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ABSTRACT 

 Manual material handling accounts for more than 122,000 workplace injuries at 

U.S. One of the major reasons for injuries in the workplace is due to accidents caused by 

improper execution of the material handling fundamental moves. This may lead to 

serious musculoskeletal disorders. Research has been carried out to analyze the 

musculoskeletal disorders, but there are only very few related to manual material 

handling. This research proposes a methodology to analyze the quality of motion during 

lifting task performed in the manual material handling environment. The methodology 

consists of a motion capture environment, a system of sensors, a processor that collects 

time series data, and a data analysis module. Using motion capture cameras, data is 

collected on a variety of human subjects performing manual lifting task related to a 

material handling activity. The parameters for lifting experiment are obtained from the 

Snook’s table. The collected data are analyzed through Dynamic Time Warping (DTW) 

technique which will compare the similarities between two motion sequences. At the end, 

the quality of the motion is analyzed through quality control charts which will provide the 

behavior of each motion. This research has potential impact for contribution in the 

manual material handling industry. Using the latest developments in motion capture 

technology and data analytics, the analysis of the quality of motion will enable an 

industry to modify the human motion operations that are injurious to the operator and 

also help eliminate the non-value-added motions from the operations. 
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I. INTRODUCTION 

According to the U.S. Department of Commerce and Bureau of Labor Statistics, 

material handling and logistics is one of the fastest growing industries in America [1]. In 

fact, the material handling and logistics equipment and system consumes more than $156 

billion per year and employs more than 700,000 workers [1]. Materials handling is the art 

and science of moving, packaging, and storing of substances in any form. It is also 

providing the right amount of the right material, in the right condition, at the right place, 

in the right position, in the right sequence, and for the right cost, by the right methods [2] 

[3]. We described the challenges and opportunities for the manual material handling 

industry. 

Challenges: 

The main challenges faced by the manual material handling are: 

• Repetitive motion and workplace conditions cause injuries in operators: 

Manual material handling (MMH) still accounts for more than 122,000 workplace 

injuries in recent years. According to the U.S. Department of Labor Bureau of 

Labor Statistics (2016), the top five types of injuries include – encountering 

harmful objects (36.7%), overexertion (9.7%), slips and falls (19%), repetitive 

motion (5.7%), and contact with harmful substances/chemicals (5.2%) [4]. As 

manufacturers strive to reduce the “takt” times of their manufacturing processes, 

they design jobs that require higher operator pace, but overlooks occupational 

safety and ergonomics. Hence, they look out for suitable technology that could 

solve the problem. 



2 

 

• Moving heavy objects: Loading and unloading of goods and materials are the 

sources of injuries among the workers. An average working hour for a material 

handler is eight hours. Continuous lifting and moving of objects can result in 

fatigue, sore muscles, which leads to wrong postures. A repetitive wrong motion 

for profuse number of times can lead to musculoskeletal disorders. 

• Accidental of falling objects: The objects that are stored above head level will 

cause less to severe injury to the operator. Accidental colliding of foot onto heavy 

objects cause tripping and less to severe injury. This is due to poor lighting, 

obstructed view, uneven walking surfaces, etc. [5] 

• Labor Costs: In manual material handling industry, hundreds and thousands of 

tons of materials are handled every day. This requires use of large amount of 

workforce in order to perform these tasks. These tasks are performed by well-

trained operators who knows the techniques for handling the heavy equipment in 

a manufacturing plant. But the problem is there is a shortage in skilled labor force 

to perform manual material handling operations, and therefore the industry faces 

the challenge of workforce shortage. High labor wages due to low availability of 

labor and medical costs adds to the challenges. 

Opportunities: 

Industry 4.0 penetration is creating several opportunities for growth that will impact 

the manual material handling industry: 

• Connectivity: Smart material handling systems are designed to create an 

ergonomic environment for the operators. Here, the system is constructed in a 

way that products, workstations and systems are made by improving 
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communication between units in the system to establish more adaptable control of 

assembly flow and system performance [6]. 

• Advances in sensor technologies to track operator’s health: There are lots of 

technological advancements, like bio suit, which helps in tracking the motion of 

an operator, heart rate, respiratory rate that can be used for further analysis for the 

detection of factors like fatigue. 

• Design of real time ergonomic evaluation tools: To evaluate the risk factors 

involved in the work-related musculoskeletal disorders, different methods and 

tools have been developed. Postural analysis tools were introduced to assess the 

workers movement in a manual assembly process. RULA (Rapid Upper Limb 

Assessment) and REBA (Rapid Entire Body Assessment) are used to assess the 

workers to operate within the secure limit [7]. A Human Motion Simulation 

(HUMOSIM) framework is developed to control human figure models and 

analysis of simulated tasks. This framework consists of hierarchical set of 

algorithms and motion modules that controls movements like walking, carrying, 

moving, etc. [8]. Terrestrial magnetism and acceleration sensors are incorporated 

to develop a system that monitors worker’s motion in factory [9]. Image based 

operator motion monitoring system is developed based on the Direct Linear 

Transformation (DLT) method, which detects an operator’s position during 

human-robot cooperation assembly process and protects not only the operator, but 

also predict the operator’s intention according to his position [10]. 

• Development of human assistance and collaborative robots: In different 

manufacturing industries, the handling of material is a high resource consuming 
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task. The conventional manually guided handling system lack an intuitive and 

may lead to physical injuries and fatigue. The development of modular flexible 

collaborative robots with an intelligent power system that can work with people 

also in a direct physical contact, combining human intelligence and skills, and can 

address the safety issues that have been considered as paramount importance [11]. 

• Training using virtual- and augmented- reality: The use of virtual reality (VR) 

and augmented reality (AR) are now widely regarded as a promising platform for 

industrial maintenance and assembly tasks training [12]. Head-worn (AR HWD) 

technologies such as smart glasses may become an everyday tool in the 

workplace, allowing workers to perform hands-free tasks while viewing real-time 

information related to a task within their visual field of view [13]. 

Fundamental skill moves – The Toyota Way 

Fundamental skill moves are the basic day-to-day operations performed by a 

manufacturer operator. Toyota uses the Fundamental Skill Training to train their new 

employees to become familiar with and comply with standardized work by practicing the 

fundamental skill moves with the real equipment and machines. In manual material 

handling, fundamental skill moves include lots of repetitive motions like lifting, pushing, 

carrying, etc. Similar to the Toyota’s fundamental training, it helps in standardizing the 

material handler’s movement and prevent injuries that occur due to wrong postures. In 

fact, it is Toyota’s second basic concept of making the best use of labor environment and 

excellent workers through eliminating waste movements by workers and consideration 

for worker’s safety. In Toyota, operations involving danger, injurious to health, 

operations requiring hard physical labor, and monotonous repetitive operations have been 
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mechanized, automated, and unmanned [14]. Therefore, following the Toyota way, the 

fundamental skill moves are studied to create an ergonomic environment for the operator. 

These fundamental skill moves have been documented in detail in [15] and [16]. In this 

thesis, a data analysis method will be proposed to study the fundamental skill moves of 

manual material handling with the objective of maximizing the operator’s safety and 

ergonomic conditions in the workplace. 

1.1 Problem Statement 

Motion Capture (MoCap) is a process to track and capture the real-time human 

motion into 3D coordinates. MoCap technology plays an important role in optimizing the 

workers’ movement in manual material handling. Recording the worker’s motion and 

posture are critical in order to determine the risk of musculoskeletal injuries in the 

workplace.  

A marker-free and calibration-free ergonomic evaluation of potential 

musculoskeletal disorders was proposed by Plantard et.al using Microsoft Kinect to 

evaluate RULA ergonomic assessment in real work condition using occlusion-resistant 

Kinect skeleton data correction [17]. A different approach to assess real time work-

related musculoskeletal disorders for repetitive efforts was developed by Peppoloni et al. 

[18] by using a novel wearable wireless system to assess the muscular efforts and 

postures of the human upper limb based on RULA and Strain Index (SI). Patrizi et al. 

