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CONTINUOUS DEPENDENCE FOR THE BRINKMAN
EQUATIONS OF FLOW IN DOUBLE-DIFFUSIVE CONVECTION

HONGLIANG TU, CHANGHAO LIN

Abstract. This paper concerns the structural stability for convective motion

in a fluid-saturated porous medium under the Brinkman scheme. Continuous
dependence for the solutions on the gravity coefficients and the Soret coefficient

are proved. First of all, an a priori bound in L2 norm is derived whereby

we show the solution depends continuously in L2 norm on changes in the
gravity coefficients and the Soret coefficient. This estimate also implies that

the solutions decay exponentially.

1. Introduction

Within the context of fluid flow in porous media, or simply within theory of fluid
flow, there has been substantial recent interest in deriving stability estimates where
changes in coefficient are allowed, or even the model (the equations themselves)
changes. This type of stability has earned the name structural stability, and is
different from continuous dependence on the initial data. The concept of structural
stability in which the study of continuous dependence (or stability) is on changes in
the model itself rather than the initial data. Thus structural stability constitutes
a class of stability problem every bit important. Structural stability is focus of
attention now, and for the relevant results, the reader is referred to [1, 2, 3, 5, 6, 7,
8, 9, 10].

The Brinkman model is believed accurate when the flow velocity is too large
for Darcy’s law to be valid, and additionally the porosity is not too small. In
this article, we are concerned with structural stability for the Brinkman equations
modeling the double diffusive convection. The temperature field is non-constant
and a solute is also diffused throughout the porous body.

The Brinkman equations governing the flow of fluid in double-diffusive convection
are

ui,t = ν∆ui − aui − p,i + giT + hiC

T,t + uiT,i = ∆T

C,t + uiC,i = ∆C + ρ∆T in Ω× t > 0
ui,i = 0

(1.1)
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where ui, T , C and p represent fluid velocity, temperature, salt concentration and
pressure, respectively. The quantities gi(x) and hi(x) are gravity vector terms, and
positive constants ρ, a are known the Soret coefficient and the Darcy coefficient,
respectively. Ω is a bounded domain of of R3, and with sufficiently smooth boundary
∂Ω. ∆ is the Laplace operator, ‖ · ‖ and 〈u, v〉 denote the norm and inner product
on L2(Ω) .

Associated with (1.1), we impose the boundary data

ui = 0; T = 0; C = 0 on ∂Ω (1.2)

and the initial data

ui(x, 0) = zi(x);T (x, 0) = T0(x);C(x, 0) = C0(x);x ∈ Ω (1.3)

In (1.1) and in the equations throughout, a comma is used to denote partial differ-
entiation: For example ui,i denotes ∂ui

∂xi
and ui,t denotes ∂ui

∂t , and we employ the
convention of summing over repeated indices from 1 to 3 .

2. A priori bounds

Multiplying (1.1)2 by T and integrating over Ω, we have
1
2

d

dt
‖T‖2 = −‖∇T‖2 (2.1)

Multiplying (1.1)3 by C and integrating over Ω, then using arithmetic-geometric
mean inequality, we obtain

1
2

d

dt
‖C‖2 +

1
2
‖∇C‖2 ≤ ρ2

2
‖∇T‖2 (2.2)

Multiplying (1.1)1 by ui and integrating over Ω, furthermore using Cauchy-
Schwarz, arithmetic-geometric mean, then using Poincare’s inequality, we find

1
2

d

dt
‖u‖2 + ν‖∇u‖2 +

a

2
‖u‖2 ≤ 1

a
[g2‖T‖2 + h2‖C‖2]

≤ 1
aλ1

[g2‖∇T‖2 + h2‖∇C‖2]
(2.3)

where
g2 = max

Ω
gigi; h2 = max

Ω
hihi.

