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ABSTRACT

The purpose of this study is to propose a method to reliably estimate the

survival function of the true infection time of a sexually transmitted disease

(STD) based on interval-censored data with diary information. The survival

function for interval-censored data can be estimated with Turnbull’s

self-consistency algorithm (Turnbull, 1976) and Braun and Stafford’s (2005)

proposed method. However, this data includes additional auxiliary behaviorial

information, known as the diary information, in which patients record a list of

sexual encounter times. In this study, we propose a method that incorporates a

kernel smoothing (utilized by Braun and Stafford) and uses the addition diary

information. The motivation for the study is with interval-censored data with

auxiliary diary inforation provided by the Indiana University School of Medicine.

Harzelak and Tu (2006) have a proposed method with the data we received but

is a piecewise function like Turnbull’s that incorporated a product limit

estimator. Hence, we will briefly mention Turbull’s algorthim and Harezlak and

Tu’s method in the methods section. Furthermore, the advantage of using a

kernel density estimate over a piecewise estimate allows for a continuous, smooth

estimate that is flexible and easy to interpret. So in this research, we will focus

the estimate of the true survival function with Braun and Stafford’s method and

our proposed method. With data generated from a known true survival function

in simulation, knowing the true survival function or desnity function we make

comparisons between the two methods. We calculate the mean integrated

squared error (MISE), mean square error (MSE) and bias estimates of the two

methods. The results show that our method performs significantly better in most

settings considered at different levels of right censoring (15%, 30%, and 40%).
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I. INTRODUCTION

First, we will discuss definitions, concepts and notations in order to establish a

foundation for survival estimation. Survival analysis is generally a collection of

statistical methods for data analysis where the variable of interest, T , is time

until the occurance of an event (KleinBaum, 1996). Survival analysis is used in

many fields including, but not limited to: medicine, biology, economics,

engineering, sociology and public health. Survival analysis is very important for

attempts to predict the probability of something as important as organ failure,

heart attack, relapse in cancer studies, or as technical as, reliability analysis,

duration modeling or population modeling. We use these mathematical tools to

measure the chances of survival as a function of the time that should be used to

research solutions. Hence, survival analysis is an important tool for investigating

solutions for data driven problems in contexts that’s condusive to our well being.

In our case, we investigate the survival time before an individual is infected with

a sexually transmitted disease.

Time is measured in days and starts at the beginning of a study at time 0

until the end of a study. Each individual in the study will be encouraged to

participate by attending a sequence of scheduled visits (or follow-up times),

where the variable of interest is time to a STD infection. In survival analysis, the

variable of interest T is the time in which the individual has "survived" up to

some given time point.

1.0 Survival Function

Let T be a continuous random variable representing the infection (nonsurvival)

time where T ≥ 0. Let F (t) denote the cumulative distribution function (c.d.f.)
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of t with corresponding f(t) the probability density function (p.d.f.). We have,

F (t) = P (T ≤ t) =

∫ t

0

f(x)dx

When the p.d.f. is available the survival function may be computed (Kleinbaum,

1996). The probability that an individual survives beyond time t is defined by

the survival function:

S(t) = P (T > t) = 1− F (t) =
∫ ∞
t

f(x)dx

Figure 1.1: Illustration of a Survival Function

1.1 Censoring

Unfortunately, the survival time of interest may not be directly observed due to

the design of a study (Rubin, 1987). Instead, we may only know that it lies in

some interval resulting interval-censored data. For instance, patients will arrive

to test for an infection and in one session may test negative and in a follow up

session (some may potentially be skipped) will test positive some time later

where we may conclude the infection time occured within that time interval.

When data contains observations that are only partially known, the data is

known as censored. Causes for censoring data result in an observation being

2



discontinued before the time of an event of interest is observed, but there exists a

recent observed time past the beginning of the study that tells us the patient has

survived. For example, consider a study conducted by a rehabilitation center to

investigate when a patient starts suffering symptoms of withdrawals. If a subject

were to arrive at a center but leave prior to a withdrawal, that observation would

be considered censored. Although the withdrawal was not directly observed, we

do know that the survival time is at least as long as their stay.

There are a variety of reasons censoring may occur, including but not

limited to:

1. a subject is lost during the follow up study;

2. a subject may not experience the event time during the study period;

3. a subject (or patient) is dropped from the study due to death, lack of

interest or fails to show up during trial times.

Depending on the behaviors of the patients, there will be a variety of

different censoring types. Now, lets consider the most general types of censoring

which has other types of censoring as special cases.

1.1(a) Interval-Censored

In longitudinal studies, the research practice doesn’t enable the event of interest

to be directly observed. Instead, there is a sequence of clinical visits to assess

patients wherein the recorded times are the last visits the patient tested negative

denoted Li and the most recent visit the patient tested positive denoted Ri. This

will inform us that the true infection Ti will sit inside the interval (Li, Ri]

(Braun, Duchesne and Stafford, 2005). For example, a hospital may have

patients come in for cancer treatment and the relapse time is the outcome of

interest. Since some patients commute to the hospital for a series of routine visits

where doctors won’t necessarily observe the time of relapse but will know a

patient has relapsed inbetween consecutive visits {v1, ..., vm}.
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Figure 1.2: An example of an Interval-Censored Observation

Interval censoring is common in biology and medical studies, particularly

when research depends on a sequence of visits where subjects are encouraged to

follow-up on appointments and be assessed for the outcome of interest.

Now, other types of censoring are special cases of interval-censoring which

includes: exact observation, right-censoring and left-censoring. Defined

respectively, an observation is exactly observed if Li = Ri, right-censored if

Ri =∞ and left-censored if Li = 0. Note that all special cases are not exclusive

to any given data set. Furthermore, there are a variety of methods that

implement censored data in estimating the survival function.

Harezlak and Tu (2006) provided interval-censored data with diary

information labeled STD_Data and std.sextime. Although there exists methods

that consider interval-censored data, this data set is unique with the

accompaniment of diary information. The objective of this research is to examine

the efficiency of a variety of methods in estimating the survival function with

interval-censored data in addition to the STD diary information. Furthermore,

we use the software R to establish a working function to handle such data sets.

Within R, we set to satisfy the following itinerary:

1. To estimate and interpret the survival function.

2. To simulate data in order to compare survival function estimates

between Braun and Stafford’s method, and our proposed method.