[19] compared both low-cost marker-less and high-end marker-based motion capture 

systems to investigate practical working activities involving object lifting and 

displacement. There are also datasets available to document motion capture data for a few 

manual material handling systems. Carnegie Mellon’s CMU Graphics Lab Motion 
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Capture Database and University of Pennsylvania’s SIG Center for Computer Graphics 

Multi Modal Motion Capture Library has several datasets regarding the movement of 

hands, lower back, upper back, fingers, among others. 

All these papers and databases indicate that there are several resources available 

on how to perform motion capture studies. However, there is a lack of methodologies 

available to use the MoCap data to perform motion and time analytics and characterize 

the time and standard deviation of the fundamental skill moves. 

1.2 Research Objective 

The objective of this paper is to develop a methodology to analyze manual 

material handling operations by using motion capture data. The material handling 

operation will be segmented into fundamental skill moves. The methodology uses the 

MoCap data to analyze a fundamental move by individually segmenting each motion. 

Each marker on the segmented motion is then analyzed using dynamic time warping 

methodology to obtain the motion statistics, thus predicting the quality of the motion. 

Control charts are specified in order to inspect and control the quality of the move. 

Research Hypothesis 

It is hypothesized that: “breaking the manual material handling tasks by 

fundamental skill moves will help predict the quality of the motion.”  

The hypothesis will be tested by performing motion capture experiment with 

different factor levels. With the help of the data collected through these experiments, 

individual motions are analyzed through data analysis and statistical process control 

methods.  
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II. LITERATURE REVIEW 

Sunwook et al. (2014) propose a three-classification algorithm to classify the 

manual material handling tasks. The authors use an unsupervised clustering system to 

explore hidden structures in the dataset, then they perform feature extraction and data 

reduction to characterize a time series of the system. The result provides an effective, 

field-based exposure assessment measure using wearable technology, which provides 

both numerical and contextual information about a job. The result also provides 

guidelines on selecting input data sets for the manual material handling tasks [20]. 

A maximum acceptable weight limit for a manual material handling task was 

developed by Stover H. Snook (1978). The author discusses that the variables like 

weight, distance, and frequency of the task, the size and weight of the object, worker’s 

sex, age and physique, and the effects of heat stress are investigated. The subjects 

performed fundamental tasks like lifting, pushing, pulling, etc. From the data obtained by 

performing these tasks, a table was designed for each fundamental skill move, and for 

both male and female. The table presents the maximum acceptable weight limits for 10, 

25, 50, 75, and 90% of the working population.  The result indicates that by designing the 

job to fit the worker can reduce up to one-third of industrial back injuries [16].  

A framework was proposed by Mendez et al. (2018) to obtain and analyze real 

time data related to dynamic and natural motion of individuals in a manufacturing 

environment that involve human labor. The study uses motion capture system to analyze 

various complex motions performed by the human subjects. The collected data were then 

analyzed through dynamic time warping technique for a comparative analysis of the 

motion. The result obtained is used to identify optimal activity motions [21]. 



8 

 

An image-based operator monitoring was developed by Duan et al. (2009) to 

study operator’s motions in real time. The authors use Direct Linear Transformation to 

obtain 3-D data from detected 2-D data. The operator’s motions were detected by IP 

cameras with the help of color marks attached to the operator’s body. To accurately 

predict the position of the 3-D data, the authors develop a cost efficient kinematic human 

body simulator. The converted joint-angle data of the operator is fed to the simulator to 

successfully regenerate the operator’s motions in real time. Finally, the authors 

successfully develop a system to assist the operator in the assembly process effectively. 

The system monitors and optimizes the operator’s motions in an assembly process and 

can be used to predict the collision between the operator and robot during the human-

robot cooperation assembly process [10]. 

Sempena et al. (2011) used exemplar-based sequential single layered approach 

using Dynamic Time Warping (DTW) to recognize basic human motions such as 

clapping, waving, punching, etc. Dynamic Time Warping technique is used because of its 

robustness and is very efficient in time-series similarity measure. The authors use depth 

camera to track human motion and to identify human joints in 3-D real world coordinate 

system. The orientation of each body part’s joints is used to build feature vector along 

time series that is constant to human body size. The 3-D rotation is represented by 

quaternion system in order to avoid singularities so that an accurate representation of 

rotational transformation is obtained. Kinect camera is used to perform motion capture 

for six motions including clap, punch, smash, wave, run, and kick action. The result 

obtained for the six actions is then compared and found that upper part generated actions 

are recognizable, whereas it is difficult to recognize lower part actions [22].  
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Sunwook et al. (2013) study the capabilities of the commercially available inertial 

motion capture (IMC) system in quantifying physical exposure during various simulated 

manual material handling tasks. The authors use optical motion capture (OMC) system 

and inertial motion capture system to capture whole body kinematics while performing 

five specific MMH tasks. The IMC performance is compared with OMC system to 

quantify physical exposure and the results were obtained in terms of joint angles, joint 

angular velocities, and joint moments. The results obtained from many comparative 

measures of physical exposures has a significant change in performance over time. 

Though the changes seemed to be relatively small, the performance of the IMC is rather 

stable over the period. Also, the accuracy of kinematics recorded by the IMC system 

varied considerably and generally consistent with the movement across different MMH 

tasks [23].  

Four basic approaches were used to study the occupational health problems that 

arise due to overexertion by Chaffin DB (1979). The four approaches utilized are: 1) 

epidemiological studies of job and worker attributes to identify the cause of 

musculoskeletal accidents both individually and in combination, 2) psychophysical 

studies to determine the volitional tolerance of workers to the stress mitigated by manual 

material handling activities, 3) biomechanical studies on common exertions on the 

musculoskeletal system during manual material handling activities, 4) physiological 

studies to assess the strain imposed on the cardiovascular system during repeated load 

handling activities. From the result of these approaches, the author summarizes that more 

substantial controls are needed to lessen the economic burden and human suffering 

associated with manual material handling activities in industry [24].  
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W Monroe Keyserling (2000) presents a review of laboratory studies and 

biomechanical models of work factors associated with increased risk of upper extremity 

musculoskeletal disorders. The relationship between selected work parameters (e.g., 

forces exerted during hand-intensive work, wrist postures, shoulder postures, repeated 

exertions, use of gloves) and selected strain responses of body tissue (e.g., 

electromyographic activity of muscles, intracarpal tunnel pressure, compression of 

tendons and nerves) were examined through biomechanical studies. Also, through 

psychophysical studies, the relationship between selected work parameters and perceived 

discomfort as well as the relationship between selected work parameters and performance 

levels that can be achieved without incurring excessive fatigue were examined. Through 

these studies, an insight on how people react and respond to specific physical risk factors 

were studied [25]. 

Ann E. Barr and Mary F. Barbe (2002) discuss the scope of upper extremity 

work-related musculoskeletal disorders, relationship between repetition-force and work-

related musculoskeletal disorders, cellular indicators of injury, and animal model of 

repetitive movement disorders. The authors propose a conceptual framework for the 

development of work-related musculoskeletal disorders in general. The authors also use 

animal models of upper extremity WMSDs to study the response of injured tissues to 

therapeutic interventions which contributes to physical therapy practice in occupational 

healthcare settings. The resultant model enhances the ability to predict risk and to manage 

WMSDs in humans [26].  

A range of methods have been developed by G. C. David (2005) for the 

assessment of exposure to risk factors for work-related musculoskeletal disorders. The 
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author put forth various methods to assess the WMSDs, most for the assessment of the 

upper regions of the body such as the back, neck, shoulder, arms, and the wrists. The 

author categorizes the methods under three: 1) self-reports from the workers, 2) 

observational methods involving simpler techniques and advanced techniques developed 

for the assessment of postural variation for highly dynamic activities, 3) direct 

measurements using sensors attached to the subject for the measurement of exposure 

variables at work. The results suggest that the use of method varies depending upon the 

application and the objectives of the study, and in more general, observation based 

assessments appear to be best matched to the needs of occupational safety and 

practitioners who has limited time and resource to establish the basis for prevention [27]. 

Another work-related musculoskeletal disorder was studied by da Costa et al. 

