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ABSTRACT 

 

 High performance computing systems today are heterogeneous in nature with 

multiple CPUs and accelerators/coprocessors in each computing node.  The majority of 

today's programs only utilize single computing components (e.g. a CPU, GPU or Xeon 

Phi) while leaving other components idle (e.g. waiting for the results to be calculated).  

This may not be optimal for either performance or energy efficiency.  Hybrid computing 

can solve this problem.  Employing multiple device types can create more computing 

power on the platform, but can also create unexpected and unintended issues and 

challenges due to potential complex interactions of software and hardware.  This thesis 

investigates the impact of hybrid computing on the performance and energy-efficiency of 

parallel applications, provides a guideline for hybrid work division, and develops a model 

to predict optimal performance or energy-efficiency. 
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1. INTRODUCTION 

 

 As tools for measuring power and energy of heterogeneous computing systems 

and parallel applications become available, the importance of measuring the energy 

efficiency of applications becomes both practical and paramount.  For computer systems, 

the benefits of lower energy usage due to more multi-device-use applications include 

smaller-sized and lighter weight systems, and longer battery life.  For high performance 

computing systems and data centers, hybrid computing can offer better energy efficiency, 

resulting in more computing performance per joule, lower energy and cooling costs.   

 A common practice today is to utilize the offload programming model (i.e. 

parallelize the code to it for execution).  The major problem of this programming model 

is that the CPU remains idle, wasting computation cycles and energy, while waiting for 

the Xeon Phi or GPU to complete its work.  For example, Figure 1.1 shows the 

percentage of CPU wasted energy for the applications without hybrid use from this thesis.   

The three sets of bars correspond to a CPU and coprocessor, CPU and GPU using 

CUDA, and CPU and GPU using OpenCL.  Each set contains the applications:  matrix 

multiplication (MM), fractal (F), breadth-first search (BFS), two different input graph 

sizes of 1 million nodes (1M) and 16 million nodes (16M) for breadth-first search, and 

where applicable two different compiling options Intel compiler (icc) and GNU compiler 

(gcc).  The leftmost set of red bars show the CPU wastes from 15% to 20% of the total 

application energy while waiting for a Xeon Phi to complete the calculations.  The set of 

pink bars display the percentage of energy the CPU wastes for the CPU and GPU (C++ 

and CUDA) calculations.  The CPU in the fractal and breadth-first search applications  
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Figure 1.1: Wasted CPU energy 

 

wastes upwards of 43% of the total energy.  The rightmost set of bars display the wasted 

CPU energy for the C++ and OpenCL versions of the applications.  The hybrid 

programming model can remedy this problem by partitioning the work to the CPU and 

the accelerator.  

 Unfortunately, few applications and very little research [1] have taken advantage 

of workload partitioning of hybrid computing to improve energy efficiency.  Thus, it is 

important to explore how to reduce the energy consumption of heterogeneous computer 

systems and applications by enabling hybrid computation. 

 The bulk of current research has focused on performance of single CPU, GPU or 

Xeon Phi. Yet many current high performance and likely most future high-end computing 

systems will be heterogeneous with multiple CPUs and accelerators in one node.  For 

example, four of today's top ten supercomputers are heterogeneous [2].  For the top ten 

on the Green 500 list [3], all are heterogeneous.  Utilization data from one of the 
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heterogeneous systems, Stampede, show that the majority of applications use an 

individual computing component [4].  These systems provide an enormous opportunity 

for hybrid computing and improved energy efficiency.   

 Prior research looked at parameters such as memory use, memory transfer, and 

message passing, improved load balancing and compiler optimizations as methods for 

performance improvement.  When energy efficiency is discussed, it is often inferred with 

performance.  As more software is being coded to take advantage of hardware of 

heterogeneous systems, little research has been conducted on the energy efficiency of 

programming for hybrid software implementation.  Hybrid computing systems offer an 

opportunity to take advantage of the available processors for better performance and 

energy efficiency. 

 In most cases of hybrid computing, the CPU consumes energy while waiting for 

the accelerator, to complete the task.  To yield a more energy efficient solution, workload 

can be partitioned between the CPU and an accelerator.  Without a model to base a 

prediction upon, partitioning the workload may performed with an exhaustive search, 

which can be time and energy consuming.  This thesis aims to provide a model to predict 

workload partitioning for optimal performance or energy efficiency. 

 For development of the predict model for optimal partitioning, software 

applications were adapted and included an adjustable range of workload partitions to a 

CPU and to an accelerating device such as a Xeon Phi or GPU.  This approach generates 

differing workloads and data points that are used to study the impact of workload 

partitioning on energy efficiency and performance.   
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 In addition to the applications, a model-based prediction method for partitioning 

workload is proposed.  This method uses measured data and predicts a suitable partition 

for the hybrid application.  By doing so, the model copes with the sensitivity of the 

platform to the application, to the problem size, to the data transfer latencies, and to the 

drivers and compilers.  By modeling the performance, energy and throughput, it predicts 

the optimal workload partitioning. 