3. To assess the mean integrated square error (MISE), mean squared error

(MSE) and biases for method accuracy.
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II. METHODS

Methods for nonparametric estimations of the survival function will be discussed

in this section. Turnbull’s (1976) self-consistency algorithm is most widely used

for interval-censored data as the piece-wise nonparametric estimation of the

survival function. Braun and Stafford’s (2005) method is a local likelihood

density estimation for interval-censored data that utilizes a kernel density

function for smoothing the probability density function. Lastely our method

which is similar to the previously mentioned but will utilize additional auxiliary

diary information.

2.0 Empirical Estimate

One non-parametric estimator of a survival function is the empirical survival

function (Kleinbaum, 1996). Given complete data T1, ..., Tn for n number of

patients, the empirical survival function is defined as:

Ŝ(t) =
# of Ti > t

n

2.1 Turnbull’s Algorithm

This algorithm is an iterative procedure to estimate the survival function S(t).

Given an interval-censored data set {(Li, Ri]}ni=1 for n patients, let

0 = τ1 < τ2 < ... < τm be the an ordered grid of time including all the unique end

points of Li and Ri. For the ith observation, define a weight αij to indicate

whether (τj−1, τj] sits inside the interval (Li, Ri] where,

αij =


1 if (τj−1, τj] ∈ (Li, Ri]

0 if otherwise

5



With these objects the Turnbull’s algorithm is as follows:

1. Make an initial guess of p̂0j , where pj is the probability mass over (τj−1, τj]

pj = S(τj−1)− S(τj), j = 1, 2, ...,m

2. Update the estimate of p̂j by the following,

p̂lj =
1

n

n∑
i=1

p̂l−1j αij∑m
k=1 p̂

l−1
k αik

, j = 1, 2, ...,m

3. Repeat step 2 until convergance to a designated tolerance ε where∑m
j=1 |p̂j

l − p̂j l−1| ≤ ε.

The final vector p̂ = (p̂1, ..., p̂m) will give us the survival function estimate

computed as:

Ŝ(t) =
∑
τj>t

p̂j = 1−
∑
τj≤t

p̂j

Observe below for an example to illustrate of Turnbull’s self-consistency

algorithm.

Table 2.1: Simulated Interval-Censored Data

Left Right Censored
1 10 1
4 6 1
2 8 1
3 ∞ 0
6 ∞ 0
3 10 1
2 5 1
1 7 1

Notice τ = τ1, ..., τ10 will be the following order of unique end points,

{1, 2, 3, 4, 5, 6, 7, 8, 10}
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where the piecewise function will give us the following results in the intervals,

[1, 5), [5, 7), [7, 8), [8, 8]

Figure 2.1: Illustration of a Turnbull’s Estimate with Hypothetical Data

Table 2.2: Turnbulls Estimated Survival Values

Time [1 - 5) [5 - 7) [7 - 8) [8]

Ŝ(t) 1.000 0.332 0.005 0.001

2.2 Harezlak and Tu’s Method

In this section we will briefly introduce Harezlak and Tu’s (2006) method to

show there exists a method that has attempted to estimate the survival function

with the diary information prompting this study. Harezlak and Tu propose a

resampling based method that uses the auxiliary behavioral information

provided by daily diaries. By imputing the unknown infection time from a list of

sexual encounter times, the proposed procedure gets implemented by using a

7



product estimator procedure for right-censored data. The algorithm is as follows:

1. For the bth resampled data set, impute uniformly one infection (or

right-censoring time) for the ith subject and denote it X(b)
i .

Create an indicator variable δi corresponding to each X(b)
i .

If the subject i is infected, X(b)
i = Eij for some jth coital event and δi = 1.

If the subject i is right-censored X(b)
i = Ci and δi = 0

The process continues for all n subjects and will provide the complete right

censored data set {X(b)
i , for i = 1, ..., n}.

2. With data generated from Step 1, compute Ŝ(b)(t) using Kaplan and

Meier’s (1958) product-limit estimate from the current data set. Let

t
(b)
1 , ..., t

(b)
q be the distinct resampled infection times. N (b)

r is the number of

infections at time t(b)r ; R(t(b)r ) the number of subjects at risk at time t(b)r ,

then we have Ŝ(b)(t) =
∏q

r=1{1−
N

(b)
r

R(t
(b)
r )
}.

3. Repeat steps 1-2 up to a chosen B to obtain the estimate:

Ŝ(t) =
1

B

B∑
b=1

Ŝ(b)(t)

2.3 Braun and Stafford’s Method

In this section we will briefly introduce the kernel density estimation method not

introduced but utilized by Braun and Stafford (2005). Kernel density estimation

(KDE) is a non-parametric way to estimate a propability density function of a

random variable. Given independent random variables X1, ..., Xn drawn from an

unknown distrubution continuous univariate density f . The kernel density

estimate for f is defined as,

f̂(x) =
1

n

n∑
i=1

Kh(Xi − x) =
1

n

n∑
i=1

1

h
K(

Xi − x
h

)
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where K is the kernel, a non-negative function that integrates to 1, generally

being standard normal or exponential density function. The coefficient h is a

smoothing parameter called the bandwidth. An intepretation of f̂ lies in the

kernel weight Kh(Xi − x) in terms of the proximity or rather the sum of the

contributions of the observations of Xi to x.

Advantages to using a kernel density estimate for f includes providing a

continuous function that is simple and flexible. As well as providing a standard

technique of smoothing a nonparametric estimator of cumulative distribution

functions. Hence, we will perform our comparisons solely with Braun and

Stafford’s method. Here is an example of the kernel density estimation of random

variables drawn from a gamma distribution,

x = 5.57, 6.81, 3.78, 4.21, 3.59, 2.90, 11.23, 5.48, 5.57, 3.06

Figure 2.2: Illustration of a Kernel Density Estimate with h = 3 where X follows a
gamma distribution.

When data is interval-censored (observations are recorded as

Ii = (Li, Ri]), a natural extenstion of the kernel density estimation is,

f̂(x) =
1

n

n∑
i=1

E{Kh(Xi − x)|Ii}

9



.