(2010) to evaluate evidence available for the many suggested work-related 

musculoskeletal disorder risk factors. The authors designed and conducted a systematic 

review on available WMSDs literature compared to the different assessment methods 

carried out by G. C. David (2005). The authors use a different selection criteria and 

definitions for the classification of the levels of evidence. The level of evidence was 

classified as strong evidence risk factors, reasonable evidence risk factors, insufficient 

evidence risk factors of their causal relationship with different types of WMSD. The 

review was also performed for each body part and their risk factors leading to MSD. The 

results conclude that risk factors with at least reasonable evidence leading to WMSDs 

include heavy physical work, smoking, high body mass index, etc., and the most 

commonly reported biomechanical risk factors include excessive repetition, awkward 

postures, and heavy lifting [28]. 
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Shrawan Kumar (2001) propose four theories based on scientific evidence in 

literature about precipitation of musculoskeletal injuries in the workplace. 1) Multivariate 

interaction theory to assess how different factors determine the final outcome (pain 

behavior), 2) Differential fatigue theory for unbalanced and asymmetric occupational 

activities, 3) Cumulative load theory recommends a threshold range of load and repetition 

product beyond which injury precipitates since materials have limited life, 4) 

Overexertion theory implies that physical efforts exceeding the tolerance limit 

precipitates occupational musculoskeletal injury. The result suggests that although these 

theories explain the immediate mechanism of precipitation of injuries, they all operate 

simultaneously and interact to modulate injuries to varying degrees in different cases 

[29]. 

An epidemiologic capture – recapture methodology was used by Morse et al. 

(2005) to study the trends in musculoskeletal disorder. The authors utilize 

musculoskeletal disorders data from workers’ compensation and physician reporting data 

in Connecticut for seven years (1995 – 2001) to perform capture – recapture analysis. 

The analysis was used to estimate the number of unreported and total MSD cases. The 

results of the capture – recapture estimates are compared with the Bureau of Labor 

Statistics survey that is done in concert with OSHA and the method provide an improved 

surveillance method for monitoring temporal trends in injury rates. The results of the 

study found evidence of extensive under-reporting of work-related upper-extremity MSD, 

with less than 10% reported to workers compensation in different years [30].  

Wu et al. (2005) propose a definition of a joint coordination system (JCS) for the 

shoulder, elbow, wrist, and hand. The authors create a standard for the local axis system 
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in each articulating segment or bone for each joint. These axes are used to standardize the 

joint coordination system and motion for the constituent joints. The result suggests that 

these standards can be used by researchers to relate the marker or other coordinate 

systems to the defined anatomic system through digitization, calibration movements, or 

population based anatomical relationships [31]. 

Boocock et al. (2019) aim to determine the ability of the handler to modify 

lumbosacral posture in response to real-time external feedback during repetitive lifting 

task and to determine the behavioral adaptations adopted to comply with feedback and 

the potential consequences for the risk of injury. Thirty-six participants were selected to 

perform repetitive lifting tasks. The participants were divided into two groups where one 

group received real-time feedback on lumbar posture using inertial sensors and the other 

group with a non-biofeedback. From the result, the author summarize that the 

biofeedback group adopted less lumbosacral flexion when compared to the non-

biofeedback group resulting in a significant reduction in lumbosacral passive resistance 

forces [32]. 

Robin Burgess – Limerick and Bruce Abernethy (1997) present the use of a 

postural index to define the postures adopted at the start of lifting. The authors provide a 

quantitative and empirically grounded definition of lifting posture that is robust in the 

changes in task parameters. Seventy-One untrained participants were selected to perform 

manual lifting task with ten reflective markers attached to the participants. From the data 

obtained, ANOVA and MANOVA were used to obtain means and standard deviation for 

extreme conditions and statistics describing effect of load mass and starting height on 
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posture adopted at the start of the lift. The result provides that postural index permits 

lifting posture to be defined independently of absolute joint position [33]. 

Vincent M. Ciriello (2001) investigate the effects of vertical distance and the box 

size on maximum acceptable weights (MAW) of lifting and lowering, the effects of 

height on maximum acceptable weights of lowering, and the effect of a four component 

combination task on maximum acceptable weight. The methodology involves use of eight 

male industrial workers as subjects, performing 27 variations of lifting, lowering, 

pushing, pulling, and carrying. The selected subjects were analyzed through a 

psychophysical methodology. The result concludes that MAWs of lowering were not 

significantly affected by distance of lowering, height of lowering, or the box size except 

for the 25cm lowering task. Also, the result suggests that MAWs of lifting large boxes 

were not significantly affected by distance of lift and MAWs of lowering were not 

significantly different from lifting [34]. 

Wagner et al. (2007) aim to quantify the differences between a static and dynamic 

analysis of a materials handling task using the AnyBody modeling system to include the 

effects of motion. The authors analyze a three-dimensional lifting task performed by the 

human subjects using the AnyBody human modeling system and motion capture data. 

The data obtained are used to create a manikin which replicates the actual movement of 

the human subject with accurate scaling using AnyBody. The model is assessed for the 

analysis of an asymmetric lifting task. From the result, comparisons between low back 

moments, compression and shear forces for dynamic and static analyses were analyzed 

[35]. 
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A hand force (HF) estimation method based on an ambulatory measurement 

system was evaluated by Faber et al. (2018) using inertial motion capture (IMC) and 

instrumented force shoes (FSs). Sixteen subjects performed lifting and carrying 

experiment and the 3D full body kinematics were measured using optical motion capture 

and inertial motion capture, and 3D ground reaction forces were measured using force 

plates and force shoes. The root mean square differences were calculated between the 

estimated hand forces to the reference hand force. The result shows that estimating hand 

forces using an ambulatory measurement system resulted in hand force estimation error 

of 10-27N, which is regarded acceptable for the assessment of spinal loading during 

manual lifting [36]. 

A laboratory-based study was conducted by Azevedo et al. (2014) to analyze 

manual material handling tasks on the construction site with obstacle clearance and to 

understand the contribution of these tasks to accident occurrence. Eight healthy volunteer 

construction workers were selected for the experiment. The subjects had reflective 

markers placed bilaterally on the skin. The experiment was performed on a treadmill with 

subjects performing with and without load. ANOVA test was conducted using the data 

collected from the experiment. The result from the test suggests that the obstacle 

clearance pattern changes with load weight but no influence was observed on the load 

handling strategy. Thus, the authors conclude that manual material handling contributes 

to the occurrence of falls during obstacle clearance and the need of intervention measures 

in order to prevent falls in construction sites [37]. 

 Yeung et al. (2002) investigated symptoms in musculoskeletal that are prevalent 

in different and multiple body regions among manual material handling workers and 
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whether a simple index is associated with musculoskeletal outcomes in single and 

multiple body regions. The authors conduct a structured questionnaire and interviews 

with a study population consisted of 217 male workers with varied levels of manual 

lifting experience. A statistical analysis was performed based on the data collected from 

the interview and the prevalence percent for musculoskeletal symptoms in different and 

multiple body regions were analyzed. From the result, it was inferred that lower back 

symptoms were the most frequent among manual material handling workers, followed by 

shoulders, upper back, hips-upper legs, and neck [38]. 

Zhou et al. (2015) investigated the effects of a laterally slanted ground on trunk 

biomechanical responses during sudden loading events. The research consists of thirteen 

healthy male subjects to perform the task. The experiment was designed with two 

independent variables which are slanted ground angle with three different angle 

conditions (0, 15, 30) and mass of load. The motion of the subjects was tracked through 

an eight-camera 3D optical motion tracking system and a surface electromyography 

(EMG) system was used to record EMG activities. From the data, multivariate analyses 

of variance (MANOVAs) were performed to test the main and interaction results and the 

variables that were found significant in MANOVA were further analyzed using 

univariate ANOVAs. From the result, it was concluded that, one will experience larger 

increase of L5/S1 joint compression force when standing on laterally slanted ground 

while sudden loading which indicate a high risk of low back injury [39]. 