 The workload partitioning prediction is then compared with the measured 

performance and energy parameters to validate accuracy.  The results show that 

partitioning improves application performance and energy efficiency.  The optimal 

partitioning point for energy and performance are correctly predicted in more than 90% 

of the cases, with various workloads, accelerators, and applications. 

 In order to further assist hybrid application development, this thesis also provides 

a guideline for creating a hybrid program from parallel applications.  Most parallel 

applications that have already been compiled and executed on an Intel CPU can be 

readily adapted for hybrid use with a Xeon Phi.  However, for use with a CPU and a 

GPU, both parallel applications for the CPU and GPU must already exist in order to 

combine and yield a hybrid application. 

 The main contributions of this thesis are: (1) a number of hybrid applications are 

developed to benchmark workload partitions, (2) a detailed guideline is provided on 

writing hybrid applications for CPU and GPU or CPU and Xeon Phi, and (3) a model is 

proposed to accurately predict the optimal workload partition between CPU and GPU or 

CPU and Xeon Phi for best performance or energy efficiency. 
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 The rest of this thesis is organized as follows.  Chapter 2 discusses background 

related work.  Chapter 3 covers the experimental platform.  Guidelines for developing 

hybrid code from parallel code can be found in Chapter 4.  Chapter 5 includes application 

descriptions and results for the applications.  Chapter 6 discusses and provides a model 

for predicting hybrid workload partitions.  Finally, Chapter 7 concludes and offers 

direction for future work. 
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2. RELATED WORK 

 

 Traditionally, prior research has focused on energy and performance of 

homogeneous multicore CPU systems.  More recently, some research and studies have 

addressed performance, with the added benefit of energy reduction on a homogeneous 

GPU system.  Others have studied performance of workloads for heterogeneous CPU and 

GPU systems.  Similarly for the Xeon Phi, few have studied and researched performance 

and energy efficiency of this accelerator.  This chapter discusses pertinent work and 

research associated with performance and energy of CPUs, GPUs, and Xeon Phi. 

 Liu et al. [5] developed and provided a method to track processor idle times and 

adjusts the frequency of other processors to provide power savings without reducing 

performance.  However, the technique uses a barrier, creating overhead due to waiting 

and consuming power.  Ge et al. [6] developed an algorithm that relies on past statics, 

and then adjusts the CPU frequency to reduce energy.  This method accounts for neither 

future workloads nor energy-consuming peak workloads.   Hsu and Feng [7] have shown 

that CPU energy usage can be reduced with DVFS. Pallipadi and Starikovskiy [8] 

proposed to use the on demand governor in the Linux kernel to adjust CPU frequency 

based upon utilization thereby reducing energy use. Much attention has been given to 

CPU performance and energy of applications in papers published by Hsu and Kremer [9], 

Barroso and Holzle [10].  Vhdat et al. [11] direct their attention to energy efficiency in 

operating systems.  Lee and Zomaya [12] offer scheduling algorithms for multiprocessor 

computer systems for the benefit for energy and performance.  While the algorithm is 

applicable to multiprocessors, this paper and others listed prior only consider CPUs. 
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 A number of previous studies presented the performance and energy consumption 

of homogeneous GPU usage. For example, Hong and Kim [13] propose to throttle a 

number of GPU cores to reduce energy consumption, which requires characterization of 

the GPU by micro-benchmarks. Collange et al. [14] found that memory access patterns 

and bandwidth can play a role in both energy use and performance in GPUs.  Although 

useful in tuning and optimizing GPU code, it directs it attention only to the GPU.  

Similiarly, Che et al [15] discusses optimizing memory performance and hence, over all 

performance, by overlapping memory accesses with PCI-E transfers. Bailey et al. [16] 

proposes a model using kernel clustering and multivariate linear regressions to improve 

performance. Wu et al. [17] uses energy aware compiler optimizations.  And Song et al. 

[18] applies machine learning to the performance and energy efficiency of GPU 

programs, employing only models and not the on-chip power sensor.  However, only 

heterogeneous GPU applications were considered in these papers. 

 Few studies have been reported for performance improvement by splitting tasks in 

heterogeneous CPU-GPU systems. Luk et al. [19] proposed a scheme to minimize 

execution time based on computational task distribution to the GPU and CPU. In the 

same realm, Dean and Ghemawat [20] studied workload division based on the 

MapReduce Framework. In a variation, Ravis et al. [21] proposed to partition data 

dynamically to the CPU and GPU cores to improve performance. Che et al. [22] 

suggested splitting workload between CPU and GPU to improve performance with the 

GPU frequencies set to their peak level.  While their work provided a wealth of 

heterogeneous applications, none provide hybrid application of a CPU and GPU nor do 

they scale to larger problem sizes.  A proposed system by Scogland et al. [23] divide the 
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work between the CPU and GPU based upon the characteristics of the workload.   Gee et 

al. [1] provide an energy and performance models for hybrid workload division to the 

