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FIRST DIRICHLET AND NEUMANN ∞-EIGENVALUES
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Abstract. In this note we analyze how perturbations of a ball Br ⊂ Rn be-
haves in terms of their first (non-trivial) Neumann and Dirichlet∞-eigenvalues

when a volume constraint L n(Ω) = L n(Br) is imposed. Our main result

states that Ω is uniformly close to a ball when it has first Neumann and
Dirichlet eigenvalues close to the ones for the ball of the same volume Br. In

fact, we show that, if

|λD
1,∞(Ω)− λD

1,∞(Br)| = δ1 and |λN
1,∞(Ω)− λN

1,∞(Br)| = δ2,

then there are two balls such that

B r
δ1r+1

⊂ Ω ⊂ B r+δ2r
1−δ2r

.

In addition, we obtain a result concerning stability of the Dirichlet∞-eigenfunctions.

1. Introduction

Let Ω ⊂ Rn be a bounded domain (connected open subset) with smooth bound-
ary, 1 < p <∞ and ∆pu := div(|∇u|p−2∇u) (the standard p-Laplacian operator).
Historically (cf. [13]), it well-known that the first eigenvalue (referred as the prin-
cipal frequency in physical models) of the p-Laplacian Dirichlet eigenvalue problem

−∆pu = λD1,p(Ω)|u|p−2u in Ω
u = 0 on ∂Ω

(1.1)

can be characterized variationally as the minimizer of the (normalized) problem

λD1,p(Ω) := inf
u∈W 1,p

0 (Ω)\{0}

{∫
Ω

|∇u|pdx :
∫

Ω

|u|pdx = 1
}
. (1.2)

In the theory of shape optimization and non-linear eigenvalue problems obtaining
(sharp) estimates for the eigenvalues in terms of geometric quantities of the domain
(e.g. measure, perimeter, diameter, among others) plays a fundamental role due to
several applications of these problems in pure and applied sciences. We recall that
the explicit value to (1.2) is known only for some specific values of p or for very
particular domains Ω. Notice that upper bounds for λD1,p(Ω) are usually obtained by
selecting particular test functions in (1.2). Nevertheless, lower bounds are a more
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challenging task. In this direction we have the remarkable Faber-Krahn inequality:
Among all domains of prescribed volume the ball minimizes (1.2). More precisely,

λD1,p(Ω) ≥ λD1,p(B), (1.3)

where B is the n-dimensional ball such that L n(Ω) = L n(B) (along this paper
L n(Ω) will denote the Lebesgue measure of Ω that is assumed to be fixed). Using
isoperimetric or isodiametric inequality similar lower bounds for (1.2) in terms of the
perimeter (resp. diameter) of Ω are also available (cf. [1] and [14, page 224], and the
references therein). Recently, stability estimates for certain geometric inequalities
were established in [10], thereby providing an improved version of (1.3) by adding
a suitable remainder term, i.e.,

λD1,p(Ω) ≥ λD1,p(B)
(
1 + γp,n(S(Ω))2+p

)
,

where S(Ω) is the so-called Fraenkel asymmetry of Ω, which is precisely defined as

S(Ω) := inf
x0∈Rn

{L n(Ω∆Br(x0))
L n(Ω)

: L n(Br(x0)) = L n(Ω)
}
,

and γp,n is a constant. Observe that S measures the distance of a set Ω from being
a ball. For such quantitative estimates and further related topics we quote [2, 4, 9]
and references therein.

Our main goal here is to find stability results for the limit case p =∞.
First, we introduce what is known for the limit as p→∞ in the eigenvalue prob-

lem for the p-Laplacian. When one takes the limit as p → ∞ in the minimization
problem (1.2), one obtains

λD1,∞(Ω) := lim
p→∞

p

√
λD1,p(Ω) = inf

u∈W 1,∞
0 (Ω)\{0}

‖∇u‖L∞(Ω) > 0, (1.4)

see [11]. Concerning the limit equation, also in [11] it is proved that any family of
normalized eigenfunctions {up}p>1 to (1.2) converges (up to a subsequence) locally
uniformly to u∞ ∈ W 1,∞

0 (Ω), a minimizer for 1.4 with ‖u∞‖L∞(Ω) = 1. Moreover,
the pair (u∞, λD1,∞(Ω)) is a non-trivial solution to

min
{
−∆∞v∞, |∇v∞| − λD1,∞(Ω)v∞

}
= 0 in Ω

v∞ = 0 on ∂Ω.
(1.5)

