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TRANSITION FROM HYPERBOLICITY TO ELLIPTICITY FOR
A p-SYSTEM WITH VISCOSITY

MARTA STRANI

Abstract. In this article we consider a viscous regularization of a p-system

with a Van der Waals pressure law, which presents both hyperbolic and elliptic
zones. Even if the purely hyperbolic Van der Walls system is strongly ill-posed,

we prove that the solutions of the regularized equation exist and experience

a transition from ellipticity to hyperbolicity, i.e. solutions issued from initial
data in the elliptic zone will enter the hyperbolic zone at some time T > 0,

and viceversa.

1. Introduction

We study a viscous regularization of a one dimensional p-system with a Van der
Waals pressure law,

∂tu+ ∂xv = 0,

∂tv + ∂x(p(u)) = ε∂2
xv,

(1.1)

where (u, v) ∈ R2 depend on time t ≥ 0 and x ∈ R and the artificial viscosity
parameter ε > 0 is thought to be small; the Van der Waals pressure law is given by

p(u) = (u2 − 1)u. (1.2)

Throughout this article we refer to system (1.1) as a Van der Walls p-system with
viscosity.

1.1. Van der Waals gases. If ε = 0, system (1.1) corresponds to the compressible
Euler equations in Lagrangian variables,

∂tu+ ∂xv = 0,

∂tv + ∂x(p(u)) = 0,
(1.3)

where u > 0 is the specific volume and v ∈ R is the velocity.
The pressure law is not assumed to be everywhere growing: indeed, because of

the specific choice (1.2) it holds

p′(u) < 0 for |u| < 1/
√

3. (1.4)

Condition (1.4) implies in particular that for some specific volumes the first-order
operator in (1.3) is not hyperbolic, so that system (1.3) presents both hyperbolic
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and elliptic zones; in particular, local-in-time existence holds true a priori only for
analytical data [2]. However, system (1.3) admits the formal conservation law

E(u) =
∫

T

1
4
|u(x)|4 − 1

2
|u(x)|2 +

1
2
|v(x)|2 dx ≡ constant. (1.5)

Métivier [3] mentioned how this conservation law can be used for sequences of
frequency-truncated solutions.

1.2. Regularization. In order not to restrict to analytical data and solutions, or
to frequency-truncated equations, we may regularize (1.1). Of course, the viscous
regularization done in (1.1) has the effect of modifying the conservation law; in this
sense, our regularization is not energy-preserving.

By contrast, it allows to keep the real character of the solution (as opposite, for
example, to a dispersive regularization that would instead maintain the conservation
law but would give complex solutions), and our goal is to prove that the behavior of
solutions here is qualitatively similar to the expected behavior in phase transition.
More precisely, we want to show that system (1.1) displays some properties of
systems describing Van der Walls gases (as, for instance, transition from hyperbolic
to elliptic zones), making it a good approximation of the Euler equations and a good
model system for the study of phase transitions.

1.3. Main results. To prove that solutions to (1.1) experience a phase transition,
first, in section 2, we present a local in time existence result for time of the order
O(ε), hence proportional to the viscosity parameter. As it was in [6], we expect
that a local in time existence result for time of the order one will be achievable only
if considering high frequencies initial data. However, such a result is beyond the
scope of the paper.

Once the existence of a Sobolev solution (at least for small time), is proved, we
turn to the real core of the paper: in section 3 we show that, if a solution to (1.1)
exists for ulterior times, then it experiences a phase transition. More precisely, we
show that, if for some time t0 ≥ 0 the solution belongs to the elliptic zone for almost
every x ∈ R (the precise definition will be given later on in the paper), then there
exists a time t1 > t0 such that u(t1, x) belongs to the hyperbolic zone for almost
every x ∈ R. What is more, we also show that, once in the hyperbolic zone, the
solution will eventually leave it again for some time t2 > t1, meaning that u(t2, x)
will belong to the elliptic zone again for almost every x ∈ R. These results are
summarized in Theorem 3.7, the main result of this paper.