GPU based upon both advertised and measured parameters.  These studies address only 

CPU-GPU systems and not a comprehensive model for CPU's, GPUs and Xeon Phi's 

 With the recent release of the Xeon Phi, the studies on addressing energy usage 

and optimization of Xeon Phi are limited.  Fang et al. [24] provided an empirical 

evaluation of the Xeon Phi, discussing cores, memory, and interconnects in the context of 

performance and peripherally energy.  Lawson et al. [25] evaluated and recommended 

specific thread affinities to improve performance, thereby reducing energy usage. Wood 

et al. [26] characterized energy and power usage of various applications running on Xeon 

Phi. Lorenzo et al. [27] studied energy and power implications of thread numbers on 

Xeon Phi and Yao al. [28] proposed an instruction level energy model for the Xeon Phi. 

Li et al. [29] characterized performance and energy efficiency tradeoffs of HPC 

applications running on Xeon Phi. 

 While much work and effort in characterizing and modeling energy and 

performance has supported on CPU-GPU heterogeneous systems and on homogeneous 

systems, little work has compared energy and performance on heterogeneous systems 

with hybrid use of CPUs and accelerators. This thesis may be the first to attempt to 

explore the benefits of hybrid computing and offer a prediction model, which predicts 

workload partitions for optimal performance or optimal energy efficiency for both CPU 

and GPU and CPU and Xeon Phi systems. 
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3. EXPERIMENTAL PLATFORM 

 All experiments were performed on a node of the Marcher System, which is an 

NSF funded power measurable, high performance-computing platform [30]. Each node in 

the system has a dual 8-core Xeon Sandy Bridge E5-2670 processor, a Xeon Phi, and 

NVIDIA Tesla K20 GPU. 

 The Xeon Phi, used to accelerate parallel computing, was chosen due to many 

factors: its prevalence in HPC platforms; a higher degree of parallelism with respect to a 

CPU; and a single code model with an Intel CPU, facilitating code reuse and design. The 

Xeon Phi in our system has 61 cores with one reserved for the operating system, yielding 

60 cores for parallel applications. It has a maximum computational performance of one 

TFLOPS and a maximum memory bandwidth of 352 GB/s [31]. The Xeon Phi is found in 

Tianhe-2 (Milky Way 2), ranked first on the Top500 List and Stampede, which was 

ranked tenth as of June 2016 [1]. 

 The K20 has 2688 compute cores, operates at the default rate of 705 MHZ with a 

peak performance of 1.17 TFLOPS, and interacts with the parallel computing 

application-programming interface CUDA and OpenCL. The K20 and similar NVIDIA 

GPUs are popular in HPC systems. The parameters for the GPU, Xeon Phi and CPU are 

listed in Table 1. 

 For all of the measurements, the power data is collected directly with the 

following interfaces: the CPU Power is collected via the RAPL [32] interface, the Xeon 

Phi power via the Intel micsmc interface [33], and the GPU power via the NVIDIA smi 

 interface [34].  Please refer to the papers published by Burtscher et al. [35] and Wood et 

al. [26] for detailed power measurement of K20 and Xeon Phi on the Marcher system. 
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The Marcher system generates files of power readings for the CPU, GPU, and Xeon Phi. 

These power readings record the real time power use of all three components (CPU, 

Xeon Phi, and GPU). The energy of each component is calculated as the accumulated 

products of execution time and profiled instantaneous power. For total energy, the CPU 

energy and the GPU or Xeon Phi energy are combined. The power readings of other 

system components such as the DRAM and disks are not included as they remain 

unchanged most of the time when running the Matrix Multiplication, Fractal, and 

Breadth-first Search codes. 
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Table 3.1: Experimental platform parameters 

 CPU Coprocessor GPU 
Host/Device Intel E5 -2670 Xeon Phi NVIDIA K20 
Number of Cores 16 60 2688 
Nominal Frequency 2.6 GHz 1.05 GHz 705MHz 
DVFS Enabled no not available no 
Memory Size 32 GB 8 GB 5 GB 
Threading API OpenMP OpenMP CUDA 7.0 

Peak Performance 332 GFLOPS 1 TFLOPS 1.17 TFLOPS 
(double precision) 

Thermal Design 
Power 

115 W 245 W 235 W 

Memory Bandwidth 51.2 GB/s 352 GB/s 208 GB/s 
Compiler gcc, (icc) icc nvcc 

Compiler Version 4.4.7 20120313 (Red 
Hat 4.4.7-16) 

13.1.3 
20130607 

7.0, V7.0.27 

Operating System CentOS 6.5 
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4. GUIDELINES TO CREATING HYBRID CODE 

 

4.1 CPU and Xeon Phi 

Parallelized OpenMP code compiled with the Intel compiler and which already runs on 

the CPU represents a good candidate for hybrid use on the CPU and Xeon Phi 

coprocessor.  Typical applications include computational heavy code with sequentially 

accessed array data structures 

 There are two methodologies for hybridizing code for the CPU and Xeon Phi.  