Solutions to (1.5) must be understood in the viscosity sense (see [6] for a survey)
and ∆∞u(x) := ∇u(x)TD2u(x) · ∇u(x) is the well-known ∞-Laplace operator. In
addition, in [11] it is given an interesting and useful geometrical characterization
for (1.4):

λD1,∞(Ω) =
(

max
x∈Ω

dist(x, ∂Ω)
)−1

. (1.6)

Such an information means that the “principal frequency” for the ∞-eigenvalue
problem can be detected from the geometry of the domain: it is precisely the
reciprocal of radius rΩ > 0 of the largest ball inscribed in Ω. For more references
concerning the first eigenvalue (1.5) we refer to [12], [15] and [18].

Now, let us turn our attention to Neumann boundary conditions and consider
the eigenvalue problem

−∆pu = λN1,p(Ω)|u|p−2u in Ω

|∇u|p−2 ∂u
∂ν = 0 on ∂Ω.

(1.7)
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As before, we stress that the first non-zero eigenvalue of (1.7) can also be charac-
terized variationally as the minimizer of the normalized problem

λN1,p(Ω) := inf
u∈W 1,p(Ω)

{∫
Ω

|∇u|pdx :
∫

Ω

|u|pdx = 1 and
∫

Ω

|u|p−2udx = 0
}
. (1.8)

The celebrated Payne-Weinberger inequality provides a lower bound (on any convex
domain Ω ⊂ Rn) for the first (non-trivial) Neumann p−eigenvalue (see [8, 17])

λN1,p(Ω) ≥ (p− 1)
( 2π
p diam(Ω) sin(πp )

)p
. (1.9)

For a stability estimate for this problem with p = 2 we refer to [2].
When p→∞, the minimization problem (1.8) becomes

λN1,∞(Ω) := lim
p→∞

p

√
λN1,p(Ω) = inf

u∈W 1,∞(Ω)
maxΩ u=−minΩ u=1

‖∇u‖L∞(Ω), (1.10)

see [7, 16]. Concerning the limit equation, also in [7, 16], it is proved that any
family of normalized eigenfunctions {up}p>1 to (1.8) converges (up to subsequence)
locally uniformly to a limit u∞ ∈ W 1,∞

0 (Ω) with ‖u∞‖L∞(Ω) = 1. Moreover, the
pair (u∞, λN1,∞(Ω)) is a non-trivial solution to

min
{
−∆∞v∞, |∇v∞| − λN1,∞(Ω)v∞

}
= 0 in Ω ∩ {v > 0}

max
{
−∆∞v∞,−|∇v∞| − λN1,∞(Ω)v∞

}
= 0 in Ω ∩ {v < 0}

−∆∞v∞ = 0 in Ω ∩ {v = 0}
∂v∞
∂ν

= 0 in ∂Ω.

(1.11)

In addition, we have the following geometrical characterization for λN1,∞(Ω):

λN1,∞(Ω) =
2

diam(Ω)
, (1.12)

where the intrinsic diameter of Ω is defined as

diam(Ω) := max
Ω̄×Ω̄

dΩ(x, y) = max
∂Ω×∂Ω

dΩ(x, y),

where dΩ(x, y) is the geodesic distance given by dΩ(x, y) = infγ Long(γ), where the
infimum is taken over all possible Lipschitz curves in Ω̄ connecting x and y.

We remark that in the limit case p =∞, the geometrical characterization (1.12)
of (1.10) yields several interesting consequences:

X If L n(Ω) = L n(B), B being a ball, then λN1,∞(Ω) ≤ λN1,∞(B), which estab-
lishes a Szegö-Weinberger type inequality : among all domains of prescribed
volume the ball maximizes (1.10).

X λN1,∞(Ω) ≤ λD1,∞(Ω) for any convex Ω with equality if and only if Ω is a
ball.

X The Payne-Weinberger inequality, (1.9), becomes an equality when p =∞.
Taking into account the previous historic overview, we arrive to our main result,

which establishes the stability of the ball with respect to small perturbations of their
first Dirichlet and Neumann ∞-eigenvalues. More precisely, if a domain Ω ⊂ Rn
has Dirichlet and Neumann ∞-eigenvalues close enough to those of the ball Br of
the same Lebesgue measure, then Ω is uniformly “almost” ball-shaped.
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Theorem 1.1. Let Ω be an open domain satisfying L n(Ω) = L n(Br). If for some
δi > 0 (i = 1, 2) small enough it holds that

|λD1,∞(Ω)− λD1,∞(Br)| = δ1 and |λN1,∞(Ω)− λN1,∞(Br)| = δ2,

then there are two balls such that

B r
δ1r+1

⊂ Ω ⊂ B r+δ2r
1−δ2r

.