The technique we use is a localization of our system around a certain point
x0 ∈ R such that u(t0, x0) belongs to the elliptic (hence unstable) zone (see also
[5]).

This two-phase dynamics is reminiscent of the phenomenon of metastability,
in which the speed of convergence of solutions towards their stable asymptotic
configuration depends on the viscosity parameter (see, among others [1, 4] and
the references therein). These two phenomena, metastability and transition from
hyperbolicity to ellipticity, have in common the fact that the solutions exhibit a
certain stable behavior before they converge to the asymptotic limit in the case of a
metastable behavior, or enter the elliptic (then unstable) zone in the case of phase
transitions.
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2. Existence results for times of order O(ε)

We start our analysis by proving the following theorem, which gives an existence
result of a Sobolev solution over time intervals of the order ε. We stress that this is
exactly what one should expect, having introduced into a strongly ill posed system
like (1.3) a regularizing term of the order O(ε).

Theorem 2.1. Given (u0, v0) ∈ H1(R) × H1(R), there exists T := Tε > 0 such
that the initial value problem

∂tu+ ∂xv = 0,

∂tv + ∂xp(u) = ε∂2
xv,

(u, v)(0, x) = (u0, v0)(x),
(2.1)

has a solution (u, v) ∈ L∞([0, T ], H1(R)).

Proof. Starting from the system

∂tu+ ∂xv = 0,

∂tv + ∂xp(u) = ε∂2
xv,

and by taking the L2 scalar product with (u, v), we obtain

1
2
∂t(|u|2L2 + |v|2L2) = (∂xv, u)L2 + (−∂xp(u), v)L2 + (ε∂2

xv, v)L2

= (∂xv, u)L2 + (−∂xp(u), v)L2 − ε|∂xv|2L2

≤ (|u|L2 + |p(u)|L2)|∂xv|L2 − ε|∂xv|2L2

≤ 1
4ε

(|u|L2 + |p(u)|L2)2,

(2.2)

where we used Young’s inequality. In particular, because of the explicit form of
p(u), we have, by Sobolev’s embedding

|p(u)|L2 ≤ |u|L2 |u|L∞ ≤ |u|2H1 ,

and we thus need and estimate for |∂xu|L2 . By differentiating the original system
and by taking the L2 scalar product with (∂xu, ∂xv), we obtain

1
2
∂t(|∂xu|2L2 + |∂xv|2L2) ≤ |∂xu|L2 |∂2

xv|L2 + |∂xp(u)|L2 |∂2
xv|L2 − ε|∂2

xv|2L2

≤ 1
4ε

(|∂xu|L2 + |∂xp(u)|L2)2,
(2.3)

where we used again Young’s inequality. We now observe that

|∂xp(u)|L2 = |p′(u)∂xu|L2 = |u(u− 1)∂xu|L2 ≤ |u|2L∞ |∂xu|L2 + |∂xu|L2 ,

so that, summing (2.2) and (2.3) we end up with

1
2
∂t(|u|2H1 + |v|2H1) ≤ C

4ε
(|u|2L2 + |p(u)|2L2 + |u|4L∞ |∂xu|2L2 + |∂xu|2L2)

≤ C

4ε
(|u|2L2 + |p(u)|2L2 + |u|4L∞(|u|2L2 + |∂xu|2L2) + |∂xu|2L2)

.
C

ε
(1 + |u|4L∞)|u, v|2H1 .
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Let us now set y(t) := |u, v|2H1 , that solves

∂ty .
1
ε

(1 + y2)y,

implying

y(t) . y(0) +
1
ε

∫ t

0

(1 + y2(s))y(s) dt.

In particular, if |y(t)| ≤ 1, then, by Gronwall,

sup
t
|y(t)| . |y(0)|

(
et/ε − 1

)
.