Bortolini et al. (2018) present a motion analysis system (MAS) for human body 

digitalization and analysis during the execution of manufacturing/assembly tasks in 

industrial workstation. The authors develop a hardware system adopting commercial 
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MOCAP devices and extending their applicability to the industrial sector for the dynamic 

assessment of work content. The MAS architecture consists of Wi-Fi network and four 

depth cameras to perform the MOCAP operations. The research consists of seven 

subjects who will perform a specific set of predetermined identical activities for a 

particular duration. The result consists of position vector of all the operator joints over 

time. The position vector (X, Y, Z) provides a dynamic representation of all the 

movements executed by the operator. From the result, the authors suggest how MAS is a 

valuable hardware/software architecture to assess a manual manufacturing/assembly 

workstation highlighting the productive and ergonomic aspects of possible improvements 

[40]. 

Marc J. Dysart and Jeffrey C. Woldstad (1996) present three separate models to 

predict the human postures while performing static sagittal lifting tasks. The authors use a 

common inverse-kinematics characterization to mathematically represent feasible 

postures but explore three different criteria functions for selecting a final posture. The 

first criterion assumes that subjects choose a posture which requires minimum overall 

effort. The second criterion assumes that subjects minimize local effort or fatigue. The 

third criterion assumes that subjects choose the posture with greater stability. To compare 

the actual postures, sixteen healthy subjects performed isometric sagittal lifts at each 

designated hand positions. The postures predicted by the three models were then 

compared with the postures assumed by the subject. From the result, it was inferred that 

the total torque criterion (first criterion) was, on the average, the most accurate [41]. 

The effects of the magnitude of the load handled and movement speed on lumbar 

vertebral kinematics during two-handed sagittal symmetric lifting tasks was investigated 
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by Zhang et al. (2003). The research includes ten subjects who will perform the lifting 

experiment from the floor to a shelf. The motion of the subject was analyzed by placing 

reflective markers on participants’ surface bony landmarks corresponding to the major 

joints and seven spinous processes (C7, T7, and L2-S1). The three-dimensional 

coordinate data were acquired for markers at C7, T7, L2-S1. The center of rotation 

(COR) locations and segmental movement profiles for L2-S1 were analyzed. From the 

result, the authors suggest that, 1) the COR locations and vertebral angular displacement 

does not affect speed or load variation, 2) a faster speed tends to shorten the time to 

complete the acceleration for all the lumbar vertebrae, 3) the shape of the angular profiles 

on a normalized scale but significantly influenced by the torso extension speed variation 

during lifting motions [42]. 

Marras et al. (1993) assess the contribution of three-dimensional dynamic trunk 

motions to the risk of low back disorder during occupational lifting in repetitive manual 

material handling. The authors develop a lumbar motion monitor (LMM) to document the 

three-dimensional components of trunk motion in the work environment. The data 

collected through the LMM signals were processed to determine position, velocity, 

acceleration of the trunk as a function of time in the sagittal, frontal, and transverse 

planes of the body. From the data, three types of analyses were made, 1) to determine the 

variation of trunk motion and workplace measures from cycle-to-cycle within a job, 2) 

the relationship of each trunk motion and workplace variable, 3) to predict the probability 

of high-risk group membership through multiple logistic regression. From the result, it 

was observed that the model could be used as a quantitative, objective measure to design 

the workplace to minimize the risk of low back disorder in repetitive MMH [43]. 
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The differences between the kinematics and kinetics of repetitive lifting in two 

groups of handlers of different ages were investigated by Boocock et al. (2015). Two 

groups of younger and older adults performed a prolonged repetitive lifting task. A nine-

camera motion analysis system with retro-reflective markers attached to the subjects was 

used to track the position and movement of body segments. An eight-segment 

biomechanical model was built to measure the postural kinematics and kinetics 

throughout the lifting task. The surface electromyography was used to record muscle 

activity of the lower erector spinae (LES) and upper erector spinae (UES). The authors 

perform statistical analysis using one-way repeated measures ANOVA to investigate 

differences in median frequency intercepts of UES and LES, back muscle strength, and 

maximum lumbosacral flexion pre-and post-lifting tasks. From the result, it was inferred 

that older participants appeared to control the harmful effects of fatigue associated with 

repetitive lifting [44]. 

Raut et al. (2017) analyzed the posture of the workers during manual material 

handling tasks 3D motion capture and machine learning technique. Eight subjects were 

made to perform squatting and stooping action in front of Kinect. The authors analyze the 

posture while lifting by Body Mask tracing with KinectV2 videos using DFW and 

AdaBoost. A modified dynamic time warping (DTW) on frames, known as the dynamic 

frame warping (DFW) was used to analyze the least distance between the two sequence 

and Euclidean distance to extract the features. The classification of stoop and squat 

motion was performed using AdaBoost algorithm. From the result, it is observed that 

DFW algorithm along with AdaBoost gives 85% accuracy and this method can be used to 

analyze workplaces with MMH operations [45]. 
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Switonski et al. (2012) proposed a gait identification method based on the nearest 

neighbor classification technique with motion similarity assessment using dynamic time 

warping. The authors use kinematic motion data represented by the joint rotations coded 

by Euler angle and unit quaternions. The motion capture data for analysis were obtained 

from the laboratory and the 3D coordinates of the gathered data were reconstructed. 

Based on the data, dynamic time warping is used to assess the whole motion similarity. 

The percent of correctly classified motion were obtained using the nearest neighbor 

classifier with motion similarity measure corresponding to the cost of determined path by 

DTW transform. From the result, it is inferred that the classification with all joints has 

accuracy over 91 percent [46]. 

Giorgino (2009) discusses a variety of algorithm and constraints for the DTW 

technique used in R. The R-software’s “dtw” package provides a comprehensive solution 

for the computation and visualization of DTW alignments. The author also provides 

discussions on how the user can customize the classic constraints of the algorithm like 

local slope, endpoints, windowing, and how create plots of the alignment results [47]. 
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III. METHODOLOGY 

3.1 Dynamic Time Warping 

DTW is a well-known technique to find an optimal alignment between two given 

(time-dependent) sequences under certain restrictions [48]. The explanation behind using 

DTW is, for given two time series, to stretch or compress them locally in order to make 

them resemble as close as possible. Thus, the optimal alignment  ∅  is given by [47] 

𝑫(𝑿, 𝒀) =  𝒎𝒊𝒏
∅

𝒅∅ (𝑿, 𝒀) 

where: 

X, Y = warped time series 

∅ = optimal alignment 

 

In the DTW matrix, each vector is compared against all the other vector to find 

the minimum warping point. Using the Dynamic Time Warping (DTW) algorithm, the 

data is analyzed to predict the time and standard deviation of the motion. At the end, a 

quality chart is created to analyze the behavior of the motion. 

3.2 Quality Control Chart 

 The quality control chart is generally used to analyze how a process changes over 

time. It is one of the primary tools used in the analyze and control steps of DMAIC. In 

control charts, when dealing with the quality characteristic, it is usually necessary to 

monitor both the mean value of the quality characteristic and its variability [49].  

The formulas for constructing quality chart are as follows 

  UCL = 𝑥𝐷 + 3𝑆𝐷 

  Center Line = 𝑥𝐷 

LCL = 𝑥𝐷 − 3𝑆𝐷 
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A control chart has central average line, an upper control limit line, and a lower control 

limit line. Depending upon the quality characteristics, various control charts like x-bar, R 

chart, S chart are used. 

3.3 Model Design and Implementation 

 A motion capture dataset containing a series of motion has been studied. These 

datasets are created from a guide of movements, which are executed in increasing 

complexity. The complexity has been defined from the number of changes in directions 

in a continuous movement. 