The previous theorem implies the following convergence result.

Theorem 1.2. Let {Ωk}k∈N be a family of uniformly bounded domains satisfying
L n(Ωk) = L n(Br). If

|λD1,∞(Ωk)− λD1,∞(Br)| = o(1) and |λN1,∞(Ω)− λN1,∞(Br)| = o(1) as k →∞,
then Ωk → Br in the sense that the Hausdorff distance between Ω and a ball Br
approaches zero, i.e.,

dH(Ωk, Br) := max
{

sup
x∈Ωk

inf
y∈Br

d(x, y), sup
y∈Br

inf
x∈Ωk

d(x, y)
}
→ 0.

Note that our results imply

max
{

L n
(

Ω∆B r
δ1r+1

)
,L n

(
Ω∆B r+δ2r

1−δ2r

)}
≤ C(n, δi, r)rn. (1.13)

where C(n, δi, r) = ωn max{(δ1r+ 1)n− 1, (n− 1)δ2} → 0 as δi → 0. Hence, we can
control the Fraenkel asymmetry of the set, S(Ω). But our results give much more
since we have a sort of uniform control on how far the set is from being a ball (for
instance, we have convergence in Hausdorff distance in Theorem 1.2).

Another important question in this theory consists on how the corresponding
∞-ground states (solutions to (1.5)) behave in relation to perturbations of the ∞-
eigenvalues of the ball. The next result provides an answer for this issue, showing
that Dirichlet∞-eigenfunctions are uniformly close to a cone when the first Dirichlet
and Neumann ∞-eigenvalues are close to those for the ball. Note that, in general,
the ∞-eigenvalue problem (1.5) may have multiple solutions (the first eigenvalue
may not be simple), see [5] and [18].

Theorem 1.3. Let Ω be an open domain satisfying L n(Ω) = L n(Br). Given
ε > 0 there are δi(ε) > 0 (i = 1, 2) small enough such that: if

|λD1,∞(Ω)− λD1,∞(Br)| < δ1 and |λN1,∞(Ω)− λN1,∞(Br)| < δ2,

then
|u(x)− v∞(x)| < ε in Ω ∩Br,

where v∞(x) = 1− |x|r is the normalized ∞-ground state to (1.5) in Br.

Theorem 1.3 can be rewritten as follows:

Corollary 1.4. Let {uk}k∈N be a family of normalized solutions to (1.5) in Ωk
such that

|λD1,∞(Ωk)− λD1,∞(Br)| = o(1) and |λN1,∞(Ωk)− λN1,∞(Br)| = o(1) as k →∞.
Then uk → v∞ locally uniformly in Br, where

v∞(x) = 1− |x|
r

is the normalized ∞-ground state to (1.5) in Br.
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Our approach can be applied for other classes of operators with p-Laplacian type
structure. We can deal with p−Laplace type problems involving an anisotropic p-
Laplace operator

−Qpu := − div(Fp−1(∇u)Fξ(∇u)),
where F is an appropriate (smooth) norm of Rn and 1 < p < ∞. The necessary
tools for studying the anisotropic Dirichlet eigenvalue problem, as well as its limit
as p → ∞ can be found in [3]. Here, to obtain results similar to ours, one has to
replace Euclidean balls with balls in the norm F.

This article is organized as follows: In Section 2 we prove our main stability
results including the behaviour of the corresponding ∞-eigenfunctions. In Section
3 we collect several examples that illustrate our results.

2. Proof of main results

Before proving our main result we introduce some notation which will be used
throughout this section. Given a bounded domain Ω ⊂ Rn and a ball Br ⊂ Rn of
radius r > 0 we denote λD1,∞(Ω) and λD1,∞(Br) the first Dirichlet eigenvalues (1.6)
in Ω and in Br, respectively; analogously, λN1,∞(Ω) and λN1,∞(Br) stand for the first
non-trivial Neumann eigenvalues (1.12) in Ω and in Br.

We introduce the following class of sets which will play an important role in our
approach. For non-negative constants δ1 and δ2 we define the class

Ξδ1,δ2(Br) :=
{

Ω ⊂ Rn bounded domain with L n(Ω) = L n(Br)

: |λD1,∞(Ω)− λD1,∞(Br)| = δ1, |λN1,∞(Ω)− λN1,∞(Br)| = δ2

}
.

