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POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR
SINGULAR EQUATIONS

JOSÉ VALDO GONCALVES & CARLOS ALBERTO P. SANTOS

Abstract. This article concerns the existence and uniqueness of solutions to

the quasilinear equation

−∆pu = ρ(x)f(u) in RN

with u > 0 and u(x) → 0 as |x| → ∞. Here 1 < p < ∞, N ≥ 3, ∆p is the p-

Laplacian operator, ρ and f are positive functions, and f is singular at 0. Our
approach uses fixed point arguments, the shooting method, and a lower-upper
solutions argument.

1. Introduction

We study the existence and uniqueness of solution of the problem

−∆pu = ρ(x)f(u) in RN ,

u > 0 in RN , lim
|x|→∞

u(x) = 0,
(1.1)

where 1 < p < ∞, N ≥ 3 and ∆p is the p-Laplacian operator while ρ : RN → [0,∞)
is continuous and f : (0,∞) → (0,∞) is a C1-function, singular at zero, for instance,
in the sense that lims→0 f(s) = ∞.

The case p = 2 has been studied by several authors. Under additional assump-
tions on ρ, Edelson [3] studied (1.1) with f(s) = s−λ, λ ∈ (0, 1). A solution was
shown to exist provided ∫ ∞

1

r(N−1)+λ(N−2)ρ̃(r) dr < ∞,

where ρ̃(r) := max|x|=r ρ(x). That result was extended for all λ > 0, by Shaker [6].
Later, Lair & Shaker [5] showed existence of a solution under the condition∫ ∞

0

rρ̃(r)dr < ∞.

Zhang [7] showed that (1.1) has a solution provided that f ′ < 0 and lims→0 f(s) =
∞. Yet in the case p = 2, Cirstea & Radulescu [1] showed that (1.1) is solvable
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under the conditions: f is bounded from above near +∞, lims→0 f(s)/s = ∞, and
f(s)
s+b is decreasing for some positive constant b.

In the present paper we shall assume that ρ is radially symmetric and

f(s)
sp−1

is nonincreasing in (0,∞), (1.2)

lim inf
s→0

f(s) > 0, lim
s→∞

f(s)
sp−1

= 0. (1.3)

Our main result is as follows.

Theorem 1.1. Assume (1.2), (1.3) and

0 <

∫ ∞

1

r
1

p−1 ρ(r)
1

p−1 dr < ∞, if 1 < p ≤ 2,

0 <

∫ ∞

1

r
(p−2)N+1

p−1 ρ(r)dr < ∞, if p ≥ 2.

(1.4)

Then (1.1) has:
(ii) A radially symmetric solution u in C1(RN ) ∩ C2(RN\{0}) if p < N ,
(ii) No radially symmetric solution in C1(RN ) ∩ C2(RN\{0}) if p ≥ N .

Remark 1.2. Regarding case (i), it will be shown that u ∈ C2(RN ) if and only
if p ≤ 2. Additionally, the solution is uniquely determined if f(s)/(s + b)p−1 is
nonincreasing for some b > 0. See Section 7 .

Theorem 1.1 improves the main existence result in Cirstea & Radulesco [1] in the
sense that we allow both a broader class of nonlinear operators as well as nonlinear
singular terms f . Our theorem applies to the class of functions

f(s) = s−λ + sγ , where λ ≥ 0, 0 ≤ γ < p− 1.

The results below will be used in the proof of Theorem 1.1. The first result is about
solving the problem

−∆pu = ρ(x)f(u) in BR,

u > 0 in BR, u = 0 in ∂BR,
(1.5)

where BR is the ball of radius R.

Theorem 1.3. Assume (1.2), (1.3) and p < N . Then for each sufficiently large
R, (1.5) has a radially symmetric solution in C(BR) ∩ C1(BR) ∩ C2(BR\{0}).

Theorem 1.4. Assume (1.2)–(1.4) and p < N . Then there is a radially symmetric
function v ∈ C1(RN ) ∩ C2(RN\{0}) such that

−∆pv ≥ ρ(x)f(v) in RN\{0},
v > 0 in RN , lim

|x|→∞
v(x) = 0.

(1.6)

The proof of Theorem 1.1 will be accomplished, by at first, using Theorem 1.4 to
pick a solution v of (1.6), (which will be referred to as an upper-solution of (1.1)),
secondly, by choosing a sufficiently large integer j and applying Theorem 1.3 to find
for each integer k > 1, a solution say, uk of (1.5)j+k, which after extended as zero
outside Bj+k, will be shown to satisfy,

0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ · · · ≤ v.
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Then we pass to the limit as k →∞, getting to a solution of (1.1) as asserted in our
main result. This kind of argument is motivated by reading Zhang [7] and Cirstea
& Radulescu [1].

2. Some Technical Lemmas

At first we state and prove some preliminary results, crucial in the proof of
Theorem 1.3. As a first step in this direction, consider the initial-value problem,

−
(
rN−1|u′|p−2u′

)′
= rN−1ρ(r)f(u(r)) in (0,∞),

u(0) = a, u′(0) = 0,
(2.1)

where a > 0 is a parameter and note that this equation is equivalent to the integral
equation,

u(r) = a−
∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)f(u(s))ds
] 1

p−1
dt. (2.2)

Moreover, a solution of (2.2) is a fixed point of the operator,

Fu(r) = a−
∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)f(u(s))ds
] 1

p−1
dt. (2.3)

Lemma 2.1. Assume (1.2). Then for each a > 0 there is T (a) ∈ (0,∞] and
a unique solution of (2.1), u := u(·, a) ∈ C1([0, T (a))) ∩ C2((0, T (a))) such that
u(r) → 0 as r → T (a) provided T (a) < ∞.

