = ρ small enough, there exists α > 0 such that Js(U) ≥ α. This
proves item (i).

To prove item (ii), we take U = (u, v) ∈ V , where u = Σk−1
i=1 uiϕi,s, v =

Σk−1
i=1 viϕi,s. Using [30, Proposition 9], we obtain∫

RN
|u|2dx = Σk−1

i=1 u
2
i ,

∫
RN
|v|2dx = Σk−1

i=1 v
2
i ,

also ∫
R2N

|u(x)− u(y)|2 + |v(x)− v(y)|2

|x− y|N+2s
dx dy = Σk−1

i=1 (u2
i + v2

i )‖ϕi,s‖2X

= Σk−1
i=1 (u2

i + v2
i )λi,s.

Using (2.2), we prove that Js(U) < 0 on V . Let U = (u, v) ∈ V , since λk−1,s <
µ1 < λk,s ≤ µ2 < λk+1,s, we have that

Js(u, v) ≤ 1

2
Σk−1
i=1 (u2

i + v2
i )λi,s −

µ1

2
Σk−1
i=1 (u2

i + v2
i )

− 1

2∗µ

(∫
Ω

∫
Ω

|u(x)|2
∗
µ |v(x)|2

∗
µ

|x− y|µ
dx dy + ξ1

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dx dy
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+ ξ2

∫
Ω

∫
Ω

|v(x)|2
∗
µ |v(x)|2

∗
µ

|x− y|µ
dx dy

)
≤ 1

2
Σk−1
i=1 (u2

i + v2
i )(λi,s − µ1) < 0.

Now, to complete the proof, it is sufficient to apply Lemma 5.7 to the finite di-
mensional subspace V ⊕ span{e} containing Q = (V ∩ BR(0)) ∩ [0, R]e, for some
e ∈W ∩ ∂B1(0) and R > ρ. �

Remark 5.9. Note that in Lemma 5.8 we can choose the finite dimensional sub-
space F of Y (Ω) as

Fε = V ⊕ span{e} = V ⊕ span{(z̃ε, 0)},

where V = span{(0, ϕ1,s), (ϕ1,s, 0), (0, ϕ2,s), (ϕ2,s, 0), . . . , (0, ϕk−1,s), (ϕk−1,s, 0)}, z̃ε =
zε
‖zε‖X , with zε = uε − Σk−1

j=1 (
∫

Ω
uεϕj,sdx)ϕj,s.

Lemma 5.10. Let s ∈ (0, 1), N > 2s and Mε := maxu∈G Ss,µ1
, where G := {u ∈

Fε :
∫

Ω

∫
Ω
|u(x)|2

∗
µ |u(y)|2

∗
µ

|x−y|µ dx dy = 1}. Suppose λk−1,s < µ1 < λk,s ≤ µ2 < λk+1,s,

for some k ∈ N, we have

(i) Mε is achieved by uM ∈ Fε and uM can be written as follows

uM = ν + tuε, with ν ∈ span{ϕ1,s, ϕ2,s, . . . , ϕk−1,s} and t ≥ 0;

(ii) Mε < SHs , provided: (a) N ≥ 4s and µ1 > 0, or (b) 2s < N < 4s and µ1 is
large enough.

Proof. (1) Thanks to the Weierstrass theorem, Mε is achieved at uM . Since uM ∈ Fε
and by the definition of Fε, we have that uM = ν̃+tzε, for some ν̃ ∈ span{ϕ1,s, ϕ2,s, . . . , ϕk−1,s}
and t ∈ R. We can suppose that t ≥ 0 (otherwise, if t ≤ 0, we can replace uM with
−uM ). From the definition of zε in Remark 5.9, we have

uM = ν + tuε, (5.23)

where

ν = ν̃ − tΣk−1
i=1 (

∫
Ω

uεϕi,sdx)ϕi,s ∈ span{ϕ1,s, ϕ2,s, . . . , ϕk−1,s}.

(ii) First let t = 0, then uM = ν and

Mε = ‖ν‖2 − µ1

∫
RN
|ν|2dx ≤ (λk−1,s − µ1)‖ν‖2L2(Ω) < 0 < SHs .

