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POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR
SINGULAR EQUATIONS

JOSE VALDO GONCALVES & CARLOS ALBERTO P. SANTOS

ABSTRACT. This article concerns the existence and uniqueness of solutions to
the quasilinear equation

~Apu=p(2)f(u) in RN

with v > 0 and u(z) — 0 as |z| — oo. Here 1 < p < 0o, N > 3, A, is the p-
Laplacian operator, p and f are positive functions, and f is singular at 0. Our
approach uses fixed point arguments, the shooting method, and a lower-upper
solutions argument.

1. INTRODUCTION

We study the existence and uniqueness of solution of the problem
—Ayu= p(a)f(u) inRY,
w>0 inRY, lim wu(z)=0, (1.1)

|| =00
where 1 < p < 0o, N > 3 and A, is the p-Laplacian operator while p : RY — [0, 00)
is continuous and f : (0,00) — (0, 00) is a C'-function, singular at zero, for instance,
in the sense that lims_.o f(s) = co.
The case p = 2 has been studied by several authors. Under additional assump-
tions on p, Edelson [3] studied with f(s) = s7, A € (0,1). A solution was
shown to exist provided

/00 rN=DFAN=250) drr < o0,
1

where p(r) := max|,|—, p(x). That result was extended for all A > 0, by Shaker [6].
Later, Lair & Shaker [5] showed existence of a solution under the condition

/ rp(r)dr < oo.
0

Zhang [7] showed that (1.1]) has a solution provided that f’ < 0 and lim,_,q f(s) =
0o. Yet in the case p = 2, Cirstea & Radulescu [I] showed that (1.1 is solvable
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under the conditions: f is bounded from above near +oo, lim,_o f(s)/s = oo, and
f(s)

is decreasing for some positive constant b.

s+b
In the present paper we shall assume that p is radially symmetric and
fp(fz is nonincreasing in (0, o), (1.2)
s
. o f(s)
hgri}glff(s) > 0, Slirgo e 0. (1.3)

Our main result is as follows.

Theorem 1.1. Assume (1.2)), (1.3) and

0</ T‘ﬁp(7")ﬁolr<oo7 if 1l <p<2
1

* (p—2)N+1
0< / r- o1 p(r)dr <oo, ifp>2.
1

Then (1.1) has:

(ii) A radially symmetric solution u in C*(RN) N C*(RN\{0}) if p < N,

(ii) No radially symmetric solution in C*(RN) N C?(RV\{0}) if p > N.
Remark 1.2. Regarding case (i), it will be shown that u € C2(RY) if and only

if p < 2. Additionally, the solution is uniquely determined if f(s)/(s + b)P~! is
nonincreasing for some b > 0. See Section 7 .

Theoremimproves the main existence result in Cirstea & Radulesco [1] in the
sense that we allow both a broader class of nonlinear operators as well as nonlinear
singular terms f. Our theorem applies to the class of functions

f(s)=s*+5", whereA>0, 0<y<p-—1.
The results below will be used in the proof of Theorem[I.1] The first result is about
solving the problem
—Apu = p(x)f(u) in Bg,
w>0 inBgr, wu=0 in JBpg,
where Bp is the ball of radius R.

Theorem 1.3. Assume (1.2), (1.3)) and p < N. Then for each sufficiently large
R, (1.5) has a radially symmetric solution in C(Bg) N C(Bgr) N C?(Br\{0}).

Theorem 1.4. Assume (1.2)—(1.4) and p < N. Then there is a radially symmetric
function v € C*RN) N C?(RV\{0}) such that

—Apv 2 p(x)f(v) in RM\{0},

v>0 inRY, ‘l‘im v(z) =0.

The proof of Theorem [1.1] will be accomplished, by at first, using Theorem [T.4]to

pick a solution v of (1.6)), (which will be referred to as an upper-solution of (1.1f)),

secondly, by choosing a sufficiently large integer j and applying Theorem [I.3]to find

for each integer k > 1, a solution say, uy of (1.5) j+%> Which after extended as zero
outside B;, will be shown to satisfy,

(1.5)

(1.6)

O0<fu; Sup <+ Sy <--- <o
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Then we pass to the limit as k — oo, getting to a solution of (|1.1)) as asserted in our
main result. This kind of argument is motivated by reading Zhang [7] and Cirstea
& Radulescu [1J.