Given T, h > 0 set
X :=

{
w ∈ C1([0, T ])|w ≥ h

}
.

If w1, w2 ∈ X let H : [0, T ] → R be the continuous function

H(s) := sN−1
[
|(w1/p

2 )′|p−2(w1/p
2 )′w

1−p
p

2 − |(w1/p
1 )′|p−2(w1/p

1 )′w
1−p

p

1

]
(w1 − w2)(s).

Lemma 2.2. If w1, w2 ∈ X and 0 ≤ S ≤ U ≤ T , then

H(U)−H(S)

≤
∫ U

S

[ (rN−1|(w1/p
2 )′|p−2(w1/p

2 )′)′

w
p−1

p

2

− (rN−1|(w1/p
1 )′|p−2(w1/p

1 )′)′

w
p−1

p

1

]
(w1 − w2)dr.

Lemma 2.3. Assume a < b and let u(·, a), u(·, b) be the corresponding solutions
given by Lemma 2.1. Then u(·, a) < u(·, b) in [0, T (a)) and moreover T (a) ≤ T (b).

Lemma 2.4. Assume (1.2). Let {an} be a sequence in (0,∞) such that an ↗ a
or an ↘ a for some a > 0 and let u(·, an), u(·, a) be the solutions given by Lemma
2.1. If K ∈ (0,min{T (a), supn T (an)}) then

lim
n→∞

‖u(·, an)−u(·, a)‖
C([0,K]) = 0 and lim

n→∞
|u′(r, an)−u′(r, a)| = 0, r ∈ [0,K].

Next we prove results established above. The proof of Lemma 2.1 is fairly stan-
dard and is based on Banach’s Fixed Point Theorem. However we present it in
detail because several related notation will be used in the rest of the paper.
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3. Proofs of the Lemmas

Proof of Lemma 2.1. Let a > 0. Since f ∈ C1 choose κa > 1 such that f is
Lipschitz continuous on [a/κa, a]. Pick ε > 0 small enough, set

Xa,ε :=
{
u ∈ C([0, ε]) : u(0) = a, a/κa ≤ u(r) ≤ a, r ∈ [0, ε]

}
.

Note that (Xa,ε, ‖ · ‖∞) is a complete metric space. We claim that

F(Xa,ε) ⊂ Xa,ε, ‖F(u1)−F(u2)‖C([0,ε]) ≤ k‖u1 − u2‖C([0,ε]) (3.1)

for all u1, u2 ∈ Xa,ε and for some k ∈ (0, 1). The proof of (3.1) is left to an
Appendix. Assuming (3.1), F has an only fixed point u ∈ Xa,ε and so (2.1) has a
unique local solution. Setting

T (a) := sup
{
r > 0 : (2.1) has an only solution in [0, r]

}
and letting u(·, a) : [0, T (a)) → R be the solution of (2.1), notice that by (2.2),
u(·, a) ∈ C1([0, T (a))) and

u′(r, a) = −
[
r1−N

∫ r

0

sN−1ρ(s)f(u(s, a))ds
] 1

p−1
, 0 < r < T (a). (3.2)

Differentiating once more, one finds that u ∈ C2((0, T (a))). Assuming T (a) < ∞,
we claim that u(T (a), a) = 0. Indeed, if u(T (a), a) := ã > 0, then u(r, a) ≥ ã for
r ∈ [0, T (a)). Estimating the integral in (3.2) and using (1.2),∫ r

0

sN−1ρ(s)f(u(s, a))ds ≤ f(ã)
ãp−1

ap−1T (a)N−1

∫ r

0

sN−1ρ(s)ds

≤ f(ã)
ãp−1

ap−1

∫ T (a)

0

ρ(s)ds.

(3.3)

Using (3.2) and (3.3), ν := limr↗T (a) u′(r, a) is defined and ν ∈ (−∞, 0]. Consider
the problem,

−
(
rN−1|u′|p−2u′

)′ = rN−1ρ(r)f(u) in (T (a),∞),

u(T (a)) = ã, u′(T (a)) = ν,
(3.4)

whose solutions are the fixed points of,

F̃u(r) = ã−
∫ r

T (a)

{
t1−N

[
T (a)N−1|ν|p−1 +

∫ t

T (a)

sN−1ρ(s)f(u(s))ds
]} 1

p−1
dt.