and λ1 is the first eigenvalue of the problem

∆φ + λφ = 0 in Ω
φ = 0 on ∂Ω

Multiplying (1.1)1 by ui,t and integrating over Ω , furthermore using Cauchy-
Schwarz and arithmetic-geometric mean inequality, then using Poincare’s Poincare’s
inequality, we find

a

2
d

dt
‖u‖2 +

ν

2
d

dt
‖∇u‖2 ≤ 1

2
[g2‖T‖2 + h2‖C‖2]

≤ 1
2λ1

[g2‖∇T‖2 + h2‖∇C‖2]
(2.4)

Multiplying (2.1) by Γ11, (2.2) by Γ12 and (2.3) by Γ13, then adding all results
to (2.4) leads to

d

dt
Q1(t) + G(t) ≤ 0 (2.5)
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where Γ1i, (i = 1, 2, 3) are positive constants at our disposal,

Q1(t) =
Γ11

2
‖T‖2 +

Γ12

2
‖C‖2 +

(Γ13 + a)
2

‖u‖2 +
ν

2
‖∇u‖2 (2.6)

and

G(t) = [
(2Γ11 − ρ2Γ12)

2
− 1

λ1
g2(

1
2

+
Γ13)

a
]‖∇T‖2 +

aΓ13

2
‖u‖2

+ [
Γ12

2
− 1

λ11
h2(

1
2

+
Γ13)

a
]‖∇C‖2 + Γ13ν‖∇u‖2

(2.7)

We can select Γ1i, (i = 1, 2, 3) to secure that all the all the coefficients of (2.7)
are positive, such as

Γ13 =
a

2
; Γ12 =

4h2

λ1
; Γ11 >

(2h2ρ2 + g2)
λ1

.

Thus, with the help of Poincare’s inequality, we can show that

G(t) ≥ [λ1
(2Γ11 − ρ2Γ12)

2
− g2(

1
2

+
Γ13)

a
]‖T‖2 + Γ13ν‖∇u‖2

+ [
2λ1Γ12

2
− h2(

1
2

+
Γ13

a
]‖C‖2 + Γ13

a

2
‖u‖2

(2.8)

We can easily show that

κ1Q1(t) ≤ G(t) (2.9)

where κ1 is a positive constant represented by

κ1 = min
{ 1

Γ11
[λ1(2Γ11 − ρ2Γ12)− g2(1 +

2Γ13)
a

],

1
Γ12

[Γ12λ1 − h2(1 +
2Γ13)

a
],

aΓ13

Γ13 + a
, 2Γ13

}
Thus, from (2.5), we can derive that

d

dt
Q1(t) + κ1Q1(t) ≤ 0 (2.10)

Furthermore, we obtain

Q1(t) ≤ Q1(0)e−κ1t (2.11)

Therefore, recalling the definition of Q1(t) and combining (2.5), we can obtain

‖T‖2 ≤ M1; ‖C‖2 ≤ M1; ‖u‖2 ≤ M1; ‖∇u‖2 ≤ M1;
∫ t

0

‖u‖2dη ≤ M1;∫ t

0

‖∇u‖2dη ≤ M1;
∫ t

0

‖∇T‖2dη ≤ M1;
∫ t

0

‖∇C‖2dη ≤ M1.

(2.12)
where M1 is a generic positive constant depending on the coefficients of (1.1) and
the initial data terms in (1.3).

It also follows from inequality (2.11) that ‖∇u‖2, ‖T‖2 and ‖C‖2 decay expo-
nentially as t tends to ∞.
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3. Continuous dependence on the gravity coefficients

Let (ui, T, C, P ) and (u∗i , T
∗, C∗, P ∗) be solutions to (1.1) with the same bound-

ary and initial data (1.2), (1.3), but with different gravity coefficients (gi, hi) and
(g∗i , h∗i ), respectively.

Namely,

ui,t = ν∆ui − aui − p,i + giT + hiC

T,t + uiT,i = ∆T

C,t + uiC,i = ∆C + ρ∆T in Ω× t > 0
ui,i = 0

and

u∗i,t = ν∆u∗i − au∗i − p∗,i + g∗i T ∗ + h∗i C
∗

T ∗,t + u∗i T
∗
,i = ∆T ∗

C∗
,t + u∗i C

∗
,i = ∆C∗ + ρ∆T ∗ in Ω× t > 0

u∗i,i = 0 .

