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APPROXIMATIONS OF SOLUTIONS TO RETARDED
INTEGRODIFFERENTIAL EQUATIONS

DHIRENDRA BAHUGUNA, MALIK MUSLIM

Abstract. In this paper we consider a retarded integrodifferential equation
and prove existence, uniqueness and convergence of approximate solutions. We

also give some examples to illustrate the applications of the abstract results.

1. Introduction

Consider the semilinear retarded differential equation with a nonlocal history
condition in a separable Hilbert space H:

u′(t) +Au(t) = Bu(t) + Cu(t− τ) +
∫ 0

−τ

a(θ)Lu(t+ θ)dθ, 0 < t ≤ T <∞, τ > 0,

u(t) = h(t), t ∈ [−τ, 0].
(1.1)

Here u is a function defined from [−τ,∞) to the space H, h : [−τ, 0] → H is a
given function and the kernel a ∈ Lp

loc(−τ, 0). For each t ≥ 0, ut : [−τ, 0] → H is
defined by ut(θ) = u(t + θ), θ ∈ [−τ, 0] and the operators A : D(A) ⊆ H → H, is
a linear operator. The operators B : D(B) ⊆ H → H, C : D(C) ⊆ H → H, and
L : D(L) ⊆ H → H are non-linear continuous operators.

For t ∈ [0, T ], we shall use the notation Ct := C([−τ, t];H) for the Banach space
of all continuous functions from [−τ, t] into H endowed with the supremum norm

‖ψ‖t := sup
−τ≤η≤t

‖ψ(η)‖.

The existence, uniqueness and regularity of solutions of (1.1) under different
conditions have been considered by Blasio [8] and Jeong [14] and some of the papers
cited therein. For the initial work on the existence, uniqueness and stability of
various types of solutions of differential and functional differential equations, we
refer to Bahuguna [1, 2], Balachandran and Chandrasekaran [5], Lin and Liu [15].
The related results for the approximation of solutions may be found in Bahuguna,
Srivastava and Singh [4] and Bahuguna and Shukla [3].
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Initial study concerning existence, uniqueness and finite-time blow-up of solu-
tions for the following equation,

u′(t) +Au(t) = g(u(t)), t ≥ 0,

u(0) = φ,
(1.2)

have been considered by Segal [19], Murakami [17], Heinz and von Wahl [13]. Bazley
[6, 7] has considered the following semilinear wave equation

u′′(t) +Au(t) = g(u(t)), t ≥ 0,

u(0) = φ, u′(0) = ψ,
(1.3)

and has established the uniform convergence of approximations of solutions to (1.3)
using the existence results of Heinz and von Wahl [13]. Goethel [12] has proved the
convergence of approximations of solutions to (1.2) but assumed g to be defined on
the whole of H. Based on the ideas of Bazley [6, 7], Miletta [16] has proved the
convergence of approximations to solutions of (1.2). In the present work, we use
the ideas of Miletta [16] and Bahuguna [3, 4] to establish the convergence of finite
dimensional approximations of the solutions to (1.1).

2. Preliminaries and Assumptions

Existence of a solution to (1.1) is closely associated with the existence of a
function u ∈ CT̃ , 0 < T̃ ≤ T satisfying

u(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bu(s)

+Cu(s− τ) +
∫ 0

−τ
a(θ)Lu(s+ θ)dθ]ds, t ∈ [0, T̃ ]

and such a function u is called a mild solution of (1.1) on [−τ, T̃ ]. A function u ∈ CT̃

is called a classical solution of (1.1) on [−τ, T̃ ] if u ∈ C1((0, T̃ ];H) and u satisfies
(1.1) on [−τ, T̃ ].

We assume in (1.1), that the linear operator A satisfies the following.