Setting,

Xã,ε :=
{
u ∈ C([T (a), T (a)+ε])|u(T (a)) = ã, ã/κã ≤ u(r) ≤ ã, r ∈ [T (a), T (a)+ε]

}
,

we infer that, (see Appendix),

F̃(Xã,ε) ⊂ Xã,ε, ‖F̃(u1)− F̃(u2)‖∞ ≤ k‖u1 − u2‖∞ (3.5)

where u1, u2 ∈ Xã,ε and k ∈ (0, 1). By standard fixed point arguments again,
one infers the existence of a unique solution of (2.1) on some interval [0, T (a) + ε)
contradicting the definition of T (a). Hence, u(·, a) ∈ C([0, T (a)]) and u(a, T (a)) =
0. �
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Proof of Lemma 2.2. Motivated by Dı́az & Saa [2] let J : L1([0, T ]) → R ∪ {∞},

J(w) :=

{
1
p

∫ U

S
sN−1

∣∣(w1/p)′
∣∣pds, w ∈ X

∞, w 6∈ X,

where 0 ≤ S ≤ U ≤ T . It is straightforward to check that X and J are both
convex. Letting w1, w2 ∈ X, η = w1 − w2, remarking that w2 + tη, w1 − tη are in
X, (0 ≤ t ≤ 1), and denoting by 〈J ′(w), ζ〉, the directional derivative of J at w in
the direction ζ, we claim that,

〈J ′(w1),−η〉 = −1
p
UN−1|(w1/p

1 (U))′|p−2(w1/p
1 (U))′w

1−p
p

1 (U)η(U)

+
1
p
SN−1|(w1/p

1 (S))′|p−2(w1/p
1 (S))′w

1−p
p

1 (S)η(S)

+
1
p

∫ U

S

(
sN−1|(w1/p

1 )′|p−2(w1/p
1 )′

)′
w

p−1
p

1

η(s)ds

(3.6)

and
〈J ′(w2), η〉 =

1
p
UN−1|(w1/p

2 (U))′|p−2(w1/p
2 (U))′w

1−p
p

2 (U)η(U)

− 1
p
SN−1|(w1/p

2 (S))′|p−2(w1/p
2 (S))′w

1−p
p

2 (S)η(S)

− 1
p

∫ U

S

(sN−1|(w1/p
2 )′|p−2(w1/p

2 )′
)′

w
p−1

p

2

η(s)ds.

(3.7)

We show (3.6) next. Note that,

〈J ′(w1),−η〉 =
1
p

lim
s→0

∫ U

S

sN−1
[∣∣((w1 − sη)1/p

)′∣∣p − ∣∣(w1/p
1 )′

∣∣p
s

]
ds.

By computing we find

〈J ′(w1),−η〉 = lim
s→0

∫ U

S

sN−1|θs|p−2θs

[ ((w1 − sη)1/p)′ − (w1/p
1 )′

s

]
ds, (3.8)

where

min
{

((w1 − sη)1/p)′, (w1/p
1 )′

}
≤ θs ≤ max

{
((w1 − sη)1/p)′, (w1/p

1 )′
}

.

Applying Lebesgue’s Theorem to (3.8) we infer that,

〈J ′(w1),−η〉 = −1
p

∫ U

S

sN−1|(w1/p
1 )′|p−2(w1/p

1 )′(w
1−p

p

1 η)′ds.

Computing this integral we get to (3.6). The verification of (3.7) follows by similar
arguments. From (3.6) and (3.7),

〈J ′(w2), η〉 − 〈J ′(w1), η〉

=
1
p
[H(U)−H(S)]

− 1
p

∫ U

S

[ (sN−1|(w1/p
2 )′|p−2(w1/p

2 )′)′

w
p−1

p

2

− (sN−1|(w1/p
1 )′|p−2(w1/p

1 )′)′

w
p−1

p

1

]
(w1 − w2)ds.

Since J is convex, 〈J ′(w1)− J ′(w2), w1 − w2〉 ≥ 0 and Lemma 2.2 follows. �
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Proof of Lemma 2.3. Assume, on the contrary, u(r, a) < u(r, b), r ∈ [0, T ) and
u(T, a) = u(T, b), for some T < T (a). Taking r ∈ (0, T ) and using Lemma 2.2 and
(1.2),

rN−1
[ |u′(r, b)|p−2u′(r, b)

u(r, b)p−1
− |u′(r, a)|p−2u′(r, a)

u(r, a)p−1

]
(u(r, a)p − u(r, b)p)

≤
∫ r

0

[ (tN−1|u′(t, b)|p−2u′(t, b))′

u(t, b)p−1
− (tN−1|u′(t, a)|p−2u′(t, a))′

u(t, a)p−1

]
(u(t, a)p − u(t, b)p)dt

=
∫ r

0

tN−1ρ(t)
[ f(u(t, a))
u(t, a)p−1

− f(u(t, b))
u(t, b)p−1

]
(u(t, a)p − u(t, b)p)dr ≤ 0.

As a consequence,

|u′(r, b)|p−2u′(r, b)
u(r, b)p−1

− |u′(r, a)|p−2u′(r, a)
u(r, a)p−1

≥ 0.

Recalling that u′(·, a), u′(·, b) are both non positive, we get, u(·,b)
u(·,a) is nondecreasing

in [0, T ], so that,

1 <
u(0, b)
u(0, a)

≤ u(T, b)
u(T, a)

= 1,

which is impossible. Hence u(r, a) < u(r, b) for r ∈ [0, T (a)) and Lemma 2.3 is
proved. �

Proof of Lemma 2.4. Assume an ↗ a. By Lemma 2.3, K ∈ (0, supn T (an)). Take
an integer nK ≥ 1 such that T (anK

) > K. By Lemma 2.3 again,

T (anK
) ≤ T (an) ≤ T (a) and u(·, anK

) ≤ u(·, an) ≤ u(·, a) ≤ a,

for n ≥ nK , showing that {u(·, an)}∞n=1 is equibounded. We claim that it is also
equicontinuous in C([0,K]). Indeed, estimating as in (3.3) we find

|u′(r, an)|p−1 ≤ f(u(K, anK
))

u(K, anK
)p−1

ap−1

∫ K

0

ρ(s)ds := K̂.