Now set
wi = ui − u∗i , Π = p− p∗, S = T − T ∗, Σ = C − C∗

γi = gi − g∗i , µi = hi − h∗i
(3.1)

Clearly, (wi,Π, S,Σ) satisfies the equations

wi,t = ν∆wi − awi −Π,i + γiT + g∗i S + µiC + h∗i Σ

S,t + wiT,i + u∗i S,i = ∆S

Σ,t + wiC,i + u∗i Σ,i = ∆Σ + ρ∆S in Ω× {t > 0}
wi,i = 0

(3.2)

with the boundary-initial data
wi = S = Σ = 0 on ∂Ω× {t > 0}

wi(x, 0) = S(x, 0) = Σ(x, 0) = 0 in Ω
(3.3)

Multiplying (3.2)1 by wi and integrating over Ω, then using Cauchy-Schwarz’s
inequality, and the arithmetic-geometric mean inequality, we obtain

ν‖∇w‖2+
a

2
‖w‖2+

1
2

d

dt
‖w‖2 ≤ 2

a
[(g∗)2‖S‖2+(h∗)2‖Σ‖2+µ2‖C‖2+γ2‖T‖2], (3.4)

where

γ2 = max
Ω

γiγi; µ2 = max
Ω

ui; (g∗)2 = max
Ω

g∗i g∗i ; (h∗)2 = max
Ω

h∗i h
∗
i .

Multiplying (3.2)1 by wi,t and integrating over Ω, then using Cauchy-Schwarz
inequality, and the arithmetic-geometric mean inequality, we have

1
2
ν

d

dt
‖∇w‖2 +

a

2
d

dt
‖w‖2 ≤ (g∗)2‖S‖2 + (h∗)2‖Σ‖2 + µ2‖C‖2 + γ2‖T‖2 (3.5)

Multiplying (3.2)2 by S and integrating over Ω, then using Cauchy-Schwarz, the
arithmetic-geometric mean inequality, the Sobolev inequality ,which holds for all
ϕ ∈ C1

0 (ϕ),
‖ϕ‖4 ≤ Λ‖ϕ,i‖

where ‖ · ‖4 is the norm on L4(Ω).
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we derive
d

dt
‖S‖2 = −2‖∇S‖2 + 2〈T,i, wiS〉;

therefore
d

dt
‖S‖2 ≤ −2‖∇S‖2 + 2‖∇T‖ · ‖w‖4‖S‖4

≤ −2‖∇S‖2 + 2Λ
1
2 ‖∇T‖ · ‖∇w‖ · ‖∇S‖

≤ −2‖∇S‖2 + 2α11‖∇S‖2 +
Λ

2α11
‖∇w‖2‖ · ‖∇T‖2

(3.6)

where α11 is a positive constant at our disposal.
Using similar method as in (3.6), from equation (3.2)3, we find that

d

dt
‖Σ‖2 ≤ (−2 + α12 + α13)‖∇Σ‖2 +

Λ
α13

‖∇w‖2 · ‖∇C‖2 +
ρ2

α12
‖∇S‖2 (3.7)

where α1i, i = 2, 3 are positive constants at our disposal.
Multiplying (3.6) by Γ21 and adding (3.7) leads to

d

dt
(‖Σ‖2 + Γ21‖S‖2)

≤ Λ
2
‖∇w‖2(

Γ21

α11
‖∇T‖2 +

2
α13

‖∇C‖2)

+ 2[(α11 − 1) +
ρ2

2α12Γ21
]Γ21‖∇S‖2 + (−2 + α12 + α13)‖∇Σ‖2

(3.8)

where Γ21 is a positive constant at our disposal.
In (3.8), we choose

α11 =
1
4
; α12 = α13 =

1
2
; Γ21 = 4ρ2.

it follows that
d

dt
(‖Σ‖2 +4ρ2‖S‖2)+‖∇Σ‖2 +4ρ2‖∇S‖2 ≤ 2Λ‖∇w‖2(4ρ2‖∇T‖2 +‖∇C‖2) (3.9)