(H1) A is a closed, positive definite, self-adjoint linear operator from the domain
D(A) ⊂ H into H such that D(A) is dense in H, A has the pure point
spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ . . .

and a corresponding complete orthonormal system of eigenfunctions {φi},
i.e.,

Aφi = λiφi and (φi, φj) = δij ,

where δij = 1 if i = j and zero otherwise.
If (H1) is satisfied then −A is the infinitesimal generator of an analytic semigroup
{e−tA : t ≥ 0} in H (cf. Pazy [18, pp. 60-69]). It follows that the fractional powers
Aα of A for 0 ≤ α ≤ 1 are well defined from D(Aα) ⊆ H into H (cf. Pazy [18, pp.
69-75]). Hence for convenience, we suppose that

‖e−tA‖ ≤M for all t ≥ 0

and 0 ∈ ρ(−A), where ρ(−A) is the resolvent set of −A.
D(Aα) is a Banach space endowed with the norm ‖x‖α = ‖Aαx‖.



EJDE-2004/136 APPROXIMATIONS OF SOLUTIONS 3

For t ∈ [0, T ], we denote by Cα
t := C([−τ, t];D(Aα)) endowed with the norm

‖ψ‖t,α := sup
−τ≤ν≤t

‖ψ(ν)‖α.

Further, we assume the following.
(H2) h ∈ Cα

0 and h is locally hölder continuous on [−τ, 0].
(H3) We shall assume that the map B : D(Aα) → H satisfies the following

Lipschitz condition on balls in D(Aα): for each η > 0 and some 0 < α < 1
there exists a constant K1(η) such that
(i) ‖B(ψ)‖ ≤ K1(η) for ψ ∈ D(Aα) with ‖Aαψ‖ ≤ η,
(ii) ‖B(ψ1) − B(ψ2)‖ ≤ K1(η)‖Aα(ψ1 − ψ2)‖ for ψ1, ψ2 ∈ D(Aα) with
‖Aαψi‖ ≤ η for i = 1, 2.

(H4) The map C : D(Aα) → H satisfies the following Lipschitz condition on
balls in D(Aα): For each η > 0 and some 0 < α < 1 there exists a constant
K2(η) such that
(iii) ‖C(ψ)‖ ≤ K2(η) for ψ ∈ D(Aα) with ‖Aαψ‖ ≤ η,
(iv) ‖C(ψ1) − C(ψ2)‖ ≤ K2(η)‖Aα(ψ1 − ψ2)‖ for ψ1, ψ2 ∈ D(Aα) with
‖Aαψi‖ ≤ η for i = 1, 2.

(H5) The map L : D(Aα) → H satisfies the following Lipschitz condition on
balls in D(Aα): For each η > 0 and some 0 < α < 1 there exists a constant
K3(η) such that
(v) ‖L(ψ)‖ ≤ K3(η) for ψ ∈ D(Aα) with ‖Aαψ‖ ≤ η,
(vi) ‖L(ψ1) − L(ψ2)‖ ≤ K3(η)‖Aα(ψ1 − ψ2)‖ for ψ1, ψ2 ∈ D(Aα) with
‖Aαψi‖ ≤ η for i = 1, 2.

(H6) a ∈ Lp
loc(−τ, 0) for some 1 < p <∞ and aT =

∫ 0

−τ
|a(θ)| dθ.

3. Approximate Solutions and Convergence

Let Hn denote the finite dimensional subspace of H spanned by {φ0, φ1, · · · , φn}
and let Pn : H −→ Hn be the corresponding projection operator for n = 0, 1, 2, · · · .
Let 0 < T0 ≤ T be such that

sup
0≤t≤T0

‖(e−tA − I)Aαh(0)‖ ≤ R

2
, (3.1)

where R > 0 be a fixed quantity.
Let us define

h̄(t) =

{
h(t), if t ∈ [−τ, 0],
h(0), if t ∈ [0, T ].

We set

T0 < min
[
{R

2
(1− α)(K(η0)Cα)−1}

1
1−α , {1

2
(1− α)(K(η0)Cα)−1}

1
1−α

]
, (3.2)

where

K(η0) = [K1(η0) +K2(η0) +K3(η0)aT ] (3.3)

and Cα is a positive constant such that ‖Aαe−tA‖ ≤ Cαt
−α for t > 0. We define

Bn : H −→ H such that
Bnx = BPnx, x ∈ H.