2. SOME TECHNICAL LEMMAS

At first we state and prove some preliminary results, crucial in the proof of
Theorem As a first step in this direction, consider the initial-value problem,

(R ) =N ) f(u(r) o (0,00),
u(0) =a, «'(0)=0,

(2.1)

where a > 0 is a parameter and note that this equation is equivalent to the integral
equation,

u(r) =a— /07“ [tl_N /t sN_lp(s)f(u(s))ds} Tildt. (2.2)

0
Moreover, a solution of (2.2) is a fixed point of the operator,

Fu(r) =a— /T [tlfN /t sNﬁlp(s)f(u(s))ds} p%ldt. (2.3)

0 0

Lemma 2.1. Assume (1.2). Then for each a > 0 there is T(a) € (0,00] and
a unique solution of (2.1), u := u(-,a) € C*([0,T(a))) N C?((0,T(a))) such that
u(r) — 0 as r — T(a) provided T'(a) < oo.

Given T, h > 0 set
X = {we ' ([0,T])|w > h}.
If wi,we € X let H :[0,T] — R be the continuous function
1-p 1-p
H(s) i= ¥l 12 )y = |l P2 )y | (= wa)(s).

Lemma 2.2. If wi,wy € X and0< S < U <T, then

H(U) - H(S)
U (rN—l‘(wé/p)/‘p—Z(w;/p)/)/ - (TN—ll(wi/:D /|p—2(wi/p)/)/ e
A L

Lemma 2.3. Assume a < b and let u(-,a),u(-,b) be the corresponding solutions
given by Lemma[2.4 Then u(-,a) < u(-,b) in [0,T(a)) and moreover T(a) < T(b).

Lemma 2.4. Assume (1.2)). Let {a,} be a sequence in (0,00) such that a, / a
or an \, a for some a > 0 and let u(-,a,),u(-,a) be the solutions given by Lemma

(2.1 If K € (0,min{T(a),sup, T(a,)}) then

lim |lu(-,a,)—u(-, a) =0 and lim |[v/(r,a,)—u'(r,a)| =0, 7r€]0,K].

" oo HC([O,K]) s 00

Next we prove results established above. The proof of Lemma is fairly stan-
dard and is based on Banach’s Fixed Point Theorem. However we present it in
detail because several related notation will be used in the rest of the paper.
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3. PROOFS OF THE LEMMAS

Proof of Lemma[2., Let a > 0. Since f € C' choose k, > 1 such that f is
Lipschitz continuous on [a/kqg,a]. Pick € > 0 small enough, set

Xoe i ={ueC([0,€) : u(0) = a,a/k, < u(r) < a,r €[0,6}.
Note that (Xg., || - ||oc) is & complete metric space. We claim that
F(Xae) € Xaer [ F(ur) = Fluz)llcqoay < Ellur —uzlleqo.y — (3.1)

for all uj,us € X4 and for some k& € (0,1). The proof of (3.1) is left to an
Appendix. Assuming (3.1), F has an only fixed point v € X, . and so (2.1) has a
unique local solution. Setting

T(a):=sup{r >0:([2.1) has an only solution in [0,7]}

and letting u(-,a) : [0,7(a)) — R be the solution of (2.1]), notice that by (2.2)),
u(-,a) € C1([0,T(a))) and

T _1_
u'(r,a) = — {rl_N/ sV (s) f(u(s, a))ds} N 0<r < T(a). (3.2)
0
Differentiating once more, one finds that u € C%((0,7(a))). Assuming T'(a) < oo
we claim that «(T(a),a) = 0. Indeed, if u(T(a),a) := a > 0, then u(r,a) > a f
r € [0,T(a)). Estimating the integral in (3.2)) and using (1.2)),
| st anas < L9 a-ir@p [Ftyas
0 ar- 0 (3.3)

@) ot [T s
< L8 [ pas

Using (3.2) and (3.3), v := lim, »p(q) /(r,a) is defined and v € (—oc,0]. Consider
the problem,
—(rN T PR = N () fw) i (T(a), 00),

