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EXISTENCE OF SOLUTIONS FOR NON-LOCAL ELLIPTIC
SYSTEMS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL
NONLINEARITIES

YANG YANG, QIAN YU HONG, XUDONG SHANG

ABSTRACT. In this work, we establish the existence of solutions for the non-
linear nonlocal system of equations involving the fractional Laplacian,
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where (—A)® is the fractional Laplacian operator, Q is a smooth bounded
domain in RY, 0 < s <1, N >2s5,0< pu <N, &,& >0, 1 <p,q<2 and
2}, = ?\,N_;’S‘ is the upper critical exponent in the Hardy-Littlewood-Sobolev
inequality. The nonlinearities can interact with the spectrum of the fractional
Laplacian. More specifically, the interval defined by the two eigenvalues of the
real matrix from the linear part contains an eigenvalue of the spectrum of the
fractional Laplacian. In this case, resonance phenomena can occur.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let O C RY be a bounded domain with smooth boundary 9Q (at least C?),
N > 2sand s € (0,1). We consider the following nonlinear doubly nonlocal systems
involving the fractional Laplacian,

2p lu(y)|?
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o lz—yl»

u=v=0, inRY\Q,

where p € (0,N) , §1,62 > 0, 1 < p,qg < 2y and 2}, = %VN:QIS‘ is the upper criti-
cal exponent in the Hardy-Littlewood-Sobolev inequality. (—A)® is the fractional
Laplacian operator defined as
Sy () — u(z) — u(y)
(=A)u(x) = P.V./RN |z7y‘N+25dy
where P.V. denotes the Cauchy principal value. The fractional Laplacian is the
infinitesimal generator of Lévy stable diffusion process and appears in physical
phenomena, stochastic processes, fluid dynamics, dynamical systems, elasticity, ob-
stacle problems, chemical reactions in liquids and American options in finance. For
more details, we refer to [2] [I5].
For a measurable function u : RN — R, we define the Gagliardo seminorm

= (/R2N W dx dy)m.

Now, we introduce the fractional Sobolev space (which is a Hilbert space)
H*RYN) = {u € L*(RY) : [u], < o0},
with the norm |jul| s = (||ul|?, + [u]?)'/2. Let

X(Q):={uec H*RY) :u=0ae in RVN\Q}.
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It holds that X(Q) — L"(2) continuously for r € [1,2%] and compactly for r €
[1,27), where 27 = 2%-. Due to the fractional Sobolev inequality, X (Q) is a
Hilbert space with the inner product

Yy g CC B0 (L R P

o — 4]V

which induces the norm | - ||x = []s- We shall denote by u; and ps the real

eigenvalues of the matrix
A= (a b>7 a,b,c € R.
b ¢

Without loss of generality, we will assume pu; < po. The spectrum of (—A)*®, with
boundary condition v = 0 in RY \ Q, will be denoted by o((—A)*), which consists
of the sequence of the eigenvalues {\y s} satisfying

0< )\l,s < )\2,5 < A3,3 << )\j,s < >\j+1,s < ---a)\k,s — 00, as k—>OO,
and are characterized by

‘ 2

[BTEEIN,

A = in )
! weX (Q)\{0} Jan lu(x)2dx
: o M
s — 11 )
k1, u€Pr1\{0} f]RN ‘U(SC)PCZI

where
Pk+1 = {U € X(Q) : <U,90j,s>X :0, j: 1,2,...,]6}7

and ¢y, s denotes the eigenfunction associated with the eigenvalue Ay 5, for each
k € N. The following results are true (see [30} 3T} [33]).

(i) If u e X(Q) is a Ay s-eigenfunction (u is an eigenfunction corresponding to
A1,s ), then either u(z) > 0 a.e. in Q or u(z) < 0 a.e. in £
(ii) A€ o((—A)°)\ {A1,s} and u is a A-eigenfunction, then u changes sign in
Q, and A has finite multiplicity.
(iii) ¢r.s € C%9(Q) for some o € (0,1) and the sequence {¢y s} is an orthonor-
mal basis in both L?(Q2) and X (Q).

Remark 1.1. For fixed £ € N we can assume A, < Ap41,s, Otherwise we can
suppose that Ay s has multiplicity [ € N, that is

Aim1,s < Abys = Al = 0 = Mgt < Mktlys
and we denote A\p1;s = Apy1,s-
In a pioneering paper [3], Brézis and Nirenberg studied the problem

—Au = |u\2*_2u +Auin Q; u =0 on 012,

where 2* = % They proved the existence of nontrivial solutions for A > 0, N > 4

by developing some skillful techniques in estimating the Minimax level. This kind
of Brézis-Nirenberg problems has been extensively studied (see, e.g. [4, [0, [7, 5 10,
17, 201, 211, 19 [18] [37, 36, B9] and references therein). Recently, many well-known
Brézis-Nirenberg results in critical local equations have been extended to semilinear
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equations with fractional Laplacian. Specially, we refer to [31] [32] [34) [35], where
the following critical fractional Laplacian problem

(=A)*u = |u>*2u+ A uin Q; uw=0in RV\Q,
was investigated, and a nontrivial weak solution was obtained under the following
assumptions:
(i) 2s < N < 4s and ) is sufficiently large;
(ii) N =4s and A is not an eigenvalue of (—A)?® in
(iii) N > 4s.
For the Laplacian with nonlocal Choquard nonlinearity, Gao and Yang [13] stud-
ied the Brézis-Nirenberg type problem

_ Jul >

where € is a bounded domain in RY. They proved the existence, multiplicity and
nonexistence results for a range of A. Moreover, in [I4], they also studied a class of
critical Choquard equations

2 -2

win Q; u =0, in RM\Q. (1.2)

Jul
alz—yl*
Some existence and multiplicity results were obtained under suitable assumptions
on different types of nonlinearities f(u). For details and recent works we refer to
[1} 25] and the references therein. For fractional Laplacian with nonlocal Choquard
nonlinearity, D’Avenia, Siciliano and Squassina in [9] considered the following frac-
tional Choquard equation

—Au = ( dy) lul? 20+ Af(u), inQ.

(=A)*u+wu = (K * |u|D)|u/?%u, inRY, (1.3)
where N >3, s € (0,1), w >0, a € (0,N) and g € (2872, 2¥=9)_ In particularly,

when w = 0, = 4s and ¢ = 2, then problem (|1.3)) becomes a fractional Choquard
equation with upper critical exponent in the sense of Hardy-Littlewood-Sobolev
inequality as follows:

s |ul?
(F8)u= ( o |z —yl*

They obtained regularity, existence, nonexistence of nontrivial solutions problems
(1.3) and (L.4). Mukherjee and Sreenadh [28] extended the study of to frac-
tional Laplacian equation.

Regarding a system of equations, in [12] [T} 22} 26], the authors studied elliptic
systems involving fractional Laplacian and critical growth nonlinearities, which
extended the Brézis and Nirenberg results for variational systems. Particularly, in
[26], Miyagaki and Pereira studied the fractional elliptic system

dy) u, inRY. (1.4)

2
(—=A)°u =au+bv+ Tp|u|p’2u|v|q + 26 u|uPT? in Q,
pTgq

2
o]~ + 2601 in
q

(=AY’ v=bu+cv+
p

u=v=0 inRV\Q,
extending [TT] by means of the Linking theorem when

A—t,s S pn < Apys < o < Apgr,s, ifk>1
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In this case, resonance and double resonance phenomena can occur. Using Nehari
manifold techniques, Giacomoni, Mukherjee and Sreenadh [I6] established the ex-
istence and multiplicity results of weak solutions for the fractional elliptic systems
involving Choquard type nonlinearities,

.
“A)u = q—2 ‘U(y)| i 2;,—2 in Q
(=A)*u = Alul u+(/97|x_y|udy)|u\ w inQ,

2
“A¥v=39§ q—2 |’LL(.’E)| ! d 2,2 in 0
(—A)°v = 6b|v|T % + (/Q Tyl y)|v| v in £,

u=v=0 inRY\Q,

where A, 0 > 0 are real parameters and 1 < ¢ < 2.

