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AN EMBEDDING NORM AND THE LINDQVIST
TRIGONOMETRIC FUNCTIONS

CHRISTER BENNEWITZ & YOSHIMI SAITŌ

Abstract. We shall calculate the operator norm ‖T‖p of the Hardy operator
Tf =

∫ x
0 f , where 1 ≤ p ≤ ∞. This operator is related to the Sobolev

embedding operator from W 1,p(0, 1)/C into W p(0, 1)/C. For 1 < p <∞, the

extremal, whose norm gives the operator norm ‖T‖p, is expressed in terms of

the function sinp which is a generalization of the usual sine function and was
introduced by Lindqvist [6].

1. Introduction

Evans, Harris and Saitō [3] give the following result: Let W 1,p(0, 1) be the
complex first order Sobolev space given by

W 1,p(0, 1) =
{
f |
∫ 1

0

(|f |p + |f ′|p) <∞
}
,

where 1 < p <∞. Then

sup
‖f‖p,s
‖f ′‖p

= ‖T‖p/2, (1.1)

where the supremum is over all non-zero functions in W 1,p(0, 1), ‖ · ‖p is the norm
of Lp(0, 1), ‖ · ‖p,s is given by

‖f‖p,s = inf
C∈C
‖f − C‖p,

and ‖T‖p is the operator norm of the Hardy operator

T : Lp(0, 1) 3 f 7→ Tf(x) =
∫ x

0

f ∈ Lp(0, 1).

The left-hand side of (1.1) is the norm of the embedding from the factor space
W 1,p(0, 1)/C into the factor space Lp(0, 1)/C. Since the Poincaré inequality holds
on (0, 1), the norm ‖f ′‖p, f ∈ W 1,p(0, 1), is one of the equivalent norms of the
space W 1,p(0, 1)/C. For more details on the embedding operator we refer to Evans
and Harris [4], [5], in addition to [3].

In this note we calculate the norm ‖T‖p = p1/qq1/p sin(π/p)/π, 1 < p < ∞,
where 1/p + 1/q = 1, and ‖T‖1 = ‖T‖∞ = 1. Our main arguments depend on
classical and elementary calculus of variations. We will also calculate all extremals,
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i.e., functions f for which ‖Tf‖p = ‖T‖p‖f‖p. In particular, if 1 < p < ∞ these
are expressed in terms of ‘sinp’ and ‘cosp’ functions which has been introduced in
Lindqvist [6]. These are natural generalizations of the usual trigonometric functions
when the Euclidean norm in R2 is replaced by a p-norm.

After finishing our work, we found two recent works, Edmunds and Lang [2] and
Drabek and Manásevich [1], which, among others, produced quite a similar results
in real Lp spaces on intervals using the results on the p-Laplacian.

In Section 2 we shall give a short account on sinp and cosp functions. In Section 3
we shall first deal with the cases that p = 1 and p = ∞. Then we shall study the
case that 1 < p < ∞. After showing that we have only to find the nonnegative
extremals (Lemmas 3 and 4), we shall show that the extremal is expressed in terms
of the sinp function and the norm ‖T‖p is computed using some properties of the
sinp and cosp functions (Theorem 3.1). We shall discuss the operator

T : Lp(0, 1) 3 f 7→ Tf(x) =
∫ x

0

f ∈ Lq(0, 1).

in Section 4.

2. sinp, cosp and tanp functions

Suppose 1 < p <∞ and consider the function x 7→
∫ x

0
dt

(1−tp)1/p , 0 ≤ x ≤ 1. This
is strictly increasing, and for p = 2 we obtain arcsinx. By analogy we denote the
inverse for general p by sinp x. It is defined on the interval [0, πp/2] where πp =
2
∫ 1

0
dt

(1−tp)1/p , it is strictly increasing on this interval, sinp 0 = 0 and sinp(πp/2) = 1.
We may extend the definition to the interval [0, πp] by setting sinp x = sinp(πp−x)
for πp/2 ≤ x ≤ πp, and to [−πp, πp] by extending it as an odd function. Finally, we
may define it on all of R by extending it as a periodic function of period 2πp.