The condition |y(t)| ≤ 1 gives a constrain on the final time Tε; indeed, it reads

|y(0)|et/ε ≤ 1 + |y(0)| =⇒ t . ε log
(1 + |y(0)|
|y(0)|

)
,

and we have proven the existence of a solution u ∈ L∞t H
1
x up to times of order

O(ε). �

Remark 2.2. Let us stress that, even if considering initial data with small (with
respect to ε) amplitude, i.e. initial data of the form

u0(x) = εα a(x) and v0(x) = εα b(x),

for some (a, b) ∈ H1(R) and α > 0, the existence time Tε is of the order ε as well.
As already mentioned, this is consistent with the strongly ill posed nature of the
hyperbolic system (1.3): since we regularized it with a viscous term of “ amplitude”
ε, we thus expect to have a stable behavior only for short times. In particular, when
ε→ 0, we recover the results of [2], where it is proved that one needs more regular
data to prove a local-in-time existence result.

As mentioned in the introduction, we expect to be able to achieve an existence
result for O(1) time intervals only if considering highly oscillation initial data, i.e.
initial data of the form

u0(x) = a(
x

εα
) and v0(x) = b(

x

εα
). (2.4)

However, the investigation of such a result is beyond the scope of the present paper.

3. Transition from ellipticity to hyperbolicity

The goal of this section is to prove the following Claim C:
Solutions to (1.1) issued from initial data belonging to the elliptic
zone will leave the elliptic zone for some time t̄ > 0

3.1. Symbol. The first issue to be cleared is what we exactly mean when we say
that a differential operator is either hyperbolic or elliptic, and consequently what
means that a solution to (1.1) belongs to the elliptic (or to the hyperbolic) zone.
This definition can be given through the concept of the symbol of a differential
operator.

We start with the case ε = 0; the eigenvalues associated with the first order
differential operator in (1.3) are given by λ± =

√
p′(u). In particular, if p′(u)

is negative, then the eigenvalues are not real, meaning that the operator is not
hyperbolic. Motivated by this, we can thus give the following definition.
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Definition 3.1. A solution u to (1.1) belongs to the elliptic zone at time t̄ > 0 if
p′(u(t̄, x)) < 0 for almost every x ∈ R.

When considering the regularized version of (1.3), i.e. when considering system
(1.1), we firstly argue that the solution to system (1.1) qualitatively behaves, at
least for small times, as the solution of the constant coefficient system

∂tu+ ∂xv = 0,

∂tv − t∂xu = ε∂2
xv,

(3.1)

where, essentially, we made the approximation p′(u) ∼ −t+ o(t2) for t ∼ 0.
When computing the symbol A associated to the equation (3.1) we have

A =
(

0 iξ
−itξ εξ2

)
.

In this case negativity of the symbol (or, more precisely, negativity of at least one
of the eigenvalues) indicates ellipticity of the system, potentially corresponding to
a growth (hence, to an instability) for the solution. We have

λ±(ξ, t) = εξ2 ±
√
ε2ξ4 + 4tξ2,

and λ+(ξ, t) > 0 while λ−(ξ, t) < 0 for all t > 0; we thus expect that, as soon as
t > 0, the solution will start to grow.

Remark 3.2. If we consider characteristic frequencies that are highly oscillating,
i.e. if considering ξ ∈ Z/ε, the eigenvalues λ± reads

λ±(ξ, t) =
ξ2

ε
(1±

√
1 +

4t
ξ2

),

where we used the fact that relevant frequencies are now large; that is, |ξ| ∼ 1/ε.
While on the one side we still have λ(ξ, t)+ > 0 for all t > 0, on the other hand, if
we expand the square root for ξ large we have

λ−(ξ, t) ∼ ξ2

ε
(− 2
ξ2

+
t

2ξ4
).

In particular, λ− becomes positive for t > 4ξ2; hence, if considering initial data
which are highly oscillating (as in (2.4)), we expect the solution to stop to grow
for t > 4ξ2, and we thus expect to be able to prove an existence results for time
interval that do not depend on ε, as we already stressed in Remark 2.2.

When considering the original system (1.1), the symbol reads

A =
(

0 iξ
p′(u)iξ εξ2

)
,

and we have

λ±(ξ, t, x) = εξ2 ± εξ2
√

1− 4p′(u)
ε2ξ2

.