For interval-censored data, Braun and Stafford have proposed the

following interative method that uses kernel estimation or smoothing,

f̂j(x) =
1

n

n∑
i=1

Ej−1[Kh(x−X)|X ∈ Ii]

where,

Ek[g(X)|X ∈ Ii] =


∫ Ri
Li
g(t) f̂k(t)

ck;i
dt Li 6= Ri

g(Xi) Li = Ri = Xi

with,

cj−1:i =

∫
Ii

f̂j−1(t)dt

2.4 Proposed Method

Now we will consider our proposed method. Our method will utilize the

interval-censored data including the auxilary diary information that lies within

the time interval of each patient.

• Given a interval-censored data set {(Li, Ri]}ni=1 for n patients where Li = 0

or otherwise and Ri =∞ or otherwise (exclude patients with the interval

(0,∞)).

• For each patient i there will be a number of coital events bi and

{ei1, ..., eibi} is the sequence of sexual event times.

• Consider all the unique endpoints of Li and Ri from all patients and define

the ordered grid time 0 ≤ τ1 < ... < τN for N unique values (ignore

Ri =∞).

• For each patient i we only count the coital events in (τj−1, τj] that lie

10



within the interval (Li, Ri] and create the following weighted conditional

coeifficent.

cij =
number of eik ∈ (τj−1, τj]

bi

For a given values in (τj−1, τj] we consider measuring the contributions of

the sexual events of the patients with the weighted conditional density
cij f̂

l−1(s)∑N
j=1

∫ τj
τj−1

cij f̂ l−1(u)du
.

Our method is defined as follows:

f̂ l(t) =
1

n

n∑
i=1

( N∑
j=1

[

∫ τj

τj−1

Kh(t− s)f̂ l−1(s)
cij∑N

j=1

∫ τj
τj−1

cij f̂ l−1(u)du
ds]
)

Make an initial guess f̂ 0(t) = 1
lengthofdomain

and define f̂ l(t) for the lth

iteration that takes updates based on the previous iteration and continue to

update until reaching a chosen tolerance ε computed as∫ endOfStudy
t=0

|f̂ l(t)− f̂ l−1(t)|dt < ε.

11



III. SIMULATION

Next we need to compare our method to an existing method. To compute a

meaningful comparison we need a data set with the true probability density

function which is only known in simulated datasets. Thus, we simulate data with

specified parametes that we may change to simulate other conditional behaviors

that will be defined later in the section.

3.1 Data Generation Procedure

Below is the procedure in which we generate data giving patients a sequence of

coital events, and true infection time along with the sequence of scheduled visits.

We manage to model real life behaviors by selecting the true infection time from

a sequence of coital events based on a propability of an STD infection (Katz,

Fortenberry, Tu, Harezlak and Orr, 2001). Since the true infection needs to

follow some type of distribution in order to measure the bias of each method, our

strategy for simulating data will give us a sequence of true infections that follow

a specific type of distribution.

1. Create a domain of length endOfStudy (in days) and partition the domain

into a sequence of equadistant visits {v1, ..., vm} where m = 20.

2. Generate data for n patients (or observations) and for each patient i

generate the total number of coital events bi, where bi follows a poisson

distribution with mean λ · endOfStudy; λ is a chosen parameter that

controls the average number of sexual events for the patients.

3. For each patient i we generate a sequence sexual events {ei1, ...eibi}

bounded by bi, where eij ∼ uniform(0, ..., endOfStudy), j = 1, ..., bi.

4. For each patient i we traverse the sequence of sexual events and select Ti

where the first infection eij chosen based on Bernoulli distribution with

12



probability p (since getting an STD is dependent of a sexual encounter).

With the distrubtion used to select bi’s and the numerical probability of

infection, we can prove that Ti is exponential with mean λ · p. Hence, we

have a probability distribution we can use to compute the errors to evalute

the proposed method and compare it to Braun and Stafford’s.

Figure 3.1: An example with generated sexual encounters with possible infection

5. Now that each patient has a true infection Ti, a sequence of sexual events

{e1, ..., ebi}. We now need to generate the right-censoring time Ci for each

patient. Note that Ci needs to be independent of the true infection, so

randomly select from the scheduled times where Ci = vk where

k ∼ discreteuniform(1, ...,m).

a) If Ti ≤ Ci then the infection time will be interval censored.

b) If Ti > Ci the infection time will be right censored.

To create the censoring intervals we control a parameter B, in our case 60

days, which will dictate the average size of the intevals. First we look at

the closest visit to the right of Ti we will call VTi . Next we randomly select

a number from 1 to B with equal probabilities for Li called BLi and

another random number from 0 to B called BRi . Finally we will generate

(Li, Ri] respectively, Li = round(vTi −BLi) and Ri = round(vTi +BRi) (for

interval censored) and Ri =∞ (for right-censored) where we round the

results to the closest visit.

13



Figure 3.2: Examples of Simulated interval-censored observations (top interval-censored,
bottom righ-censored)

3.2 Estimate the Probability Density Function of the Infection Time

Once the interval-censored data is obtained, Braun and Stafford’s method as well

as our proposed method will provide f̂ , an estimate for the probability density

function which we may use to estimate the true survival function

Ŝ(t) =
∫∞
t
f̂(s)ds, t > 0. The simulation will provide a true probability density

function f , an exponential with parameter λ · p. With this we will compare the

estimates to the true p.d.f. function.

3.3 Evaluation of Estimation Error

In order to have a comparison between the two methods. We will repeat the

simulation steps discussed in 3.1 and 3.2 M times for each setting. After we

obtain M estimates of the p.d.f. of the infection time, we will estimate the mean

integrated squared error by,

MISE =

∑M
i=1

∑endOfStudy
t=0 ((f̂ (i)(t)− f(t))2)δt

M

Next we will estimate the mean squared error and bias.

ˆMSE(t) =
1

M

M∑
i=1

(f̂ (i)(t)− f(t))2

14



ˆBias(t) =
1

M

M∑
i=1

(f̂ (i)(t)− f(t))

where f̂ (i)(t) is the estimate for the ith simulated data set and f(t) is the

true p.d.f.

For our investigation of MSE and bias we select 30 equally spaced values

of t for each data set for M = 300 data sets per setting.

15



IV. RESULTS

4.1 Applied Results

Figure 4.1: Estimated Survival Function using proposed method, bandwidth = 2.