Similarly Cn and Ln are given by

Cnx = CPnx, x ∈ H, Lnx = LPnx, x ∈ H.
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Let Aα : Cα
t → Ct be given by (Aαψ)(s) = Aα(ψ(s)), s ∈ [−τ, t], t ∈ [0, T ]. We

define a map Fn on BR(Cα
T0
, h̄) as follows

(Fnu)(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bnu(s)

+Cnu(s− τ) +
∫ 0

−τ
a(θ)Lnu(s+ θ)dθ]ds, t ∈ [0, T0],

for u ∈ BR(Cα
T0
, h̄).

Theorem 3.1. Suppose that the conditions (H1)-(H6) are satisfied and h(t) ∈
D(A) for all t ∈ [−τ, 0]. Then there exists a unique un ∈ BR(Cα

T0
, h̄) such that

Fnun = un for each n = 0, 1, 2, · · · , i.e., un satisfies the approximate integral
equation

un(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bnun(s)

+Cnun(s− τ) +
∫ 0

−τ
a(θ)Lnun(s+ θ)dθ]ds, t ∈ [0, T0].

(3.4)

Proof. First we show that Fn : BR(Cα
T0
, h̄) → BR(Cα

T0
, h̄). For this first we need

to show that the map t 7→ (Fnu)(t) is continuous from [−τ, T0] into D(Aα) with
respect to ‖ · ‖α norm. Thus for any u ∈ BR(Cα

T0
, h̄), and t1, t2 ∈ [−τ, 0], we have

(Fnu)(t1)− (Fnu)(t2) = h(t1)− h(t2). (3.5)

Now for t1 t2 ∈ (0, T0] with t1 < t2 we have

‖(Fnu)(t2)− (Fnu)(t1)‖α

≤ ‖(e−t2A − e−t1A)h(0)‖α +
∫ t1

0

‖(e−(t2−s)A − e−(t1−s)A)Aα‖

×
[
‖Bnu(s)‖+ ‖Cnu(s− τ)‖+

∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)‖dθ
]
ds

+
∫ t2

t1

‖(e−(t2−s)A)Aα‖
[
‖Bnu(s)‖+ ‖Cnu(s− τ)‖

+
∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)‖dθ
]
ds.

(3.6)

Since part (d) of Theorem 6.13 in Pazy [18, p. 74] states that for 0 < β ≤ 1 and
x ∈ D(Aβ),

‖(e−tA − I)x‖ ≤ Cβt
β‖Aβx‖.

Hence if 0 < β < 1 is such that 0 < α + β < 1 then Aαy ∈ D(Aβ). Therefore for
t, s ∈ (0, T0], we have

‖(e−tA − I)Aαe−sAx‖ ≤ Cβt
β‖Aα+βe−sAx‖ ≤ CβCα+βt

βs−(α+β)‖x‖. (3.7)
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We use the inequality (3.7) to obtain∫ t1

0

‖(e−(t2−s)A − e−(t1−s)A)Aα‖[‖Bnu(s)‖+ ‖Cnu(s− τ)‖

+
∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)‖dθ]ds

≤
∫ t1

0

‖(e−(t2−t1)A − I)e−(t1−s)AAα‖[‖Bnu(s)‖+ ‖Cnu(s− τ)‖

+
∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)‖dθ]ds

≤ Cα,β(t2 − t1)β ,

(3.8)

where

Cα,β = CβCα+βK(η0)
T

1−(α+β)
0

[1− (α+ β)]
,

K(η0) is given by (3.3) and η0 = R + ‖h‖0,α. We calculate the second part of the
integral (3.6) as follows. We have∫ t2

t1

‖e−(t2−s)AAα‖[‖Bnu(s)‖+ ‖Cnu(s− τ)‖+
∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)‖dθ]ds

≤ CαK(η0)
(t2 − t1)1−α

(1− α)
.

(3.9)
Hence from (3.5), (3.8) and (3.9) the map t 7→ (Fnu)(t) is continuous from [−τ, T0]
into D(Aα) with respect to ‖ · ‖α norm.

Now, for t ∈ [−τ, 0], (Fnu)(t)− h̄(t) = 0.
For t ∈ (0, T0], we have

‖(Fnu)(t)− h̄(t)‖α

≤ ‖(e−tA − I)Aαh(0)‖

+
∫ t

0

‖e−(t−s)AAα‖
[
‖Bnu(s)‖+ ‖Cnu(s− τ)‖+

∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)‖dθ
]
ds

≤ R

2
+ CαK(η0)

T 1−α
0

1− α
.