Next we define cosp x = d
dx sinp x, which is an even, 2πp-periodic function, odd

around πp/2. In [0, πp/2], setting y = sinp x, we have

cosp x = d
dx sinp x = (1− yp)1/p = (1− (sinp x)p)1/p,

so that cosp is strictly decreasing on this interval, cosp 0 = 1 and cosp(πp/2) = 0.
Furthermore

| cosp x|p + | sinp x|p = 1,
first in [0, πp/2], but then by symmetry and periodicity in all of R. One may also
introduce an analogue of the tangent function as tanp x = sinp x/ cosp x. We then
obtain d

dx cosp x = −| tanp x|p−2 sinp x. We also get d
dx tanp x = 1/| cosp x|p = 1 +

| tanp x|p, so that the inverse of the restriction of tanp to the interval (−πp/2, πp/2)
has derivative 1/(1 + |y|p), y ∈ R. The constant πp is easily calculated. In fact, by
a change of variable t = s1/p we obtain

πp = 2
p

∫ 1

0

(1− s)−1/ps1/p−1 ds = 2
pB(1− 1/p, 1/p) = 2

π/p

sin(π/p)
, (2.1)

where B is the classical beta function. If q is the conjugate exponent to p, so that
1/p+ 1/q = 1, this means in particular that pπp = qπq.

The cases p = 1 and p =∞ are somewhat degenerate, especially for p = 1. For
p = ∞ one gets π∞ = 2, and sinp becomes a triangular wave, with sinp x = x on
[−1, 1], and cosp the corresponding square wave. For p = 1 one gets π1 = ∞, and
sinp x is the odd extension of 1− e−x, x ≥ 0, whereas cosp x = e−|x|.
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3. An operator norm

Consider the linear operator Tf(x) =
∫ x

0
f on Lp(0, 1), 1 ≤ p ≤ ∞. We shall

determine the norm ‖T‖p and all extremals, i.e., all functions f ∈ Lp(0, 1) for which
‖Tf‖p = ‖T‖p‖f‖p. In particular, we shall show that if q is the conjugate exponent
to p, then ‖T‖p = ‖T‖q. This may be proved by duality if 1 < p < ∞, but will
follow from our explicit calculations below.
Theorem 3.1. For 1 < p < ∞, ‖T‖p = 2p1/qq1/p/(pπp) = p1/qq1/p sin(π/p)/π,
where q is the dual exponent to p. The corresponding extremals are all multiples
of cosp(πpx/2), where πp is given by (2.1). Furthermore, ‖T‖1 = ‖T‖∞ = 1, and
the extremals for p = ∞ are all constants, whereas no extremals exist in L1(0, 1)
for the case p = 1. If one extends T to the space of finite Borel measures on [0, 1],
however, the extremals are all multiples of the Dirac measure at 0.

In particular ‖T‖p = ‖T‖q since pπp = qπq. The statement of the theorem
indicates that it will be advantageous, for p = 1, to extend T to operate on finite
Borel measures on [0, 1], normed by total variation, thus considering L1(0, 1) as
the subset of absolutely continuous Borel measures on [0, 1]. We will do this in the
sequel without further comment. The proof of the theorem is almost immediate in
the cases p = 1 and p =∞.
Lemma 3.2. For p = 1 extremals exist, they are precisely the non-zero multiples
of the Dirac measure at 0, and ‖T‖1 = 1.

Proof. If µ is a finite Borel measure on [0, 1] and we define Tµ(x) =
∫

[0,x]
dµ, we

obtain

‖Tµ‖1 =
∫ 1

0

∣∣ ∫
[0,x]

dµ
∣∣ dx ≤ ∫ 1

0

∫
[0,x]

|dµ| dx

=
∫

[0,1]

(1− t)|dµ(t)| ≤
∫

[0,1]

|dµ| = ‖µ‖1, (3.1)

where the middle equality follows from Fubini’s theorem. Thus ‖T‖1 ≤ 1. However,
we obtain equality throughout in (3.1) precisely if

∫
[0,1]

t|dµ(t)| = 0, i.e., the support
of µ consists of the point 0. Thus, if µ is a multiple of the Dirac measure at 0. �

The proof in the case p =∞ is even simpler.
Lemma 3.3. For p =∞ extremals exist, they are precisely the functions which are
a.e. constant, and ‖T‖∞ = 1.