_ (3.4)
uw(T(a)) =a, u'(T(a))=v,

whose solutions are the fixed points of),

i 1

Fu(r)=a— ' =N ()N =Ly p—t sV To(s) F(u(s))ds ﬁd.
=i [ AN @ e [t s}
Setting,
Xae :={ue C([T(a), T(a)+€)|[u(T(a)) = a,a/ka < u(r) < a,r € [T(a),T(a)+e]},
we infer that, (see Appendix),

F(Xae) C Xae,  F(ur) = Fluz)lloo < kllur — uzlo (3.5)

where uj,us € Xz and k € (0,1). By standard fixed point arguments again,
one infers the existence of a unique solution of (2.1)) on some interval [0,T(a) + €)
contradicting the definition of T'(a). Hence, u(-,a) € C([0,T(a)]) and u(a,T(a)) =
0. (]
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Proof of Lemma[2.2. Motivated by Diaz & Saa [2] let J : L'([0,77]) — R U {oo},

J(w) = {é Js Nty [Pds, we X
00, w ¢ X,
where 0 < § < U < T. It is straightforward to check that X and J are both
convex. Letting wi,ws € X, n = w; — we, remarking that we + tn, wy — tn are in
X, (0 <t <1), and denoting by (J'(w), (), the directional derivative of J at w in
the direction (, we claim that,

1—-p

(J'(w1), —n) = —%UN*|<wi/”<U>>'|p-2<wi/p<U>>’w1T U)n(U)

+ %SN*|<w}“’<s>>'\p*(wi/’)(S»'w?p (S)n(S)

(3.6)
1 (U (sN-1 wl/p 1p—2 wl/p n’
_,'_7/ ( |(1 )p; (1 ))n(s)ds
pPJs wlp
and ) -
(' wz)m) = UM (g P U)) P2 P (0)) ™ (V)
1 _ B 1-p
= SN ) PR M) " (Sn(S) 5
1 (U (sN-1 1/p\rip—2¢,,,1/P\r\’
G T T L S
PJs wQP
‘We show next. Note that,
1 U ’((wl - sn)l/p)/|p _ ’(wl/P)/|:D
! P N-1 1
), =) =l [ s [ - | as.
By computing we find
U _ 1/p\! _ (4, 1/P\r
(), = = limy [ 5oz, [ == T g g
S— S

where
min { ((wy —sn)'/7Y, (w}/")'} < 60, < max { ((wy = sm)/2), (w} 7}
Applying Lebesgue’s Theorem to (3.8) we infer that,
1

U 1—p
' (wn), =) = = / sV (wy 7Y PR (wy P (w, T ) ds.
S

Computing this integral we get to (3.6). The verification of (3.7)) follows by similar
arguments. From (3.6) and (3.7)),

<J,(w2)»77> - <J/(’w1), 77>

— W) - H(S)
B el ot 3000 M e 3000 10 A Gl [ a0 M el CET 0 0 L D
p/s [ o = [ wn = ws)ds.

Since J is convex, (J'(wy) — J'(ws), w1 — w2) > 0 and Lemma [2.2] follows. O
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Proof of Lemma[2.3 Assume, on the contrary, u(r,a) < u(r,b),r € [0,T) and
u(T,a) = u(T,b), for some T < T'(a). Taking r € (0,T) and using Lemma and
(L.2),

7l ()P (b)) |l (rya) [P (ry a) » »
| B o= | (utr,a)? = b))
TV D) PR (1 0) (N (o)l (¢ ) S
< /0 [ G BT - T [ utt, 0 — (. by?)at
_ /0 [ ((:(;)5)3 o ((Z(bt)’pb)ﬂ (u(t, a)? — u(t, b)?)dr < 0.