Above is the results of our method applied to the STD_Data and std.sextime

data. We recieved this data set from Dr. Tu which was the primary motivator for

this research. The survival estimate models the probability of survival from an

infection where the x-axis depicts time in days and the y-axis depicts the

probability of survival.

Based on the plot above, we can make the following interpretations. At 27

days there is a 75% chance for an individual to not become infected. At 101 days

there is a 50% chance for an individual to not become infected. After 258 days

there is a 25% chance for an individual to not become infected.
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Figure 4.2: Estimated Probability Density Curves: Braun and Srafford’s (dot) and pro-
posed method (line). bandwidth = 2

The survival curves of the two methods are shown above. This indicates

that the two methods have a roughly similar estimate, however as time

progresses there is a large difference due to large amounts of right-censoring.

Last, observe that our model predicts below Braun and Stafford’s. This may be

explained by large numbers of sexual events amongst the patients, some having

as many as 96 unique values resulting in more contributions to the model.

4.2 Simulation Results

In this section we will report the results of the simulation study when comparing

the two methods: Braun and Stafford and the proposed method using the R

software with M = 300 and B = 60. To investigate the differences in the

estimations, we consider the following settings: 15% right-censoring with shape

parameters (λ = .1, p > .1 and λ > .1, p = .1), 30% right-censoring (λ = p = .1) ,
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40% right-censoring (λ = .1, p < .1 and λ < .1, p = .1). The investigation of

right-censoring being a function of λ and p is as follows:

1. λ is a parameter that controls the mean of sexual encounters of the

patients. The larger the value of λ the more sexual encounters patients will

have resulting in lower levels of right-censoring.

2. p is a parameter that controls the likelihood of any given sexual encounter

to be the true infection. The larger the value of p will result in lower levels

of right-censoring.

Now we make the comparisons by computing the MISE, MSE, and

Bias.

4.2(a) MISE Results

Table 4.1: MISE values of two methods. M = 300, n = 100, with parameters of λ and p
to correspond to levels of right-censoring.

% RC MISE-Braun MISE-Ours
15 0.00051612 0.00009678
15 0.00051613 0.00009673
30 0.0002444 0.00013633
40 0.0002102 0.00013865
40 0.0035181 0.0030119

The table shows that our method performs better under all settings.

Observe that as the level of right-censoring increases so does the MISE for both

methods. This phenomena is due to the number of patients dropping out of the

study resulting in larger areas of integration for calculating the patients

contribution to the overall model. Our method includes sexual encounters within

the right-censored observations which results in more accurate contribution from

those patients.
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4.2(b) MSE Results

The mean square error (MSE) is a measure of the average square errors between

the estimator and the true probability density function. The MSE differs from

the MISE by measuring the squared error at one time point t and looks at the

behavior of the estimators throughout the domain. This strategy allows for us to

conclude where within the estimate produces the most error, and the closer the

MSE value at a given t is to zero the better the estimate. Below is the sequence

of tables measuring the MSE and bias for equadistant 30 t values

0, 10, 20, 30, ..., 270 denoted {t1, ..., t30}, M = 300, n = 100, bandwidth = 2 (for

both methods) with Parameters of λ and p to Correspond to Levels of

Right-censoring. for all settings.
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Table 4.2: MSE Comparison of Two Methods with 15% RC.

Time Points MSE-Braun MSE-Ours
t1 0.0000125 0.00000206
t2 0.0000164 0.00000354
t3 0.0000148 0.00000453
t4 0.0000135 0.00000298
t5 0.0000149 0.00000453
t6 0.0000147 0.00000387
t7 0.0000105 0.00000334
t8 0.0000182 0.00000318
t9 0.0000184 0.00000318
t10 0.0000142 0.00000193
t11 0.0000151 0.00000387
t12 0.0000169 0.00000268
t13 0.0000161 0.00000349
t14 0.0000153 0.00000208
t15 0.0000252 0.00000604
t16 0.0000141 0.00000236
t17 0.0000208 0.00000286
t18 0.0000101 0.00000238
t19 0.0000169 0.00000235
t20 0.0000155 0.00000271
t21 0.0000158 0.00000274
t22 0.0000149 0.00000214
t23 0.0000211 0.00000416
t24 0.0000146 0.00000262
t25 0.0000117 0.00000213
t26 0.0000201 0.00000364
t27 0.0000191 0.00000208
t28 0.0000134 0.00000346
t29 0.0000161 0.00000460
t30 0.0000207 0.00000328
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Table 4.3: MSE Comparison of Two Methods with 30% RC. Every entry shifted by x ·
10−5

Time Points MSE-Braun MSE-Ours
t1 0.71665 0.46771
t2 0.77139 0.42679
t3 0.83990 0.53477
t4 0.84300 0.47778
t5 0.89047 0.46862
t6 0.83183 0.50333
t7 0.87151 0.55860
t8 0.70748 0.38003
t9 0.76809 0.40897
t10 0.77523 0.33859
t11 0.86330 0.48245
t12 0.80084 0.45127
t13 0.98349 0.63948
t14 0.60839 0.37209
t15 0.75784 0.44715
t16 0.74965 0.34933
t17 0.95912 0.47519
t18 0.95865 0.57824
t19 0.98602 0.44103
t20 0.65883 0.39628
t21 0.73865 0.49770
t22 0.80541 0.47190
t23 0.77089 0.39490
t24 0.76345 0.38445
t25 0.81866 0.49488
t26 0.78248 0.34798
t27 0.93389 0.54876
t28 0.98702 0.48633
t29 0.75231 0.39036
t30 0.75270 0.42055
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Table 4.4: MSE Comparison of Two Methods with 40% RC. Every entry shifted by x ·
10−5

Time Points MSE-Braun MSE-Ours
t1 0.58682 0.46834
t2 0.72769 0.45232
t3 0.67496 0.51947
t4 0.61314 0.45100
t5 0.79978 0.63243
t6 0.71681 0.32143
t7 0.76795 0.37944
t8 0.63899 0.37794
t9 0.67202 0.47277
t10 0.67810 0.53283
t11 0.74162 0.49132
t12 0.58483 0.37030
t13 0.64721 0.43990
t14 0.73405 0.40619
t15 0.65191 0.51104
t16 0.67810 0.34950
t17 0.73754 0.45884
t18 0.81008 0.39697
t19 0.77916 0.44461
t20 0.62431 0.44467
t21 0.72552 0.42245
t22 0.81502 0.59080
t23 0.72252 0.73403
t24 0.61000 0.45322
t25 0.64766 0.23138
t26 0.71301 0.54330
t27 0.89326 0.52711
t28 0.78908 0.50837
t29 0.64697 0.55309
t30 0.59254 0.41637
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Table 4.5: Bias Comparison of Two Methods with 15% RC. Every entry shifted by x·10−3