Now, suppose t > 0, we find that ν̃ and zε are orthogonal in L2(Ω), then ‖uM‖2L2(Ω) =

‖ν̃‖2L2(Ω) + t2‖zε‖2L2(Ω). Since
∫

Ω

∫
Ω
|u(x)|2

∗
µ |u(y)|2

∗
µ

|x−y|µ dx dy = 1, using [27, Lemma 4.7],

we obtain a constant C0 > 0 (independent of ε) such that ‖uM‖L2∗µ (Ω)
≤ C0. Subse-

quently, using Hölder inequality, we obtain a constant C1 > 0 (also independent of
ε) such that ‖uM‖2L2(Ω) ≤ C1. Therefore, we can find C2 > 0 such that ‖uM‖2L2(Ω)
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and ‖ν̃‖2L2(Ω) are both uniformly bounded in ε. By computations, we obtain

‖uε‖
3N−2µ+2s
N−2s

L
N(3N−2µ+2s)
(2N−µ)(N−2s) (Ω)

=
(∫

Ω

|uε|
N(3N−2µ+2s)
(2N−µ)(N−2s) dx

) 2N−µ
N

≤
(∫

B2δ

|Uε|
N(3N−2µ+2s)
(2N−µ)(N−2s) dx

) 2N−µ
N

≤ C3ε
N−2s

2

(∫ 2δ
ε

0

rN−1

(1 + r2)
N(3N−2µ+2s)
(2N−µ)(N−2s)

dr
) 2N−µ

N

≤ O(ε
N−2s

2 ),

(5.24)

where C3 > 0 is a constant. Since ϕ1,s, ϕ2,s, . . . , ϕk−1,s ∈ L∞(Ω), we have ν̃ ∈
L∞(Ω). Using that the map t 7→ t2·2

∗
µ is convex, for t > 0 and span{ϕ1,s, ϕ2,s, . . . , ϕk−1,s}

is a finite dimensional space, all norms are equivalent, we obtain

1 =

∫
Ω

∫
Ω

|uM (x)|2
∗
µ |uM (y)|2

∗
µ

|x− y|µ
dx dy

=

∫
Ω

∫
Ω

|(ν + tuε)(x)|2·2
∗
µ

|x− y|µ
dx dy

≥
∫

Ω

∫
Ω

|tuε(x)|2·2
∗
µ

|x− y|µ
dx dy + 2 · 2∗µ

∫
Ω

∫
Ω

|tuε(x)|2·2
∗
µ−1|ν(x)|

|x− y|µ
dx dy

≥
∫

Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− y|µ
dx dy

− 2 · 2∗µ‖ν‖L∞(Ω)

∫
Ω

∫
Ω

|tuε(x)|
2·2∗µ−1

2 |tuε(y)|
2·2∗µ−1

2

|x− y|µ
dx dy

≥
∫

Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− y|µ
dx dy − C4‖ν‖L2(Ω)‖uε‖

3N−2µ+2s
N−2s

L
N(3N−2µ+2s)
(2N−µ)(N−2s) (Ω)

.

Combining (5.24) with the above inequality, we obtain

∫
Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− y|µ
dx dy ≤ 1 + C4‖ν‖L2(Ω)O(ε

N−2s
2 ). (5.25)
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Hence, using the definition of Ss,µ1
and (5.23), we obtain

Mε =

∫
R2N

|uM (x)− uM (y)|2

|x− y|N+2s
dx dy − µ1

∫
RN
|uM (x)|2dx

=

∫
R2N

|(ν(x) + tuε(x))− (ν(y) + tuε(y))|2

|x− y|N+2s
dx dy

− µ1

∫
RN
|ν(x) + tuε(x)|2dx

=

∫
R2N

|ν(x)− ν(y)|2

|x− y|N+2s
dx dy + t2

∫
R2N

|uε(x)− uε(y)|2

|x− y|N+2s
dx dy

+ 2t

∫
R2N

|(ν(x)− ν(y))(uε(x)− uε(y))|
|x− y|N+2s

dx dy − µ1

∫
RN
|ν(x)|2dx

− µ1t
2

∫
RN
|uε(x)|2dx− 2µ1t

∫
RN
|uε(x)ν(x)|dx

≤ (λk−1,s − µ1)‖ν‖2L2(Ω)

+ Ss,µ1(uε)
(∫

Ω

∫
Ω

|tuε(x)|2
∗
µ |tuε(y)|2

∗
µ

|x− u|µ
dx dy

) N−2s
2N−µ

+ 2t

∫
R2N

|(ν(x)− ν(y))(uε(x)− uε(y))|
|x− y|N+2s

dx dy

− 2µ1t

∫
RN
|uε(x)ν(x)|dx.

(5.26)

Now we write ν = Σk−1
i=1 νiϕi,s for some νi ∈ R, such that ‖ν‖2L2(Ω) = Σk−1

i=1 ν
2
i .