Motivated by [26] [12], we continue to study the fractional elliptic systems involv-
ing Choquard type nonlinearities and focus our attention on the existence results
for problem under the conditions that (i) & = & =0, 1 < p,q < 2, (ii)
§1=86=0,p=q=2], (iii) &1, >0, p=q= 2, respectively. Our main results
are the following:

Theorem 1.2. Assume that & = & =0, 1 < p,q < 27, b > 0 and pz < Ay 5.
Then (1.1) admits a positive solution.

Theorem 1.3. Assume that & =& =0, p=qg=2;,0>0and 0 < py < pg <
Ai,s. Then admits a nonnegative solution, provided that either

(i) N >4s, or

(il) 2s < N < 4s and py is large enough.

Theorem 1.4. Assume that £1,&5 >0, p=q = 27, and 0 < Ap—1,s < p1 < Ags <
Ho < Ak41,s, for some k € N. Then admits a nontrivial solution, if one of the
following conditions holds,

(i) N > 4s,

(ii) 28 < N < 4s and py is large enough.

The outline of this paper is as follows: Section 2 contains the functional setting
and some abstract critical point theorems. In section 3, we obtain a positive solu-
tion for problem when the nonlinearity is subcritical. In section 4, when the
nonlinearity has the critical growth, we obtain a nonnegative solution by the Moun-
tain Pass theorem. In section 5, when the nonlinearity interacts with the fractional
Laplacian spectrum, we show a convergence criterion for the (PS). sequence and
obtain a nontrivial solution by the Linking theorem. We will consider the following
notation for the product space S x S := S? and

wh(z) := max{w(z),0}, w (x):= min{w(x),0},

for positive and negative part of a function w. Consequently we obtain w = wT +
w™. During chains of inequalities, universal constants will be denoted by the same
letter C' even if their numerical value may change from line to line.

2. PRELIMINARIES

2.1. Functional setting. The starting point to the variational approach to prob-
lem is the following well-known Hardy-Littlewood-Sobolev inequality, which
leads to a new type of critical problem with nonlocal nonlinearities driven by the
Riesz potential.
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Proposition 2.1 ([24, Theorem 4.3]). Lett,r > 1 and 0 < p < N with 1+ 4 +1 =
2, f € LY(RY) and h € L"(RN). There exists a sharp constant C(t, N, u,r),
independent of f,h such that

L L 2wty < o Nl bl (220)

Ift:r:QN m

N_p Oy y-1+%
C(t7N,u,r)=C(N»M):7Tg£EJi;Z;{?E]if;} ’

In this case, there is equality in (2.1)) if and only if f = (constant)h and
W) = A(? + |z — aP)

for some A€C,0#~v€R and a € RY.

Remark 2.2. For u € H*(RY), let f = h = |u|P, by Hardy-Littlewood-Sobolev

inequality,
)P
[ [ e,
ry Jay =yl

is well defined for all p satisfying

2N — p 2N — p .
= <p< =27,
2 ( N )‘p—<N—25) 2

Now, with Proposition we can consider the Hilbert space given by the prod-
uct space

—(2N—p)

Y(Q) = X(2) x X(Q),
which is equipped with the inner product

<(u7v)7 (@7¢)>Y = <u>§0>X + <U="/J>X

and the norm
(a, 0)ly = (lullf + Ilol3)2.
L™(Q2) x L™(Q)(m > 1) is a Banach space equipped with the standard product

norm
1/2

1, o)z o= (JallZm + 0l )
Recall that
i |U)? < (AU, U) gz < pup|UJ?,  for all U := (u,v) € R% (2.2)

By a solution of | -, we mean a weak solution, that is, a pair of functions (u,v) €
Y (Q) such that

() (e = [ (Alu0), (g ) = / OF i / OF =0,

for all (¢,1) € Y(Q), where

1 u(y)[* o
F(u,v) = / d P4 /7d w|on
(wo) == | W ylul? + 2*[51 ot

v 2, «
+§2/ [v(y)l dy|v|2u].
o lz—yl»
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Define the functional J; : Y(£2) — R by setting

u\xr)—u 2 v\r)—v 2
To(U) = J, (u,v) :% /RQN| (@) T?'_ ;|1|V+(28) W 4.dy

- %/RN(A(U,’U), (u,v))gzdx — /Q F(U)dx,

whose Fréchet derivative is

T (u, 0) (0, 9)
_ / (u(z) = u()(e(r) = e(y)) + (v(x) = v(y)) (Y(x) = P(y))
R2N

v — y|N+2s

dx dy

)P~ u(@)|v(y)]

[u(z)|
—/(A( )(sow)Radx—pM/ |x7y|,t o da dy
—p+q/|u D)o

|z —y|»

2: 2 2;
o, /\um u))l

_y|u
— 2, / [v(=

for every (p,v) € Y(Q)

2* —2
yl“

2.2. Abstract critical point theorems. We will prove Theorems and
using the following abstract critical point theorems, respectively.

Theorem 2.3 (Mountain Pass theorem [40, Theorem 2.10]). Let X be a Banach
space, J € CH(X,R), e € X and r > 0 be such that ||e| > r and

b= Hilﬂli J(u) > J(0) > J(e).

If J satisfies the (PS). condition with

ci= ;relf“ren[g}ﬁc]( V1), T:={yeC([0,1],X) :7(0) = 0,7(1) = e}.

Then c is a critical value of J.
Theorem 2.4 (Linking theorem [40), Theorem 2.12]). Let X be a real Banach space
with X =V @ W, where V is finite dimensional. Suppose J € C*(X,R) and

(i) There are constants p,a > 0 such that J|pp,nw > «, and
(ii) There is an e € 0B, N W and constants Ry, Ry > p such that J|ag < 0,
where

Q= (Br,NV)®{re,0 <r < Ry}.

Then J possesses a (PS). sequence where ¢ > a can be characterized as

° gy T

where T' = {h € C(Q,X) : h =id on 0Q}.

Remark 2.5. Here Q) is the boundary of @ relative to the space V @ span{e},
and when V' = {0}, this theorem refers to the usual Mountain Pass theorem. We
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recall that if J|y < 0 and J(u) <0 for all uw € V @ span{e} with ||u| > R, then J
satisfies (ii) for R large enough. Fixed k € N, define the following subspaces
V= Span{<07 (Pl,s)v ((pl,s> O)a (Oa 902,3); (902,57 0)7 ey (0> @kfl,s)7 ((Pkrfl,sa 0)}7
W=Vt =(P)%
3. Case 1:§ =6 =0,1<p,q<2

3.1. Proof of Theorem Let Q2 be a bounded domain and suppose that b > 0
and

o < )\175. (31)
Consider the function I : Y(£2) — R defined by

1 1
IW%=ﬂm@—§AMMWWM.

‘We shall minimize the functional I restricted to the set

+ P
M= {U = (u,v //'“ x'_'” )l dody = 1}.
By (3.1) the embedding X (Q2) < L?(Q) (with the sharp constant A; 5), we have
1
1(U) = 5 min{1, (1 = S50 > 0, (3.2)
1,s
Define
Iy :=1inf I,
M

and let (U,) = (un,v,) C M be a minimizing sequence for Iy. Then I(U,) =
Iy + 0,(1) < C, for some C' > 0 (where 0,(1) — 0, as n — o0) and consequently
by (3.2)), we obtain

[wnl? + [0a)2 = lunlk + lvalk = U3 < C".