Let θn ∈ (0,K) such that,

|u(r, an)− u(s, an)| = |u′(θn, an)||r − s| ≤ K̂
1

p−1 |r − s|.

Then {u(·, an)}∞n=1 is equicontinuous. By the Arzéla-Àscoli theorem there is some
ũ ∈ C([0,K]) such that, up to a subsequence, u(·, an) → ũ uniformly in [0,K]. We
remark that

sN−1ρ(s)f(u(s, an)) → sN−1ρ(s)f(ũ(s))

and

sN−1ρ(s)f(u(s, an)) ≤ f(u(K, anK
))

u(K, anK
)p−1

ap−1sN−1ρ(s)

for t ∈ [0,K]. By Lebesgue’s theorem,∫ r

0

sN−1ρ(s)f(u(s, an))ds →
∫ r

0

sN−1ρ(s)f(ũ(s))ds

for each r ∈ [0,K]. This and (3.2) amount

u′(r, an) → −
(
r1−N

∫ r

0

sN−1ρ(s)f(ũ(s))ds
) 1

p−1
:= u(r)
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so that
∫ r

0
u′(t, an)dt →

∫ r

0
u(t)dt and hence

ũ(r)− a =
∫ r

0

u(t)dt.

As a consequence,

|ũ′(r)|p−2ũ′(r) = −r1−N

∫ r

0

sN−1ρ(s)f(ũ(s))ds.

Hence ũ is a solution of (2.1) and by uniqueness, provided by Lemma 2.1, ũ :=
u(·, a).

It has finally been shown that u(·, an) → u(·, a) in C([0,K]) and u′(·, an) →
u′(·, a) pointwise in [0,K]. The case an ↘ a follows by similar arguments. Lemma
2.4 is proved. �

4. Proof of Theorem 1.3

By (1.4) pick S > 0 such that
∫ S

0
sN−1ρ(s)ds > 0. Take R ≥ 2S and consider

the set,
A := {a > 0 : T (a) ≥ R}.

We claim that A 6= φ. Indeed, if T (a) < R for all a > 0, by Lemma 2.1,
limr→T (a) u(r, a) = 0 so that u(ra, a) = a

2 for some ra ∈ (0, T (a)). Estimating
in (2.2) and using (1.2),

1
2
≤

∫ ra

0

[
t1−N

∫ t

0

sN−1ρ(s)
f(u(s, a))
u(s, a)p−1

ds
] 1

p−1
dt

≤
( f(a

2 )
(a
2 )p−1

) 1
p−1

∫ R

0

[
t1−N

∫ t

0

sN−1ρ(s)ds
] 1

p−1
dt.

(4.1)

Making a → ∞ leads to a contradiction by (1.3)(ii), showing that A 6= φ. We
claim that A := inf A is positive. Indeed, if A = 0, it follows by Lemma 2.3 that
u(R, a) > 0 for all a > 0. Since,

2(u(R, a)− u(
R

2
, a)) = u′(θa, a), for some θa ∈ (

R

2
, R),

and u(R, a) ≤ u(R
2 , a) ≤ a it follows using,

(θa)N−1|u′(θa, a)|p−2u′(θa, a) = −
∫ θa

0

sN−1ρ(s)f(u(s, a))ds

that

lim
a→0

∫ θa

0

sN−1ρ(s)f(u(s, a))ds = 0.

Using Fatou’s lemma and (1.3)

0 = lim inf
a→0

∫ θa

0

sN−1ρ(s)f(u(s, a))ds ≥
∫ R/2

0

sN−1ρ(s) lim inf
a→0

f(u(s, a))ds > 0,

which is impossible, showing that A > 0. To finish the proof of Theorem 1.3 it
suffices to show that T (A) = R. If T (A) < R, pick both ε > 0 such that T (A)+ ε <
R and a sequence an ∈ A with an ↘ A. Consider further, the sequence u(T (A) +
ε
2 , an) which by Lemma 2.3 is decreasing and set Tε,A := infn{u(T (A) + ε

2 , an)}.
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We claim that Tε,A > 0. Otherwise, it follows remarking that u(T (A) + ε, an) ≤
u(T (A) + ε

2 , an) and,

2
[
u(T (A) + ε, an)− u(T (A) +

ε

2
, an)

]
= u′(θn, an)ε

for some θn ∈ (T (A) + ε
2 , T (A) + ε) that limn u′(θn, an) = 0. Now, by arguments

as above,

lim
n

∫ T (A)

0

sN−1ρ(s)f(u(s, an))ds = 0.

On the other hand, by Lemmas 2.3 and 2.4 we have, for each K ∈ (0, T (a)),∫ K

0

sN−1ρ(s)f(u(s, an))ds −→
∫ K

0

sN−1ρ(s)f(u(s,A))ds,

showing that ρ = 0 a.e. in (0, T (A)). So, by (3.2), u(r, A) = A for r ∈ [0, T (A)],
impossible, because we are assuming T (A) < R and by Lemma 2.1 u(T (A), A) = 0.
Therefore Tε,A > 0.