The first uses the Intel Math Kernel Libraries (MKL) [36] that implements efficient and 

effective routines for math functions such as matrix multiplication.  The MKL provides 

the ease of using a built in function, but not all functions are available.  The second 

method is to hybridize OpenMP sections to the Xeon Phi.  While this method requires 

considerable software time investment, most functions that have been parallelized with 

OpenMP can be changed to CPU and Xeon Phi hybrid implementation.  Both methods 

can provide performance speedup and improve energy efficiency. 

4.1.1 R Language and MKL 

 For the R scripting language, some of the functions such as matrix multiplication 

or matrix transposition have MKL implementation, refer to [37].  The MKL must be 

enabled via variables as follows: 

 export MKL_MIC_ENABLE=1 

 export OMP_NUM_THREADS=16 

 export MIC_OMP_NUM_THREADS=240 

 export MKL_HOST_WORKDIVISION=0.1 



	
  13	
  

 export OFFLOAD_REPORT=2 

 For some of the functions, the work division is fixed and pre-determined.  This 

value is dependent upon application and workload.  In that case, the export 

MKL_HOST_WORKDIVISION command will have no effect. 

 

4.1.2 C++ and MKL 

 In order to use the MKL libraries, the application must first be identified and 

memory allocated specifically.  The library reference guide includes listing of available 

functions [36].  The compiler directive #include"mkl.h" must be used at the beginning of 

the file.  For memory allocation, instead of using malloc, the memory allocation 

command must be mkl_malloc and memory set on 64-bit boundary, and to free the 

allocation, the command is mkl_free().  Using the algorithm from Predicting Workload 

Distribution, calculate the percentage of workload on the CPU for either optimal 

performance or optimal energy efficiency.  

 To enable workload split, set the environment variables as listed in the previous 

section.  The offload report options allows for verification of the CPU and Xeon Phi 

workload.  The workload division can be adjusted with the 

MKL_HOST_WORKDIVISION command with the above example sending 10% of the 

workload to the CPU and 90% to the Xeon Phi.  Figure 4.1 shows an example of MKL 

matrix multiplication. 
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Figure 4.1: C++ MKL example 

!"!#$%&'((#)'*#+&

,#-.("&/01&

0&2&3,#-.("&/4!5(6!'((#)378888/9:;"#<3,#-.("4=&>?41&

)#!@:("$&,:$")*A"&<#$&B'CD&E"$+"(&F:.$'$%&

G:+)(-,"&H!5(IDJ&

!"!#$%&,"'((#)'*#+&

!5(6<$""3041&

!'C$:K&!-(*@(:)'*#+&<-+)*#+&)'((&3LMNBB4&

).('96,O"!!3P.('9Q#RB'S#$=&P.('9T#U$'+9=&P.('9T#U$'+9=&V&

&&&&&&&&&&&&&&&&!=&+=&5=&'(@D'=&0=&5=&W=&+=&."C'=&P=&+41&

NK'!@("9&



	
  15	
  

4.1.3 C++ and OpenMP 

 An additional method to partition the workload between a CPU and Xeon Phi 

within the program is to use OpenMP.   Assuming that the parallel code has already been 

successfully compiled with the Intel compiler, icc, add omp_set_nested(1) before any 

OpenMP code.  Next, add the code to divide the work between the CPU and Xeon Phi 

and shown in the Figure 4.2.  The variable used to hold the thread number information, 

thread_Id must be private.  As a good programming practice, defining which variables 

are private or shared can allow for predictable operation. 

 In the CPU and Xeon Phi code sections, the omp_parallel_for or omp_parallel 

can be used to further divide the work to the cores.  For the Xeon Phi, offloading occurs 

with the compiler directive #pragma offload target(mic:0) ... . Refer to Intel offload 

resources for specifics on use of in, out, or inout options.  However, each data transfer to 

the Xeon Phi will have allocation. 

 Because the Xeon Phi cores can support 4 threads to hide latency, the number of 

threads should be allocated as follows:  numberThreads = (numberCores -1) x 4  and set 

an environmental variable with export 

MIC_KMP_AFFINITY=explicit,granularity=fine,proclist=[1-239:1], for 60 cores.  One 

core should remain free to run the Linux operating system. 

 Set the environment variable OFFLOAD_REPORT =2 to allow for verification of 

Xeon Phi transfer. 
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Figure 4.2: CPU and Xeon Phi OpenMP code division 
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4.2 CPU and GPU 

 The GPU has the capability to run two different kernel languages, CUDA and 

OpenCL.  CUDA was created by NVIDIA, executing only on their GPUs.  However, 

OpenCL is an open source language for parallel programming and executes on many 

CPUs and accelerators.  Both languages were used to provide kernel programming for  

the GPU. 

4.2.1 C++ and CUDA 

 For C++ and CUDA applications, there are two options to modify code for hybrid 

operation on with the CPU and GPU.  The first option is to combine all code, the GPU 

kernel and CPU OpenMP code, into one file.  While against the modern convention of 

modularity and abstraction, this approach can yield shorter execution times and more 

straightforward compilation and linking. 