In particular, if p′(u(0, x)) < 0 (that is, if the initial datum belongs to the elliptic
zone), then λ±(ξ, 0, x) ∈ R and λ−(ξ, 0, x) < 0 for all x ∈ R.

Heuristically, what we expect for the dynamics of (1.1) is the following: starting
with an initial datum u0 in the elliptic zone (i.e. such that, following the definition
3.1, p′(u0(x)) < 0 for almost every x ∈ R), as soon as t > 0 we have a growth for
the solution (dictated by the negative sign of λ−). However, if u starts to grow,
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p′(u) grows as well, and we expect that such a growth will led to the existence of a
time t̄ > 0 such that p′(u(t̄, x)) is positive, thus leading to the proof of Claim C.

3.2. Transition from the elliptic to the hyperbolic zone. As already men-
tioned, our goal is to prove Claim C. To do so, the strategy we want to follow is a
local analysis of system (1.1) around a certain point (t0, x0) to be chosen appropri-
ately (see also [5]).

Choice of the initial datum. we choose the initial datum u(0, x) = u0(x) such
that

p′(u0(x)) < 0, for almost every x ∈ R,

that is, we are starting with an initial configuration belonging to the elliptic zone.

Remark 3.3. We notice that, because of the explicit form of the pressure given in
(1.2), a function u belongs to the elliptic zone at a certain time t̄ ≥ 0 if |u(t̄, x)| <
1/
√

3; hence, in this specific case (see Figure 1) the initial datum u0 will be chosen
so that

|u0(x)| < 1/
√

3 for almost every x ∈ R.

Localization. As to be as general as possible, we analyze the behavior of the
solution to (1.1) at a fixed time t0 ≥ 0 where the solution u(t0, x) belong to the
elliptic zone for almost every x (we stress that t0 = 0 is only a subcase of this
analysis). We thus localize around a point x0 ∈ R such that p′(u(t0, x0)) < 0,
that is |u(t0, x0)| < 1/

√
3 is in the elliptic zone, and we restrict our analysis in a

certain neighborhood of x0, named here Bδ(x0), δ > 0 (see Figure 1). In particular,
because of the continuity of the pressure p there holds

p′(u(t0, x)) < 0 ∀ x ∈ Bδ(x0).

Figure 1. Choice of initial configuration when p(u) = (u2 − 1)u:
|u(t0, x)| < 1/

√
3 for almost every x ∈ R. The solution at time

t0 belongs to the elliptic zone. The localization is done around a
generic point x0 such that u(t0, x0) < 1/

√
3.
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3.2.1. The solution leaves the elliptic zone: a local analysis. Going further, we
choose x0 such that the following assumption is satisfied (see again Figure 1)

(H0) ∂xu(t0, x) < 0 and ∂2
xu(t0, x) < 0 for all x ∈ Bδ(x0).

We stress that the case ∂xu(t0, x), ∂2
xu(t0, x) > 0 is completely symmetric.

Our goal is to prove that, as soon as time increases, the solution leaves the elliptic
zone; more precisely, we want to prove that here exists a time t1 > t0 such that
p′(u(t1, x)) > 0 for almost every x ∈ R.

To this aim, let us consider the time interval [t0, t0 + εT ], with T > 0 to be
determined and ε � 1 fixed. By differentiating the first equation in (1.1) with
respect to x, and by using the equation for the variable v we obtain

∂t(∂xu) +
1
ε
p′(u)∂xu = −1

ε
∂tv.

In particular, if we consider ∂tv as a small source in the equation, locally around
x0 and for all t ∈ [t0, t0 + εT ] we have

∂xu(t, x0) = exp
(
−
∫ t

t0

p′(u(s, x0))
ε

ds
)

)∂xu(t0, x0)

− 1
ε

∫ t

t0

exp
(
−
∫ s

t0

p′(u(s′, x0))
ε

ds′
)
∂tv(s, x0) ds.

(3.2)

Let us now make the following a priori assumption.

(H1) Let x0 satisfy ∂tv(t, x0) < 0 and |∂tv(t, x0)| ≤ h1 for some h1 > 0 and for
all t ∈ [t0, t0 + εT ].