Multiplying (3.4) by Γ22 and (3.5) by Γ23, then adding all the results to (3.9),
then using Poincare’s inequality, we have

d

dt

[Γ23

2
ν‖∇w‖2 +

(Γ22 + aΓ23)
2

‖w‖2 + (‖Σ‖2 + 4ρ2‖S‖2)
]

+
[
λ1 − (

2Γ22

a
+ Γ23)(g∗)2

]
‖Σ‖2

+
[
4ρ2λ1 − (

2Γ22

a
+ Γ23)(h∗)2

]
‖S‖2 + Γ22ν‖∇w‖2 +

aΓ22

2
‖w‖2

≤ w‖2
[
4ρ2‖∇T‖2 + ‖C,i‖2

]
+ (

Γ22

a
+ Γ23)

[
µ2‖C‖2 + γ2‖T‖2

]
(3.10)

where Γ2i, i = 2, 3 are positive constants at our disposal.
We can choose Γ22 and Γ23 sufficient small to make sure that all the coefficients

in (3.10) are positive, such as

Γ22 = min{ aλ1

8(g∗)2
,

ρ2aλ1

2(h∗)2
}; Γ23 = min{ λ1

4(g∗)2
,

ρ2λ1

(h∗)2
}.
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Let

Q2(t) = {Γ23

2
ν‖∇w‖2 +

(Γ22 + aΓ23)
2

‖w‖2 + ‖Σ‖2 + 4ρ2‖S‖2}

and

κ2 = min
{2Γ22ν

Γ23ν
;

aΓ22

(Γ22 + aΓ23)
; (λ1 − (

2Γ22

a
+ Γ23)(g∗)2);

1
4ρ2

[4ρ2λ1 − (
2Γ22

a
+ Γ23)(h∗)2]

} (3.11)

It follows from (3.10) that

d

dt
Q2(t)+κ2Q2(t) ≤ (

Γ22

a
+Γ23)[µ2‖C‖2+γ2‖T‖2]+2Λ‖∇w‖2[4ρ2‖∇T‖2+‖∇C‖2]

(3.12)
It is easy to show that

2Λ‖∇w‖2[4ρ2‖∇T‖2 + ‖∇C‖2] ≤ Q2(t)f2(t) (3.13)

where

f2(t) = τ2(‖∇T‖2 + ‖∇C‖2), τ2 =
4Λ

Γ23ν
(4ρ2 + 1).

Thus, combining (3.12) and (3.13), we obtain

d

dt
Q2(t) + κ2Q2(t) ≤ M2(µ2 + γ2) + f2(t)Q2(t) (3.14)

where M2 = 2(Γ22
a + Γ23)M1.

Now, multiplying both sides of (3.14) by eκ2t and integrating from 0 and t, we
get

Q2(t) ≤
M2

κ2
(µ2 + γ2) +

∫ t

0

f2(η)Q2(η)dη (3.15)

Hence, applying Gronwall’s lemma and using (2.12), we obtain

Q2(t) ≤
M2

κ2
e

R t
0 f2(η)dη · (µ2 + γ2) ≤ M2

κ2
e2τ2M1 · (µ2 + γ2),∀t > 0 (3.16)

Consequently, from inequality (3.16), we can see that Q2(t) → 0, as gi → g∗i and
hi → h∗i . Recalling the definition of Q2(t), so (wi,Π, S,Σ) → 0 and (ui, T, C) →
(u∗i , T

∗, C∗). So, continuous dependence on the gravity coefficients is proved.