Proof. If f ∈ L∞(0, 1) we obtain

‖Tf‖∞ = sup
0≤x≤1

∣∣ ∫ x

0

f
∣∣ ≤ ∫ 1

0

|f | ≤ ‖f‖∞,

and we have equality throughout if and only if f is a.e. a multiple of ‖f‖∞ (see
also the proof of Lemma 3.4). �

The case when 1 < p <∞ is less trivial, and the first step in the proof is to show
that we may restrict ourselves to positive functions when looking for extremals.
Lemma 3.4. Any extremal for 1 ≤ p ≤ ∞ is a multiple of a non-negative extremal.
Therefore, the norm ‖T‖p when T is defined on the complex Lp space is the same
as the one when T is defined on the real Lp space.
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Proof. We already know this if p = 1 or p =∞, so we now assume that 1 < p <∞.
Suppose f is an extremal and put g = |f |. Since ‖f‖p = ‖g‖p and

∣∣ ∫ x
0
f
∣∣ ≤ ∫ x

0
g it

follows that if f is an extremal, then so is g. Furthermore, it follows that ‖Tf‖p =
‖Tg‖p. Now

∣∣ ∫ x
0
f
∣∣ ≤ ∫ x

0
g for all x ∈ [0, 1], so in order that ‖Tf‖p = ‖Tg‖p we

must have equality throughout [0, 1]. In particular, we must have∣∣ ∫ 1

0

f
∣∣ =

∫ 1

0

g,

i.e., we must have equality in the triangle inequality. This proves the lemma, since
it requires that f and g are a.e. proportional. We remind the reader why this is so.

If we choose θ ∈ R so that eiθ
∫ 1

0
f is positive, and we have equality in the

triangle inequality
∣∣ ∫ 1

0
f
∣∣ ≤ ∫ 1

0
|f |, then we have

∫ 1

0
Re(eiθf) =

∫ 1

0
|f | while at the

same time Re(eiθf) ≤ |eiθf | = |f |. Thus |f | = eiθf a.e. �

The next step in the proof of Theorem 3.1 is to show the existence of extremals.
Lemma 3.5. If 1 < p <∞ there exists a function f ∈ Lp(0, 1) with non-zero norm
such that ‖Tf‖p = ‖T‖p‖f‖p.

Proof. Let f1, f2, . . . be a sequence of unit vectors in Lp(0, 1) such that

‖Tfn‖p → ‖T‖p as n→∞.

We may assume that fn ⇀ f ∈ Lp(0, 1) weakly in Lp(0, 1). For each fixed x ∈ [0, 1]
the characteristic function of [0, x] is in Lq(0, 1), q = p/(p− 1), so we obtain

Fn(x) =
∫ x

0

fn →
∫ x

0

f = F (x) as n→∞.

Since |Fn(x)| ≤
∫ 1

0
|fn| ≤ ‖fn‖p = 1 by Hölder’s inequality, we obtain by dominated

convergence that ‖T‖p = lim ‖Fn‖p = ‖F‖p, and since clearly ‖T‖p > 0 we can not
have F = 0, so that ‖f‖p > 0. Since ‖T‖p = ‖F‖p ≤ ‖T‖p‖f‖p it actually follows
that ‖f‖p = 1. The lemma is proved. �

We are now ready to prove Theorem 3.1. We will do this by applying standard
methods of the calculus of variations.

Proof of Theorem 3.1. We need only consider the case 1 < p <∞. Suppose f ≥ 0
is an extremal with non-zero norm and put F (x) = Tf(x) =

∫ x
0
f ≥ 0. Then

setting λ = ‖F‖pp/‖F ′‖pp we have ‖T‖p = λ1/p. If ϕ ∈ C1(0, 1) with ϕ(0) = 0, then
‖F + εϕ‖pp/‖F ′+ εϕ′‖pp has a maximum for ε = 0. Differentiating we get, for ε = 0,
that ∫ 1

0

F p−1ϕ− λ
∫ 1

0

(F ′)p−1ϕ′ = 0,

so integrating by parts we obtain∫ 1

0

(λ(F ′)p−1 −
∫ 1

x

F p−1)ϕ′ = 0 (3.2)

for all ϕ ∈ C1(0, 1) with ϕ(0) = 0, so that, by du Bois Reymond’s lemma,
λ(F ′)p−1 −

∫ 1

x
F p−1 is constant. It follows that (F ′)p−1 is continuously differ-

entiable, and differentiating we obtain

F p−1 + λ((F ′)p−1)′ = 0. (3.3)
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Thus, integrating by parts in (3.2) we obtain (F ′(1))p−1ϕ(1) = 0, so that F ′(1) =
f(1) = 0. Multiplying (3.3) by F ′ and integrating we obtain

F p + λ(p− 1)(F ′)p = C, (3.4)

where C > 0 is a constant and we should note that

(p− 1)p−1 d

dx

[
((F ′)p−1)p/(p−1)

]
= ((F ′)p−1)′F ′.