Hence, there are two subsequences of {u,} € X(Q) and {v,,} C X(Q) (that we will
still label as w, and v,) such that U,, = (un,v,) converges to some U = (u,v) in
Y () weakly and

[’LL]S S hrnnlnf /RZN W d dy, (33)
2 _ [vn(z) — va (y)]?
[U]S S hn”lnlnf . W dx dy (34)
Now we will show that U := (u,v) € M. Indeed, since (U,) C M, we have

p q
//mn|w DI gy — 1.
o=yl

In view of the compact embedding X (Q) < L"(Q) for all r < 2} = 2, as
1 <p,q <2, we obtain

+ p + + p +
// |u )7 ( dxdy%// |u )Pl ()l dxdy, asn — oo,
Ix—yl” T

thus [, /o W dx dy = 1 and consequently U := (u,v) € M with u,v #
0. We now show that U = (u, v) is a minimizer for I on M and both components u, v
are nonnegative. By passing to the limit in I(U,) = Iy + 0,(1), where 0,(1) — 0
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as n — oo, using (3.3), and the strong convergence of (u,,v,) to (u,v) in
(L?(2))?%, as n — oo, we conclude that I(U) < I. Moreover, since U € M and
Iy = infpq I < I(U), we achieve that I(U) = Iy. This proves the minimality of
U € M. On the other hand, we let

+ )|P +
R

where U = (u,v) € Y(2). Note that G € C! and since U € M,
+ p + q
G(U)u p+q//|u =)l (w)l drdy =p+q#0,
|z =yl
hence, by Lagrange Multiplier theorem, there exists a multiplier ¢ € R such that
I'U)(p,¥) =CG'(U)(p,¥), V(e ¥) €Y(Q). (3.5)
Taking (¢, %) = (uv~,v~) := U~in (3.5), we obtain

I

y|N+2s

vt (@)o” (y) + v~ (2)v" (y) -
—|—/]RzN PELEET dxdy—l—/Q(AU,U Jrzda.

Using this formula in the expression of I(U ™), we have

b 1 ut(z)u (y) +u” (z)u" (y)
(U )—2/9(11 u F+utv )dx+2/RZN lz — gV T2 dx dy

1 vt (z)v (y) + v~ (x)ot(y)
1 dedy <0
T3 /Rw |z —y|N+2s =5

since b > 0, v~ < 0 and w1 > 0. Furthermore,

)= %min{l,(

1% _
L2 o 2 0,
1,s

we obtain U~ = (u",v~) = (0,0) and therefore u,v > 0. We now prove the
existence of a positive solution to (1.1). Using again (3.5)), we see that

U1 ~ [ (AV.Opade — G(p +4) =0
Q
and since U € M, we conclude that

C(p+q)
2

Then by (3.5), U satisfies the following system, weakly,

In=1I(U) = >0,

21 p=1y|a
(—A)Y’u=au+bv+ P / ™ol dxdy in Q,
ptalala lz—yl*

21 ply|a-t
(=A)Yv =bu+cv+ 0 / ful?fol drdy in ,
ptqlala lo—yl

u=v=0 in RM\Q.
Now using the homogeneity of the system, we obtain 7 > 0 such that W = (1)U
is a solution of (1.1f). Since b > 0 and u,v > 0, we obtain, in the weak sense,

(=A)°u > au, in
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(=A)°v > cv, in
u>0,v>0, in{;
u=v=0, inRV\Q.

By the strong maximum principle [23] Theorem 2.5] we conclude that w,v > 0 in
Q.

4. CASE 2: § =8 =0,p=q=2]
To obtain a nonnegative solution to the system (1.1]), we recall the functional
Js(U) = Js(u,v)
[ o) w0 p) o)
R2N

> ENE

1 [ut (@) [Pt (y) 1
_5/]RN(A(U7U) (u,v) dem——// P dx dy,

whose Fréchet derivative is
Jo(u, ) (1)
_ / (u@) — uly) (@) = ¢y) + (@) = v@)) W) ~ W) ;4
R2N

II*yIN“S

u p ot (y)) % 4.1
/(A(u v), () ]dex—// e |33—gl|” W) pdz dy (4.1)

() P ot ()2
for (p 'L/J) eY(Q).

4.1. Minimizers and some estimates. We shall use the definition

Sy = inf Se(u),

ueX (Q2)\{0}
where
Jran HEESUL da dy
(Joun ()| da)2/28
is the associated Rayleigh quotient. We also define the following related minimizing
problems:

Se(u) :=

|u(@) —u(y)|?
SH —  inf Jran o y\N“é dx dy 7
UEX(Q)\{O} (Jo Jo |u($)| 2 Ju(y) P do dy)l/%

[z—y[r

Joan @U@ 00 g g,

\x— v

5= eorer oo @ o /
u,v)€E , u(@)) i o (y) 2 1/2;
(Jo Jo e dady)
Proposition 4.1. (i) (I8, Lemma 2.15]) The constant SH is achieved by u if
and only if u is of the form

t N-—2s
- ) 2z :L'ERN,
t2 4+ |x—:1:0|2)

el
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for some zg € RNV, C >0 and t > 0. Also it satisfies

2, .
(—A)u = (/}R [ul dy)|u\2u_2u, in RV,

N |z —y[#

and this characterization of u also provides the minimizers for Ss.
(ii) (16, Lemma 2.5])

SH — L
O

(iii) ([16, Lemma 2.6]) S7 = 255

Now we construct auxiliary functions and make some estimates with the help of
Proposition From [34], consider the family of function {U.} defined as
_(N-29) T N
Uew) == u'(), zeRY,
where w*(z) = (-%), () = " and T = a(? + [2[)7 7T with a € R\{0}
S2s L*s

and 5 > 0 are fixed constants. Then for each € > 0, U, satisfies

(=A)*u = |u>*2u inRY,

Ue(2) — UL(y)? [
Pel) 7 2 geay = | |0
/RN /]R o — g |

Without loss of generality, we assume 0 € € and fix § > 0 such that Bys C .
Let n € C>(R") be such that 0 <1 < 1in RN, 7 =1in Bs and n = 0 in R\ Bys.
For € > 0, we define the function

uc(z) = n(z)Ue(z),
for z € RY. We have the following results for u. in [34, Propositions 21, 22] and
[31, Proposition 7.2].

in addition,

o N
sdex = 5.

Proposition 4.2. Let s € (0,1) and N > 2s. Then, the following estimates hold
as e — 0:

|ue(‘r) — ue(y)|2 % N—2s
AQN W dx dy S Ss + O(E ), (42)

Lo
RN

Cse?* + O(eVN=2) if N > 4s,
/ luc|?dx > { Cse?|loge| + O(e**) if N = 4s, (4.4)
N
¥ CyeN725 + O(e%) if 2s < N < 4s,

for some positive constant Cs depending on s,
/ lucldz = O(e™ 2 ). (4.5)
RN
Remark 4.3. Using Proposition ii), Inequality (4.2)) can be written as

|ue(z) — ue(y)[? X N2
" dxdy < S& 4+ O(e s
/]R?N @ — y|N+2s ( ) (4.6)

2z = SE 4+ O(eN), (4.3)

2s
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Proposition 4.4 ([16] Proposmon 2.8]). The following estimate holds

2"
I / ue) P W 4> oo, wEsm) 5~ o). @)
Q |~T -yl
Now consider the minimization problem
Ss = inf Ss ’
A uexl(%)\{o} AW)
where

Jane Bt E o dy — X [ 0(z) [P

(Jo Joy PO gy )2
Lemma 4.5. Let N > 2s and s € (0,1). Then the following facts hold.

(i) For N > 4s, we have Ss(u.) < S for all X\ > 0, provided ¢ > 0 is
sufficiently small.

(ii) For 2s < N < 4s, there exists Ay > 0 such that for all X > Xs, we have
Ssa(ue) < SH, provided e > 0 is sufficiently small.

Proof. Case 1: N > 4s. By @ and , we infer that
C(N, )%= 35 (SH) B 1 O(eN=25) — ACye?* + O(N—2)
(C(N, )3 (SH) M5 — O(eV)) /%
< ST = ACee +0(eN )
< SH  if A >0, and € > 0 is sufficiently small.
Case2: N = 4s.