Time Points Bias-Braun Bias-Ours
t1 -0.2821 0.2643
t2 -0.2550 -0.2384
t3 -0.2362 -0.2250
t4 -0.2505 -0.2331
t5 -0.2777 -0.2564
t6 -0.2595 -0.2412
t7 -0.2545 -0.2314
t8 -0.2452 -0.2319
t9 -0.2668 -0.2412
t10 -0.2526 -0.2314
t11 -0.2453 -0.2220
t12 -0.2392 -0.2227
t13 -0.2852 -0.2585
t14 -0.2613 -0.2369
t15 -0.2549 -0.2376
t16 -0.2705 -0.2452
t17 -0.2201 -0.2094
t18 -0.2549 -0.2297
t19 -0.2187 -0.2046
t20 -0.2315 -0.2183
t21 -0.2603 -0.2469
t22 -0.2392 -0.2258
t23 -0.2524 -0.2442
t24 -0.2559 -0.2333
t25 -0.2664 -0.2443
t26 -0.2738 -0.2485
t27 -0.2454 -0.2268
t28 -0.2394 -0.2222
t29 -0.2458 -0.2254
t30 -0.2606 -0.4381
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Table 4.6: Bias Comparison of Two Methods with 30% RC. Every entry shifted by x·10−3

Time Points Bias-Braun Bias-Ours
t1 -0.0648 0.0583
t2 -0.0608 -0.0549
t3 -0.0620 -0.0567
t4 -0.0588 -0.0516
t5 -0.06115 -0.0545
t6 -0.0672 -0.0602
t7 -0.0680 -0.0607
t8 -0.0613 -0.0544
t9 -0.0618 -0.0566
t10 -0.0703 -0.0636
t11 -0.0655 -0.0610
t12 -0.0594 -0.0541
t13 -0.0485 -0.0434
t14 -0.0605 -0.0525
t15 -0.0634 -0.0552
t16 -0.0634 -0.0567
t17 -0.0532 -0.0481
t18 -0.0610 -0.0549
t19 -0.0604 -0.0527
t20 -0.0645 -0.0564
t21 -0.0680 -0.0593
t22 -0.0577 -0.0513
t23 -0.0593 -0.0522
t24 -0.0574 -0.0527
t25 -0.0594 -0.0537
t26 -0.0671 -0.0594
t27 -0.0578 -0.0531
t28 -0.0680 -0.0619
t29 -0.0555 -0.0488
t30 -0.0561 -0.0479
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Table 4.7: Bias Comparison of Two Methods with 40% RC. Every entry shifted by x·10−3

Time Points Bias-Braun Bias-Ours
t1 -0.1020 0.0908
t2 -0.0986 -0.0850
t3 -0.1017 -0.0883
t4 -0.0897 -0.0806
t5 -0.0890 -0.0775
t6 -0.1000 -0.0848
t7 -0.0967 -0.0842
t8 -0.1149 -0.1037
t9 -0.0947 -0.0836
t10 -0.0910 -0.0806
t11 -0.0988 -0.0863
t12 -0.1073 -0.0967
t13 -0.1087 -0.0974
t14 -0.0991 -0.0838
t15 -0.1026 -0.0896
t16 -0.1061 -0.0906
t17 -0.0933 -0.0828
t18 -0.0922 -0.0814
t19 -0.0891 -0.0769
t20 -0.1110 -0.0993
t21 -0.1008 -0.0892
t22 -0.1054 -0.0954
t23 -0.0718 -0.0607
t24 -0.0791 -0.0668
t25 -0.0922 -0.0812
t26 -0.0909 -0.0835
t27 -0.0882 -0.0766
t28 -0.1091 -0.0985
t29 -0.0958 -0.0855
t30 -0.0936 -0.0833
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V. DISCUSSION

The purpose of this thesis was to propose a procedure to estimate a survival

function of STD infection time based on interval-censored data with auxiliary

diary information. Without diary information there has been a variety of

methods, including Turnbull’s as well as Braun and Stafford’s mentioned in this

study, to estimate the survival function or p.d.f. based on interval -censored

data. The simulation suggests that utilizing the diary information will result in

our method performing significantly better against Braun and Stafford’s method

in settings mentioned in 4.2. In medical studies whose research practices result in

data being interval censored with auixilary diary information having significant

degrees of right censoring will result in our method performing better but still

leaves room for improvement.

Our method was implemented in R, and the function used to create our

estimate will take a variety of parameters which can adjust the characteristics of

the method. The method we used to simulate data is also intuitive forward

strategy to reflects reality. Given a sequence of sexual events, we know that the

true infection time must come from one of the sexual encounters (given the

patient was truthful when submitting the diary information). Furthermore, we

have shown that changing certain parameters (such as for sexual encounters and

the probability of infection) in the simulation we can still use a parametric

distribution for a true survival function to perform comparisons. Lastly, the R

function that runs our proposed method will be accessible and is intuitive in its

implementation for future data sets that are similar to the STD data provided to

us.
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VI. CONCLUSION AND FURTHER RESEARCH

Based on the simulation results we can make the following remarks:

• Generally, our method performs better than Braun and Stafford’s method.

• Our method has a slightly longer computation time in the event there is

large numbers of sexual events.

• High levels of right censoring will lead to larger margins of error but our

method still will have a better estimate.

In terms of life applications, our study illustrates that a subject’s sexual

behavior will greatly determine the likelihood of an STD infection and should

adhere to safe practices.

Although the method performs, there are still questions that could not be

answered in this investigation as well as general ideas that are worth continuing

for further studies.

• Further investigations to the probability of infection with and without

condom usage for a more accurate method.

• Other types of auxiliary behavioral information that could change the

probability of infection such as condom use.