Choose δ0 > 0 such that u(r, A) <
Tε,A

4 for r ∈ [T (A) − δ0, T (A) − δ0
2 ]. By

Lemma 2.4,
lim
n
‖u(·, an)− u(·, A)‖C([0,T (A)− δo

2 ]) = 0

and so there is n0 > 1 such that

|u(r, an0)− u(r, A)| < Tε,A

4
, r ∈ [0, T (A)− δ0

2
].

Thus,

u(r, an0) ≤ |u(r, an0)− u(r, A)|+ u(r, A) <
Tε,A

2
, r ∈ [T (A)− δ0, T (A)− δ0

2
].

Since u(r, an) ≥ Tε,A for all n > 1 and r ∈ [0, T (A)], it follows that

u(T (A)− δ0, an0) <
Tε,A

2
< Tε,A ≤ u(T (A), an0),

which is impossible. Therefore A ∈ A.
Now we claim that

T (A) = R. (4.2)
Indeed, pick a sequence an ↗ A, an ∈ Ac. By Lemma 2.3, T (an) ≤ T (an+1) ≤ R

and in fact T (an) ↗ T for some T > 0. Using Lemma 2.3 again, T ≤ T (A). It
will be shown that T = T (A). Indeed, assume by the contrary, T < T (A). Setting
TA := u(T,A) it follows that TA > 0. So, for each n large take sn ∈ (0, T ) satisfying
u(sn, an) = TA

4 .
Since u(·, an) is nonincreasing, consider s̃n ∈ (0, sn) such that u(s̃n, an) = TA

2 .
We will show next that s̃n → T . Indeed, by Lemma 2.3, s̃n is monotone so that
s̃n → T̃ ≤ T .

If T̃ < T there is n0 > 1 such that T (an0) > T̃ . Hence u(r, an) ≤ TA

2 for n ≥ n0

and r ∈ [T̃ , T (an0)], because otherwise, there would be some rn1 ∈ [T̃ , T (an0)] with
TA

2 < u(rn1 , an1) ≤ u(s̃n1 , an1) = TA

2 , which is impossible.
We infer that |u(r, an)−u(r, A)| ≥ TA

2 for all n ≥ n0, r ∈ [T̃ , T̃ +δ) and for some
δ > 0 such that T̃ + δ < T (an0). But this is impossible again, because by Lemma
2.4,

lim
n
‖u(·, an)− u(·, A)‖C([0,T̃+δ]) = 0.
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Therefore, T̃ = T . Now, noticing that,

u(sn, an)− u(s̃n, an) = u′(θn, an)(sn − s̃n), s̃n < θn < sn,

we find,

lim
n
|u′(θn, an)| = TA

4|sn − s̃n|
= ∞,

which is impossible, because estimating in (3.2) as in (3.3), we get,

|u′(θn, an)|p−1 ≤
f(TA

4 )
(TA

4 )p−1
Ap−1

∫ T

0

ρ(s)ds.

So, T = T (A) = R showing (4.2). By Lemma 2.1, u(R,A) = 0. As a consequence,
u(·, A) ∈ C([0, R]). Further on, by (3.2), u(·, A) ∈ C1([0, R)) ∩ C2((0, R)). The
arguments above give a radially symmetric solution u of (1.5). This proves Theorem
1.3.

5. Proof of Theorem 1.4

Let C1, C2, . . . denote several positive constants. Next, given a > 0,

w(r) = a−
∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)ds
] 1

p−1
dt, (5.1)

is the unique solution of the problem

−
(
rN−1|w′|p−2w′

)′ = rN−1ρ(r) in (0,∞),

w(0) = a, w′(0) = 0, w > 0 in [0,∞).
(5.2)

It will be shown that

I(r) :=
∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)ds
] 1

p−1
dt, (5.3)

has a finite limit as r → ∞. Indeed, if 1 < p ≤ 2, by estimating the integral in
(5.3),

I(r) ≤ C1 +
∫ r

1

t
1−N
p−1

[ ∫ t

0

sN−1ρ(s)ds
] 1

p−1
dt.

Using the assumption N ≥ 3 in the computation of the first integral above and
Jensen’s inequality to estimate the last one,

I(r) ≤ C2 + C3

∫ r

1

t
3−N−p

p−1

∫ t

1

s
N−1
p−1 ρ(s)

1
p−1 dsdt.

Computing the above integral above, we obtain

I(r) ≤ C2 + C4

∫ r

1

t
1

p−1 ρ(t)
1

p−1 dt.

Applying (1.4) in the integral above we infer that I(r) has a finite limit as r →∞.
On the other hand, if p ≥ 2, set

H(t) :=
∫ t

0

sN−1ρ(s)ds

and note that either, H(t) ≤ 1 for t > 0 or H(t0) = 1 for some t0 > 0. In the first
case, H(t)

1
p−1 ≤ 1, and hence,

I(r) =
∫ r

0

t
1−N
p−1 H(t)

1
p−1 dt ≤ C5 +

∫ r

1

t
1−N
p−1 dt
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so that I(r) has a finite limit because p < N . In the second case, H(s)
1

p−1 ≤ H(s)
for s ≥ s0 and hence,

I(r) ≤ C6 +
∫ r

1

t
1−N
p−1

∫ t

0

sN−1ρ(s)dsdt.