SS,A(U)

Ss)\ (Ue) <

N-_2s N
2s

C’(N,u)2 (SH)2s + O(eVN=2%) — AC,e**|log €| + O(€2*)
<0<N W (SH) 5 — 0(eN) %

< SH _\C.e**|loge| + O(€*)

< SH if X >0, and € > 0 is sufficiently small.
Case 3: 2s < N < 4s.

C(N, p)2~-7 %(SH)% + O(N=25) — ACueN =25 4+ O(e2)
(C(N, ) )3s (SH) ==t fO(eN))l/%

< SE 4+ N7E(0(1) = ACy) 4+ O(e),
< SH,

Ss,/\(ue) S

Ss,)\(ue) S

for all A > 0 large enough (A > A;), € > 0 sufficiently small. This completes the
proof. ([

4.2. Compactness convergence.
Lemma 4.6 (Boundedness). The (PS). sequence {(un,vn)} C Y (Q) is bounded.

Proof. From (2.2)) and the definition of A; 5, we have
1

225

C+ Cll (un, vn) Iy = Js (un, vn) =

J; (un7 vn)(una Un)
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1 1 )
= (G- N I

B (% T 9 .12:1) /RN (A(un, vy), (Un, vy))ge dz

1 1 H2
> (= - _ 2
"(2 2-2;)(1 A17)”(unvvn)ny

Since pp < A1, the assertion follows. O

Proposition 4.7. Let s € (0,1),N > 2s and 0 < p < N. If {un},{vn} are

. 2N .
bounded sequences in L~-2%(Q) such that u, — u,v, — v almost everywhere in {2
as n — 0o, we have

_ _ 2;,
A [ [t
-y r—y
2
%//W x) |2 v (y) | dz dy,
|z — yl|~

as n — oQ.

Proof. From fractional Sobolev embedding,

o

e R T 4.8

2;a (49)

|tn,

‘Un|2’j — |vn — U|2:1 = |u

in L7V"% () as n — 0. By Proposition , we have

. . 2; 2%
M—yW

W—yW

\%@N“—K% d_A/ v, (4.11)
Q |z — y|# |$_y|ﬂ

in L% ( as n — 0o. On the other hand, notice that

2 2 “ _ 2:
W*M“ M*M“

/ /|w1 )% — |(un — u)(2) Mv(ﬂ%*KMAWXw;

M—yw

[ [ e ) = Lt = W)@l (w0 =)@

W—M“

) dx dy

o

L [t =10 =)@l =@,
M—yw '
(4.12)

From boundness of {u, } and {v, } in L7 (Q), we have |u, —u|% — 0, v, —v|* —
0in L7% (©) as n — oo. From (4.8)—(4.12)), the result follows. O

Next we give a compactness result, which is crucial for applying Theorem [2.3] to
our functional J,.
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Lemma 4.8. If {(un,v,)} CY(Q) is a (PS). sequence for the functional Js with
N +25—p 2N
< —— " (8 N+2s—p,
c 2N _ ,LL ( S )
then {(un,vn)} has a convergent subsequence.

Proof. Let (ug,vg) be the weak limit of {(u,,v,)} and define w, = u, — ug,
Zn 1= Vp — Vg, then we know w,, = 0, z,, = 01in X(Q) and w,, — 0 a.e. in 2, 2z, — 0
a.e. in  as n — co. Moreover, by [29, Lemma 5] and the Brézis-Lieb lemma, we
know that

lunll% = llwallX + lluolli +0n (1), lvallk = ll2nllX + llvollX + 0n(1),
[unllZe = lwallzz + luollzz +0n(1), llvnllze = l2allZz + lvollzz + on(1).

By Proposition [£.7, we obtain
+ (2) % ot (y) 2 +(2)|% |2
[ [P 4y, [ [ O,
|z — yl# W*yW
o
// ‘U’O ( )| Mdl’dy
@—yw

+ o, (1

Consequently,
¢ Jgs(tp,vy)

_ 2 _ 2
L 1) )l g,
2 Jpen | — y[N+2s

1

~3 /RNM(umvn%(umvn»wdx_ 1 / ju (@

! |wn(z) — wn(y)” / [uo (@) — uo(y)|?
> = dzx d 1HoAT) Yol gz g
B 2(/R2N |z — y[NF2s vy ey |z —y|Nt2s Ty
|2n(2) = 20 (y) | j/ [vo(x) — vo(y)[?
—————dxd ———————dxd )
+/]R”\’ ‘m_y|N+28 vy R2N |.’)3—y|N+25 ray

7&(/ |wn|2dx+/ |zn|2d:c+/ |u0|2d1'+/ |v0|2dsc)
2 \Jrw RN

wit ()% |z ()2 Y %
_21#(/9/9| (@J'W( DI, +//Io |xy“<y>| didy) + 0,(1);

therefore,

1 [wn () = wa(y)*
> —
c_JS(uo,vo)+2(/R2N [ — g dz dy

|2 (@) — 2n(y)? H2 / 2 / 2
+/R2N |x_y|N+25 drd ) B ( . |wn|“dx + - |2 dff) (4.13)

From the boundedness of Palais-Smale sequences (see Lemma and compact
embedding theorems, we have (ug,vg) weakly in Y (), (un,vn) — (uo,v0) a.e. in

}L

vt ()%

M—yw

dx dy
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2 and strongly in L"(Q) x L"(Q2) for 1 <r < 2%. Then
[ = fug % i 22855 (),

2 2% in L7% (Q)

o [P = Jug

and
Pt = g P i LR (),
ot [P = Jo %" in LY (Q),
as n — oo. By Proposition the Riesz potential defines a linear continuous map

from L7V 7 (Q) to L% (©) which gives

+ ()20 T ()
O] Y I ) R

o lz—yl* Q |x—y|ﬂ
+ 27 vt
o |z —yl» o lv —y|“

as n — 0o. Combining all these, we obtain

;l/

+ 2* + 2* 2*—1
/'u (): oz { |; d 4/ 5 (v | -0 (M)| dy in L™ (Q),
r —y|® r—vy

. (4.14)
vty 2 wt (@ 2 -1 v 2 ul 251 -
f 4/ O i 1 )
as n — 00. Since, for any ¢, C X (0
0 ¢ Jo(tn, v0) (05 0)
_ (un(2) — un(y))(p(2) = 0(y)) + (0a(2) — va(y) (¥(2) —¥(Y) ,
R2N |LI}7 |N+25 Ty

uf ()% () iz dy
m—yl“

/( (1t 00, (9, )2 — // o @

| ()2 vyt ()20~ ¢(y)d p
|z — yl|~ v

Passmg to the limit as n — oo, we obtain

| L)~ ole)(pte) = (4D + (ofe) = s (6e) = 40D
RQN

‘CIJ _ |N+2$

)% 210
/( (w0, v0), (¢, ¥))r2dx — // log )P fug ()P >dxdy (4.15)

|z — y|»
//|u0 vy W)1* " (y) y

z =yl
which means that (ug,vg) is a weak solution of ([1.1J).
Taking ¢ = ug, ¥ = vy as a test function in equation (4.15)), we have

JIRCICE T SRR
R2N |.T*y|N+25

}L

}L

dxdy =0,

2,

= | Ao o), (ao oo 2 [ [ G

|z — gy~

dx dy,



16 Y. YANG, Q. Y. HONG, X. SHANG EJDE-2019/90

sofor 0 < p <N,

No42s—p [ [ o ()% o ()%
Js(uo,v0) = N / / |x — y|M dxdy > 0. (4.16)

Using (£.13), (4.16) and [;n |wp|?dz — 0, [px [2n]|?dz — 0, as n — 0o, we obtain

1 [wn () — wa(y)? / |20 (2) — 2u(y)
> — LA S LA A
c_2</]RQN v —y |N+2S dx dy + on |z — g2 dx dy