Multivariate time series and dtw algorithm 

 A multivariate time series analysis is used to model and explain the interactions 

and co-movements among a group of time series variables. The analysis involves 

examining three or more variables. In this research, the motions are 3-dimensional which 

varies over time; hence, it is a multivariate time series. When dealing with the 

multivariate time series, the actual time series value only enters the dtw algorithm 

through their cross-distance matrix, given as: 

 

 

where: 

𝒙𝑫 =  Average Distance  

𝑺𝑫 = Standard Deviation  

𝒅(𝒊, 𝒋) = 𝒇(𝒙𝒊, 𝒚𝒋) ≥ 𝟎 

where: 

d(i, j) = cross-distance matrix 

𝑥𝑖 , 𝑦𝑗 = 

       f =  

any pair of elements 

local distance function 
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 From the equation, the choice for the local distance function influences how 

strongly the alignment will avoid the mismatching regions. There are a variety of 

dissimilarity functions f  available, e.g., the Euclidean distance, the squared Euclidean 

distance, Manhattan, and many others. Among them, the Euclidean distance is the 

commonly used [50]. 

 To analyze the multivariate time series, the dtw is provided with two matrices Xic 

and Yjc, where i and j are time indices given by, i = 1…N and j = 1…M, arranged in 

rows, whereas the multivariate dimensions, c = 1…C are arranged in columns. The dtw 

assumes an Euclidean local distance by default, i.e.,    

𝒅(𝒊, 𝒋)𝟐 = ∑(𝑿𝒊𝒄 − 𝒀𝒋𝒄)𝟐

𝑪

𝒄=𝟏

 

where: 

d(i, j) = cross-distance matrix 

𝑋𝑖𝑐, 𝑌𝑗𝑐=  

c =  

two matrices 

multivariate dimensions 

 

The dynamic time warping gives an optimal alignment between the given time-dependent 

sequences. It pairs the points of the n-dimensional space and compares them to each 

other, and the one that has the minimum distance with a similar warping curve gives an 

optimal alignment.  

3.4 Model Development, Verification, and Validation 

 
 A model is developed based on an experiment which has complex motions with 

number of changes in direction during continuous movement. 

 

Figure 1: Model Process Flow 
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3.4.1 Data Capture and Data Cleaning 

The data obtained from the motion capture are saved in .C3D format. This 

standard binary file format is a public domain which is used to record synchronized 3D 

and analog data and is mostly supported by all major 3D motion capture system. The 

captured 3D data will be analyzed, cleaned, and subjected to segmentation. 

3.4.2 Segmentation Process 

The motions are segmented into each individual motion in order to analyze 

multiple repetitions and to align its corresponding time series. Successful analysis of 

multiple repetitions depends on identifying those movements. The segmentation of time 

series data for each movement depends on identification of initial and the destination 

markers. The alignment of the time series depends on the segmentation of movements. 

The captured 3D data are segmented using R Studio software. 

The data obtained through segmentation consists of a repeating group of time 

series for each frame. The time series consists of point coordinates (spatial data) along a 

predefined path with identified start and stop locations. For each subject, a continuum of 

multiple repetitions of data is collected. The multiple repetitions in the data set can be 

identified by the index. This index denotes the unique iteration for each segmented 

movement that can be analyzed. 

The identification of segments requires identifying the start and end points for 

each segment. These are denoted as OUT and IN events. The OUT events signify the 

beginning of a segment and the IN event signifies the end of a segment. The proper 

sequence will be OUT-to-IN, IN-to-OUT which signifies time within the sphere of 

proximity. The OUT and IN points are captured by a distinct change in direction within a 
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specified origination area and a distinct change in direction occurring within the 

destination area. Thus, a specific motion can be measured from the distinct change in 

direction [21]. 

Once the origination and destination points are identified, the segments are 

checked for proper event patterns and the out of sequence events are removed. At the 

end, the segment files are generated and are defined by the first and last fixed-point 

identifiers. 

 The segments are generated based on the IN and OUT event of the fixed marker 

that comes within the radius and, each motion segments represents an individual motion 

captured during the experiment. It is noted that the maximum number of segmentations 

can be obtained with minimum event point radius value. The R statistical software is used 

for the data analysis. The segmented data will contain the 3d-coordinates and index for 

each frame which will act as the iteration.  

3.4.3 Computing Dynamic Time Warping Distance 

 From the data obtained through segmentation, the Euclidean distances for each 

iteration for the selected markers are computed based on the Euclidean distance equation 

discussed earlier. Each iteration and its corresponding Euclidean distance correspond to a 

vector which will form the matrix vector (m.v) given as, 

d(m.v) = [
𝑉1 ⋯ 𝑉𝑛

⋮ ⋱ ⋮
𝑉𝑛 ⋯

] 

 

where: 

𝑽𝟏 … 𝑽𝒏  = Motion Vector    

               n = Iteration  
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The motion vector compares them to each other to form the dtw matrix d(m.v). In 

this case, the vector V1 is compared with all the other vectors to form a dtw matrix. Using 

the dtw technique, the degree of similarity between the movements can be determined. In 

general, the R statistical software allows to perform time series calculations using DTW 

method and Euclidean Distance. For this research, DTW method was used as it allows 

many-to-one point comparisons, whereas the Euclidean Distance allow only point-to-

point distance comparison. From the behavior of the motion pattern, the quality of the 

motion can be determined.  

3.4.4 Analyze quality of motion 

 The quality of motion can be determined by generating a quality control chart 

(qcc) as discussed in Chapter 3.2. The qcc chart is generated from the motion vectors 

obtained through DTW technique. This chart provides information on the motions with 

good and bad runs with respect to their iteration. A motion is said to be bad if the point in 

the qcc chart lies outside the control limits. A bad motion occurs whenever the operator 

deviates from the regular motion. The deviation is captured in the control chart whenever 

there is a huge variation in the distance between the fixed and the destination markers i.e., 

when the fixed marker on the operator goes beyond the fixed radius point. These 

variations are captured in the qcc chart as points beyond the control limits. The respective 

iterations of the beyond value points are cross-checked with the respective frame on the 

Qualisys Track Manager software to determine the wrong motion. Once the bad moves 

are verified, the data for the respective beyond limit points are removed from the qcc 

chart. This process is repeated until all the iterations lie within the control limits.  
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3.4.5 Test for special causes 

 The test for special causes are used to analyze whether the plotted points are 

randomly distributed within the control limits and to identify specific patterns and trends 

in the data. Each test detects specific pattern which gives a different aspect of process 

reliability. 

There are eight tests available with the control chart. These are, 

Test 1: One point more than 3-sigma from center line – Identifies subgroups that are 

unusual compared to other subgroups. 

Test 2: Nine points in a row on the same side of the center line – Identifies shifts in the 

process centering or variation. 

Test 3: Six points in a row, all increasing or all decreasing – This test detects trends that 

consistently increase or decrease in value. 

Test 4: Fourteen points in a row, alternating up and down – This test detects systematic 

variation. 

Test 5: Two out of three points more than 2-sigma from the center line (same side) – This 

test detects small shifts in the process. 

Test 6: Four out of five points more than 1-sigma from center line (same side) – This test 

detects small shift in the process. 

Test 7: Fifteen points in a row within 1-sigma of center line (either side) – This test 

detects a pattern of variation that is sometimes mistaken as evidence of good control.  

Test 8: Eight points in a row more than 1-sigma from center line (either side) – This test 

detects a mixture pattern. 

 



28 

 

IV. EXPERIMENT 

4.1 Fundamental skill moves 

Ten fundamental skill moves related to manual material handling are shown in 

Table 1. There are five factors that affects these fundamental skill moves: 1) weight of 

the material; 2) position of the load; 3) rate of work, 4) duration of task, and 5) grip 

capability. The NIOSH Work Practices Guide provides recommendation and directions 

on performing these fundamental skill moves to be ergonomically safe. The methodology 

proposed in this research will be tested only in lifting. Lifting is one of the most effort-

intensive moves and the primary cause for back injuries [51]. 

Table 1:Basic fundamental skill moves for manual material handling with NIOSH   

guidelines for performing the skill moves 

Fundamental 

Skill Moves 

Guide for performing the skill moves 

 

Back Lifting 

i. Lifting should be smooth, with no sudden acceleration 

effects. 

ii. Objects to be lifted should be of moderate width, with a 

hand separation of less than 75cm. 

iii. Lifting postures should be unrestricted, with no bracing 

of the torso. 

iv. Couplings should be good. Handholds should be secure 

and the shoe-floor slippage potential low. 

v. Temperatures should be favorable to lifting. [15] 

 

Leg Lifting 

 

Pulling (shoulder 

height) 

i. Lifting should be smooth, with no sudden acceleration 

effects. 

ii. Push/pull force capability is related to shoe/floor 

friction, with greater friction allowing subjects to 

achieve more leaning forward or backward to create the 

desired push or pull force. 

iii. Persons with large reach and high body weight can 

achieve high push/pull force capability if also provided 

with high-traction surfaces and enough space to lean 

appropriately. 