Estimating and integrating by parts, we obtain

I(r) ≤ C6 + C7

∫ r

1

t
1−N
p−1 dt +

p− 1
N − p

[ ∫ r

1

t
(p−2)N+1

p−1 ρ(t)dt− r
p−N
p−1

∫ r

0

tN−1ρ(t)dt
]

≤ C8 + C9

∫ r

1

t
(p−2)N+1

p−1 ρ(t)dt.

By (1.4) (part 2), I(r) converges to some real number. Taking in (5.2),

a :=
∫ ∞

0

[
t1−N

∫ t

0

s1−Nρ(s)ds
] 1

p−1
dt = lim

r→∞
I(r),

gives, limr→infty w(r) = 0. In what follows, an upper-solution to (1.1) will be
constructed. First, consider the function

f̃p(t) := (f(t) + 1)
1

p−1 , t > 0, (5.4)

and note that the items below hold true,

f̃p(t) ≥ f(t)
1

p−1 > 0,

f̃p(t)
tp−1

is decreasing,

lim
t→∞

f̃p(t)
t

= 0.

(5.5)

We claim that

Cpa ≤
∫ C

1
p−1

p

0

tp−1

f̃p(t)
dt, (5.6)

for some Cp > 0. Indeed, by (5.5)(iii),

lim
r→∞

∫ r

0

tp−1

f̃p(t)
dt = ∞,

and thus,

lim
r→∞

∫ r

0
tp−1

f̃p(t)
dt

rp−1
=

1
p− 1

lim
r→∞

r

f̃p(r)
= ∞,

showing (5.6). Now set, for s > 0,

Fp(s) :=
1

Cp

∫ s

0

tp−1

f̃p(t)
dt,

and notice that, Fp(0) = 0 and Fp is increasing. Using (5.5)(iii) it follows that,
F (s) s→∞→ ∞. Applying the Implicit Function Theorem,

w(r) :=
1

Cp

∫ v(r)

0

tp−1

f̃p(t)
dt (5.7)
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for some C2((0,∞)) ∩ C1([0,∞))-function v. It will be shown next that v is an
upper-solution to (1.1). Indeed, since v is nonincreasing, it follows by (5.8), (5.7)
and w(0) = a that,∫ v(r)

0

tp−1

f̃p(t)
dt ≤

∫ v(0)

0

tp−1

f̃p(t)
dt = Cpw(0) = Cpa ≤

∫ C
1

p−1
p

0

tp−1

f̃p(t)
dt,

so that,

v(r) ≤ C
1

p−1
p , t ≥ 0. (5.8)

Differentiating in (5.7) and computing, we get to(
rN−1|w′(r)|p−2w′(r)

)′ =
( 1
Cp

)p−1( vp−1

f̃p(v)

)p−1(
rN−1|v′(r)|p−2v′(r)

)′
+ (p− 1)

( 1
Cp

)p−1( vp−1

f̃p(v)

)p−2( d

dv

( vp−1

f̃p(v)

))
rN−1|v′|p.

Now, using (5.5)(iii), (5.8) and (5.5)(i), it follows that(
rN−1|v′(r)|p−2v′(r)

)′ ≤ −
( Cp

vp−1

)p−1
f̃p(v)p−1rN−1ρ(r) ≤ −rN−1ρ(r)f(v(r)).

Remarking that by (5.7) v′(0) = 0 and limr→∞ v(r) = 0 it follows that v is a
radially symmetric solution of (1.6). This ends the proof of Theorem 1.4.

6. Proof of Theorem 1.1

To show (i), pick an integer j sufficiently large such that (1.5) with R = j+k has,
by Theorem 1.3, a radially symmetric solution, say uk ∈ C1([0, j+k))∩C([0, j+k])
for each integer k ≥ 1. Consider the extension to [0,∞) of uk, given by uk(r) = 0,
if r ≥ j + k. We claim that,

0 ≤ u1 ≤ u2 ≤ · · · ≤ uk ≤ · · · ≤ v. (6.1)

We will show first that uk ≤ uk+1. Indeed, we claim that uk(0) ≤ uk+1(0).
Otherwise, both uk(r) > uk+1(r) for r ∈ [0, T ) and uk(T ) = uk+1(T ) for some
T ∈ (0, j + k). Arguing as in the proof of Lemma 2.3 with the use of Lemma 2.2
we get to,

|u′k|p−2u′k
up−1

k

−
|u′k+1|p−2u′k+1

up−1
k+1

≥ 0,

which gives, uk

uk+1
is nondecreasing in (0, T ), and as a consequence,

1 <
uk(0)

uk+1(0)
≤ uk(T )

uk+1(T )
= 1,

which is impossible. Hence, uk(0) ≤ uk+1(0). Now, if uk(r) > uk+1(r) for r ∈
(S, U), for some S, U ∈ (0, j + k) with S < U , uk(S) = uk+1(S) and uk(U) =
uk+1(U).

Arguing as earlier again, we find,

1 =
uk(S)

uk+1(S)
≤ uk(r)

uk+1(r)
≤ uk(U)

uk+1(U)
= 1, r ∈ [S, U ],

so that, uk(r) = uk+1(r), r ∈ [S, U ] which, impossible. This shows that uk ≤ uk+1.
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To complete to proof of (6.1), it remains to show that uk ≤ v. This follows by
arguments similar to the ones used to show that uk ≤ uk+1, recalling that v satisfies
(1.7). The proof of (6.1) is complete.