2,
- — OO dzdy + 0,(1).
aJa |=’E —yl~
Since (uo,vo) is a weak solution of (1.1f), (uo,vo) must be a critical point of J
which gives (J.(ug,vo), (1o, vo)) = 0, hence

On(l) - <Jé(una Un)’ (un7vn)>

= (J;(uo, v0), (o, v0)) +/ [t () = wn(y)) dx dy

(4.17)

Ry |z —yNE

2 + " + 27
+0n(1)
[w () — wa(y)? / |2 () = zn(y)[?
= dr d —d d
/]RzN |$_ |N+2S vy R2N |$C— |N+2S Y
|wit ()2 ()]
dxdy + 0, (1
// |z — y|# -

From , there exists a nonnegative constant [ such that

RN R2N

|z — y|N+2s |1:— ‘N+25

[wi ( Z (y) P 1
// |x—y|“ da:dy—>2,

as n — o0o. Thus from , we obtain
N+2s—pu
e>_ e P
~ 4N —2pu

(4.19)

By the definition of the best constant gf , we have

/ [u(@) — u(y)]* + o) — vy dy

|z — yIN”S

. §n //|u |2*d d)éivi
Iw—yl“ ’

which yields [ > :S‘VSH(é) 2xi . Thus we have either [ = 0 or

1 N
12— (S Vom0,
ONTEZ

In the latter case, by Proposition [4.1{iii), from (4.19)) we obtain
S N+2s—p

2N—u
. SH N¥2s—n
T G R
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which contradicts with the fact that ¢ < N;]'stﬂ“ (SH)~Fz=—w N2t . Thus | = 0, and

[ (un — w0, v —vo)lly — 0,
as n — 0o. This completes the proof. O

4.3. Mountain pass geometry.

Lemma 4.9. Suppose pa < A1s. The functional Js satisfies
(i) There exist 8, p > 0 such that Js(u,v) > B, if ||(u,v)|ly = p;
(ii) There exists (e1,e2) € Y()\{(0,0)} with ||(e1, e2)|ly > p such that Js(e1,e2) <
0.

Proof. (i) From the definition of S¥, we obtain

25 2r
1 L%
| W(”“””“M@S~ oy @)
aJo |z —y|# (SH)2x
Combining this with (2.2)) and the definition of A\; 5, we obtain

1 2:2%

Js(u,v 1-——= C R

(u,v) = 2( )II( v)lly 2 (5H) (u, )y ™
Since 2 < 2-27 and thus, some B,p > 0 can be chosen such that Jg(u,v) > 8 for
[[(w, v)[ly = p.

(ii) Choose (ug,v9) € Y ()\{(0,0)} with ug > 0,70y > 0 a.e. Then
8 [ ) TP i) = )

]RZN

2 |z —y|N+

J (i, o) =

2 [ (Ao, ), (o, 7o) do

2
t22 - 2%
// [uo( lvo )‘“dxdy.
\33— yl-

Choosinig t > 0 sufﬁciently large, the assertion follows. O
4.4. Proof of Theorem [1.3]
Lemma 4.10. If (u,v) C Y(Q) is a critical point of Js, then (u=,v~) = (0,0).

Proof. By choosing ¢ :=u~ € X(Q) and ¢ := v~ € X(Q) as test functions in (4.1))
and using the elementary inequality

(w1 — wo)(wy —wy) > (wy —wy)? for all wy, wy € R,

we obtain

/ (u(@) — u(®))(w (@) —u” Y) + V@) — @) @) —v= @) ;4
R2N

| — y| N2

S / (u(z) —u”(9)* + (v~ (x) — v~ (y))*
 Jren |z — y[NF2e
Now, note that, since b > 0 and w~ < 0 and wt > 0, it holds

/ (A(u,v), (u™,v7))gedx S/ (A(u™,v7), (u™,v7))gedz.
]RN

RN

dz dy.

In fact, it follows that
(A(u,v), (u™ v gz = (A(u™,v7), (u™, v ))r2 +blvTu™ +utv7),
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< (A(w=,v7), (u",v7))ge.-

In turn, from the formula for J/(u,v)(u~,v ™), it follows that

T (1, 0) (w07 2/ (u™(2) —u () + (v (x) —v=()* dy

o =y

- [ o). w0 sads
Q
> I(u”)+1(v7),
where we have set
. lw(z) — w(y)‘Q 2 2 2
rw)i= [ DB dedy = s [ oo = ol =l
On the other hand, by the definition of A; 5, we have

I
Iw) 2 (1- L2 jw)},
1

yS

which finally yields the inequality
M2 _ _
Ti(w,0)(w,07) = (1= =) ([l [Ix + o7 I%)-
1,s
Since {(u,v)} C Y(Q) is a critical point of J,, we obtain J.(u,v)(u",v~) = 0, from
which that assertion immediately follows. O

From Lemma and the Mountain Pass theorem, there exists a (P.S). sequence
{(tn,vn)} C Y (Q) such that Js(un,v,) — ¢ and J.(up,v,) — 0 in Y(£2), at the
minimax level

— inf Js(v(1),
¢ = Inf max (v(t))

where
['={y€C([0,1,Y(2)) : v(0) = (0,0) and Js(y(1)) < 0}.

Let ue > 0 as in Proposition [£.2] fix e > 0 sufficiently small such that Lemma

holds, by ([2.2)), for every t > 0, we obtain

lf2 2% |Ue )|2;

Ix— yl*

Js(tue, tue) < t2||u6||§( - NthHUEH?J? - dady := [(t).

It is easy to verify that f(¢) attains its maximum at

A S Y
* — .

Jiy f,, Lecte S u W g gy

lz—yl#
By the definition of S, x(v) and Lemma [4.5] we have

¢ < sup Js(tue, tue)
>0

< ft)
_N+2s— { (lluellX — palluelz) peray
= —=

2N —p f f e (@) [P uc ()| dacdy)l/%

IZ y‘l‘
= o g (Se ()T
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N 125 = 1 gyt
2N — p s

if one of the following two conditions holds,

(i) N>4s and p3 >0, or

(ii) 2s < N < 4s and p, is large enough.
Therefore, from Lemma [4.8] H {(un, vn)} has a convergent subsequence, and Js has
a critical value ¢ € (0, %(SH) LESrE ~+27 ). Moreover, from Lemma [4.10, we con-
clude that the solution is nonnegative.

5. CASE 3: £1,6 >0, p=q=2]
In this case, the function Js : Y(2) — R is
Js(U) = Js(u,v)

3( [, P b dy>

—1/ (A(u,v), (u,v))gedz — // Ju@) o)™ ‘x_ ‘H dxdy
v [ dy”//'v i de)

whose Fréchet derivative is

T, ), )
[ ) uete) =) + o) — o) =V 4,

|I _ |N+2s

o

[ (s [ [ T By,
// e |2|xy|i W) o dy 251// [u(z |x(y|1|u(y)23wdxdy
e // = |2|x—y||2u_2 0y i ay

for (p, ) € Y(92). Meanwhile,

Pl = oo [ PO e [ O o [ O g

5.1. Minimizers. For notational convenience, if (u,v) € Y(£2), we set
Ju(@) o (y) P
dzd
N

lu(@) —u@) P+ o @) =0 W) g, 4
GH - inf Jae L - 6D
(w0) €Y (0.0} (B(u,v) + & B(u,u) + &B(v,v)) /%

and let
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Remark 5.1. Let T(u,v) := |u?]v|? + &|ul>? + &|v|*2a. Tt is clear that

T(u,v)"/?: is 2-homogeneous, i.e.

T(wU) = w?>%T(U), YU e€R?, Yw > 0.

There exists a constant M > 0 satisfying
T(u, )% < M(|u? + |v]?), for all u,v € R, (5.2)

where M is the maximum of the function T'(u,v)"/%: attained in some (s, %) of
the compact set {(s,t) : s,t € R, |s|? + [t|* = 2}. Let m = M1, we have that

T(S(), t(])1/2r‘ = m_l(S% + tg) (53)
The following basic inequality is proved in [I6, Lemma 2.3].