As a consequence,

[u/ (r, b) [P~/ (r, b) ' a)[P=2u/ (r, a) >0
u(r, b)p—1 u(r,a)p—1 =

u(-,b)

’ u(‘va)

Recalling that v/(-,a),u/(-,b) are both non positive, we get is nondecreasing

in [0, 7], so that,

u(0,b) _ u(T,b)
1 < =1
< w(0,a) ~ uw(T,a) ’
which is impossible. Hence u(r,a) < u(r,b) for r € [0,T(a)) and Lemma is
proved. [l

Proof of Lemma[2 Assume a,, / a. By Lemma[2.3] K € (0,sup, T(a,)). Take
an integer nx > 1 such that T'(a,, ) > K. By Lemma again,

T(ang) <T(ap) <T(a) and u(,an,) <u(yap) <u(-a)<a,

for n > ng, showing that {u(-,ay)}22; is equibounded. We claim that it is also
equicontinuous in C([0, K]). Indeed, estimating as in (3.3) we find

~ Koang)) , 1 [ ~
u'(r,a p1<7f(u( LKL gP 1/ s)ds := K.
| ( n)‘ — u(K,anK)P*1 0 p( )
Let 6,, € (0, K) such that,
u(r, an) — u(s, an)| = [t/ (O, a0)|lr — s| < K77 |r — s|.

Then {u(-,a,)}22, is equicontinuous. By the Arzéla-Ascoli theorem there is some
u € C([0, K]) such that, up to a subsequence, u(-,a,) — @ uniformly in [0, K]. We
remark that

sV p(s) fu(s, an)) — s p(s) f(a(s))
and

P p(o)uls, ) < L) pa g

for ¢ € [0, K]. By Lebesgue’s theorem,
[ o tulsands = [ 55 p(s) (i) ds
0 0

for each r € [0, K]. This and (3.2) amount

1

' (r,apn) — —(rl_N /07‘ sN_1p(s)f(ﬂ(s))als)E = u(r)
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so that [J u/(t,a,)dt — [, u(t)dt and hence

Ar)—a = /0 byt

As a consequence,

@ (P2 (r) = N / "N () (i) ds.

Hence w is a solution of (2.1) and by uniqueness, provided by Lemma u =
u(-, a).

It has finally been shown that u(-,a,) — u(-,a) in C([0,K]) and v'(-,a,) —
u'(+, a) pointwise in [0, K]. The case a, \, a follows by similar arguments. Lemma
[2:4)is proved. O

4. PROOF OF THEOREM [L.3]

By (1.4) pick S > 0 such that fS N=1lp(s)ds > 0. Take R > 2S and consider
the set,
A:={a>0:T(a) > R}.
We claim that A # ¢. Indeed, if T(a) < R for all @ > 0, by Lemma

lim, () u(r,a) = 0 so that u(ry,a) = § for some r, € (0,7(a)). Estimating
in (2.2) and using (1.2)),

N | =
IN

u(s,a)p—1

( = ),, /R[tl_N/otsN_lp(s)ds}Plldt.

Making a — oo leads to a contradiction by (|1.3))(ii), showing that A # ¢. We
claim that A := inf A is positive. Indeed, if A = 0, it follows by Lemma [2.3] that
u(R,a) > 0 for all a > 0. Since,

N-1 (s)f(U(S,a))ds ﬁd
E / ’ ] t (4.1)

IN

2(u(R,a) — u(?,a)) =u'(0,,a), for some 0, € (g,R),

and u(R,a) < u(£,a) < a it follows using,

()Y ' (B0, )P0 (00, @) = — /Oea s p(s) f(u(s,a))ds
that
iiir%) ; sV 1p(s) f(u(s,a))ds = 0.
Using Fatou’s lemma and

0a R/2
0 =lim inf/ sV p(s) f(u(s,a))ds > / sN=1p(s) limigf f(u(s,a))ds >0,
0 0 a—

a—0

which is impossible, showing that A > 0. To finish the proof of Theorem it
suffices to show that T(A) = R. If T(A) < R, pick both € > 0 such that T(A) +¢ <
R and a sequence a,, € A with a,, \, A. Consider further, the sequence u(T(A) +
§,a,) which by Lemma is decreasing and set T 4 := inf,{u(T(A) + §,a,)}.
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We claim that T, 4 > 0. Otherwise, it follows remarking that w(T'(4) + €, ay,) <
w(T(A) + §,a,) and,

2[u(T(4) + € an) = u(T(A) + 5,00)] = v (B, a)e
for some 6, € (T(A) + §,T(A) + €) that lim, u/(0,,a,) = 0. Now, by arguments
as above,

T(A)
liyrln/ sN1p(s) f(u(s, an))ds = 0.
0
On the other hand, by Lemmas and we have, for each K € (0,7(a)),

K K
/ N p(s) f u(s, an))ds — / N7 p(s) f(u(s, A))ds,
0 0

showing that p = 0 a.e. in (0,7(A)). So, by (.2), u(r,A) = A for r € [0,T(A)],
impossible, because we are assuming 7'(4) < R and by Lemma2.1]u(T'(A), A) = 0.
Therefore T, 4 > 0.