 

Pulling (elbow 

height) 
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Table 1: Continued. 

 

Pushing (shoulder 

height) 

iv. Push/pull capability is highest when the point of 

application of force is between shoulder and hip heights. 

[52] 

 

Pushing (elbow 

height) 

 

Data collection method 

The data collection is based on a Mocap master capture plan, which is based on 

the Snook’s table for the design of manual handling tasks [16]. The table provides data 

for maximum acceptable weight of lift for male and female for various parameters. Based 

on these parameters, the experiment is performed to obtain the motion capture data.  

 

Figure 2:MOCAP Framework 

Data collection module 

The data collection module consists of fleet of nine Qualisys infrared cameras, 

which captures the operator’s motions.  The Oqus 510 (5+ series) and Miqus M3 cameras 

are used with capture rate of 10000 frames per second. The physical attributes of the 

operator like height, reach distance, age, etc. are taken into consideration. The experiment 
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space is calibrated for all the nine cameras to capture within the designated bounding 

box. The operator will then perform the fundamental skill move for each factor levels. 

 

Figure 3: Position of markers (front & back) 

 
The camera captures each move of the operator with the help of markers attached 

to different positions on the operator’s body (see Fig.1 for a map of sensor locations). 

The cameras will be synchronized and placed at different angles. Each camera captures 

the operator’s movement from various angles, thus improving the motion capture 

accuracy. Qualisys Track Manager (QTM) is then used to convert the captured data into 

real-time 3d coordinates. 

Data pre-processing module 

The data collection module produces a dataset containing the 3d coordinates of 

the markers attached to different positions in the human body. In the data pre-processing 

stage, the captured motion data are transferred to the Qualisys Track Manager [53] to 
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generate a real-time 3D coordinate as a function of time. Each body part of the generated 

3d human model are assigned a name for easy identification during the time of analysis. 

The obtained data are then cleaned and stored in a database which will later act as a 

standard for analyzing the Mocap data. 

Data Analysis Module 

From the data stored in the database from the pre-processing stage, each skill 

move/ motion data obtained is chosen individually for analysis. 

The motion capture data obtained from the fundamental skill move are used to 

derive segments of motion for the particular skill task. The segmenting of motion helps in 

analyzing each individual motion from the task and gives the number of iterations. Using 

the 3d coordinates, the Euclidean distance for each iteration are obtained. The Euclidean 

distance is given as: 

𝑫 =  √(𝒙𝟐−𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐 + (𝒛𝟐 − 𝒛𝟏)𝟐 

 

where: 

x, y, z = 3d-coordinates  

D = Euclidean Distance   

 

Once the Euclidean distance is computed, a vector of motion is created for the 

Euclidean distance of each iteration. This vector of motion is used as an input to the 

Dynamic Time Warping (DTW) algorithm, as it is explained below. Vector X is the time 

series representing the first segment in the series of repetitive motions, which is taken as 

a baseline move in the analysis. Vector Y is the time series for the segment to be 

analyzed by the algorithm. Note that each segment is analyzed one at a time. 
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Performing the Lifting task 

 A lifting experiment is designed to analyze the behavior of the motion along the 

time series. The experiment is based on the number of factors and factor levels, which are 

discussed later in the design of experiments section. Two types of lifting motions are 

performed for a detailed analysis of the quality of the motion. 

1. Normal lifting task with respect to the different factors and factor levels. 

2. Normal lifting task with respect to the different factors and factor levels, but 

with an induced intentional wrong motion to further analyze the quality of the 

motion. 

 

 

Figure 4: Normal lift vs Wrong lift 

4.2 Design of Experiments 

Based on the Mocap master capture plan, a 22 factorial is created for 50% of the 

population with respect to their factor levels.  

Normal lifting task
Lifting task with intentional wrong 

motion
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Table 2: Factors and Levels 

Factor Levels Number of levels 

Gender Male, Female 2 

Interval 9 seconds, 14 seconds 2 

 

Based on the interval, the amount of weight (kg) to be lifted and the vertical distance 

(cm) are determined. The detailed experimental plan is built based on the following 

factors 

 Table 3: MoCap experiment plan 

 

 

Subject 

Gender: Male and Female 

 

Height: Short, Medium, and Tall 

(Based on medium equal to 1st standard deviation of human 

height for male and female) 

 

 

Experiment 

Range: Floor-to-Knuckle; Knuckle-to-Shoulder; Shoulder-to-

Arm length 

% industry: % of industry capability 

Height: Vertical height in centimeters 

Weight: Amount of weight moved in kilograms. 

Interval: Cycle time for the experiment is seconds. 

 

Based on the percentage of industrial population, the maximum weight limit is 

determined. The weight to be lifted also varies depending upon the gender. Based on the 

factors and factor levels, the data from the following experimental plan will be analyzed. 
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Table 4: Mocap Leg Lift Master Capture Plan 

Subject Experiment 

Gender Height Range 
% 

Industry 

Weight 

(kg) 

Height 

(cm) 

Interval 

(sec) 

Female Short Floor- Knuckle 50 15 25 9 

Female Short Floor- Knuckle 50 13 51 9 

Female Short Floor- Knuckle 50 12 76 9 

Female Short Floor- Knuckle 50 16 25 14 

Female Short Floor- Knuckle 50 14 51 14 

Female Short Floor- Knuckle 50 13 76 14 

Male Medium Floor- Knuckle 50 24 25 9 

Male Medium Floor- Knuckle 50 20 51 9 

Male Medium Floor- Knuckle 50 19 76 9 

Male Medium Floor- Knuckle 50 28 25 14 

Male Medium Floor- Knuckle 50 24 51 14 

Male Medium Floor- Knuckle 50 22 76 14 

 
 The selection of the factors and factor levels are based on the Hazard Analysis 

Tool generally called as the Snook Tables. The tables are based on controlled 

experiments using psychophysical evaluation, and can be used to determine the 

acceptable weight limits for activities like pull, push, and carry for male and female. 

Based on the percentage of industry population that can perform these tasks for an 

interval of time, the weights are determined.  

The guidelines for lifting based on the Snook Table are: 

• Select width of object (outward from body) in the table close to that encountered 

in the task 

• Select closest distance of lift. 

• Select the lifting range (floor-to-knuckle, knuckle-to-shoulder, shoulder-to-arm 

reach). 

• Select the gender of the worker. 
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• Find closest weight in the table corresponding to width, distance, range, gender, 

and interval. 

• Select the corresponding percent of population who can perform the task without 

stress. 

 Based on the input from Snook Table, the floor-to-knuckle range was selected. 

This range was selected particularly for the positional set up of the destination markers. 

The experiment is designed based on the 50% of the industry population that can lift the 

weight from floor-to-knuckle height at different intervals. The interval between each lift 

determines the weight to be carried which varies for male and female.  
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V. RESULTS 

 In this chapter, the results of the development model, verification model, and 

validation model will be discussed. Initially, a base model is developed from the existing 

data set with complex motion (not lifting task) to study the quality of the motion. In the 

verification model, the lifting experiment is performed with the 22 factorial. From the data 

set, dynamic time warping is performed, and a quality control chart is built to analyze the 

quality of the motion. The third phase is the validation model, which has the lifting task 

performed with the induced intentional wrong motion.  

5.1 Model Development: Computing the quality of the motion 

 As discussed from the previous chapter, a base model is built for a repetitive 

right-arm movement, for a right-handed person. The analysis for the development model 

involves the movements of the markers attached to the right elbow (one marker), right 

wrist (one marker), and right shoulder (one marker). The objective of building a base 

model is to analyze how statistical process control methods can be used to evaluate the 

behavior of the motion along the time series for an operator.  