• The bandwidth used in the kernel estimation is the smoothing parameter

that could be investigated to provide a more accurate estimation.
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APPENDIX SECTION

APPENDIX A: R FUNCTIONS FOR METHODS

A.1 Turnbull’s Algorithm

The set of functions needed to implement Turnbull’s algorithm:

Function cria.tau, takes a data set of interval-censored data (Li, Ri] and

returns a vector of unique end points of Li and Ri.

Function S.ini, will take the tau vector and return a vector of probabilities

of infection at each τi.

Function cria.A, will take the data and tau vector and return the α

matrix where the entries of αij will be 1 if (τj−1, τj] ∈ (Li, Ri] and 0 otherwise.

Function Turnbull, will take the p vector, alpha matrix, data set,

tolerance, and maximum number of iterations and return a matrix with a

column of xvalues and a column of corresponding yvalues.

data$right[is.na(data$right)] <- Inf

cria.tau <- function(data){

l <- data$left

r <- data$right

tau <- sort(unique(c(l,r[is.finite(r)])))

return(tau)

}

S.ini <- function(tau){

m<-length(tau)

ekm<-survfit(Surv(tau[1:m-1],rep(1,m-1))~1,data=data)

So<-c(1,ekm$surv)

p <- -diff(So)
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return(p)

}

cria.A <- function(data,tau){

tau12 <- cbind(tau[-length(tau)],tau[-1])

interv <- function(x,inf,sup)

ifelse(x[1]>=inf

& x[2]<=sup,1,0)

A <- apply(tau12,1,interv,inf=data$left,sup=data$right)

id.lin.zero <- which(apply(A==0,

1, all))

if(length(id.lin.zero)>0)

A <- A[-id.lin.zero,

]

return(A)

}

Turnbull <- function(p,

A, data,

eps=1e-3,

iter.max=200,

verbose=FALSE){

n<-nrow(A)

m<-ncol(A)

Q<-matrix(1,m)

iter <- 0

repeat

{

iter<- iter + 1
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diff<- (Q-p)

maxdiff<-max(abs(as.vector(diff)))

if (verbose)

print(maxdiff)

if (maxdiff<eps

| iter>=iter.max)

break

Q<-p

C<-A%*%p

p<-p*((t(A)%*%(1/C))/n)

}

cat("Iterations

= ", iter,"\n")

cat("Max

difference

= ", maxdiff,"\n")

cat("Convergence

criteria:

Max

difference

< 1e-3","\n")

dimnames(p)<-list(NULL,c("P

Estimate"))

surv<-round(c(1,1-cumsum(p)),digits=5)

right <- data$right

if(any(!(is.finite(right)))){

t <- max(right[is.finite(right)])

return(list(time=tau[tau<t],surv=surv[tau<t]))

}
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else

return(list(time=tau,surv=surv))

}

A.2 Braun and Stafford’s method

Braun and Stafford’s method is applied using the "ICE package" in R. Using the

"ickde" (interval-censored kernel density estimator) function takes in the

following parameters:

I <- A matrix with two columns of left and right end points.

h <- bandwidth

f <- inital estimate of f

m <- number of gridpoints

n.iterations <- maximum number of iterations

x1 <- left most grid point

xm <- right most grid point

right.limit <- artificial right censored value

kernel <- kernel function used for estimation

old <- logical value to indicate conditional expectation value to use

previous iteration density estimate

Function returns a matrix with a column of xvalues and a column of

corresponding yvalues.

estimate <- ickde(I, h, f, m, n.iterations = 10, x1, xm,

right.limit = 1000,kernel="standardnorm", old=TRUE)

A.3 Proposed Method

Our proposed method implemented in R. Listed is the necessary parameters

needed to run the function with corresponding default settings.

data <- takes in the data set (labeled or otherwise) where the entries are

of the form Li (left column) and Ri (right column) where right censored values
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are Ri =∞.

diaryInformation <- contains the corresponding recorded sex times where

the rows correspond to the patient in the rows in data. Empty values should be

recorded as NA.

bw <- bandwidth, which takes the necessary bandwidth for kernel

smoothing [default bw < −1].

endOfStudy <- takes in the last day of the trial studies, also used as an

artifical limit to right censored data [default endOfStudy < −max(tau)].

domx <- domain of x, a desired length for the discritizing of the domain

[default domx < −500].

iter <- iterations, a desired number of iterations [default, iterations

reaching convergance of ε].

kernelFunc <- kernel function, a desired probability distribution used for

the kernel smoothing, use standard r syntax for function [default

kernelFunc < −dnorm "standard normal"].

Function returns a matrix with a column of xvalues and a column of

corresponding yvalues.

Any additional information about the individual functions and variables

are supplied in the comments of the code.

###########################################

# KernelEstimate which will take in the data and auxilary diary

# and condom information to produce a survival function estimate

#

# data: will be an excel file that contains left end points and

# respective right end points for each patient

# NOTE: right censored observations should have right end points

# with the entry "Inf"

#
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# diaryInformation: will contain an excel file that contains the

# the recorded sexual (or events of interest) for each patient

# NOTE: any missing entries should contain the value "NA"

#

# bw (bandwidth) will be the prompted bandwidth for the kernel

# estimation

#

# endOfStudy will contain the value for the last day or length

# of the study

#

# domx will be the length of the domain

#

# iter (iterations)

###########################################

kernelEstimate

<- function(data,diaryInformation,bw,endOfStudy,domx,iter,kernelFunc){

data <- as.data.frame(data)

colnames(data) <- c("left","right")

diary <- diaryInformation

##########################################

# x is the domain vector

##########################################

x <- seq(0,endOfStudy, length = domx)

##########################################

# tau will be the ordered time grid from all the unique end

# points of L_i and R_i in the data

##########################################
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cri.tau <- function(data){

l <- data$left

r <- data$right

tau1 <- sort(unique(c(l,r[is.finite(r)],endOfStudy)))

return(tau1)

}

tau <- cri.tau(data)

###########################################

# Alpha matrix, rows are the observation (intervals) and the columns

# are the tau values.

# Each entry will hold a 1 or a 0 depending if tau sits inside the

# interval of L_i,R_i

###########################################

cria.alpha <- function(data,tau){

tau12 <- cbind(tau[-length(tau)],tau[-1])

interv <- function(t,inf,sup)

ifelse(t[1]>=inf & t[2]<=sup,1,0)