Note that assumption (H1) is reasonable; indeed, from the equation for v we have,
for all x ∈ Bδ(x0)

∂tv(t0, x) = ε∂2
xv(t0, x)− p′(u(t0, x))∂xu(t0, x),

which is in fact negative for small ε and because of the choice of x0. We will see
later on that the assumption is in fact satisfied.

Because of assumption (H1) and recalling that p′(u(t, x0)) < 0 and (3.2), we
obtain

∂xu(t, x0) = exp
(∫ t

t0

|p′(u(s, x0))|
ε

ds
)
∂xu(t0, x0)

− 1
ε

∫ t

t0

exp
(∫ s

t0

|p′(u(s′, x0))|
ε

ds′
)
∂tv(s, x0) ds,

which implies

|∂xu(t, x0)|

≥ exp
(∫ t

t0

|p′(u(s, x0))|
ε

ds
)
|∂xu(t0, x0)|

− 1
ε

∫ t

t0

exp
(∫ s

t0

|p′(u(s′, x0))|
ε

ds′
)
|∂tv(s, x0)| ds

≥ exp
(∫ t

t0

|p′(u(s, x0))|
ε

ds
)[
|∂xu(t0, x0)| − 1

ε
|∂tv(s, x0)|(t− t0)

]
.

(3.3)
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To obtain some informations on p′(u(s, x0), we use its Taylor expansion around t0.
We have

p′(u(t, x0)) = p′(u(t0, x0)) + ∂tp
′(u(t, x0))|t=t0(t− t0)

= p′(u(t0, x0)) + p′′(u(t0, x0))∂tu(t0, x0)(t− t0)

= p′(u(t0, x0))− p′′0∂xv(t0, x0)(t− t0),

(3.4)

with notation p′′(u(t0, x0)) = p′′0 < 0.
We now require the following assumption on ∂xv(t, x0).
(H2) Let x0 satisfy |∂xv(t, x0)| < c1 for all t ∈ [t0, t0 + εT ] with c1 such that

c1|p′′0 | ≤ |p′(u(t0, x0))|. (3.5)

From (3.4) we have

p′(u(t, x0))− p′(u(t0, x0)) = −p′′0∂xv(t0, x0)(t− t0),

which by assumption (H2) implies

|p′(u(t, x0))− p′(u(t0, x0))| ≤ |p′′0 ||∂xv(t0, x0)|(t− t0)

≤ |p′(u(t0, x0))|(t− t0).

Since |p′(u(t, x0))− p′(u(t0, x0))| > |p′(u(t0, x0))| − |p′(u(t, x0))| we end up with

|p′(u(t, x0))| ≥ (1− t+ t0)|p′(u(t0, x0))|.

In particular, from (3.3),

|∂xu(t, x0)|

≥ exp
(1− t+ t0

ε
|p′(u(t0, x0))|(t− t0)

)(
|∂xu(t0, x0)| − 1

ε
|∂tv(t, x0)|(t− t0)

)
,

so that, setting p′0 := p′(u(t0, x0)), in t = t0 + εT we have

|∂xu(t0 + εT, x0)| ≥ eT |p
′
0|(|∂xu(t0, x0)| − h1T ) ≥ |∂xu(t0, x0)|, (3.6)

where the first inequality in (3.6) holds provided T < 1/ε is chosen small enough.
We can summarize the previous statements in the following result.

Proposition 3.4. Let (u, v) be the solution to (1.1) and let us fix t0 ≥ 0 such that

p′(u(t0, x)) < 0, for almost every x ∈ R.

Let also fix x0 ∈ R such that hypotheses (H0)–(H2) are satisfied. Then

∂t(∂xu(t, x)) > 0, for all x ∈ Bδ(x0) and for all t ∈ [t0, t0 + εT ].