 The data analysis is performed using the dynamic time warping technique and the 

quality of the motion can be analyzed through generating a quality control chart (qcc). 

The qcc chart performs the statistical quality control for the dtw matrix d(m.v). The 

qcc.groups function was used to group dtw data to use as input to the qcc function. This 

function uses the observed data values and the sample indicators for the data values to 

return a matrix of suitable dimensions [54].  
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5.1.1 Computing the quality of the motion for elbow 

 An x-bar chart has been plotted to study the behavior of the motion along the time 

series. The x –bar chart is used since it gives the means of a continuous process variable. 

At the y-axis, the group summary statistics gives the dynamic time warping distances 

obtained from the motion vector matrix. The x-axis is the iterations of motions obtained 

from segmentation. Through segmentation, a total of 58 iterations were obtained each 

representing the breakdown of motions performed. While building the qcc chart, these 

iterations are grouped to a sample size of three, which gives a total of 19 groups along the 

x-axis.  

 

Figure 5: qcc plot for Elbow 
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The data obtained through x-bar chart are inferred in the table below. 

Table 5: Statistics for elbow 

Marker Center Std.Dev LCL UCL Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Right 

Elbow 

64889.33 6301.589 53974.66 75804 0 0 

 

It is inferred from Table 5, that the average distance obtained from the dtw 

calculation is 64889.33 and a standard deviation of 6301.589. As discussed earlier, the 

quality control chart has 3-sigmas to use for computing control limits. From the graph 

that there are no groups whose mean value violates both the upper control limit and lower 

control limit which might act as a benchmark to identify the optimal motion for elbow 

movements. It is also inferred from the graph that from iteration 12 to iteration 16, there 

are four consecutive points on the same side above the control limit. According to the test 

for special causes discussed in Chapter 3, the control chart follows rule 6, which means 

that there is a small shift in the process is detected. 

5.1.2 Computing the quality of the motion for wrist and shoulder 

 Similar to the elbow, a qcc plot is also generated for the right shoulder and right 

wrist. The summary of the data obtained for the respective markers are listed in Table 

below. 
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Table 6: Summary of Statistics 

Marker Center Std.Dev LCL UCL Number 

of beyond 

limits 

Number 

of 

violating 

runs 

Right 

Shoulder 

17070.79 2046.477 13526.18 20615.39 0 0 

Right 

Wrist 

111128.2 10325.55 93243.85 129012.6 1 2 

 

It is inferred from Table 6; the right shoulder follows the same pattern as right 

elbow with no violating runs and beyond limit points. In the case of right wrist, it is 

observed that there are two groups with violating runs and one group which is beyond 

limit. The point that is beyond the control limit infers that there are certain motions which 

are irregular and need to be investigated further.  

5.1.3 Interpretation of LCL and UCL for all markers 

  The behavior of the chosen marker joints can be analyzed through the study of 

LCL and UCL.  

Table 7: Interpretation of markers 

Marker UCL LCL Difference in 

LCL and UCL 

Shoulder 20615.39 13526.18 7089.21 

Elbow 75804 53974.66 21829.34 

Wrist 129012.6 93243.85 35768.75 

 

From Table 7, it is understood that the difference between UCL and LCL for 

elbow and wrist are significantly higher compared to the shoulder. Thus, it is inferred that 

the elbow and wrist perceive more movements compared to the shoulder, which is almost 

stationary or with less movement. Through this, further study can be made for the parts of 

the body with frequent motions.  



40 

 

5.2 Model Verification: Computing the quality of the motion 

 In the model verification phase, the quality of motion for an actual lifting task is 

analyzed. The lifting task is carried out with the help of guidelines for lifting from the 

Snook’s table. For the model verification, the data set of a female subject carrying 14 

kilograms at 14 seconds interval is selected for analysis. After dtw is performed, the qcc 

chart is built for computing the motion behavior. 

5.2.1 Computing the quality of the motion for right elbow 

 Similar to the development model, an x-bar chart was generated from the dtw 

distance matrix to analyze the motion quality. The y-axis carries the dtw distance and the 

x-axis carries the number of iterations in groups.  

 

Figure 6: qcc plot for right elbow 

 It is inferred from the x-bar chart that the groups from 1 to 4 follows an increasing 

trend along the time series. This follows the rule 6 of the test for special causes which 
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implies that there is a small shift in the process is detected. The chart has one group that 

lies beyond the upper control limit. The data obtained from the x-bar chart are given in 

the table below 

Table 8: Summary of statistics for right elbow 

Marker Center Std.Dev LCL UCL Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Right 

Elbow 

1947.913 870.1259 440.8105 3455.015 1 0 

 

 From Table 8, the average dtw distance calculated is 1947.913. By default, the 

qcc chart take 3-sigmas to use for computing control limits. The point that is beyond the 

control limit is further investigated by comparing the motion data (c3d file) to their 

respective iterations and frame number. In this experiment, it should be noted that we 

take the radius in 100mm, so even a small deviation from the normal motion, for example 

as low as 3cms, will be very sensitive in the system. By eliminating the point beyond the 

limit and recomputing the qc chart, the following chart is obtained: 
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Figure 7: qcc plot of right elbow after recomputing 

The new data obtained after recomputing the points are 

Table 9: Summary of statistics of right elbow after recomputing 

 

 From the x-bar chart after recomputing, the average dtw distance now is 

1639.918. Also, the UCL and the LCL is recalculated again based on the new group size. 

Even after recomputing, there is still a group that lies beyond the upper control limit. 

Therefore, the particular group is investigated further to determine the cause of the 

irregularity. Recomputing of the qcc is performed until all the points lie between the 

control limits.  

Marker Center Std.Dev LCL UCL Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Right Elbow 

after 

recomputing 

1693.918 776.3355 349.2653 3038.57 1 0 
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 By recomputing the qcc once again to eliminate the point beyond the limit, the 

following plot is obtained. 

 

Figure 8: qcc plot of right elbow after final computing 

The data obtained after recomputing the qcc are shown in Table 10 

Table 10: Summary of Statistics of right elbow after final computing 

  

The x-bar chart recomputed again has the average dtw distance of 1447.794. The 

control limits were also recalculated based on the new group size. From Fig.8, the 

recomputed qc chart with no violating runs and beyond limits are obtained. This gives a 

series of motions performed with no irregular or wrong movements. 

Marker Center Std.Dev LCL UCL Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Right Elbow 

after 

recomputing 

1447.794 776.9759 102.0318 2793.555 0 0 
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 5.2.2 Computing the quality of the motion for different markers 

 Similar to the right elbow, a qcc plot is also generated for the right wrist, left 

elbow, and left wrist. The summary of the statistics obtained for each marker are given in 

Table 11. 

Table 11: Summary of statistics for different markers 

Marker Center Std.Dev LCL UCL Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Left 

Elbow 

3877.735 1557.675 1179.763 6575.707 6 0 

Right 

Wrist 

1259.891 727.8929 -0.8560632 2520.639 1 0 

Left 

Wrist 

1907.069 785.6106 546.3511 3267.786 2 0 

 

From Table 11, all the markers that were analyzed has points beyond the control 

limits. Similar to the analysis performed for the right elbow, further investigation was 

performed on the points that were beyond control limits.  

Recomputing the beyond limits 

 All the markers were investigated for the possible cause for the beyond limit 

points by manually cross-verifying the 3d motion with their respective iteration and 

frame. The recomputed summary of the statistics generated by the x-bar chart is given in 

Table 12. 
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Table 12: Summary of statistics of different markers after recomputing 

 

Marker 

(recomputed) 

 

Center 

 

Std.Dev 

 

LCL 

 

UCL 

Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Left Elbow 598.0153 92.20051 438.3194 757.7113 0 0 

Right Wrist 1033.501 651.4396 -94.8251 2161.828 0 0 

Left Wrist 925.2046 594.5034 -104.5055 1954.915 0 0 

5.3 Model Validation: Computing the quality of the motion 

 In this model, the lifting task is validated by manually inducing an irregular 

motion in between the normal lifting experiment. For the validation, an experimental data 

set of a female subject carrying 13 kilograms at 9 seconds interval is analyzed. The 

wrong motion is induced randomly between the usual lifting task as shown in Fig 4. For 

validation, the subject’s right elbow is chosen for the analysis. 