 Assuming that both the GPU kernel and the CPU OpenMP parallelized code has 

been written, trouble shot and run separately, one can combine the two codes into one 

file, by adding the omp_set_nested(1) before any of OpenMP code.  This allows the 

program flow to split between the CPU and GPU.  Then add the code to divide the work 

between the CPU and GPU as shown in Figure 4.3.  The threadID variable, which must 

be set to private, collects the thread number, and is used to split the work.   



%,!

Figure 4.3: C++ and CUDA code division 

After the code for hybrid operation has been added, the code can be compiled using the 

NVIDIA compiler (nvcc). 

The second option for C++ and CUDA is to compile the codes separately, then 

link the object files together, creating an executable.  The code to divide the work must 

reside in the CPU C++ portion of the code and must have visibility to the GPU kernel.  

Typically, visibility to CUDA code is implemented with a wrapper function that is 

declared but not defined in the C++ file.  Combining and mixing CUDA and C++ code 

can be exasperating, tutorials have addressed this such as the one from Oak Ridge 

National Laboratory [40].  The code to divide the work is shown in Figure 4.4.   
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Figure 4.4: C++ and CUDA wrapper code division 

4.2.2 C++ and OpenCL 

While OpenCL enables task and data partitioning, one of the most straight 

forward ways is to use OpenMP in a similar method as used previously, shown in Figure 

4.5.  OpenMP has the advantage of allowing the programmers to specify which variables 

are shared or not shared.  Although future work can compare and contrast different 

division methods and code, this thesis needs a consistent method to constrain the 

research.  Thus, wrapping the kernel code allows for modularity in OpenCL. 
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Figure 4.5: C++ and OpenCL wrapper code division 

4.3 Dividing the Work 

How to divide the work between the CPU and Xeon Phi or GPU depends upon 

the application.  Task division makes sense when there are varying tasks with some 

suited for the CPU and others suited for the GPU or Xeon Phi.  Data parallelism works 

when both do the same task, refer to An Introduction to Parallel Programming by 

Pacheco [41] for additional details.   

The data should be partitioned by full rows, which allows for optimal memory 

access and ease of work division as shown in Figure 4.6.   
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Figure 4.6: Full row partition 

For example, the matrix multiplication work division code divides the A matrix, but not 

the B matrix.  Thus, Figure 4.6 represents the division for matrix A. 
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5. RESULTS AND ANALYSIS 

 This section presents the performance and energy results of the hybrid 

applications running on either the CPU and GPU pair or the CPU and Xeon Phi pair. For 

each of the workload partitions, the effective execution time is the longest of the two 

times of the CPU and Xeon Phi or CPU and GPU. In hybrid applications, the CPU must 

be active with at least one thread operational to receive data or signals from the 

accelerator in order to conclude the calculations and finalize the tasks. In some cases the 

CPU may finish first, then wait for accelerator to finish.  In others, the GPU or Xeon Phi 

may complete its workload before the CPU does. In either case, the CPU remains active 

for the entire application. 

 All code was compiled with the -O2 optimization flag. 

 The data was taken every 10% with exceptions noted in the results.  The results 

listed are an averaged over three trials. 

 The optimal performance point is defined as workload division percentage with 

the shortest execution time. The optimal energy point is defined as the workload 

percentage of task splitting with the least amount of energy consumed. 

 

5.1 Application Descriptions 

5.1.1 Matrix Multiplication 

 Matrix multiplication was chosen because is it a widely used benchmark in 

scientific computing.   For these tests, two randomly filled 10,000 square matrices are 

multiplied together to yield a 10,000 x 10,000 matrix.  The number of calculations per 

each of the 10,000 final elements is 10,000 multiplications plus 9,999 additions.  This 
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provides approximately 2,000,000,000,000 operations.  Work division between the CPU 

and GPU or Xeon Phi is partitioned in full rows. 

 

5.1.2 Fractal 

 Fractal is a computationally intensive application requiring minimal memory use.  

The fractal algorithm is important is that it can achieve high image compression ratios 

while retaining a high quality image.  As implemented, the size is 20,000 by 20,000, 

provides 1,329,000,000 calculations and yields workable execution times. 

5.1.3 Breadth-first Search (BFS) 

 Breath-first search is a graph traversal algorithm, searching each neighbor node 

for a specific value.  It starts at the root node, visiting each node at that level before 

progressing to the next level.  BFS is an important algorithm in that it is used to solve 

many problems such as finding a shortest path between two nodes, or cities.  However, 

the algorithm as implemented from the Rodinia [22] does not search a tree structure for a 

specific value, but starts at the root node and visits each node throughout the entire 

structure to the very last node.  The code for the application was modified for hybrid 

operation.  The input graph data structures consist of an ordered list of nodes, numbered 

edges, and edges.  This is essentially a linear array simulating a tree structure.  These 

arrays allow for shared access amongst the threads enhancing parallel operation.  In order 

to provide a non-computationally intensive algorithm and to further evaluation the 

proposed model, this BFS application has been modified to be data transfer intensive.  