Essentially, Proposition 3.4 and in particular the lower bound (3.6) prove that the
space derivative of the solution u is increasing in time, locally around x0 (see Figure
2). Then the profile of the solution becomes steeper and steeper for x ∈ Bδ(x0),
and we expect that, because of such behavior, the solution will actually leave the
elliptic zone, that is we expect to have

p′(u(t0 + εT, x)) > 0 for almost every x ∈ R,

provided T to be chosen appropriately.
To prove such a claim, let us see what happens to u locally around x0 and for

t = t0 + εT . We have

u(t0 + εT, x) = u(t0 + εT, x0) + ∂xu(t0 + εT, x0)(x− x0)
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Figure 2. The dotted line is the profile of u(t0, ·); since (3.6)
implies that the space derivative of u is increasing in time, we
expect that, at least locally around x0, there exists a time T > 0
such that the profile of the solution for t = t0 + εT will be as
depicted here.

+
∫ 1

0

(∂2
xu)(t0 + εT, (1− s)x0 + sx0)(1− s)(x− x0)2 ds,

Since u(t0 +εT, x0) > 0, ∂xu(t0 +εT, x) < 0 and ∂2
xu(t0 +εT, x) < 0 for x ∈ Bδ(x0),

while 1− s < 0 for s ∈ (0, 1), we have

|u(t0 + εT, x)| ≥ |u(t0 + εT, x0)− δ|∂xu(t0 + εT, x0)||
≥ δ|∂xu(t0 + εT, x0)|

≥ δeT |p
′
0|(|∂xu(t0, x0)| − h1T )

for all x ∈ Bδ(x0), where we used (3.6) to bound |∂xu(t0 + εT, x0)|. Since we want
to prove that the solution leaves the elliptic zone, we choose T > 0 such that

|u(t0 + εT, x)| > (p′)−1(0),

that is, we choose T > 0 in such a way the following inequality is satisfied

δeT |p
′
0|(|∂xu(t0, x0)| − h1T ) > (p′)−1(0). (3.7)

Note that, in the case of a pressure law of the form (1.2), (p′)−1(0) = 1/
√

3.
To solve (3.7) as a function of T we have to study the behavior of the function

f(T ) := eT |p
′
0|(|∂xu0| − h1T ),

where |∂xu0| := |∂xu(t0, x0)|, |p′0| and h1 are positive constant. We have
• f(0) = |∂xu0|,
• limT→+∞ f(T ) = −∞;
• limx→−∞ f(T ) = 0.

Moreover

Tmax =
|∂xu0|
h1

− 1
p′0
, f(Tmax) =

h1

p′0
e

p′0|∂xu0|−h1
h1 ,
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Tmax → |∂xu0|/h1, f(Tmax)→ +∞ as p′0 increases.

Hence, if f(0) := |∂xu0| > (p′)−1(0)
δ , there will always exists T ∗ > 0 such that (3.7)

is satisfied for all T < T ∗ (see Figure 3).

Figure 3. Function f(T ) when Tmax > 0: when |∂xu0| >
(p′)−1(0)/δ and (3.7) is satisfied for all T < T ∗ (left), when
|∂xu0| < (p′)−1(0)/δ and (3.7) is satisfied for all T ∗1 < T < T ∗2
(right).

Remark 3.5. We observe that, if |∂xu0| < (p′)−1(0)
δ , we can prove that there exist

T ∗1 > 0 and T ∗2 > 0 such that (3.7) is satisfied for all T ∗1 < T < T ∗2 (see Figure 3).
We also notice that Tmax > 0 if and only if |∂xu0| > h1/|p′0|; however, if Tmax is

negative (Figure 4), f(Tmax) will still be positive but in this case we have to require
condition

|∂xu0| >
(p′)−1(0)

δ
to be satisfied (otherwise, we would have no positive solutions to the inequality
(3.7), as shown in Figure 4).

To summarize, what we have proven so far is the following:
• We start the analysis at time t0 ≥ 0, where the solution belongs the elliptic

zone (to simplify, one may think that t0 = 0 and the initial datum satisfies
p′(u(0, x)) < 0 for almost every x ∈ R.)
• We localize around a certain point x0 such that H0 -1-2 hold and we see

that, at least locally around x0, the derivative of u is growing in time, that
is there exists T > 0 such that

|∂xu(t0 + εT, x)| > |∂xu(t0, x0)|, for all x ∈ Bδ(x0). (3.8)

• We use property (3.8) to prove that

|p′(u(t0 + εT, x))| > 0, for all x ∈ Bδ(x0),

provided T to be chosen less than T ∗. In particular, the solution at time
t = t0 + εT belongs to the hyperbolic zone, at least locally around x0.