Proposition 5.2. For u,v € L7 (RN), we have

p 10
[ [ r
Ry Jry |z —ylH
|u ‘P|u P 1/2 / / | |v |P 1/2
dxd
/RN AN |.%'— RN JRN |.7J— v y) ’

where pp € (0,N) and p € [2#,2;]

The following result shows the relation between SH and gg . The proof is similar
to |26l Lemma 2.3].

Lemma 5.3. Let € be a smooth bounded domain, then 55 =mSH. Moreover, if

go realizes SH | then (sogo,togo) realizes §£I, for some sqg,tg > 0.

Proof. Let {g,} C X(2)\{0} be a minimizing sequence for S and consider the
sequence (Un, Un) = (S0gn,togn). Substituting (u,,v,) in quotient (5.1, we obtain

(s3 + t3)llgnll% GH
7 o 227 3251/ 12 > 5
(s0"to" +&usg " + &ty ") 7 B(gn, gn) ' r
Consequently by (5.3), it follows that
”gnH%( oH
m——=— > S, (5.4)
B(gn, gn)l/g“ ¢
Taking the limit in ([5.4)), we obtain
H < GH
mSy > SE .
To prove the reversed inequality, let {(un,v,)} be a minimizing sequence for §£I .

We set u,, = 7,0, for r, > 0. By Proposition [5.2] we obtain

1 H
(s, 0|3 (1+:3)5,

(B(umvn)"'ng(unaun)_|'523("}7“17%))1/2;i B ( 27 +& +£2 22*

T

7 (5.5)

Now, by inequality (5.2]), we obtain

1 1 \1/2, 1
m(Tﬁ +& +§2T271) ! <1+ . (5.6)
Tn Tn
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Hence, using inequalities (5.5) and (5.6)), we have

”(umvn)H% > mSH

* s *

(B(u’m vn) + le(uru un) + £2B(Una 'Un)>1/2M
Therefore, passing to the limit in the above inequality, the desired reversed inequal-
ity is obtained. (I

5.2. Compactness convergence.
Lemma 5.4 (Boundedness). The (PS). sequence {(un,vn)} C Y (Q) is bounded.
Proof. Let U,, € Y(Q) be a (PS). sequence, we have

TU) = 30U = (2= 1) [ PO < G0+ I0l). (67)

for some positive constant C;. From 12.2),

To(U) + 5T (Un), V)

= 2 — u,v), (u,v))gzdz — (2% )dx
=10l = [ (Aw0), (eo)ede = (25 +1) | (T} o

< Ul — uallUalZ2 — (25 + 1) /Q F(U,)da
< Co(1+ ||Unlly),

for some positive constant 6’; . Recalling that 27 > 2, by Hoélder’s inequality and
[38, Lemma 2.2], we obtain

2 2s 5 |u u‘u )‘22 1/2;,
lunllZe < 190 un|2.: < G / / z |x—yT~ do )"

[0 ()25 [0 (1) 1/2;,
dx d
/ / |x—y|ﬂ vdy) ",

for some positive constant 6’; and C4. Combining with (5.7]), we can obtain
o

U ( Up (y)]» 1/2;,
ol <a(( [ [ |x'y|#> dody)"”

|Un |Un )|2” 1/2,
dx d
/ / |x—y|u v (5.9)
1/27,
< cg L/‘chagdx)
Q

< Co(1+ [Unly) "/,
for some positive constants 6’\; and 6’v6. Hence, by (5.7))-(5.9),
ITaI3 < Cr(1 + |Unlly) + Cs(L + [Unlly)/ %,

for some positive constant 6/'7 and /C\’é. Therefore, the sequence {U,, } is bounded. O

lonllZ> <

Since {U,,} is bounded in Y (£2), up to a subsequence, still denoted by U, there
exists U = (ug, vg) € Y(2) such that

U, = U inY(Q),
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U, = U in L*(Q) x L% (), (5.10)
U, — U a.ein Q,
U, — U in L"(Q) x L"(Q), for all r € [1,2%). (5.11)

In addition, we have the following relations:

Lemma 5.5. (i) Jo(U) = (2, — 1) [ F( dx > 0.
(ii) J(Un) = Jo(U) + 5llUn = Ul — Jo F(Un — U)dz + o(1).
(iti) [|Un = U3 =2-25 [o F(Un —U)dx—l—o( )

Proof. (i) Since |uy,|% — |ug|?

we obtain

on]? — |vo|? in LV (Q) as n — oo, by (4.14]),

VF(U,) = VF(U) in L% (Q) x L% (Q). (5.12)
So for any © € Y(Q), [(VF(Uy), O)pedz — [(VF(U), ©)r2dz, we have
I (Un)(©) = o(1). (5.13)

Passing to the limit in (5.13) as n — oo, and combining with the above conver-
gences, we obtain

(U,0)y — / (AU, ©)zeda — / (VF(U), O)pedz =0, YO € Y(Q),
Q Q
which means U is a weak solution of problem (1.1J).
Notice that the nonlinearity I is 2 - 27 -homogeneous, particularly, we have
(VF(U),U)ge = uF,(U) + vF,(U) =2-2,F(U), VU = (u,v) €R*.  (5.14)

Combining this with J.(U)U = 0, we reach conclusion (i).
(ii) By Lemma and the Brézis-Lieb Lemma, we have

Ul = 1Un = Ul + U5 + o(1), (5.15)
Ul 72: = 1Un = Ull72; + U725 + 0(1). (5.16)
By Proposition [£.7, we obtain
/ F(Up)dx = / FU)dz + / FU, —U)dxz +o0(l), asn— 0. (5.17)
Q Q Q
Therefore using that U,, — U in L"(Q2) x L" (), for all » € [1,2%), by the definition

of Js, ), (5.16) and (5.17), we deduce (ii).
(iii By 5 10), (5.12) and (5.14)), we obtain

/ VF(U,) — VF(U), Uy — U)gads

Q

- / (VE(U,), Un)geda — / (VEU), U)pedz + o(1)
Q Q

=2.2" ) F(Uy)dz —2 -2}, ) F(U)dz + o(1).

Therefore, using (5.17)), we obtain
/(VF(Un) CVEWUY), Uy — U)soda = 2- 2;/ F(Un - U)de + o(1).  (5.18)
Q Q

On the other hand,
0(1) = J;(Un)(Un - U) = J;(Un>(Un -U) - J;<U)(Un - U)
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(U, U — Uy — /

(AU, Uy, — U)gada — / (VE(U,), Un — U)gods
Q

Q

UL U, — Uy 4+ / (AU, U, — Ugodar + / (VF(U),Up — U)peda
Q Q

= (U, —U, U, — Uy — / (AU, — U), U, — U)gada
Q

— / (VF(U,) - VF{U),U, — U)gedz.
Q
Hence, from (5.11) and (5.18)), it follows that
U, — U3 :2.2;/QF(Un —U)dz +o(1), asn — .
This completes the proof. O

In the next lemma, we prove a convergence criterion for the (PS). sequences
which will play an important role in applying Theorem |2.4

Lemma 5.6. Let N > 2s, 0 < u < N and {U,} be a (PS). sequence of Js with

c< 7]\[2}25; o (S;) | (5.19)
Then, {U,} has a convergent subsequence.
Proof. We assume that

U, = U||3 — L, as n — oo. (5.20)

From Lemma [5.5iii)
2-2;/F(UH—U)dac—>L, as n — 0o,
Q

and it is clear that L € [0,00). By the definition of SH, we have

and consequently, either L = 0 or
1. _N—2s SHN2N—p
L> (5) N+2s—p (S§ )‘N+2§—u,

In the latter case, from Lemma ii), it follows that

1 9 N+2s—pu 9

~||U, — — | F(U, —U)dx = ————||U,, — 1).