Hence ‖Fnu− h̄‖T0,α ≤ R. Thus Fn : BR(Cα
T0
, h̄) → BR(Cα

T0
, h̄).

Now, for any u, v ∈ BR(Cα
T0
, h̄) and t ∈ [−τ, 0] we have Fnu(t)−Fnv(t) = 0. For

t ∈ (0, T0] and u, v ∈ BR(Cα
T0
, h̄) we have

‖Fnu(t)− Fnv(t)‖α

≤
∫ t

0

‖e−(t−s)AAα‖
[
‖Bnu(s)−Bnv(s)‖+ ‖Cnu(s− τ)− Cnv(s− τ)‖

+
∫ 0

−τ

|a(θ)|‖Lnu(s+ θ)− Lnv(s+ θ)‖dθ
]
ds

≤
∫ t

0

Cα(t− s)−α[K1(η0)‖u(s)− v(s)‖α +K2(η0)‖u(s− τ)− v(s− τ)‖α
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+
∫ 0

−τ

|a(θ)|K3(η0)‖u(s+ θ)− v(s+ θ)‖αdθ]ds

≤
∫ t

0

Cα(t− s)−αK(η0)‖u− v‖T0,αds

≤ 1
2
‖u− v‖T0,α.

Taking the supremum on t over [−τ, T0] we get

‖Fnu− Fnv‖T0,α ≤
1
2
‖u− v‖T0,α.

Hence there exists a unique un ∈ BR(Cα
T0
, h̄) such that Fnun = un, which satisfies

the approximate integral equation (3.4). This completes the proof of Theorem 3.1.
�

Corollary 3.2. If all the hypotheses of the Theorem 3.1 are satisfied then un(t) ∈
D(Aβ) for all t ∈ [−τ, T0] where 0 ≤ β < 1.

Proof. From Theorem 3.1 there exists a unique un ∈ BR(Cα
T0
, h̄) satisfying (3.4).

From [18, Theorem 1.2.4] we have that e−tAx ∈ D(A) for x ∈ D(A). Also from Part
(a) of [18, Theorem 2.6.13] we have e−tA : H 7→ D(Aβ) for t > 0 and 0 ≤ β < 1.
Hölder continuity of un follows from the similar arguments as used in (3.8) and
(3.9). From [18, Theorem 4.3.2], for 0 < t < T , we have∫ t

0

e−(t−s)Af(s)ds ∈ D(A).

Since D(A) ⊆ D(Aβ) for 0 ≤ β ≤ 1, the result of Corollary 3.2 thus follows. �

Corollary 3.3. If h(0) ∈ D(Aα), where 0 < α < 1 and t0 ∈ (0, T0] then there
exists a constant Mt0 , independent of n, such that

‖Aβun(t)‖ ≤Mt0

for all t0 ≤ t ≤ T0 and 0 ≤ β < 1. Furthermore if h(t) ∈ D(A) for all t ∈ [−τ, 0]
then there exist a constant M0, independent on n, such that

‖Aβun(t)‖ ≤M0

for all −τ ≤ t ≤ T0 and 0 ≤ β < 1.

Proof. For any t0 ∈ (0, T0], we have,

‖un(t)‖β ≤ Cβt
−β
0 ‖h(0)‖+ CβK(η0)

T 1−β
0

1− β
≤Mt0 .

Now as h(t) ∈ D(A) for all t ∈ [−τ, 0] hence h(t) ∈ D(Aβ) for all t ∈ [−τ, 0] so for
any t ∈ [−τ, 0], we have

‖un(t)‖β = ‖Aβh(t)‖ ≤ ‖h‖0,β for all t ∈ [−τ, 0].

Now again for any t ∈ (0, T0] we have

‖un(t)‖β ≤M‖h‖0,β + CβK(η0)
T 1−β

0

1− β
. (3.10)

This completes the proof of the Corollary 3.3. �
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Theorem 3.4. Suppose that the conditions (H1)-(H6) are satisfied and h(t) ∈
D(A) for all t ∈ [−τ, 0]. Then the sequence {un} ⊂ Cα

T0
is a Cauchy sequence and

therefore converges to a function u ∈ Cα
T0

.