Choose 9 > 0 such that u(r, A) < TZA for r € [T(A) — &, T(A) — %2]. By
Lemma [2.4]

lign [, an) — u(, A)||C([07T(A)7570]) =0

and so there is ng > 1 such that

T, 1)

fu(r, an,) —u(r, A) < =55, r€[0,7(4) ~ 1.

Thus,
Te A 60
u(r, ano) < |U(T‘, ano) - U(T, A)| + U(T’, A) < 2’ , TE [T(A) - 507T(A) - E]
Since u(r, ay) > Te 4 for all m > 1 and r € [0,T(A)], it follows that
T

wW(T(A) = 80, any) < 2“4 < Ton <u(T(A),an,),

which is impossible. Therefore A € A.
Now we claim that
T(A)=R. (4.2)

Indeed, pick a sequence a,, /" A, a,, € A°. By Lemma[2.3| T'(a,) < T(an+1) < R
and in fact T'(a,) /' T for some T > 0. Using Lemma again, T < T(A). Tt
will be shown that T'= T(A). Indeed, assume by the contrary, T < T'(A4). Setting
T :=u(T, A) it follows that T4 > 0. So, for each n large take s,, € (0,T) satisfying
w(Sp,an) = %“.

Since u(-,a,) is nonincreasing, consider §, € (0,s,) such that u(5,,a,) = 2.
We will show next that s,, — T. Indeed, by Lemma [2.3] §,, is monotone so that
§, > T <T.

If T < T there is ng > 1 such that T'(a,,) > T. Hence u(r, a,) < La for n > ng
and r € [T, T(an, )], because otherwise, there would be some 7, € [T, T(an, )] with
Lo < u(rp,,an,) < u(3n,,an,) = L&, which is impossible.

We infer that [u(r,a,) —u(r, A)| > Z& for all n > ng, r € [T, T+ ) and for some
8 > 0 such that T+ 6 < T(an,). But this is impossible again, because by Lemma

2.4

h}Ln (-, an) —ul:, A)”c([ojﬂs]) =0.
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Therefore, T = T. Now, noticing that,

W(Sn, an) — u(dn, an) =0 (On, an)(Sn — 3n);  8n < Op < Sn,
we find,
C Als, — &a|
which is impossible, because estimating in (3.2) as in (3.3]), we get,

o FO) e
[t/ (O, an) [P~ < 22— AP / p(s)ds.
G o

So, T =T(A) = R showing (£.2). By Lemma [2.1] u(R, A) = 0. As a consequence,
u(-,A) € C([0, R]). Further on, by (3.2), u(-,4A) € C*(]0,R)) N C?((0,R)). The

arguments above give a radially symmetric solution w of (1.5)). This proves Theorem
L3l

o0

lim |v/ (0, ay)| ,

5. PROOF OoF THEOREM [L.4]

Let C1,Csy, ... denote several positive constants. Next, given a > 0,

T t _1_
w(r) = a—/ [tlfN/ sN=1p(s)ds| " dt, (5.1)
0 0
is the unique solution of the problem
—(TN_1|w'|p_2w')/ =rN=1p(r) in (0, 00),
w(0)=a, w'(0)=0, w>0 in[0,00).
It will be shown that

I(r) := /OT [tlfN /Ot stlp(s)ds] p%ldt, (5.3)

has a finite limit as r — oo. Indeed, if 1 < p < 2, by estimating the integral in

(5-3). )
r _1
I(r) <y +/ T [/ stlp(s)ds] "t
1 0
Using the assumption N > 3 in the computation of the first integral above and