4. Continuous dependence on the Soret coefficient

Let (ui, T, C, P ) and (u∗i , T
∗, C∗, P ∗) be solutions to (1.1 ), with the same bound-

ary and initial data (1.2), (1.3), but with different Soret coefficient ρ and ρ∗, re-
spectively:

ui,t = ν∆ui − aui − p,i + giT + hiC

T,t + uiT,i = ∆T

C,t + uiC,i = ∆C + ρ∆T in Ω× t > 0
ui,i = 0
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and

u∗i,t = ν∆u∗i − au∗i − p∗,i + giT
∗ + hiC

∗

T ∗,t + u∗i T
∗
,i = ∆T ∗

C∗
,t + u∗i C

∗
,i = ∆C∗ + ρ∗∆T ∗ in Ω× t > 0

u∗i,i = 0

Now set

wi = ui − u∗i , Π = p− p∗, S = T − T ∗, Σ = C − C∗ (4.1)

Clearly, (wi,Π, S,Σ) satisfies the equations

wi,t = ν∆wi − awi −Π,i + +giS + +hiΣ

S,t + wiT,i + u∗i S,i = ∆S

Σ,t + wiC,i + u∗i Σ,i = ∆Σ + (ρ− ρ∗)∆T + ρ∗∆S in Ω× {t > 0}
wi,i = 0

(4.2)

with the boundary-initial data

wi = S = Σ = 0 on ∂Ω× {t > 0}
wi(x, 0) = S(x, 0) = Σ(x, 0) = 0 in Ω

(4.3)

Multiplying (4.2)1 by wi and integrating over Ω, furthermore using the Cauchy-
Schwarz’s inequality, and the arithmetic-geometric mean inequality, we have

ν‖∇w‖2 +
a

2
‖w‖2 +

1
2

d

dt
‖w‖2 ≤ 1

a
[g2‖S‖2 + h2‖Σ‖2] (4.4)

where

g2 = max
Ω

gigi, h
2 = max

Ω
hihi.

Multiplying (4.2)1 by wi,t and integrating over Ω, then using the Cauchy-Schwarz
inequality, and the arithmetic-geometric mean inequality, we get

1
2
ν

d

dt
‖∇w‖2 +

a

2
d

dt
‖w‖2 ≤ 1

2
[g2‖S‖2 + h2‖Σ‖2] (4.5)

Multiplying (4.2)2 by S and integrating over Ω, then using Cauchy-Schwarz,
the arithmetic-geometric mean inequality, and using the Sobolev inequality, we can
derive

d

dt
‖S‖2dη ≤ −2‖∇S‖2 + 2α21‖∇S‖2 +

Λ
2α21

‖∇w‖2‖∇T‖2 (4.6)

for α21 is a positive constant at our disposal.
Using similar method as in (4.6), from equation (4.2)3, we can find that

d

dt
‖Σ‖2 ≤ (−2 + α22 + α23 + α24)‖∇Σ‖2 +

Λ
α23

‖∇w‖2‖∇C‖2

+
ρ∗2

α22
‖∇S‖2 +

(ρ− ρ∗)2

α24
‖∇T‖2

(4.7)

for α2i, (i = 2, 3, 4) are positive constants at our disposal.
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Multiplying (4.6) by Γ31 and adding (4.7), leads to

d

dt
(‖Σ‖2 + Γ31‖S‖2)

≤ (−2 + α22 + α23 + α24)‖∇Σ‖2 + 2
[
(α21 − 1) +

ρ∗2

2α22Γ31

]
Γ31‖∇S‖2

+
(ρ− ρ∗)2

α24
‖∇T‖2 +

Λ
2
‖∇w‖2

[Γ31

α21
‖∇T‖2 +

2
α23

‖∇C‖2
] (4.8)

where Γ31 is a positive constant at our disposal.
In (4.8), we choose α21 = 1/2, α22 = 1, α23 = α24 = 1/4, It follows that

d

dt
(‖Σ‖2 + Γ31‖S‖2) + ‖∇Σ‖2 + (Γ31 − ρ∗2)‖∇S‖2

≤ Λ‖∇w‖2(Γ31‖∇T‖2 + 4‖∇C‖2) + 4(ρ− ρ∗)2‖∇T‖2
(4.9)

Multiplying (4.4) by Γ32 and (4.5) by Γ33, furthermore adding all the results to
(4.9), we get

d

dt
[
Γ33

2
ν‖∇w‖2 +

(Γ32 + aΓ33)
2

‖w‖2 + (‖Σ‖2 + Γ4‖S‖2)]