Proof. For n ≥ m ≥ n0, where n0 is large enough, n,m, n0 ∈ N, t ∈ [−τ, 0] we have

‖un(t)− um(t)‖α = ‖h(t)− h(t)‖α = 0. (3.11)
For t ∈ (0, T0] and n, m and n0 as above we have

‖un(t)− um(t)‖α ≤
∫ t

0

‖e−(t−s)AAα‖[‖Bnun(s)−Bmum(s)‖

+ ‖Cnun(s− τ)− Cmum(s− τ)‖

+
∫ 0

−τ

|a(θ)|‖Lnun(s+ θ)− Lmum(s+ θ)‖dθ]ds.

For 0 < t′0 < t0, we have

‖un(t)− um(t)‖α ≤ (
∫ t′0

0

+
∫ t

t′0

)‖e−(t−s)AAα‖[‖Bnun(s)−Bmum(s)‖

+ ‖Cnun(s− τ)− Cmum(s− τ)‖

+
∫ 0

−τ

|a(θ)|‖Lnun(s+ θ)− Lmum(s+ θ)‖dθ]ds.

(3.12)

Now for 0 < α < β < 1, we have
‖[Bn(un(s))−Bm(um(s))]‖
≤ ‖Bn(un(s))−Bn(um(s))‖+ ‖Bn(um(s))−Bm(um(s))‖

≤ K1(η0)‖Aα[un(s)− um(s)]‖+K1(η0)‖Aα−β(Pn − Pm)Aβum(s)‖

≤ K1(η0)‖Aα[un(s)− um(s)]‖+
K1(η0)

λβ−α
m

‖Aβum(s)‖.

(3.13)

Similarly
‖[Cn(un(s− τ))− Cm(um(s− τ))]‖
≤ ‖Cn(un(s− τ))− Cn(um(s− τ))‖+ ‖Cn(um(s− τ))− Cm(um(s))‖
≤ K2(η0)‖Aα[un(s− τ)− um(s− τ)]‖

+K2(η0)‖Aα−β(Pn − Pm)Aβum(s− τ)‖

≤ K2(η0)‖Aα[un(s− τ)− um(s− τ)]‖+
K2(η0)

λβ−α
m

‖Aβum(s− τ)‖

(3.14)

and
‖[Ln(un(s+ θ))− Lm(um(s+ θ))]‖
≤ ‖Ln(un(s+ θ))− Ln(um(s+ θ))‖

+ ‖Ln(um(s+ θ))− Lm(um(s+ θ))‖
≤ K3(η0)‖Aα[un(s+ θ)− um(s+ θ)]‖

+K3(η0)‖Aα−β(Pn − Pm)Aβum(s+ θ)‖

≤ K3(η0)‖Aα[un(s+ θ)− um(s+ θ)]‖+
K3(η0)

λβ−α
m

‖Aβum(s+ θ)‖.

(3.15)
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From inequalities (3.13), (3.14) and (3.15), inequality (3.12) becomes

‖un(t)− um(t)‖α

≤ (
∫ t′0

0

+
∫ t

t′0

)‖e−(t−s)AAα‖[K1(η0)‖Aα[un(s)− um(s)]‖

+
K1(η0)

λβ−α
m

‖Aβum(s)‖+K2(η0)‖Aα[un(s− τ)− um(s− τ)]‖

+
K2(η0)

λβ−α
m

‖Aβum(s− τ)‖+
∫ 0

−τ

|a(θ)|K3(η0)‖Aα[un(s+ θ)− um(s+ θ)]‖

+
K3(η0)

λβ−α
m

‖Aβum(s+ θ)‖dθ]ds.