We have a transition from the elliptic to the hyperbolic zone during the time
interval [t0, t0 + εT ]. In particular, since x0 can be chosen arbitrarily, we expect
the profile of u to evolve in the time interval [t0, t0 + εT ] as depicted in Figure 5.
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Figure 4. Function f(T ) when Tmax < 0. Note that T ∗ is positive
if and only if |∂xu0| > (p′)−1(0)/δ.

Figure 5. Transition from the elliptic to the hyperbolic zones:
At time t0, the solution belongs to the elliptic zone for almost
every x (left). On the time interval [t0, t0 + εT ], locally around
x0, the first derivative of the solution increases so that the profile
becomes steeper. Since x0 ∈ R can be chosen arbitrarily, at time
t = t0 + εT the solution is outside the elliptic zone (right); that is
|u(t0 + εT, x)| > 1√

3
for almost every x.

3.3. Comments on the assumptions. Concerning assumption (H0), the choice
of a localization around a point x0 where the solution is decreasing and concave
can be replaced, without loss of generality, with one of the following assumptions
(see Figure 6):

(a) ∂xu(t0, x) < 0 and ∂2
xu(t0, x) > 0 for all x ∈ Bδ(x0);

(b) ∂xu(t0, x) > 0 and ∂2
xu(t0, x) > 0 for all x ∈ Bδ(x0);

(c) ∂xu(t0, x) > 0 and ∂2
xu(t0, x) < 0 for all x ∈ Bδ(x0).

For example, in case (a), when trying to bound from below the solution u at
time t0 + εT we would have, as before,

u(t0 + εT, x) = u(t0 + εT, x0) + ∂xu(t0 + εT, x0)(x− x0)
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Figure 6. Choice of the point x0 in the cases (a), (b), (c).

+
∫ 1

0

(∂2
xu)(t0 + εT, (1− s)x0 + sx0)(1− s)(x− x0)2 ds,

but this time u(t0 + εT, x0) < 0, ∂xu(t0 + εT, x) < 0 and ∂2
xu(t0 + εT, x) > 0 for

x ∈ Bδ(x0), while 1− s < 0 for s ∈ (0, 1). It follows directly that

|u(t0 + εT, x)| ≥ δ|∂xu(t0 + εT, x0) ≥ δeTp
′
0(|∂xu(t0, x0)| − h1T ).

We also notice that, since the first derivative of the solution is growing in time,
for t ∈ [t0, t0 + εT ] we have

∂2
xv = −∂t(∂xu) < 0,

so that
∂tv = ε∂2

xv − p′(u)∂xu < 0,

and the a priori assumption (H1) is satisfied.

Finally, concerning assumption (H2), condition (3.5) in the case p(u) = u(u2−1)
is always satisfied, since it reads

u(t0, x0) > −3c1 +
√

9c21 − 3,

and the right hand side in the previous inequality is always negative for any choice
of c1, while u(t0, x0) > 0.

3.4. Transition from the hyperbolic to the elliptic zone. We now start again
our analysis in t1 := t0 + εT ; the shape of the solution is as depicted in Figure 7,
and we choose such profile as the new initial configuration.

Because of the choice of T , we have u(t1, x) > (p′)−1(0) for all x ∈ Bδ(x0),
implying

p′(u(t1, x)) > 0 for all x ∈ Bδ(x0),

that is, the solution belongs to the hyperbolic zone. By reasoning as before, in the
time interval [t1, t1 + εT1] (with T1 > 0 to be determined) we have

∂xu(t, x0) = exp(−
∫ t

t1

p′(u(s, x0))
ε

ds)∂xu(t1, x0)
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Figure 7. Solution u for t = t1. The solution now belongs to the
hyperbolic zone, i.e., p′(u(t1, x)) > 0 for almost every x ∈ R. We
recall that p(u) = (u2 − 1)u.