+ Γ32ν‖∇w‖2 +
aΓ32

2
‖w‖2 + ‖∇Σ‖2 + (Γ31 − ρ∗2)‖∇S‖2

≤ (
2Γ32

a
+ Γ33)[g2‖Σ‖2 + h2‖S‖2] + 2Λ‖∇w‖2[Γ31‖∇T‖2

+ 4‖∇C‖2] + 4(ρ− ρ∗)2‖∇T‖2

(4.10)

where Γ3i, (i = 2, 3) are positive constants at our disposal.
We can choose Γ31 to make sure that Γ31 > ρ∗2, therefore, by the Poincare’s

inequality from (4.10), we have

d

dt

[Γ33

2
ν‖∇w‖2 +

(Γ32 + aΓ33)
2

‖w‖2 + (‖Σ‖2 + Γ31‖S‖2)
]

+
[
λ1(Γ31 − ρ∗2)− (2

Γ32

a
+ Γ33)h2

]
‖S‖2 +

aΓ32

2
‖w‖2

+ Γ32ν‖∇w‖2 +
[
λ1 − (

2Γ32

a
+ Γ33)g2

]
‖Σ‖2

≤ Λ‖∇w‖2[Γ31‖∇T‖2 + 4‖∇C‖2] + 4(ρ− ρ∗)2‖∇T‖2

(4.11)

We can choose Γ32 and Γ33 sufficient small to make sure that all the coefficients
in (4.11) are positive, such as we may choose

Γ32 = min{aλ1

8g2
,
aλ1(Γ31 − ρ∗2)

8h2
}; Γ33 = min{ λ1

4g2
,
λ1(Γ31 − ρ∗2)

4h2
}.

Let

Q3(t) = {Γ33

2
ν‖∇w‖2 +

(Γ32 + aΓ33)
2

‖w‖2 + ‖Σ‖2 + Γ31‖S‖2}

and

κ3 = min{2Γ32

Γ33
;

aΓ32

(Γ32 + aΓ33)
; (λ1 − (

2Γ32

a
+ Γ33)g2);

1
Γ31

[λ1(Γ31 − ρ∗2)− (
2Γ32

a
+ Γ33)h2]}

(4.12)
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Then, it follows from (4.11) that
d

dt
Q3(t) + κ3Q3(t) ≤ Λ‖w‖2[Γ31‖∇T‖2 + 4‖C,i‖2] + 4(ρ− ρ∗)2‖∇T‖2 (4.13)

Also, it can be easily shown that

Λ‖∇w‖2[Γ31‖∇T‖2 + 4‖∇C‖2] ≤ f3(t)Q3(t) (4.14)

where
f3(t) = τ3(‖∇T‖2 + ‖∇C‖2), τ3 =

2Λ
Γ33ν

(Γ31 + 4).

Thus, combing (4.13) and (4.14), we obtain
d

dt
Q3(t) + κ3Q3(t) ≤ 4(ρ− ρ∗)2‖∇T‖2 + f3(t)Q3(t) (4.15)

Now, multiplying both sides of (4.15) by eκ3t and integrating over [0, t], we obtain

Q3(t) ≤
M3

κ3
(ρ− ρ∗)2 +

∫ t

0

f3(η)Q3(η)dη (4.16)

where M3 = 4M1.
Hence, applying Gronwall’s lemma and using (2.12), we obtain

Q3(t) ≤
M3

κ3
e

R t
0 f3(η)dη · (ρ− ρ∗)2 ≤ M3

κ3
e2τ3M1 · (ρ− ρ∗)2, ∀t > 0 (4.17)

As a result, from inequality (4.17), we can see that Q3(t) → 0, as ρ → ρ∗.
Recalling the definition of Q3(t), so (wi,Π, S,Σ) → 0 and (ui, T, C) → (u∗i , T

∗, C∗).
Consequently, continuous dependence on the Soret coefficient is proved.
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