Now, by (6.1), uk → u pointwise, for some u ≤ v and, by the proof of Theorem
1.3,

uk(r) = uk(0)−
∫ r

0

[
s1−N

∫ s

0

tN−1ρ(t)f(uk(t))dt
] 1

p−1
ds, r ≥ 0. (6.2)

Set r > 0, pick k0 such that j + k0 ≥ r + 1 and notice that by (6.1), uk ≥ uk0 for
k ≥ k0. Recalling that u′k and v′ are nonpositive and using (1.2) and (6.1),

tN−1ρ(t)f(uk(t)) ≤ v(0)p−1 f(uk0(s))
uk0(s)p−1

tN−1ρ(t), t ∈ [0, s].

Since the last function above belongs to L1((0, s)), by Lebegue’s theorem,∫ s

0

tN−1ρ(t)f(uk(t))dt →
∫ s

0

tN−1ρ(t)f(u(t))dt, s ∈ [0, r],

and employing, once more, arguments as above,∫ r

0

[
s1−N

∫ s

0

tN−1ρ(t)f(uk(t))dt
] 1

p−1
ds →

∫ r

0

[
s1−N

∫ s

0

tN−1ρ(t)f(u(t))dt
] 1

p−1
ds.

Passing to the limit in (6.2) we infer that,

u(r) = u(0)−
∫ r

0

[
s1−N

∫ s

0

tN−1ρ(t)f(u(t))dt
] 1

p−1
ds.

Remark that

u′′(r) = − h(r)
p− 1

[
r1−N

∫ r

0

tN−1ρ(t)f(u(t))dt
] 2−p

p−1
, (6.3)

where

h(r) := ρ(r)f(u(r)) + (1−N)r−N

∫ r

0

tN−1ρ(t)f(u(t))dt. (6.4)

Hence, u ∈ C1([0,∞))∩C2((0,∞)). This together with the fact that u ≤ v, shows
(i), that is, u is radially symetric solution of (1.1).

To show (ii), assume, on the contrary, that (1.1) has a solution u, so that

rN−1|u′(r)|p−2u′(r) ≤ −C for r ≥ M,

where C,M > 0 are suitable constants. As a consequence,

u′(r) ≤ −Cr
1−N
p−1 , r ≥ M. (6.5)

Integrating from M to r in (6.5) and taking into account the cases N < p and
N = p − 1 and at last making r → ∞ we arrive at a contradiction. This finishes
the proof of Theorem 1.1.
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7. Comments on Remark 1.2

At this point we justify the claim in Remark 1.2. By (6.4), we get

lim
r→0

h(r) =
1
N

ρ(0)f(u(0)).

On the other hand,

lim
r→0

[
r1−N

∫ r

0

tN−1ρ(t)f(u(t))dt
]

= 0.

Hence, by (6.3) limr→0 u′′(r) exists if and only if p ≤ 2, that is u ∈ C2([0,∞)) if
and only if p ≤ 2.

Now let u, v be solutions of (1.1). By Lemma 2.3 we can assume u ≥ v. Let
w1 := (v + b)p and w2 := (u + b)p and notice that w1, w2 ∈ X. Taking r > 0 and
using Lemma 2.2 and (1.2), as in the proof of Lemma 2.3, we find,

|u′|p−2u′

(u + b)p−1
− |v′|p−2v′

(v + b)p−1
≥ 0,

and since u′, v′ ≤ 0, we infer that, u+b
v+b is nondecreasing in (0,∞), so that,∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)f(u(s))ds
] 1

p−1
dt

≤ u(r) + b

v(r) + b

∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)f(v(s))ds
] 1

p−1
dt

By (2.2), the above inequality and the fact that limr→∞ u(r) = 0, we find

1 ≤ u(0)
v(0)

= lim
r→∞

∫ r

0

[
t1−N

∫ t

0
sN−1ρ(s)f(u(s))ds

] 1
p−1

dt∫ r

0

[
t1−N

∫ t

0
sN−1ρ(s)f(v(s))ds

] 1
p−1

dt

≤ 1,

so that, by Lemma 2.1, u = v.

8. Appendix

Recall that ε represents a sufficiently small positive number. Let’s proof (3.1)(i)
first. Pick u ∈ C([0, ε]). Using (1.2) to estimate the integral expression in F(u), we
obtain for r ∈ [0, ε],

Î(r) :=
∫ r

0

[
t1−N

∫ t

0

sN−1ρ(s)f(u(s))ds
] 1

p−1
dt

≤ a
( f( a

κa
)

( a
κa

)p−1

) 1
p−1

r
( ∫ r

0

ρ(t)dt
) 1

p−1
.