51U, = U1 = [ P, = U)o = S5 =810, = U+ o(1)
Therefore, using Lemma ii) and the above equality, we see that

N+2s—p 1
T0)+ St W = VI = () + 10 = VIR = | P, =0+ o(1)

=Js(U,) +0o(1) =c+o0(l), asn— oo.
Then
N +2s— N +2s —
c:JS(U)++SM> +25s—p

22N —p) = 22N —p)
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N—|—2s—,u 1, N—2s 2N —pu N+2s—pu §§H 2N —pu

= m(2)1\7+23 /‘”(SH)N+2€ J— ﬂ(7) N+2s—p

b

which contradicts (5.19). Thus L = 0 and therefore, by (5.20), we have
U, —U|3 — 0, asn — oo

and the assertion of Lemma follows. O

5.3. Linking geometry.

Lemma 5.7. IfF is a finite dimensional subspace of Y (), there exists R > 0 large
enough such that Js(u,v) <0, for all (u,v) € F with ||(u,v)|ly > R and uv # 0.

Proof. Choose (ug,0o) € F with ugtg # 0, then

Tt 5)

_t2/ [to (@) — o (y)|? + |to(x) — to(y) |

R2N |z —y|N+2e

dx dy

2 22 2* 2::
-2 [ (A, @), (@, 5)d ! //W0|w0HdMy

|z — yl~

o // ke |x—y|u (o)l drdy + & //|v0 |x—|17ﬁl‘ () dxdy),

by choosing ¢ > 0 large enough, the assertion follows. This concludes the proof. [

Lemma 5.8. If
Ab—1,s < 1 < Apys < o < Apg1,s, for some k > 1, (5.21)
then the functional Js satisfies:

(i) there exist o, p > 0 such that Js(u,v) > « for all (u,v) € W with ||(u,v)||y =

p; .
(i) if @ = (VN Bgr(0)) ® [0, Rle, where e € W N IB1(0) is a fixed vector,
Js(u,v) <0 for all (u,v) € 0Q and R > p large enough.

Proof. Consider following subspace W = Z, & H, where

Zk - Span{(gok?,sv O>7 (07 (Pk,s)}7 H = Span{((pk+1,s7 0)7 (07 (karl,S), . }
If U € W, we have that U = U* + U with U* € Z; and U € H. Since |U|% =
IU*3 + U5, by 2:2) and (4.20), we have

LU) 2 (UM + T3 - 2(||Uk||?L2)2+W||fL2)2)—C(||U’“||§+||U\|%)211,

Do \

where U = (u,v) and C := C(&,&) > 0 is a constant. Therefore, using that
UkGZkCW ndUGH we obtain

1 — J—
1UF[IEz2y> < EIIU’“H% and [[Ufzy2 < 5 SIIUII?
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Consequently,
)2 (1013 = 221012 ) + (G104 — L2 0¥ 17, )
uwkui + IT3)%

1 1 9.9* (5.22)
> 5 (1= 52 )OI + 5 (1= 5.2 IW* IR = vt i™
2 )\k 1,s
—C|T|Iy>
Taking ||U|ly = p small enough, since |U||2. = ||[U*||2. + |U||?, we obtain that

|U*|ly := y(p) and ||U||ly := z(p) = z are small enough. Now consider the function

1 H2 9 1 K2 2 2.2* 2.2*
= —(1— —(1— — w W
ae) = 5 (1= 57) 2 + 3 (1= 5.5 )wo)* - Clulop ™ +22%)

)+ 5 (1= 52 Julo)? - (o).

where h(z) = (1 - W) 22 — Cz*2:. By (5.21), the maximum value of h(z), for
p sufficiently small, is given by

= N+42s—p/ 1\l ety
o N TS ”( )N“ (7(1— p2 )) YR L,
2N —p \2:C 2 Ak+1,s

which is independent of p and it is assumed at

,_( 1 )%(1_ o )%
2-2:C Akt1,s .

Therefore, it is possible to choose y(p) small enough, such that
a(z) =h—cy(p)® = Cy(p)**» = h— (c+ C)y(p)* > 0,

where ¢ = %(ﬁ—i — 1) > 0. Hence, by the estimate and by the above infor-
mation, for ||U]ly = p small enough, there exists o > 0 such that Js;(U) > «. This
proves item (i).

To prove item (ii), we take U = (u,v) € V, where u = Zf:_fuigoi,s, v o=
Ek 1111@“, Using [30, Proposition 9], we obtain

/]RN lu|?dx = Ef;lluf,/RN |v]2dx = Ef:_fv?,

also

[u(z) = u(y)]* + |v(z) — v(y)|? -
/]RzN |z — y|N+2s dr dy = Ef:l1 (uf + v?)”@l’,é‘”%{
= Efz_ll (uf + 1}1'2)/\1‘73.

Using (2.2)), we prove that Js(U) < 0 on V. Let U = (u,v) € V, since A\jp_1,5 <
1 < Ag,s < po < Apg1,s, we have that

Js(u,v) < fE’.“__ll(uz +vz))\Z s — ’ule L(u? + )

Ju(@)| |v(z) > Iu x)[%
// Iw—yl“ dody +& Im—y\“ dardy
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e [ = |a|:2—|Z|ﬂ dxdy)

YR 4 v (N — ) < 0.

<

N |

Now, to complete the proof, it is sufficient to apply Lemma to the finite di-
mensional subspace V @ span{e} containing @ = (V N Bg(0)) N [0, R]e, for some
e e WNoBy(0) and R > p. O

Remark 5.9. Note that in Lemma we can choose the finite dimensional sub-
space F of Y(Q) as

F. = V @ span{e} = V & span{(2,0)},

where V= span{( » P1, 9) (901 ER 0)7 (O P2, 9) (902,870)7 sy (Oa @k—l,s)a (Sﬁk—l,&o)h 7:2 =

(A ” , with z. = u, — Ek 1 fQ Uep),sdT)Pj s

Lemma 5.10. Let s € (0,1), N > 2s and M, := maxycqg Ss,u,, where G :={u €
25 25
]Fe : fQ fQ Mdl’d?j = 1} Suppose )‘kas < pr < )\k:,s < p2 < )\k+1,57

[z—y[*
for some k € N, we have

(i) M. is achieved by up; € Fe and upr can be written as follows
up = v+ tue, with v € span{y1 s, 02,5,...,Pr-1,s; and t > 0;

(i) M. < SH, provided: (a) N > 4s and puy >0, or (b) 25 < N < 4s and p is
large enough.

Proof. (1) Thanks to the Weierstrass theorem, M, is achieved at uys. Since ups € F,

and by the definition of F, we have that up; = U+tz., for some U € span{p1 s, 92,5, - - -

and t € R. We can suppose that ¢ > 0 (otherwise, if ¢ < 0, we can replace uy; with
—upr). From the definition of z. in Remark [5.9] we have

up =V + tue, (5.23)

where
v="v-— tzf:_f(/ ue‘pi,sdx)@i,s S Span{cpl,s, 2,55+ ‘Pk—l,s}'
Q
(ii) First let t = 0, then up; = v and

M= I =g [ wlPde < s = )l ey < 0 < ST
R

Now, suppose t > 0, we find that 7 and z, are orthogonal in L?(2), then |luas ||%2(Q) =

2% w 2% .
[170172q) +tl2ell72 () Since [ fo % dx dy = 1, using [27, Lemma 4.7,
we obtain a constant Cjy > 0 (independent of €) such that HUM”LZE(Q) < Cp. Subse-
quently, using Holder inequality, we obtain a constant C; > 0 (also independent of
€) such that ||uMH2LQ(Q) < (). Therefore, we can find Cy > 0 such that ||uM||2L2(Q)

) @k—l,s}
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and [|7]|2. () are both uniformly bounded in e. By computations, we obtain

3N — 2;4+25 N(3N 2 +2> 2N —p
el N anine, My / 0 B )