(3.16)
¿From Corollaries 3.2 and 3.3, inequality (3.16) becomes

‖un(t)− um(t)‖α ≤ C1.t
′
0 +

C2

λβ−α
m

+CαK(η0)
∫ t

t′0

(t− s)−α‖un − um‖s,αds, (3.17)

where C1 = 2Cα(t0 − t′0)
−αCK(η0) and C2 = 2K(η0)CαT 1−α

(1−α) . Now we replace t by
t+ θ in inequality (3.17) where θ ∈ [t′0 − t, 0], we get

‖un(t+ θ)− um(t+ θ)‖α

≤ C1.t
′
0 +

C2

λβ−α
m

+ CαK(η0)
∫ t+θ

t′0

(t+ θ − s)−α‖un − um‖s,αds.
(3.18)

We put s− θ = γ in (3.18) to get

‖un(t+ θ)− um(t+ θ)‖α

≤ C1.t
′
0 +

C2

λβ−α
m

+ CαK(η0)
∫ t

t′0−θ

(t− γ)−α‖un − um‖γ,αds

≤ C1.t
′
0 +

C2

λβ−α
m

+ CαK(η0)
∫ t

t′0

(t− γ)−α‖un − um‖γ,αds.

Now
sup

t′0−t≤θ≤0

‖un(t+ θ)− um(t+ θ)‖α

≤ C1.t
′
0 +

C2

λβ−α
m

+ CαK(η0)
∫ t

t′0

(t− γ)−α‖un − um‖γ,αds.
(3.19)

We have

sup
−τ−t≤θ≤0

‖un(t+ θ)− um(t+ θ)‖α

≤ sup
0≤θ+t≤t′0

‖un(t+ θ)− um(t+ θ)‖α + sup
t′0−t≤θ≤0

‖un(t+ θ)− um(t+ θ)‖α.

Using inequalities (3.19) and (3.16) in the above inequality, we get

sup
−τ≤t+θ≤t

‖un(t+ θ)− um(t+ θ)‖α

≤ (C1 + C3)t′0 +
(C2 + C4)

λβ−α
m

+ CαK(η0)
∫ t

t′0

(t− γ)−α‖un − um‖γ,αds,
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where C3 and C4 are constants. An application of Gronwall’s inequality to the
above inequality gives the required result. This completes the proof of the Theorem
3.4. �

With the help of Theorems 3.1 and 3.4, we may state the following existence,
uniqueness and convergence result.

Theorem 3.5. Suppose that the conditions (H1)-(H6) are satisfied and h(t) ∈
D(A) for all t ∈ [−τ, 0] hold. Then there exist a function un ∈ C([−τ, T0];H) and
u ∈ C([−τ, T0];H) satisfying

un(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bnun(s)

+Cnun(s− τ) +
∫ 0

−τ
a(θ)Lnun(s+ θ)dθ]ds, t ∈ [0, T0]

(3.20)

and

u(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bu(s)

+Cu(s− τ) +
∫ 0

−τ
a(θ)Lu(s+ θ)dθ]ds, t ∈ [0, T̃ ]

(3.21)

such that un → u in C([−τ, T0];H) as n→∞, where Bn, Cn and Ln are as defined
earlier.

4. Faedo-Galerkin Approximations

We know from the previous sections that for any −τ ≤ T0 ≤ T , we have a unique
u ∈ Cα

T0
satisfying the integral equation

u(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bu(s)

+Cu(s− τ) +
∫ 0

−τ
a(θ)Lu(s+ θ)dθ]ds, t ∈ [0, T̃ ].

(4.1)

Also, there is a unique solution u ∈ Cα
T0

of the approximate integral equation

un(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bnun(s)

+Cnun(s− τ) +
∫ 0

−τ
a(θ)Lnun(s+ θ)dθ]ds, t ∈ [0, T0].

(4.2)

Faedo-Galerkin approximation ūn = Pnun is given by

ūn(t) =


Pnh(t), t ∈ [−τ, 0],

e−tAPnh(0) +
∫ t

0
e−(t−s)APn[Bnun(s)

+Cnun(s− τ) +
∫ 0

−τ
a(θ)Lnun(s+ θ)dθ]ds, t ∈ [0, T0],

(4.3)

where Bn, Cn and Ln are as defined earlier.
If the solution u(t) to (4.1) exists on −τ ≤ t ≤ T0 then it has the representation

u(t) =
∞∑

i=0

αi(t)φi, (4.4)
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where αi(t) = (u(t), φi) for i = 0, 1, 2, 3, · · · and

ūn(t) =
n∑

i=0

αn
i (t)φi, (4.5)

where αn
i (t) = (ūn(t), φi) for i = 0, 1, 2, 3, · · · .