Notice that Ξ0,0(Br) consists of the family of all balls with radius r > 0. An-
other important remark is that the elements of Ξδ1,δ2(Br) are invariant by rigid
transformations (rotations, translations, etc).

Similarly, we can define the class ΞDδ1(Br) (resp. ΞNδ2(Br)) as being Ξδ1,δ2(Br)
with the restriction on the Dirichlet (resp. Neumann) eigenvalues only.

In the next lemma we show that a control on the difference of the first Dirichlet
eigenvalue implies that Ω contains a large ball.

Lemma 2.1. If Ω ∈ ΞDδ1(Br) then there exists a ball such that B r
δ1r+1

⊂ Ω. More-
over,

L n
(

Ω∆B r
δ1r+1

)
≤ c(n, δ1, r)rn.

where c = o(1) as δ1 → 0.

Proof. According to (1.6) we have

δ1 = |λD1,∞(Ω)− λD1,∞(Br)| =
∣∣ 1
rΩ
− 1
r

∣∣.
It follows that

rΩ ≥
r

δ1r + 1
.

and then there is ball such that B r
δr+1
⊂ Ω. Finally,

L n(Ω4B r
δr+1

) = L n(Ω)−L n(B r
δr+1

)

= ωnr
n
(

1− 1
(δr + 1)n

)
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≤ ωnrn ((δr + 1)n − 1)

= c(n, δ, r)rn

and the lemma follows. �

Now, we show that a control on the difference of the first Neumann eigenvalue
implies that Ω is contained in a small ball.

Lemma 2.2. If Ω ∈ ΞNδ2(Br) then there is a ball such that Ω ⊂ B r
1−δ2r

. Moreover,

L n
(

Ω∆B r
1−δ2r

)
≤ (n− 1)ωnrnδ2.

Proof. Using (1.12) we have

δ2 = |λN1,∞(Ω)− λN1,∞(Br)| =
∣∣∣ 2
diam(Ω)

− 1
r

∣∣∣.
It follows that

diam(Ω) ≤ 2r
1− δ2r

= r +
r(1 + δr)
1− δ2r

and then there exists a ball such that

Ω ⊂ B diam(Ω)
2

= B r
1−δ2r

.

Moreover,

L n
(

Ω∆B diam(Ω)
2

)
= L n

(
B diam(Ω)

2

)
−L n(Ω)

= ωnr
n
((

1 +
δ2

1− δ2r

)n
− 1
)

= ωnr
nδ2

n∑
k=2

( δ2
1− δ2r

)k
≤ (n− 1)ωnδ2rn

and the lemma follows. �

Proof of Theorem 1.1. The theorem follows as an immediate consequence of Lem-
mas 2.1 and 2.2. �

Proof of Theorem 1.2. The hypothesis implies that Ωk ∈ Ξδk,εk(Br) for δk, εk =
o(1) as k →∞. For this reason, by Theorem 1.1 there are two balls such that

B r
δkr+1

⊂ Ωk ⊂ B r+εkr
1−εkr

.

Now, using that all these balls are centered at points that are bounded (since we
assumed that the family Ωk is uniformly bounded), we can extract a subsequence
such that the centers converge and therefore we conclude that there is a ball Br
such that Ωk → Br as k →∞. �

Proof of Theorem 1.3. The proof follows by contradiction. Let us suppose that
there exists an ε0 > 0 such that the thesis of theorem fails to hold. This means
that for each k ∈ N we might find a domain Ωk and uk, a normalized ∞-ground
state to (1.5) in Ωk, such that Ωk ∈ Ξγk,ζk(Br) with γk, ζk = o(1) as k →∞, that
is,

|λD1,∞(Ωk)− λD1,∞(Br)| < γk and |λN1,∞(Ωk)− λN1,∞(Br)| < ζk,
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with γk, ζk = o(1) as k →∞, together with

|uk(x)− v∞(x)| > ε0 in Ωk ∩Br, (2.1)

for every k ∈ N.
Using our previous results, we can suppose that every Ωk ⊂ B2r. Then, by ex-

tending uk to zero outside of Ωk, we may assume that {uk}k∈N ⊂ W 1,∞
0 (B2r). In

this context, standard arguments using viscosity theory show that, up to a subse-
quence, uk → u∞ uniformly in B2r, being the limit u∞ a normalized eigenfunction
for some domain Ω̂ with Ω̂ b B2r. Moreover, we have that λD1,∞(Ωk)→ λD1,∞(Ω̂).