Therefore, F(u) ∈ C([0, ε]) and Î(ε) < κa−1
κa

a and as a consequence, a
κa
≤ F(u)(r) ≤

a, showing (3.1)(i). Next we show (3.1)(ii). Taking uj ∈ C([0, ε]), j = 1, 2, we find,

|Fu1(r)−Fu2(r)| ≤
∫ r

0

∣∣∣[Xu1(t)
] 1

p−1 −
[
Xu2(t)

] 1
p−1

∣∣∣dt,

where

Xuj
(t) := t1−N

∫ t

0

sN−1ρ(s)f(uj(s))ds.
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Using the inequality,∣∣|x|σx− |y|σy
∣∣ ≤ Cσ(|x|σ + |y|σ)|x− y| x, y ∈ R (8.1)

where σ > −1 and Cσ > 0 are constants, we find,

|Fu1(r)−Fu2(r)| ≤ Cσ

∫ r

0

(|Xu1(t)|σ + |Xu2(t)|σ)|Xu1(t)−Xu2(t)|dt, (8.2)

where σ = (2− p)/(p− 1). We point out that

|Xu1(t)−Xu2(t)| ≤ t1−N

∫ t

0

sN−1ρ(s)|f(u1(s))− f(u2(s))|ds

≤ K‖u1 − u2‖C([0,ε])t
1−N

∫ t

0

sN−1ρ(s)ds.

(8.3)

where K is the Lipschitz constant of f on [ a
κa

, a]. If 1 < p ≤ 2, using (1.2),

|Xuj (t)|σ ≤ a2−p
[ f( a

κa
)

( a
κa

)p−1

]σ(
t1−N

∫ t

0

sN−1ρ(s)ds
)σ

. (8.4)

From (8.2), (8.3), and (8.4) we find, for constant a K̂ > 0,

|Fu1(r)−Fu2(r)| ≤ K̂ε
( ∫ ε

0

ρ(s)ds
) 1

p−1 ‖u1 − u2‖C([0,ε]),

and so (3.1)(ii) follows. The case p > 2 is treated as the earlier one, replacing (8.4)
by,

|Xuj
(t)|σ ≤

( a

κa

)2−p
[ f(a)
ap−1

]σ(
t1−N

∫ t

0

sN−1ρ(s)ds
)σ

.

This shows (3.1). To prove (3.5), we show (3.5)(i) first. To that end let u ∈ Xã,ε.
Using (1.2) we estimate the integral below,∫ r

T (a)

{
t1−N

[
T (a)N−1|ν|p−1 +

∫ t

T (a)

sN−1ρ(s)f(u(s))ds
]} 1

p−1
dt

≤
∫ ε

T (a)

{
t1−N

[
T (a)N−1|ν|p−1 + κp−1

ã f(
ã

κã
)
∫ t

T (a)

sN−1ρ(s)ds
]} 1

p−1
dt

≤ κã − 1
ã

.

Hence, ã
κã

≤ F̃u(r) ≤ ã, for r ∈ [T (a), T (a) + ε]. This shows (3.5)(i). In order to
prove (3.5)(ii), letting uj ∈ Xã,ε (j = 1, 2) and using (8.1),

|F̃u1(r)− F̃u2(r)| ≤ Cσ

∫ r

T (a)

(|X̃u1(t)|σ + |X̃u2(t)|σ)|X̃u1(t)− X̃u2(t)|dt, (8.5)

where

X̃uj
(t) := t1−N

[
T (a)N−1|ν|p−1 +

∫ t

T (a)

sN−1ρ(s)f(uj(s))ds
]
.

We remark that since f ∈ C1,

|X̃u1(t)− X̃u2(t)| ≤ K0‖u1 − u2‖C([T (a),T (a)+ε])t
1−N

∫ t

T (a)

sN−1ρ(s)ds, (8.6)
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where K0 is the Lipschitz constant of f on the interval [ ã
κã

, ã]. Now, two further
cases are considered. The first one is ν = 0. If 1 < p ≤ 2, using (1.2),

|X̃uj (t)|σ ≤ κ2−p
ã f(

ã

κã
)σ

[
t1−N

∫ t

T (a)

sN−1ρ(s)ds
]σ

. (8.7)

By (8.5),(8.6) and (8.7), it follows that, for some constant C > 0,

|F̃u1(r)− F̃u2(r)|

≤ C‖u1 − u2‖C([T (a),T (a)+ε])

∫ T (a)+ε

T (a)

[
t1−N

∫ t

T (a)

sN−1ρ(s)ds
] 1

p−1

≤ K1‖u1 − u2‖C([T (a),T (a)+ε]),

where K1 ∈ (0, 1), showing (3.5)(ii). If p ≥ 2, using (1.2) again, one obtains,

|X̃uj
(t)|σ ≤ (

1
κã

)2−pf(ã)σ
[
t1−N

∫ t

T (a)

sN−1ρ(s)ds
]σ

. (8.8)

Argueing as before, with (8.8) instead (8.7) we show (3.5)(ii). The second case is
ν < 0. If 1 < p ≤ 2, we get by using (1.2),

|X̃uj
(t)|σ ≤

[
T (a)−1|ν|p−1 + T (a)−1f(

ã

κã
)
∫ T (a)+ε

T (a)

ρ(s)ds
]σ

t
2−p
p−1 . (8.9)

On the other hand, if p ≥ 2, we get

|X̃uj (t)|σ ≤
[T (a)N−1|ν|p−1

(T (a) + ε)N

]σ

t
2−p
p−1 . (8.10)

Proceeding as above, by replacing respectively (8.7) and (8.8) by (8.9) and (8.10),
we show (3.5)(ii). This completes the verification of (3.5).
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