The results are reset after completing the search to allow transfer and search again.  In 

doing so, this requires the data to be transferred to and from the Xeon Phi each time.  The 
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modified algorithm changes a one-time data transfer application by transferring data up to 

100 times between the host and device, completing 100 times total searches. 

 The two input graph data text files sizes are 1,000,000 nodes with 5,999,950 

edges and 16,777,216 nodes with 100,675,408 edges.   The file is read only once and is 

stored for successive searches. 
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5.2 CPU and Xeon Phi Energy and Execution Time Results 

5.2.1 R Matrix Multiplication 

 The R scripting language is an open source, popular, statistical computing and 

graphing language, which runs on a wide variety of platforms.  R matrix multiplication 

application was chosen because it enables the Math Kernel Library that uses parallel 

matrix multiplication with an adjustable workload distribution.  While the R package 

downloaded from a CRAN mirror [37] only provides serial implementation, an open 

source version with parallel version is available from Revolution Analytics [38].  This 

version implements some of the parallel MKL features.  The environment variables were 

set to enable a range of workload distributions from CPU = 100% to CPU = 0%. 

 The R matrix multiplication application was adapted from an R benchmark 

originally from Splus Benchmark Test V.2 by Stephan Steinhaus and contains 

adaptations by Philippe Grosjean, Douglas Bates, and Simon Urbanek.  The matrices are 

setup as 10,000 by 10,000 normal distributed floats about 0.0 with a mean of 1.0.  The 

number of CPU OpenMP threads is set to 16, and the number of Xeon Phi OpenMP 

threads is set to 240. 

 Performance and energy results of R matrix multiply are tabulated in Table 5.1 

and graphed in Figures 5.1 and 5.2.  Both optimal performance and energy points occur 

in a range of workload distributions between CPU = 0% and 60.  However, the workload 

distribution of CPU = 35% also represents a second optimal point in that the difference in 

executions times and energies are both less than 0.5%. 
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Table 5.1: R matrix multiplication 

R Matrix Multiplication 

CPU % Total 
Execution 
Time (sec) 

CPU Energy 
(J) 

Xeon Phi Energy 
(J) 

Total Energy 
(J) 

100 33.56 3388 224 3612 
90 30.976 2823 766 3589 

80 29.445 2572 821 3393 
70 28.77 2397 639 3036 
60 27.342 2264 844 3108 
50 27.028 2084 784 2868 
45 26.6 1976 712 2688 
40 26.639 1988 861 2849 
35 26.338 1815 824 2639 
30 26.879 1774 882 2656 
25 26.953 1733 1008 2741 
20 27.462 1648 1047 2695 
15 26.62 1572 1111 2683 
10 27.325 1508 1102 2610 
5 26.765 1449 1191 2640 
0 26.214 1388 1242 2630 
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Figure 5.1: R matrix multiplication runtime 
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Figure 5.2: R matrix multiplication energy 
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5.2.2 C++ Matrix Multiplication 

 Performance and energy results for the C++ matrix multiplication application are 

provided in Table 5.2 and Figures 5.3 and 5.4.  The optimal performance point at CPU = 

40%.  The optimal energy point is at CPU = 0%.  For this application on the CPU and 

Xeon Phi, the optimal performance and energy points do not coincide. 

 

Table 5.2: C++ matrix multiplication with CPU and Xeon Phi 

C++ Matrix Multiplication with CPU and Xeon Phi 

CPU % 
CPU 

Execution 
time (sec) 

CPU 
Energy 

(J) 

PHI 
Execution 
time (sec) 

PHI 
Energy 

(J) 

Effective 
Execution 
time (sec) 

Total 
Energy 

(J) 
100 42.59 7918 0 0 42.59 7918 
90 37.00 6909 7.49 1151 37.00 8090 
80 35.74 6395 9.59 1539 35.74 7935 
70 29.84 5670 11.41 1859 29.84 7529 
60 25.00 4798 13.76 2327 25.00 7126 
50 21.12 3956 16.52 2939 21.12 6896 
40 17.69 3356 18.57 3297 18.57 6564 
30 12.79 2873 20.96 3692 20.96 6566 
20 8.62 2412 23.14 4207 23.14 6620 
10 4.38 1991 25.31 4623 25.31 6614 
0 0 1429 26.99 4795 26.99 6224 
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Figure 5.3: CPU and Xeon Phi C++ matrix multiplication runtime 
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Figure 5.4: CPU and Xeon Phi C++ matrix multiplication energy 
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Table 5.3: C++ Fractal with CPU and Xeon Phi 

C++ Fractal with CPU and Xeon Phi 

CPU% 
CPU 

Execution 
time (sec) 

CPU 
Energy 

(J) 

PHI 
Execution 
time (sec) 

PHI 
Energy 

(J) 

Effective 
Execution 
time (sec) 