By the Hölder inequality and the equivalence of the norms in a finite dimensional
space,

|〈uε, ν〉X | = Σk−1
i=1 λi,sνi

∫
Ω

uε(x)ϕi,s(x)dx

≤ Σk−1
i=1 λi,s|νi|‖uε‖L1(Ω)‖ϕi,s‖L∞(Ω)

≤ k̃λk,s‖uε‖L1(Ω)‖ν‖L∞(Ω)

≤ k‖uε‖L1(Ω)‖ν‖L2(Ω),

for suitable k̃ and k > 0. More explicitly,∣∣ ∫
R2N

(ν(x)− ν(y))(uε(x)− uε(y))

|x− y|N+2s
dx dy

∣∣ ≤ k‖uε‖L1(Ω)‖ν‖L2(Ω). (5.27)

Gathering the results in (5.25), (5.26) and (5.27), using again the Hölder inequality
and (4.5), we obtain

Mε ≤ (λk−1,s − µ1)‖ν‖2L2(Ω) + Ss,µ1(uε)
(

1 + C4‖ν‖L2(Ω)O(ε
N−2s

2 )
) N−2s

2N−µ

+ 2tk‖uε‖L1(Ω)‖ν‖L2(Ω) − 2µ1t‖uε‖L1(Ω)‖ν‖L∞(Ω)

≤ (λk−1,s − µ1)‖ν‖2L2(Ω) + Ss,µ1
(uε)

(
1 + C4‖ν‖L2(Ω)O(ε

N−2s
2 )

) N−2s
2N−µ

+ κ‖uε‖L1(Ω)‖ν‖L2(Ω)

≤ (λk−1,s − µ1)‖ν‖2L2(Ω) + Ss,µ1(uε)(1 + C4‖ν‖L2(Ω)O(ε
N−2s

2 ))
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+O(ε
N−2s

2 )‖ν‖L2(Ω).

Since the parabola (λk−1,s − µ1)‖ν‖2L2(Ω) + O(ε
N−2s

2 )‖ν‖L2(Ω) stays always below

its vertex, that is

(λk−1,s−µ1)‖ν‖2L2(Ω) +O(ε
N−2s

2 )‖ν‖L2(Ω) ≤
1

4(λk−1,s − µ1)
O(εN−2s) = O(εN−2s).

From Lemma 4.5, we obtain three cases:
Case 1: N > 4s,

Mε ≤
(
SHs − µ1Csε

2s +O(εN−2s)
) (

1 + C4‖ν‖L2(Ω)O(ε
N−2s

2 )
)

+ (λk−1,s − µ1)‖ν‖2L2(Ω) +O(ε
N−2s

2 )‖ν‖L2(Ω)

≤ SHs − µ1Csε
2s +O(εN−2s) < SHs ,

for sufficiently small ε > 0 and µ1 > 0.
Case 2: N = 4s,

Mε ≤
(
SHs − µ1Csε

2s|logε|+O(ε2s)
) (

1 + C4‖ν‖L2(Ω)O(ε
N−2s

2 )
)

+ (λk−1,s − µ1)‖ν‖2L2(Ω) +O(ε
N−2s

2 )‖ν‖L2(Ω)

≤ SHs − µ1Csε
2s|logε|+O(ε2s) < SHs ,

for sufficiently small ε > 0 and µ1 > 0.
Case 3: 2s < N < 4s,

Mε ≤
(
SHs + εN−2s(O(1)− µ1Cs) +O(ε2s)

) (
1 + C4‖ν‖L2(Ω)O(ε

N−2s
2 )

)
+ (λk−1,s − µ1)‖ν‖2L2(Ω) +O(ε

N−2s
2 )‖ν‖L2(Ω)

≤ SHs + εN−2s(O(1)− µ1Cs) +O(ε2s) < SHs ,

for sufficiently small ε > 0 and µ1 large enough. This completes the proof. �

5.4. Proof of Theorem 1.4. By Lemmas 5.7 and 5.8, Js satisfies the geometric
structure of the Linking theorem. Now we apply Theorem 2.4 for the functional Js
with

Q = (BR ∩ V )⊕ {r(z̃ε, 0) : 0 < r < R},
and the critical level is characterized as

c = inf
h∈Γ

max
(u,v)∈Q

Js(h(u, v)),

where Γ = {h ∈ C(Q,Y ) : h = id on ∂Q}. Note that, for all h ∈ Γ,

c = inf
h∈Γ

max
(u,v)∈Q

Js(h(u, v)) ≤ max
(u,v)∈Q

Js(h(u, v)).