− 1
ε

∫ t

t1

exp(−
∫ s

t1

p′(u(s′, x0))
ε

ds′) ∂tv(s, x0) ds.

This time the a priori assumption needed is
(H3) Let x0 satisfy ∂tv(t, x0) > 0 and |∂tv(t, x0)| ≤ h′1 for some h′1 > 0 and for

all t ∈ [t1, t1 + εT1].
From this assumption we have

|∂xu(t, x0)| ≤ exp
(
−
∫ t

t1

p′(u(s, x0))
ε

ds
)
|∂xu(t1, x0)|

+
1
ε

∫ t

t1

exp
(
−
∫ s

t1

p′(u(s′, x0))
ε

ds′
)
|∂tv(s, x0)| ds

≤ e− 1
εp
′
1(t−t1)

(
|∂xu(t1, x0)|+ 1

ε
|∂tv(t1, x0)|(t− t1)

)
,

with notation p′1 := p′(u(t1, x0)) > 0. Then, for t = t1 + εT1 we have

|∂xu(t1 + εT1, x0)| ≤ e−T1p
′
1(|∂xu(t1, x0)|+ h′1T1);

that is, the first derivative of the solution is decreasing locally around x0 in the
time interval [t1, t1 + εT1]. We thus expect the solution to evolve again into a
configuration as the one depicted in Figure 1. Indeed, for all x ∈ Bδ(x0),

|u(t1 + εT1, x)| ≤ |u(t1 + εT1, x0)|+ |∂xu(t1 + εT1, x0)|(x− x0)

≤ |u(t1 + εT1, x0)|+ δe−T1p
′
1(|∂xu(t1, x0)|+ h′1T1),

meaning that u is decreasing and eventually, for an appropriate choice of T1, it will
be such that

|u(t1 + εT1, x)| < (p′)−1(0), ∀x ∈ Bδ(x0).
Precisely, T1 will be chosen in such a way that

δe−T1p
′
1(|∂xu(t1, x0)|+ h′1T1) < (p′)−1(0).

With such a choice of T1, at time t2 := t1 + εT1 the profile u(t2, x) belongs to the
elliptic zone, for almost every x ∈ R (again, because of the arbitrariness of x0).
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Remark 3.6. Again, note that from the equation for v, for all x ∈ Bδ(x0), we
have

∂tv = ε∂2
xv − p′(u)∂xu and ε∂2

xv = −∂t(∂xu) .
In particular, here ∂xu is decreasing in time, p′(u) > 0 and ∂xu < 0, implying
∂tv > 0 for all t ∈ [t1 + εT1]. The a priori assumption (H3) is thus satisfied.

The strategy proposed here can be iterated again; we consider as the new initial
configuration the profile of the solution at time t2 = t1 + εT1 and we restart the
whole argument again. We can summarize the previous statements in the following
result, showing the phase transition (from elliptic to hyperbolic zones and viceversa)
occurring for a Van der Walls p-system with viscosity.

Theorem 3.7. Let u be the solution to the following p-system with viscosity,

∂tu+ ∂xv = 0,

∂tv + ∂x(p(u)) = ε∂2
xv,

where the pressure p(u) is given by the Van der Waals law p(u) = (u2 − 1)u. If
there exists t0 ≥ 0 such that

p′(u(t0, x)) < 0,
for almost every x ∈ R (that is, u(t0, x) belongs to the elliptic zone), then there
exists a time T0 > 0 such that

p′(u(t0 + εT0), x) > 0,

for almost every x ∈ R, meaning that u(t0 + εT, x) belongs to the hyperbolic zone.
More generally, there exists a sequence of times Tn > 0, with n ≥ 0, such that if

defined for all i ∈ N0 by

T̄i+1 := t0 + ε

i∑
n=0

Tn,

then, for almost every x ∈ R and for k ∈ N0, we have

p′(u(T̄i+1, x))

{
> 0 for i = 2k,
< 0 for i = 2k + 1.
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