Total 
Energy 

(J) 
100 47.39 6613 0 0 47.39 6613 
90 42.57 6159 5.84 962 42.57 7121 
80 39.45 5477 6.66 1115 39.45 6592 
70 35.48 4912 10.19 1650 35.48 6562 
60 32.13 4480 10.47 1738 32.13 6218 
50 29.50 4007 12.61 2067 29.50 6074 
40 26.13 3603 15.36 2419 26.13 6022 
30 20.61 2895 19.83 3222 20.61 6117 
20 13.36 2470 24.11 3894 24.11 6364 
10 6.12 2104 27.32 4447 27.32 6551 
0 0 1692 30.49 5029 30.49 6721 
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Figure 5.5: CPU and Xeon Phi C++ fractal runtime 

 

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

CPU Percentage

R
un

tim
e 

(S
ec

on
ds

)

Fractal CPU and Xeon Phi Runtimes

 

 

CPU Runtime
Xeon Phi Runtime
Effective Runtime



	
  34	
  

Figure 5.6: CPU and Xeon Phi C++ fractal energy 

 

 

5.2.4 C++ Breadth-first Search (BFS) 

 Performance and energy data for BFS on the CPU and Xeon Phi for 1 million 

nodes is shown in Table 5.4 and for 16 million nodes in Table 5.5. The graphed data is 

shown in Figures 5.7 and 5.8.  Data points were taken every 10%.  However, upon 

additional testing, the optimal performance point for 1 million nodes is CPU = 86%. The 

optimal energy point is CPU = 100%.  For the larger size is when the optimal 

performance point occurs when CPU = 60% and the optimal energy point when CPU = 

100%.  An additional performance point was selected at 86%, which provided the best 

runtime of 3.57 seconds. 

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

CPU Percentage

E
n

e
rg

y
 (

J
o

u
le

s
)

Fractal CPU and Xeon Phi Energy

 

 

CPU Energy

Xeon Phi Energy

Total Energy



	
  35	
  

 

 

Table 5.4: C++ Breadth-first search with CPU and Xeon Phi with 1M 

C++ BFS with CPU and Xeon Phi 1M 

CPU 
% 

CPU 
time 
(sec) 

CPU 
Energy  

(J) 

MIC 
time 
(sec) 

MIC 
Energy  

(J) 

Execution 
time (sec) 

Total Energy  
(J) 

100 3.71 530 0 0 3.714 530 
90 3.62 471 3.09 285 3.623 756 
80 3.31 463 4.167 350 4.167 813 
70 3.10 467 5.267 480 5.267 947 
60 2.83 514 6.287 607 6.287 1121 
50 2.58 558 7.412 761 7.412 1319 
40 2.34 577 8.472 891 8.472 1468 
30 2.08 622 9.685 1050 9.685 1672 
20 1.82 652 10.698 1188 10.698 1840 
10 1.58 691 11.768 1341 11.768 2032 
0 1.31 700 12.843 1453 12.843 2153 
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Table 5.5: C++ Breadth-first search with CPU and Xeon Phi with 16M 

C++ BFS with CPU and Xeon Phi 16M 

CPU 
% 

CPU 
time 
(sec) 

CPU 
Energy  

(J) 

MIC 
time 
(sec) 

MIC 
Energy  

(J) 

Execution 
time (sec) 

Total Energy  
(J) 

100 112.8 15014 0 0 112.8 15014 
90 103.8 12928 38.34 2706 103.8 15634 
80 94.3 11631 51.03 4766 94.3 16397 
70 85.6 11140 63.79 6331 85.6 17471 
60 76.07 9253 76.57 10300 76.6 17363 
50 66.64 8558 89.23 10451 89.2 19009 
40 58.38 7851 101.6 11168 101.6 20022 
30 49.46 5747 114.5 12171 114.5 21743 
20 40.26 8676 127.6 15287 127.6 23963 
10 31.49 8449 140.2 16995 140.2 25444 
0 22.47 8285 152.9 18944 152.9 27299 
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Figure 5.7: CPU and Xeon Phi C++ BFS runtime 
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Figure 5.8: CPU and Xeon Phi C++ BFS energy 
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5.3 CPU and GPU Execution Time and Energy Results 

5.3.1 C++ and CUDA Matrix Multiplication 

 The same code for the matrix multiplication algorithm was compiled with both 

the Intel compiler (icc) and GNU Compiler Collection (gcc).  For both applications, both 

optimal performance and energy points coincide at CPU = 0%.  At CPU = 100%, the icc 

compiler provides 2.3 speedup with an approximately 65% energy savings.  The data is 

tabulated in Tables 5.6 and 5.7 and graphed in Figures 5.9 and 5.10. 