According to Theorem 1.2, Ωk → Br as k → ∞. By the previous sentences we
conclude that Ω̂ = Br. Now, by uniqueness of solutions to (1.5) in Br we conclude
that u∞ = v∞. However, this contradicts (2.1) for k � 1 (large enough). Such a
contradiction proves the theorem. �

3. Examples

Given a fixed ball B and a domain Ω having both of them the same volume,
Theorem 1.1 says that if the ∞-eigenvalues are close each other then Ω is almost
ball-shaped uniformly. The following examples illustrate Theorems 1.1 and 1.2.

Example 3.1. The converse of Theorem 1.1 (and Theorem 1.2) is not true: given
a fixed ball B, clearly, there are domains Ω fulfilling (1.13) such that the difference
between the Neumann (and Dirichlet) eigenvalues in Ω and in B is not small. Let
us present some illustrative examples.

(1) A stadium. Let B be the unit ball in R2 and Ω the stadium domain given
in Figure 1 (a) with ` = π(1−ε2)

2ε . In this case L n(B) = L n(Ω) = π for any
0 < ε < 1. However,

λN1,∞(B) = 1, λN1,∞(Ω) =
2

diam(Ω)
=

4ε
π + ε2(4− π)

<
1
3

if ε <
1
4
.

(2) A ball with holes. If Ω = B(0,
√

1 + ε2) \ B(0, ε) is the domain given in
Figure 1 (b), then L n(B) = L n(Ω) = π, however

λD1,∞(B) = 1, λD1,∞(Ω) =
1√

1 + ε2
>

3
2

if
3
4
< ε < 1.

(3) A ball with thin tubular branches. If Ω is the domain given in Figure 1 (c),
the condition L n(B) = L n(Ω) gives the relation

r(r + ε) + ε( 1
π + ε

2 ) = 1, diam(Ω) = 1 + r + π(1 + r).

For instance, if we take ε = 10−3 it follows that r ∼ 0.999465 and then

λN1,∞(B) =
2

diam(B)
= 1, λN1,∞(Ω) =

2
diam(Ω)

∼ 0.2415.

Hence, in view of these examples we conclude that a domain that has Dirichlet
and Neumann∞-eigenvalues close to the ones for the ball is close to a ball not only
in the sense that L n (Ω∆Br) is small but it can not contain holes deep inside (small
holes near the boundary are allowed) and can not have thin tubular branches.

Example 3.2. The regular polygon Pk of k-sides (k ≥ 3) centered at the origin
such that L n(Pk) = L n(Br) satisfies

|λD1,∞(Pk)− λD1,∞(Br)| = δ1 and |λN1,∞(Br)− λN1,∞(Pk)| = δ2,
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Figure 1. Three examples of domains

where
δ1 =

1

r
√

π
k tan(πk )

− 1
r

and δ2 =
1
r
− 1

r
√

2π
k sin( 2π

k )

.

Therefore, we can recover the well known convergence Pk → Br as k →∞.

Example 3.3. Given k ∈ N and positive constants ak1 , · · · , akn, the n−dimensional
ellipsoid given by

Ek :=
{

(x1, · · · , xn) :
n∑
i=1

(xi
aki

)2

< 1
}

such that L n(Ek) = L n(Br) satisfies

|λD1,∞(Ek)− λD1,∞(Br)| = δ1 and |λN1,∞(Br)− λN1,∞(Ek)| = δ2,

where
δ1 =

1
mini{aki }

− 1
r
, and δ2 =

1
r
− 1

maxi{aki }
.

Therefore, we recover the fact that if mini aki → r and maxi aki → r as k →∞, then
Ek → Br.

Example 3.4. Given r > 0 let k0 ∈ N such that 1
2π

√
4
k2 + 4π2r2 > 1

kπ for all
k ≥ k0. For each k ∈ N let Ωk be the planar stadium domain from Figure 1

(a) with lk = 1
k and εk = 1

2π

√
4
k2 + 4π2r2 − 1

kπ . It is easy to check that Ωk ∈
Ξ 1
εk
− 1
r ,

2
2εk+ 1

k

− 1
r
(Br). Furthermore, in this case we have that the eigenfunctions are

explicit and given by

uk(x) =
1
εk

dist(x, ∂Ωk).

Finally, form Corollary 1.4

uk(x)→ v∞(x) =
1
r

dist(x, ∂Br) locally uniformly in Br as k →∞.
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