L CN—p)(N—2s)
2N —p
N(3N —2u+2s) ~
S (/ ‘U |(2N (N — 2*)d1'>
Bas

(5.24)
29 N 1 2NN—;4
/ N(BN—-2u+2s) d’]")
0 +r (2N ) (N—2s)
<O(e77),
where C3 > 0 is a constant. Since @i s,92.5,.-.,Pr—1,s € L>®(Q), we have U €

L>°(£2). Using that the map t — t>2 is convex, for t > 0 and span{@1 s, 2., - - -, Pr_1.6}
is a finite dimensional space, all norms are equivalent, we obtain

1= |UM )| [unr () ded
|z —yl* /

|y—|—tu6 (z)|*2
/ |z —y|~ drdy

te 22 te 22 —1
//W“ ) M@+22//|“| Wm%my
M—yW |l —y|»
tue(z ()2
s [ [ e,
|z — y|»

. 2«2}*‘71 . 2«2;7
2 2
,Q.QZHVHLOC(Q)// |tue ()| |tue(y)| da dy
aJa |z — yl~
|tu€ |t’u,€( )|2 N 2L+2€
dxd Cyllv U .
= [ v Gl gotp

Combining (5.24)) with the above inequality, we obtain

tue ()| 2r [ tue (y) [P _2s
// [tuc |x_|yl|”ﬂ( D™ G dy < 14 Cullvll o O(52), (5.25)
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Hence, using the definition of S; ,,, and (5.23), we obtain

luns () — unr (y)]?
M. = on g drdy — = une (z)dz
_ |(v(2) + tue(@)) — (v(y) + tuc(y))|?
a /Rzzv |z — y|NF2e ey

o / V() + tue(2) Pda

RN

v(z) — v(y)]? , / e () — ue(y)]?
= — " _dxd t — 2 _dxd
/ gz YT | T g

. 2t/ |(v(@) = v(y)) (ue(z) —uc@)l dy — m/ lv(z)|?da
RZN RN

| — y[N+2s (5.26)
—ultz/ |u5(33)|2da:—2u1t/ |ue(x)v(z)|de
RN RN
< Mk-1s — )Y l172 ()
|tue (2)| 2 [tue (y)| 2 N
+ S5 0 () // |x—u|/‘ dmdy)
[(v(2) = v(y)) (ue(x) — uc(y))|
2t dz d
* AQN |$7 |N+25 vy
—2u1t/ |ue(z)v(z)|d.
RN
Now we write v = Y¥ 1y, ; for some v; € R, such that 1l1720q) = w2,

By the Holder inequality and the equivalence of the norms in a finite dimensional
space,

(el = BN [ wa)ons(e)da
Q
< SN lvillluel o) llpisll L o)
< kAkgslluel @ vl o
< klluel Lr@)llvliL2 @)

for suitable k and k > 0. More explicitly,

. (v(z) — Tiy—));TN(fZ)_ W) g dy) < Flucllp @, (65.27)

Gathering the results in (5.25)), (5.26]) and (5.27)), using again the Hélder inequality
and (4.5]), we obtain

N—2s

N-—2s —n
M, < (v = i) 320 + Sos () (1 + Callv 1200y O 7)) 7

+ 2tk|Jucll @)1Vl L2 @) — 2uatluell L @) V] L= (@)

N—2s

N-—2s 2N —u
< (Mbors = p) [Vl 72q) + Ss,ul(ue)(l + Callv][L2(0)O(e 2 ))
+ Klluell @y Il 2 o)

N-—2s
< (Me—r,s = 1) 720y + Ssur (ue) (1 + Cal|v]| 2@y O 7= )
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+O( )HV||L2(Q)

Since the parabola (Agy_1 s ,u1)||1/||L2 @t O( )||1/||L2 () stays always below
its vertex, that is

1
A 10 I —) N—2s =0 N—2s )
(e =)l + 06 lz2e) < s 0LV ) = ()

From Lemma we obtain three cases:
Case 1: N > 4s,

M, < (Sf — 1 Cse®® + O(EN_QS)) (1 + C4H1/HL2(Q O(ENEZS ))

+ ks — )N 20y + O )Wl 2(0)
< SH — 11 Cye® + O(N72%) < S

for sufficiently small € > 0 and 1 > 0.
Case 2: N =d4s,

M < (Sf — mCse®[loge| + 0(628)) (1 + Cal[v]| 2 Q)O(Gﬁ))

+ (M—rs — )7l 72 )+0( I
< Sf — 11Cs€* |loge| + O(€*%) < Sf,

for sufficiently small € > 0 and uq > 0.
Case 3: 2s < N < 4s,

M, < (ST 4+ eN"22(0(1) — i Cs) + 0(628)) (1+ c4||u||L2(Q)0(e¥))

+ (Mers — ) 7)1 72 )+O( )l

< ST+ N7(0(1) — i Cs) + O(e*) < 557
for sufficiently small € > 0 and p; large enough. This completes the proof. O
5.4. Proof of Theorem [1.4} By Lemmas [5.7] and [5.8] J, satisfies the geometric
structure of the Linking theorem. Now we apply Theorem [2.4] - for the functional J,
with

Q= (BrNV)®{r(z,0):0<r < R},

and the critical level is characterized as

= inf Js h ; )
o= jof g B4

where I' = {h € C(Q,Y) : h = id on 0Q}. Note that, for all h € T,

c=inf max Jg(h(u,v)) < max Js(h(u,v)).
inf mmax, s(h(u,v)) (max s(h(u,v))

Let F, be as in Remarkwith e sufficiently small. Since Q C (F.)?, taking h = id
and recalling that (F.)? is a linear subspace, we obtain

c< max Js(h(u,v

T () €(F)?, (u,0)£(0,0) o(h(w.v))
v

= max  J(nl(=, )

(1,0) € (Fe )2,m£0 Il |n|

= ma; Js(m(u,v)) < ma. Js(n(u,v)).
(u,v)e(Fe}>(2,n>0 (n(u,v)) (u,v)E(F:)g,nzo (n(u,v))
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Now we claim that

N + 25— /SE\ vt
sy < Ve (s
(ww) ()2 0 s v)) < =55 poN 2

To verify this claim, fix U = (u,v) € (F.)? such that uv # 0. Then by (2.2)), for all
r > 0, we infer that
r? [u(@) e o () |U )%
TG0 < (01 - anH(Lz(Q ([ [ PR g

+£//|u T d“f//'v |as—y|ﬂ| )

22“B
; 2

=:g(r).

1
Note that rg = (%) >25.7? is the maximum point of g(r), which maximum value is
given by

N+25—u( A );“1
2N —p \2Bl/Z ’

Then
N+2s—p { U112 = 1| U122 }
2N — K 2(B(u7 U) +le(U,U) +§QB(’U”U>)1/2:: .

Therefore, it is sufficient to show that

max J(rU) <
r>0

. I~y 1
(w)e()? 2(B(u,v) + &1 B(u, u) + &B(v,v)) /%~ 27¢
Define
o Julld = o 2
uElF \{0} f f Wﬂ%ﬂ% dx dy)l/z;;
- max (lullk = pallull2).

2
UEFE,.fQ fg ‘u(z)\‘zi‘;\ﬁy)‘ = dz dy=1

Taking sg,ty > 0 as in Remark and ujps as in Lemma ]\Af6 is achieved by
function Up; = (souns, toupr). Therefore, from Lemmas and and using
(5.3), we conclude that

ol (s5 +t3)(||UMH§< — pallun72)
2 (Sg”tg“ + 5183.2“ + £2t0 2 )1/2#B( )1/2;1
1 1

1 —~
= 57”/ e < imSS = §S§ s

if one of the following conditions holds:

(i) N >4s and pu3 >0,

(ii) 2s < N < 4s and 4 is large enough (1 > Ag—1,5 > 0).
Now, using the Linking theorem and Lemma we conclude that has a
nontrivial solution with critical value ¢ > «.
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