As a consequence of Theorem 3.1 and Theorem 3.4, we have the following result.

Theorem 4.1. Suppose that the conditions (H1)-(H6) are satisfied and h(t) ∈
D(A) for all t ∈ [−τ, 0]. Then there exist unique functions ūn ∈ C([−τ, T0];Hn)
and u ∈ C([−τ, T0];H) satisfying

ūn(t) =


Pnh(t), t ∈ [−τ, 0],

e−tAPnh(0) +
∫ t

0
e−(t−s)APn[Bnun(s)

+Cnun(s− τ) +
∫ 0

−τ
a(θ)Lnun(s+ θ)dθ]ds, t ∈ [0, T0]

and

u(t) =


h(t), t ∈ [−τ, 0],

e−tAh(0) +
∫ t

0
e−(t−s)A[Bu(s)

+Cu(s− τ) +
∫ 0

−τ
a(θ)Lu(s+ θ)dθ]ds, t ∈ [0, T̃ ],

such that ūn → u in C([−τ, T0];H) as n→∞, where Bn, Cn and Ln are as defined
earlier.

Theorem 4.2. Let (H1)-(H6) hold. If h(t) ∈ D(A) for all t ∈ [−τ, 0] then for any
−τ ≤ t ≤ T0 ≤ T ,

lim
n→∞

sup
−τ≤t≤T0

[ n∑
i=0

λ2α
i {αi(t)− αn

i (t)}2
]

= 0.

Proof. Let αn
i (t) = 0 for i > n. We have

Aα[u(t)− ūn(t)] = Aα
[ ∞∑

i=0

{αi(t)− αn
i (t)}φi

]
=

∞∑
i=0

λα
i {αi(t)− αn

i (t)}φi.

Thus we have

‖Aα[u(t)− ūn(t)‖2 ≥
n∑

i=0

λ2α
i |αi(t)− αn

i (t)|2. (4.6)

Hence as a consequence of Theorem 3.5 we have the required result. �

5. Example

Consider the following partial differential equation with delay,

wt(t, x) = wxx(t, x) + b(w(t, x))wx(t, x) + c(w(t− τ, x))wx(t− τ, x)

+
∫ 0

−τ

a(s)l(w(t+ s, x))wx(t+ s, x)ds, t ≥ 0, x ∈ (0, 1),

w(t, x) = h̃(t, x), t ∈ [−τ, 0], x ∈ (0, 1),

w(t, 0) = w(t, 1) = 0, t ≥ 0,

(5.1)

where the kernel a ∈ Lp
loc(−τ, 0), b, c, l are smooth functions from R into R, h̃ is a

given continuous function and τ > 0 is a given number.
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We define an operator A, as follows,

Au = −u′′ with u ∈ D(A) = H1
0 (0, 1) ∩H2(0, 1). (5.2)

Here clearly the operator A satisfies the hypothesis (H1) and is the infinitesimal
generator of an analytic semigroup {e−tA : t ≥ 0}.

For 0 ≤ α < 1, and t ∈ [0, T ], we denote Cα
t := C([−τ, t];D(Aα)), which is the

Banach space endowed with the sup norm

‖ψ‖t,α := sup
−τ≤η≤t

‖ψ(η)‖α.

We observe some properties of the operators A and Aα defined by (5.2) (cf. [3]
for more details). For φ ∈ D(A) and λ ∈ R, with Aφ = −φ′′ = λu, we have
〈Aφ, φ〉 = 〈λφ, φ〉; that is,

〈−φ′′, φ〉 = |u′|2L2 = λ|φ|2L2 ,

so λ > 0. A solution φ of Aφ = λφ is of the form

φ(x) = C cos(
√
λx) +D sin(

√
λx)

and the conditions φ(0) = φ(1) = 0 imply that C = 0 and λ = λn = n2π2, n ∈ N.
Thus, for each n ∈ N, the corresponding solution is

φn(x) = D sin(
√
λnx).