Here, after multiplying F by an appropriate constant, we may assume that C = 1
in (3.4). Although (3.4) is then satisfied in any interval where F = 1, this will not
satisfy (3.2). In any point where F 6= 1 we then obtain

F ′

(1− F p)1/p
= a,

where a = (λ(p − 1))−1/p. Integrating again we obtain F (x) = sinp(ax), since
F (0) = 0. Thus f(x) = F ′(x) = a cosp(ax). From f(1) = 0 it follows that a is a zero
of cosp, and since we have f ≥ 0, a is the first positive zero of cosp. Thus a = πp/2.
We also have λ = a−p/(p − 1) so that ‖T‖p = (p − 1)−1/p/a = 2(p − 1)−1/p/πp.
Now, if q is the conjugate exponent to p we have p(p − 1)−1/p = p1/qq1/p and we
are done, in view of the formula (2.1). �

4. Generalizations

One may of course also consider the operator

T : Lp(0, 1) 3 f 7→ Tf(x) =
∫ x

0

f ∈ Lq(0, 1),

where now p and q are unrelated exponents in [1,∞]. Even in this case it is possible
to calculate the norm ‖T‖p,q. We introduce the constant πp,q = 2

∫ 1

0
dt

(1−tq)1/p ,
which is finite unless p = 1, q < ∞, and then the function sinp,q, first on the
interval [0, πp,q/2) as the inverse of the strictly increasing function

[0, 1) 3 x 7→
∫ x

0

dt

(1− tq)1/p
,

and then suitably extended to an odd function, which is 2πp,q-periodic and even
around πp,q/2 if πp,q is finite. We next define cosp,q x = d

dx sinp,q x and may the
easily deduce that

| cosp,q x|p + | sinp,q x|q = 1,

except if p = ∞, q < ∞. Drabek and Manásevich [1] also introduced sinp,q and
cosp,q functions. They are quite similar to ours but not the same.

Proposition 4.1. For p, q ∈ (1,∞) we have πp,q = 2
qB(1/p′, 1/q), where p′ is the

dual exponent of p and B is the classical beta function. Furthermore,
• πp,∞ = 2, 1 ≤ p ≤ ∞,
• π∞,q = 2, 1 ≤ q ≤ ∞,
• πp,1 = 2p′, 1 ≤ p ≤ ∞,
• π1,q =∞, 1 ≤ q <∞.

We may now carry out the analysis of the operator T in much the same way as
in Section 3, with the following conclusion.
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Theorem 4.2. For p, q ∈ (1,∞) we have

‖T‖p,q = (p′ + q)1− 1
p′−

1
q (p′)1/qq1/p′/B(1/p′, 1/q),

where p′ is the dual exponent of p and B is the classical beta function. Extremals
are all non-zero multiples of cosp,q(πp,qx/2). Furthermore,

• ‖T‖p,∞ = 1, 1 ≤ p ≤ ∞. Extremals are all constants 6= 0. In the case
p = 1 any non-zero multiple of a non-zero positive measure is an extremal.
• ‖T‖∞,q = (1 + q)−1/q, 1 ≤ q <∞. Extremals are all constants 6= 0.
• ‖T‖p,1 = (1 + p′)−1/p′ , 1 < p ≤ ∞. Extremals are all non-zero multiples of

(1− x)1/(p−1).
• ‖T‖1,q = 1, 1 ≤ q < ∞. Extremals are all non-zero multiples of the Dirac

measure at the origin.
It will be seen that as a function of (1/p, 1/q) the norm ‖T‖p,q is continuous

in the unit square 0 ≤ 1/p ≤ 1, 0 ≤ 1/q ≤ 1. Furthermore, it is clear that
‖T‖p,q = ‖T‖q′,p′ for all p, q ∈ [1,∞], a fact that could presumably also be proved
by duality.
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