A1 <- apply(tau12,1,interv,inf=data$left,sup=data$right)

return(A1)

}

A <- cria.alpha(data,tau)

###########################################

# tauindex will give the index of L_i in the tau vector

###########################################

tauadjindex <- function(tau,data)

{

p <- rep(0, times = nrow(data))
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for(i in 1:nrow(data))

{

index <- 1

while(tau[index] <= data[i,1])

{

p[i] <- index

index <- index + 1

if(index == length(tau)+1){break}

}

}

return(p)

}

tauindex <- tauadjindex(tau,data)

###########################################

# tauDomainIndex will give the index location of each tau in the

# domain vector.

###########################################

tauAdjDomainIndex <- function(x,tau)

{

temp <- rep(0, times = length(tau))

for(i in 1:length(tau))

{

temp[i] <- ceiling(tau[i]/x[length(x)]*length(x))

}

return(temp)

}

tauDomainIndex <- tauAdjDomainIndex(x,tau)
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###########################################

# intindex (interval index) will give the index location for each

# interval for L_i and R_i.

#########################################

intervaladjindex <- function(data,x)

{

p <- matrix(1, nrow = nrow(data), ncol = 2)

for(k in 1:nrow(data))

{

i <- 1

while((x[i] <= data[k,2] || data[k,2] == "Inf") && i <= length(x)){

if(x[i] <= data[k,1]){

p[k,1] <- i

}

if(data[k,2] == "Inf"){

p[k,2] <- length(x)

}

else{

p[k,2] <- i

}

i <- i+1

}

}

return(p)

}

intindex <- intervaladjindex(data,x)

######################################

# diaryAlpha will be a matrix where the rows are the individual
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# observation and the columns are the sequence of taus

# Each entry will contain the C_ij coefficient, the number of diary

# events that occur in the interval ( tau_(j-1),tau_j ]

######################################

diaryalpha <- function(tau,diary,A,tauindex,data)

{

p <- matrix(0, nrow = nrow(A), ncol = ncol(A) + 1)

for(i in 1:nrow(A))

{

sum <- 0

j <- 1

taui <- tauindex[i] + 1

while(!(is.na(diary[i,j])))

{

if(diary[i,j] >= data[i,1] && diary[i,j] <= data[i,2]){

if(diary[i,j] <= tau[taui] && diary[i,j] != data[i,1])

{

sum <- sum + 1

p[i,taui] <- p[i,taui] + 1

}

if(j+1 == ncol(diary)+1){break;}

if(!(is.na(diary[i,j+1])))

{

if(diary[i,j] > tau[taui])

{
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j <- j - 1

}

if(diary[i,j+1] > tau[taui])

{

taui <- taui+1

}

}

}

if(j+1 == ncol(diary)+1){break;}

j <- j + 1

}

p[i,] <- p[i,]/sum

}

return(p)

}

diaryA <- diaryalpha(tau,diaryInfo,A,tauindex,data)

#########################################

# initf (initial function guess) will contain the initial estimate

# of the probability density function f for the iterative procedure

##########################################

initialguess <- (1/length(x))

guess <- rep(initialguess, times = length(x))

##########################################

# function that produces a vector sum of the conditional contribution of

# the diaryinformation for each (L_i,R_i]
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##########################################

sumConditional <- function(diaryA,fit,x){

sumVector <- rep(0, times = nrow(diaryA))

for(i in 1:nrow(diaryA))

{

sum <- 0

taui <- tauindex[i] + 1

for(j in intindex[i,1]:intindex[i,2])

{

if((rowSums(diaryA)[i] != "NaN" || !(is.na(rowSums(diaryA)[i])))

&& taui <= ncol(diaryA)){

if(diaryA[i,taui] != 0){

sum <- sum + fit[j]*diaryA[i,taui]*(tau[taui]-tau[taui-1])

/(tauDomainIndex[taui]-tauDomainIndex[taui-1])

}}

if(j != length(x)){

if(x[j+1] > tau[taui] && taui < ncol(diaryA)){taui <-taui+1}

}

}

sumVector[i] <- sum

}

return(sumVector)

}

###########################################

# function that shifts the kernel values to fit the corresponding

# previous iteration function for the integrated value in the

# estimate

##########################################
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kernelfunc <- function(k,kern,itf,domx)

{

temp <- kern

for(i in 1:length(itf))

{

temp[domx+1 - k + i] <- kern[domx+1 - k + i]*itf[i]

}

return(temp)

}

###########################################

# the estimate function that takes in each necessary parameter to

# produce the most updated iteration of the estimate f

###########################################

hat <- function(x,fit,diaryA,data,intindex,tauindex,

tau,bw,tauDomainIndex,kernelFunc){

Kern <- rep(0, times = 2*length(x) + 1)

x1 <- seq(0,2*endOfStudy, length = c(2*length(x) + 1))

for(i in 1:(2*length(x)+1))

{

Kern[i] <- kernelFunc((x1[length(x) + 1] - x1[i])/bw)

}

sumVect <- sumConditional(diaryA,fit,x)

estimate <- rep(0, times = length(x))

for(k in 1:length(x)){

kernel <- kernelfunc(k,Kern,fit,length(x))

for(t in 1:(length(tau)-1)){

integralSum <- 0

left <- abs(tauDomainIndex[t] - k)

40



right <- abs(tauDomainIndex[t+1] - k)

if(x[k] > tau[t] && x[k] <= tau[t+1]){

integralSum <- sum(kernel[(length(x) + 1-left):

(length(x) + 1+right)])}

else if(x[k] >= tau[t+1]){

integralSum <- sum(kernel[(length(x) + 1-left):

(length(x) + 1-right)])}

else if(x[k] < tau[t]){

integralSum <- sum(kernel[(length(x) + 1+left):

(length(x) + 1+right)])}

pvalue <- 0

for(i in 1:nrow(diaryA))

{

if(k > intindex[i,1] && k <= intindex[i,2]){

if(rowSums(diaryA)[i] != "NaN")

{

if(diaryA[i,t+1] != 0){

pvalue <- pvalue + diaryA[i,t+1]/sumVect[i]