We have 〈φn, φm〉 = 0, for n 6= m and 〈φn, φn〉 = 1 and hence D =
√

2. For
u ∈ D(A), there exists a sequence of real numbers {αn} such that

u(x) =
∑
n∈N

αnφn(x),
∑
n∈N

(αn)2 < +∞ and
∑
n∈N

(λn)2(αn)2 < +∞.

We have
A1/2u(x) =

∑
n∈N

√
λn αn φn(x)

with u ∈ D(A1/2) = H1
0 (0, 1); that is,

∑
n∈N λn(αn)2 < +∞.

Then equation(5.1) can be reformulated as the following abstract equation in a
separable Hilbert space H = L2(0, 1):

u′(t) +Au(t) = Bu(t) + Cu(t− τ) +
∫ 0

−τ

a(θ)Lu(t+ θ)dθ, 0 < t ≤ T <∞, τ > 0,

u(t) = h(t), t ∈ [−τ, 0],

where u(t) = w(t, .) that is u(t)(x) = w(t, x), ut(θ)(x) = w(t + θ, x), t ∈ [0, T ],
θ ∈ [−τ, 0], x ∈ (0, 1), the operator A is as define in equation (5.2) and h(θ)(x) =
h̃(θ, x) for all θ ∈ [−τ, 0] and x ∈ (0, 1). The operators B,C and L are given by as
follows:
B : D(A1/2) 7→ H, where Bu(t)(x) = b(w(t, x))wx(t, x),
C : D(A1/2) 7→ H, where Cu(t− τ)(x) = c(w(t− τ, x))wx(t− τ, x), and
L : D(A1/2) 7→ H, where Lu(t+ s)(x) = l(w(t+ s, x))wx(t+ s, x), where s ∈ [−τ, 0]
and x ∈ (0, 1).

Let α be such that 3/4 < α < 1. For u, v ∈ D(Aα) with ‖Aαu‖ ≤ η and
‖Aαv‖ ≤ η, we have

|b(u(x))ux(x)− b(v(x))vx(x)|
≤ |b(u(x))− b(v(x))||ux(x)|+ |b(v(x))||ux(x)− vx(x)|
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≤ Lb|u(x)− v(x)||ux(x)|+ b1|ux(x)− vx(x)|,

where Lb is the Lipschitz constant for b and b1 = Lb
η

λ
1/2
0

+ |b(0)|. For u, v ∈

D(Aα) ⊂ D(A1/2), we have

‖B(u)−B(v)‖2 ≤
∫ 1

0

|[Lb|u(x)− v(x)||ux(x)|+ b1|ux(x)− vx(x)|]|2dx.

Thus, from [18, Lemma 8.3.3], we get

‖B(u)−B(v)‖2

≤ 2Lb
2

∫ 1

0

|u(x)− v(x)|2|ux(x)|2dx+ 2b12

∫ 1

0

|ux(x)− vx(x)||2dx

≤ 2Lb
2‖u− v‖2

∞

∫ 1

0

|ux(x)|2dx+ 2b12

∫ 1

0

|ux(x)− vx(x)|2dx

≤ 2Lb
2‖u− v‖2

∞‖A1/2u‖2 + 2b12‖A1/2(u− v)‖2

≤ 2Lb
2c2η2‖Aα(u− v)‖2 + 2b12‖Aα(u− v)‖2

≤Mb(η)
2‖Aα(u− v)‖2,

where 3/4 < α < 1, ‖Aαu‖ ≤ η, ‖Aαv‖ ≤ η, Mb(η) =
√

2[Lbcη + b1], ‖u‖∞ =
sup0≤x≤1 |u(x)| and ‖u‖∞ ≤ c‖Aαu‖ for any u ∈ D(Aα). Hence the operator B
restricted to D(Aα) satisfies the hypothesis (H3) for K1(η) = Mb(η). Similarly
we can show that the operators C and L satisfies the hypothesis (H4) and (H5)
respectively.

These kinds of nonlinear operators appear in the theory of shock waves, turbu-
lence and continuous stochastic processes (cf. [9] for more details).
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