Jensen’s inequality to estimate the last one,
T osngp [P N1 1
I(r) <Cy+ 03/ trt / sP=1 p(s)P-Tdsdt.
1 1
Computing the above integral above, we obtain
T
I(r) < Cy+ 04/ 51 p(t) 7T dt.
1

Applying (1.4) in the integral above we infer that I(r) has a finite limit as r — oo.
On the other hand, if p > 2, set

1) = [ pts)is

and note that either, H(t) <1 for t > 0 or H(tg) = 1 for some tg > 0. In the first
case, H(t)ﬁ < 1, and hence,

TN 1 TN
I(r):/ tp—lH(t)v—ldt§C5+/ trrdt
0 1
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so that I(r) has a finite limit because p < N. In the second case, H(s)p%l < H(s)
for s > sy and hence,

T t
I(r) < Cg—l—/ tﬁ/ sN=1p(s)dsdt.
1 0

Estimating and integrating by parts, we obtain

"o —1 " (e P T
I(r)gcﬁ+c7/1 t#dwﬁ_p[/l ¢ pzljlwp(t)dtfrzfﬁv/o thlp(t)dt}

p—2)N+1

"o
< Cg+ Cg/ t p-1 p(t)dt.
1
By (1.4) (part 2), I(r) converges to some real number. Taking in (5.2)),

fe%e] t _1
a ::/ [tl_N/ s N p(s)ds " dt = lim I(r),
0 0

T—00

gives, lim, 1y w(r) = 0. In what follows, an upper-solution to (1.1} will be
constructed. First, consider the function

Tty = () + D77, £>0, (5.4)
and note that the items below hold true,
ft) = F(1)77 > 0,
(t

p—1

lim fp—(t)

t—oo t

N
S~—"

is decreasing, (5.5)

~

=0.

We claim that

Cpp%l tp—l
Cpa < / ——dt, (5.6)
0 fo(t)
for some C), > 0. Indeed, by (5.5])(iii),

T 4p—1
lim ——dt = o0,
r=ee o fp(t)
and thus,
r ¢p—1 dt
0 7 1
lim ) _ lim ! = 00,
e T T e )

showing (5.6). Now set, for s > 0,

1[5 pt

F;D(S) = CT) o fp(t)

and notice that, F,,(0) = 0 and F), is increasing. Using (5.5)(iii) it follows that,
F(s) "= co. Applying the Implicit Function Theorem,

1 v(r) -1
w(r) := Cp/o mdt (5.7)

)
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for some C?((0,00)) N C*([0, 00))-function v. It will be shown next that v is an

upper-solution to (|1.1). Indeed, since v is nonincreasing, it follows by (5.8]), (5.7)
and w(0) = a that,

1

v(r) pp—1 v(0) -1 ot ot
/ __dt < / ———dt = Cyw(0) = Cpa < / —dt,
0 fo(t) 0 fp(t) 0 fp(t)

so that,

v(r) <CFTT, t>0. (5.8)
Differentiating in (5.7)) and computing, we get to
_ _ 1yp1,0P7t po1, N _
(TN 1|w/(,r,)|p 2w/(7“))/: (6);0 (f)p (’I“N 1|UI(’I“)|p 2’()/(7“)>/
p fn(v)
]. p—1 'Upil p—2 d ’Upil N—1. 7
+-D(5)" (7)) (G ()
Cp fo(v) v fp(v)
Now, using (5.5))(iii), (5.8) and (5.5)(i), it follows that

(PN P ) < ()T Y () < —rN () ().

Remarking that by v'(0) = 0 and lim, ., v(r) = 0 it follows that v is a
radially symmetric solution of (1.6[). This ends the proof of Theorem [1.4

6. PROOF OF THEOREM [I.1]

To show (i), pick an integer j sufficiently large such that with R = j+k has,
by Theorem a radially symmetric solution, say uy € C1([0,j+k))NC([0,j+k])
for each integer k > 1. Consider the extension to [0,00) of uy, given by ux(r) =0,
if r > 7+ k. We claim that,

0<uy<ug<---<up<---<w. (6.1)

We will show first that up < ugi1. Indeed, we claim that ug(0) < wug41(0).
Otherwise, both ug(r) > ugy1(r) for r € [0,T) and ug(T) = ugy1(T) for some
T € (0,75 + k). Arguing as in the proof of Lemma with the use of Lemma
we get to,