5.3.1 Computing the quality of the motion for right elbow 

 From the raw data, the data is segmented with respect to start and end frame and 

their respective iterations are computed. Once the dynamic time warping is performed 

from the segmented data, the qcc plot is generated. 
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Figure 9: qcc plot for right elbow with induced wrong motion 

 From the x-bar chart, it is inferred that there are lot of groups lie beyond the 

control limits. By investigating the points beyond the control limits, it is concluded that 

those points represent the induced wrong motions between the experiments. It is observed 

from the iteration 32 to iteration 36, that the process follows the universally recognized 

test, rule 1, which detects the out of control points. Thus, the system can detect whenever 

a wrong motion is performed by the operator.  

Table 13: Summary of statistics for right elbow with induced wrong motion 

 

 From Table 13, it is observed that the average dtw distance obtained is 4341.938. 

From the analysis result, the points lying beyond the control limits not only define the 

Marker Center Std.Dev LCL UCL Number 

of 

beyond 

limits 

Number 

of 

violating 

runs 

Right 

Elbow  

4341.938 2491.067 2903.72 5780.156 15 3 
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wrongly induced motions but also the other irregular movement of the subject during the 

experiment. From the validation model, two important key points are learned: 

1. The system can detect the irregular motions of the subject performed during a manual 

lifting task. 

• From the analysis of the control chart, the points that are between the control 

limits are generally considered as good motions. These good moves are 

further analyzed through the trend followed by the iterations along the time 

series. By applying special causes test, the good motions are further 

investigated for the change in variability along the time series. This further 

improves the motion of the operator. 

2. By detecting the wrong motions, the risk of injuries occurring during manual material 

handling task can be prevented.  

• It has been proved from the research results, that the system can detect bad 

motions whenever an operator deviates from the regular lifting. The bad 

moves are further investigated to find the degree of injury it can cause to an 

operator. This will help in building a standardized work instruction which will 

prevent the operator from performing those motions, thus preventing related 

injuries. 

5.4 Managerial Implications 

 This empirical research on using motion capture technique to build a framework 

and analyze the quality of motion of an operator performing manual material handling 

task contribute to the safety of the workers in a manual material handling industry. Since 

this is a thinly researched area, especially in the field of manual material handling, the 
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findings from this research are expected to be fruitful, both for management perspective 

as well as for industry. Following are the managerial implications of this study: 

Opportunities: 

1. This research offers and test a conceptual model of a manual lifting task related to 

manual material handling environment. It provides a framework to researchers, 

industry personnel to explore the factors causing injuries to the operator while 

performing the manual material handling task that are significance in the MMH 

and manufacturing industry. 

2. This research contributes by developing a reliable process to analyze irregular 

motions performed by the operator during manual lifting of heavy objects and 

thus offers researchers and industry personnel a research tool that can be used for 

future research. 

3. The research highlights the importance of certain demographic factors like age, 

gender, height, and other factors including weight of the object, height of the 

table, interval between each lift and the impact of these factors in identifying the 

acceptable manual material handling tasks that can be performed by an operator in 

the MMH environment. 

Challenges: 

1. It was observed from the research that it was difficult to train an inexperienced 

subject to perform the manual material handling task, hence further standard 

instructions are needed to perform the manual material handling tasks. 

2. The cost of the experiment equipment was found to be costlier. Also, the 

experiment conducted for the research needed a lot of space requirements. 



49 

 

3. Since the research was based on a specific sample size, it might have suffered 

from certain limitations. The results may have been more generalizable had a 

bigger sample been taken. 
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VI. CONCLUSION AND FUTURE WORK 

 In this research, a manual material handling framework was developed to assess 

the manual lifting tasks in a MMH environment. The dynamic time warping technique, as 

discussed in Chapter 3, was used to assess the similarities between the motions performed 

during the manual lifting task. To further analyze the quality of the motion, a quality 

control chart was built to study the behavior of the motion along the time series. 

 The motion capture framework consists of three modules: 

• Data Collection Module 

• Data Pre-Processing Module 

• Data Analysis Module 

The data collection module was based on the Snook’s table for the maximum 

acceptable weight limit for men and women. The experiment is configured based on the 

Snook’s table. Through data pre-processing module, the collected motion capture data is 

converted into 3d-coordinates. The data is cleaned and further used for analysis. At the 

data analysis module, the collected 3d-coordinate data is subjected to segmentation to 

identify each motion and its iteration.  The segmented data is used to perform dynamic 

time warping to obtain the motion vector for each iteration. Further, quality control chart 

is used to analyze the quality of the motion. 

The framework for analysis is built by performing data analysis on a test data, 

which is the development model, as discussed in Chapter 5. A model was developed from 

an existing data set to study the quality of the motion using the quality control chart. 

From the base model, further analysis for the manual lifting task was developed. 
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A verification model was built from the dataset obtained by performing manual 

lifting task. Since the distance between the placement of the markers and sensors are very 

minimal, even with a small deviation in motion gives a large variation, which can be 

inferred from the quality control chart. By further investigating the outer limit points and 

eliminating them, the motions that are relatively close to each other can be obtained from 

the control chart. 

In the validation model, it is important to verify if the algorithm detects any 

irregular motion. In order to verify, an intentional wrong motion was induced in a usual 

lifting task. The motion that was performed intentionally with wrong motion should be 

detected by the system and indicate in the quality control chart. After the analysis, the qc 

chart provided the plot with all the intentional wrong motion beyond the control limit, 

thus validating the algorithm used.  

Limitations 

• Though the proposed framework can identify irregular motions in an 

operator, we cannot conclude that the good motions are the optimal 

motions since the experiments are performed by students who do not have 

an experience in the manual material handling environment.  

• The proposed framework is currently only capable of providing a 

benchmark for what we call as an optimal motion, but not declaring that 

the obtained good motions are the optimal motion.  

• The experiments are limited by the number of cameras that has been used. 

The position of the camera used for the experiment may even miss out a 
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certain movements of body parts when the subject performed the lifting 

task. 

• The experiments are also limited by the sample size of the subject used. 

The results obtained are experiments conducted for female of certain 

height and age. More accurate representation of the results may have been 

generated if a bigger sample size has been taken. 

Future Work 

 This research provides a framework to analyze the fundamental skill moves in a 

manual material handling industry. The future research will be performed with the help of 

the experienced manual material handling operators. From the data obtained, an optimal 

motion for performing a manual material handling task will be identified. This research 

has not taken consideration of any biometric data of the subject like heart rate, respiratory 

rate, etc. With the help of a biometric suit, the data for heart rate, respiratory rate, 

acceleration can also be calculated which will give a wide range of scope for further 

improvements in the operator’s motion. The future research can also make use of 

augmented reality to analyze the operator’s motion with few cameras from which various 

metrics of the subject can be obtained and used for analysis. 

The results of the research will help in analyze the operator’s fatigue, energy 

expenditure, and many other ergonomic factors as well depending on the interest of the 

future researchers. The results of the research can be combined with digital twin 

technology to bridge the physical and virtual environment and allows analysis of data 

virtually beforehand. Also, with the advancement in augmented reality in manual 

material handling industry, the operator can physically monitor the heart rate, respiratory 
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rate, and many biometric factors in real time while performing the operation. As 

mentioned before, the results will help future researchers to further develop the 

methodologies through various IoT systems that will improve the quality of the manual 

material handling environment.  
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APPENDIX SECTION 

 
Quality Control Chart for model development phase 

Qcc plot for Right Wrist 
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Qcc plot for Right Shoulder 
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Quality Control Chart for verification phase 

Qcc plot for left elbow 
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Qcc plot for right wrist 

 

 

Qcc plot for left wrist 
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Snook’s table for maximum acceptable weight limits for males 
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Snook’s table for maximum acceptable weight limits for female 
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