}

}

else

{

pvalue <- pvalue + 1

}

}

}

estimate[k] <- estimate[k] + integralSum*pvalue*(tau[t+1] - tau[t])

/(tauDomainIndex[t+1]- tauDomainIndex[t])

}
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}

estimate <- estimate/(bw*nrow(data))

return(estimate)

newestimate

<- hat(x,guess,diaryA,data,intindex,tauindex,tau,bw,tauDomainIndex,kernelFunc)

##################################################

# The iterative process for estimating f

###############################################

for(i in 1:iter)

{

newestimate

<- hat(x,newestimate,diaryA,data,intindex,tauindex,tau,bw,

tauDomainIndex,kernelFunc)

}

return(list(x=x,y=newestimate))

}
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APPENDIX B: R FUNCTIONS FOR SIMULATION

A.4 Simulation Algorithm

Data simulation algorithm produced in R with the following parameters:

numObservations <- takes in the total number of observations (patients).

endOfStudy <- takes in the last xvalue of the domain.

probability <- takes in the probability of infection at any given sexual

event. Parameter used to generate the true survival function.

lambda <- parameter used to control the average number of sexual events

bi per patient. Parameter used to generate the true survival function.

trialLength <- used to give distances per visit of {v1, ..., vN} for N visits.

itervalSize <- used to control the average size of the intervals B for the

interval-censored data.

sexEvents <- will contain a vector where each entry corresponds to the

number of sexual encounters per patient.

diaryInfo <- contains a matrix where each row corresponds to a patient

and each entry contains a time value of a sexual encounter.

condomInfo <- contains a matrix where each entry corresponds to a

patient and whether or not a condom was used during the sexual encounter.

Further details of the simulation algorithm are described in the simulation

chapter.

#DATA SAMPLING ALGORITHM

numObservations <- 100

endOfStudy <- 300

lambda <- .05

probability <- .1

maxSexEvents <- 300

trialLength <- 15
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intervalSize <- 60

sexEvents <- rpois(numObservations,lambda*endOfStudy)

diaryInfo <- matrix(, nrow = numObservations, ncol = max(sexEvents))

condomInfo <- matrix(, nrow = numObservations, ncol = max(sexEvents))

for(i in 1:numObservations)

{

diaryInfoTemp <- sort(sample(1:endOfStudy,sexEvents[i]))

for(j in 1:max(sexEvents))

{

diaryInfo[i,j] <- diaryInfoTemp[j]

condomInfo[i,j] <- round(runif(1,0,1))

}

}

#infectionTimes <- function(diaryInfo, condomInfo)

#{

trueInfection <- matrix(0,nrow = nrow(diaryInfo), ncol = 1)

for(i in 1:nrow(diaryInfo))

{

j <- 1

while(!(is.na(diaryInfo[i,j])))

{

if(rbinom(1,1,probability) == 1)

{trueInfection[i] <- diaryInfo[i,j]

break}

else{j <- j+1}

}

if(trueInfection[i] == 0)

{trueInfection[i] <- sample(diaryInfo[i,j-1],1)
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#Useless Patient Count Occurs Here

uselessPatients <- uselessPatients + 1

}

if(is.na(diaryInfo[i,1]))

{

trueInfection[i] <- round(runif(1,1,endOfStudy))

}

}

# return(trueInfection)

#}

#trueInfection <- infectionTimes(diaryInfo,condomInfo)

#intervalCensoring <- function(trueInfection,endOfStudy,trialLength,intervalSize)

#{

data <- matrix(0, nrow = nrow(trueInfection), ncol = 2)

partitionSize <- round(endOfStudy/trialLength)

c <- matrix(0, nrow = partitionSize)

for(i in 1:partitionSize)

{c[i+1] <- c[i] + trialLength}

for(i in 1:nrow(trueInfection))

{

ci <- sample(c,1)

B <- intervalSize/trialLength

if(ci >= trueInfection[i]){

intervalCenter<-ceiling(trueInfection[i]/15) + 1

li <- intervalCenter - sample(1:min(B,intervalCenter-1),1)

ri <- intervalCenter + sample(0:min(B,partitionSize-intervalCenter),1)

#while( li <= 0 || ri > partitionSize)

#{

# li <- intervalCenter - sample(1:B,1)
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# ri <- intervalCenter + sample(0:B,1)

#}

data[i,1] <- c[li]

data[i,2] <- c[ri]

}

else{

intervalCenter<-ceiling(trueInfection[i]/15) + 1

li <- intervalCenter - sample(1:min(B,intervalCenter-1),1)

data[i,1] <- c[li]

data[i,2] <- Inf

}

while(data[i,1] ==0 && data[i,2] == Inf)

{

diaryInfoTemp <- sort(sample(1:endOfStudy,sexEvents[i]))

for(j in 1:max(sexEvents))

{

diaryInfo[i,j] <- diaryInfoTemp[j]

condomInfo[i,j] <- round(runif(1,0,1))

}

j <- 1

while(!(is.na(diaryInfo[i,j])))

{

if(rbinom(1,1,probability) == 1)

{trueInfection[i] <- diaryInfo[i,j]

break}

else{j <- j+1}

}

if(trueInfection[i] == 0)

{trueInfection[i] <- sample(diaryInfo[i,j-1],1)
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}

if(is.na(diaryInfo[i,1]))

{

trueInfection[i] <- round(runif(1,1,endOfStudy))

}

ci <- sample(c,1)

B <- intervalSize/trialLength

if(ci >= trueInfection[i]){

intervalCenter<-ceiling(trueInfection[i]/15) + 1

li <- intervalCenter - sample(1:min(B,intervalCenter-1),1)

ri <- intervalCenter + sample(0:min(B,partitionSize-intervalCenter),1)

#while( li <= 0 || ri > partitionSize)

#{

# li <- intervalCenter - sample(1:B,1)

# ri <- intervalCenter + sample(0:B,1)

#}

data[i,1] <- c[li]

data[i,2] <- c[ri]

}

else{

intervalCenter<-ceiling(trueInfection[i]/15) + 1

li <- intervalCenter - sample(1:min(B,intervalCenter-1),1)

data[i,1] <- c[li]

data[i,2] <- Inf

}

}

}

# return(data)

#}
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#data <- intervalCensoring(trueInfection,endOfStudy,trialLength,intervalSize)
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