Jug, [P 2 |1 [P0 >0

1 p—1 - Y%

Ug41

which gives, u:i - is nondecreasing in (0,7"), and as a consequence,
T

w®) _ w()

u41(0) — w41 (T)

which is impossible. Hence, u(0) < ug41(0). Now, if ur(r) > ugyi(r) for r €
(S,U), for some S,U € (0,5 + k) with S < U, ug(S) = up41(5) and ui(U) =

=
Uy,

1<

Uk+1 (U)
Arguing as earlier again, we find,
- wl) o wll) sy
U1 (S) T upg(r) T upga (U)
so that, ug(r) = ugy1(r), r € [S, U] which, impossible. This shows that u; < ugy1.
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To complete to proof of (6.1]), it remains to show that ug < v. This follows by

arguments similar to the ones used to show that u; < ug1, recalling that v satisfies

(1.7). The proof of (6.1) is complete.
Now, by (6.1]), ux — u pointwise, for some u < v and, by the proof of Theorem

L3
() = un(0) — /0 ' [t /0 N1 f(uk(t))dt}p%lds, r>0. (62)

Set r > 0, pick ko such that j + ko > r + 1 and notice that by (6.1)), ux > ug, for
k > ko. Recalling that uj, and v" are nonpositive and using (1.2)) and (6.1)),

5 Lp(0)Flun () < (0 LR Sye), e o)

Since the last function above belongs to L((0, s)), by Lebegue’s theorem,
| ¥ oosua— [ oo, s e o)
0 0

and employing, once more, arguments as above,

1

[l [ e as [T [ o] s

Passing to the limit in (6.2) we infer that,

u(r) = u(0) — /0 ' [SHV /O N1 f(u(t))dt} " s

Remark that

W (r) = —;’(q[rl—N /0 "N (0) f(u(t))dt}ﬁ, (6.3)
where
h(r) := p(r)f(u(r)) + (1 - N)T_N/O Y p(t) f (u(t)) dt. (6.4)

Hence, u € C'*(]0,00)) N C?((0,00)). This together with the fact that v < v, shows
(i), that is, u is radially symetric solution of (1.1J).
To show (ii), assume, on the contrary, that (L.1)) has a solution u, so that
N7 () P72 (r) < —C for > M,
where C; M > 0 are suitable constants. As a consequence,
/ =
u'(r) < =Cre1, r>M. (6.5)

Integrating from M to r in (6.5) and taking into account the cases N < p and
N = p—1 and at last making r — oo we arrive at a contradiction. This finishes
the proof of Theorem
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7. COMMENTS ON REMARK

At this point we justify the claim in Remark By (6.4), we get
) 1
lim h(r) = +7p(0)f (u(0)).

On the other hand,

lim [THV / NV =1p(2) f(u(t))dt} = 0.
T— 0
Hence, by (6.3) lim, o u”(r) exists if and only if p < 2, that is u € C?([0,0)) if
and only if p < 2.

Now let u,v be solutions of (1.1). By Lemma we can assume u > v. Let
wy = (v + b)? and wy := (u + b)P and notice that wy,wy € X. Taking r > 0 and

using Lemma and (|1.2)), as in the proof of Lemma we find,

|ul|p—2ul |,U/|p—2v/
_ >0,
(u+b)p~t  (v+bp-t —
and since u’, v’ < 0, we infer that, ’;—j_lg is nondecreasing in (0, c0), so that,
T t 1
/0 {tl_NA sN_lp(s)f(u(s))ds] Tt
u(r) +b T_l—N/t N-1 e
< t d dt
<ol [ [ s

By (2.2)), the above inequality and the fact that lim, ., u(r) = 0, we find
u(0)

Cu) e [ Y ) s e

v(0) r—00 for :tl,N f(f stlp(s)f(v(s))dS

so that, by Lemma [2.1} v = v.