Let Fε be as in Remark 5.9 with ε sufficiently small. Since Q ⊂ (Fε)2, taking h = id
and recalling that (Fε)2 is a linear subspace, we obtain

c ≤ max
(u,v)∈(Fε)2,(u,v)6=(0,0)

Js(h(u, v))

= max
(u,v)∈(Fε)2,η 6=0

Js
(
|η|( u
|η|
,
v

|η|
)
)

= max
(u,v)∈(Fε)2,η>0

Js(η(u, v)) ≤ max
(u,v)∈(Fε)2,η≥0

Js(η(u, v)).
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Now we claim that

max
(u,v)∈(Fε)2,η≥0

Js(η(u, v)) <
N + 2s− µ

2N − µ

( S̃Hξ
2

) 2N−µ
N+2s−µ

.

To verify this claim, fix U = (u, v) ∈ (Fε)2 such that uv 6= 0. Then by (2.2), for all
r ≥ 0, we infer that

Js(rU) ≤ r2

2
(‖U‖2Y − µ1‖U‖2(L2(Ω))2)− r2·2∗µ

2∗µ

(∫
Ω

∫
Ω

|u(x)|2
∗
µ |v(x)|2

∗
µ

|x− y|µ
dx dy

+ ξ1

∫
Ω

∫
Ω

|u(x)|2
∗
µ |u(x)|2

∗
µ

|x− y|µ
dx dy + ξ2

∫
Ω

∫
Ω

|v(x)|2
∗
µ |v(x)|2

∗
µ

|x− y|µ
dx dy

)
=:

Ar2

2
− r2·2∗µB

2∗µ
=: g(r).

Note that r0 =
(
A
2B

) 1
2·2∗µ−2 is the maximum point of g(r), which maximum value is

given by

N + 2s− µ
2N − µ

( A

2B1/2∗µ

) 2∗µ
2∗µ−1

.

Then

max
r≥0

Js(rU) ≤ N + 2s− µ
2N − µ

{ ‖U‖2Y − µ1‖U‖2(L2)2

2(B(u, v) + ξ1B(u, u) + ξ2B(v, v))1/2∗µ

} 2∗µ
2∗µ−1

.

Therefore, it is sufficient to show that

M̃ε := max
(u,v)∈(Fε)2

‖U‖2Y − µ1‖U‖2(L2)2

2(B(u, v) + ξ1B(u, u) + ξ2B(v, v))1/2∗µ
<

1

2
S̃Hξ .

Define

Mε := max
u∈Fε\{0}

‖u‖2X − µ1‖u‖2L2

(
∫

Ω

∫
Ω
|u(x)|2

∗
µ |u(y)|2

∗
µ

|x−y|µ dx dy)1/2∗µ

= max
u∈Fε,

∫
Ω

∫
Ω
|u(x)|

2∗µ |u(y)|
2∗µ

|x−y|µ dx dy=1

(‖u‖2X − µ1‖u‖2L2).

Taking s0, t0 > 0 as in Remark 5.1 and uM as in Lemma 5.10, M̃ε is achieved by
function UM = (s0uM , t0uM ). Therefore, from Lemmas 5.10 and 5.3, and using
(5.3), we conclude that

M̃ε =
1

2

(s2
0 + t20)

(
‖uM‖2X − µ1‖uM‖2L2

)(
s

2∗µ
0 t

2∗µ
0 + ξ1s

2·2∗µ
0 + ξ2t

2·2∗µ
0

)1/2∗µB(uM , uM )1/2∗µ

=
1

2
mMε <

1

2
mSHs =

1

2
S̃Hξ ,

if one of the following conditions holds:

(i) N ≥ 4s and µ1 > 0,
(ii) 2s < N < 4s and µ1 is large enough (µ1 > λk−1,s > 0).

Now, using the Linking theorem and Lemma 5.6, we conclude that (1.1) has a
nontrivial solution with critical value c ≥ α.



EJDE-2019/90 SOLUTIONS FOR NON-LOCAL ELLIPTIC SYSTEMS 31

Acknowledgements. We thank Professor Zhaosheng Feng for his valuable com-
ments and suggestions. This project was supported by the NSFC (Nos. 11501252,
11571176, 11601234), by the Natural Science Foundation of Jiangsu Province of
China for Young Scholar (No. BK20160571), and by the Qinglan Project of Jiangsu
Province (2016, 2018).

References

[1] C. O. Alves, F. Gao, M. Squassina, M. Yang; Singularly Perturbed critical Choquard equa-

tions, J. Differential Equations., 263 (2017), 3943-3988.

[2] D. Applebaum; Lévy process-from probability to finance and quantum groups, Notices Amer.
Math. Soc., 51 (2004), 1336-1347.
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