8. APPENDIX

Recall that € represents a sufficiently small positive number. Let’s proof (3.1))(i)
first. Pick u € C([0,€]). Using (L.2)) to estimate the integral expression in F(u), we
obtain for r € [0, €],

I(r) = /OT [tlfN /t sNﬁlp(s)f(u(s))ds} pildt

0
< a((g;)l),ﬁ%/or p(t)dt>p%l-

Therefore, F(u) € C([0,€]) and I(€) < “2—:1@ and as a consequence, &= < F(u)(r) <
a, showing (3.1))(i). Next we show (3.1))(ii). Taking u; € C([0,¢€]), j = 1,2, we find,

|Fuq(r) — Fua(r)] < /07"

1

(X0, (O] 7 7 = [Xuy ()] 7

dt,

where

X 0) = 07 [Ny 0.
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Using the inequality,
272 — [y|7y| < Co (2™ + ly|7)|z —y| z,yeR (8.1)

where 0 > —1 and C, > 0 are constants, we find,
[ Fua (r) — Fua(r)| < Co/o (X s (7 + [ Xy (0)]7) [ Xy (8) = Xy (D), (8.2)

where o = (2 — p)/(p — 1). We point out that

[ X, (1) = X, ()] < tl_N/O sV p(s)|f(ua(s)) — Fua(s))lds

. (8.3)
< Kl = walleqoay™ [ s p(s)ds.
0
where K is the Lipschitz constant of f on [%,a]. If 1 < p <2, using (1.2)),
oo 2ol FGD) 170N [F N 7
| Xy, (1|7 <a p[( m )p71i| (t s p(s)ds) . (8.4)
o 0

From (8.2)), (8.3)), and (8.4) we find, for constant a K> 0,

[Fur(r) = Fua(r)] < Ke( / pls)ds)" " Jur = uzlleo.a),

and so (3.1])(ii) follows. The case p > 2 is treated as the earlier one, replacing (8.4))

by,
X0 (01 < (2 (2917 (0 [t

Ra

This shows (3.1). To prove (3.5), we show (3.5)(i) first. To that end let u € X ..
Using (1.2)) we estimate the integral below,

1

/T(a) {tl—N [T(a)N_1|u|p—1 + /T(a) SN_lp(s)f(u(s))ds} }pﬂdt

€ ~ t 1
S/ (PN r @Yt s () / N Lp(s)ds| |t
T(a) Ra  JT(a)
Rg — 1
—_ d .
Hence, HL Fu(r) < a, for r € [T(a), T(a) + €. This shows (3.5))(i). In order to
prove ( i), letting u; € Xz (j = 1,2) and using (8.1),

|[Fui(r) = Fus(r)| < Cs /T( )(Iful(t)\" + X (8)]7) Xy (1) = X (B)]dt, - (8.5)

where
t

Ry (0) = OV [T@N P [ () g (5))ds].
T(a)
We remark that since f € C1,

t

| X, () = Xy ()] < Kollug — s |l (ray,ray et /T( )SN_lp(s)ds, (8.6)
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where K is the Lipschitz constant of f on the interval [%, al. Now, two further
cases are considered. The first one is v = 0. If 1 < p < 2, using (|1.2)),

K, (01 < w272 F( L) [N /T t(a) SN p(s)ds| (8.7)

Ka
By 1' and (8.7)), it follows that, for some constant C' > 0,
[Fu(r) — Fus(r)]

T(a)+e t pil
SCW“l*Uﬂkmewnw+qp/‘ {“*Nl/ SN’HK$d4
T(a T(a)

< Killur — uzlle ), r(a)+4)

where K € (0,1), showing (3.5)(ii). If p > 2, using (1.2)) again, one obtains,
~ 1 t

%, 0F < (P ey [

Ka T(a)

Argueing as before, with (8.8)) instead (8.7) we show (3.5)(ii). The second case is
(L2),

v<0.If1 <p<2, we get by using

sN_lp(s)ds]a. (8.8)

" a T(a)+e o o9y
X, (017 < [T(@) o +T(a)1f(na)/T( ) pls)ds| 5. (8.9)

2

On the other hand, if p > 2, we get
T N—-1|,,|p—15¢ »
J@——BL—}ﬁﬁ. (8.10)

% OF < [ ST g

Proceeding as above, by replacing respectively (8.7)) and (8.8]) by and (8.10)),
we show ([3.5])(ii). This completes the verification of (3.5)).
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