 

Table 5.6: C++ matrix multiplication with CPU and GPU (gcc) 

Matrix Multiplication with CPU and GPU (gcc) 

CPU % 
CPU 

Execution 
time (sec) 

CPU 
Energy 

(J) 

GPU 
Execution 

time 
(sec) 

GPU 
Energy 

(J) 

Effective 
Execution 

time 
(sec) 

Total 
Energy 

(J) 

100 100.98 15606 0 0 100.98 15606 
90 88.55 13749 0.33 16 88.55 13765 
80 77.00 12021 0.36 19 77.00 12040 
70 66.37 10700 0.39 21 66.37 10720 
60 56.47 8972 0.46 25 56.47 8997 
50 48.77 7535 0.51 27 48.77 7562 
40 36 6175 0.60 30 36 6207 
30 27.88 4704 0.62 33 27.88 4737 
20 18.74 3177 0.64 34 18.74 3210 
10 9.65 2038 0.69 37 9.651 2075 
0 2.30 475 0.78 41 2.38 516 

 

 



	
  40	
  

Table 5.7: C++ matrix multiplication with CPU and GPU (icc) 

Matrix Multiplication with CPU and GPU (icc) 

CPU% 

CPU 
Execution 

time  
(sec) 

CPU 
Energy  

(J) 

GPU 
Execution 
time (sec) 

GPU 
Energy  

(J) 

Effective 
Execution 
time (sec) 

Total 
Energy  

(J) 

100 43.62 7937 0 0 43.62 7937 
90 37.88 6919 0.33 16 37.88 6935 
80 36.51 6406 0.36 19 36.51 6425 
70 29.78 5662 0.39 21 29.78 5683 
60 25.79 4821 0.46 25 25.79 4846 
50 21.38 4017 0.51 27 21.38 4044 
40 17.89 3378 0.60 32 17.89 3410 
30 12.79 3899 0.625 33 12.79 2932 
20 8.82 2459 0.64 34 8.82 2493 
10 4.55 2012 0.69 37 4.55 2049 
0 1.75 465 0.78 41 1.75 506 
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Figure 5.9: CPU and GPU matrix multiplication with icc, gcc runtime 
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Figure 5:10: CPU and GPU matrix multiplication with icc, gcc energy 
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5.3.2 C++ and CUDA Fractal 

 As with matrix multiplication application, this application was compiled with the 

two compilers gcc and icc.  The optimal performance and energy points for both of the 

compiler choices are the same at CPU = 0%.  However, at all other CPU workload 

distribution percentages, icc provides better execution times resulting less energy used.  

The data for the gcc compiler are tabulated in Table 5.8 and the icc compiler in Table 5.9.  

The results are graphed in Figures 5.11 and 5.12.  

 

Table 5:8 Fractal with CPU and GPU (gcc) 

Fractal with CPU and GPU (gcc) 

CPU% 

CPU 
Execution 

time 
(sec) 

CPU 
Energy 

(J) 

GPU 
Execution 

time 
(sec) 

GPU 
Energy 

(J) 

Effective 
Execution 

time 
(sec) 

Total 
Energy 

(J) 

100 55.74 8211 0 0 55.74 8211 
90 50.21 7432 0.23 15 50.21 7447 
80 46.52 7190 0.33 15 46.52 7205 
70 41.62 6129 0.27 15 41.62 6144 
60 38.07 5943 0.28 15 38.07 5958 
50 35.03 5367 0.27 15 35.03 5383 
40 31.05 4799 0.35 18.8 31.05 4807 
30 24.73 3568 0.40 21.5 24.73 3589 
20 16.51 2364 0.48 25.9 16.51 2390 
10 8.31 1165 0.55 27.0 8.31 1192 
0 2.01 123 0.59 32.4 2.01 155.4 
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Table 5.9: Fractal with CPU and GPU (icc) 

Fractal with CPU and GPU (icc) 

CPU % 

CPU 
Execution 

time 
(sec) 

CPU 
Energy 

(J) 

GPU 
Execution 

time 
(sec) 

GPU 
Energy 

(J) 

Effective 
Execution 

time 
(sec) 

Total 
Energy 

(J) 

100 47.45 6653 0 0 47.45 6653 
90 42.65 6025 0.23 15.0 42.65 6040 
80 39.27 5724 0.33 15.0 39.27 5739 
70 35.39 5204 0.26 15.1 35.39 5219 
60 32.16 4539 0.28 15.0 32.16 4553 
50 29.48 4166 0.27 15.0 29.48 4180 
40 26.07 3712 0.35 18.3 26.07 3730 
30 20.56 2934 0.40 20.8 20.56 2924 
20 13.30 1946 0.48 25.9 12.13 1971 
10 6.12 967 0.55 30.1 6.12 997 
0 1.96 158 0.59 32.4 1.96 190 
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Figure 5.11: CPU and GPU fractal with icc, gcc runtime 
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Figure 5.12: CPU and GPU fractal with icc, gcc energy 
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5.3.3 C++ and CUDA Breadth-first Search 

 The results for the two input file sizes of the applications are tabulated in Table 

5.10 and graphed in Figures 5.13 and 5.14.  For the smaller data size, optimal 

performance and energy points are similar, but not the same.  They are CPU = 50% and 

60%, respectively.  For the larger data size, both the optimal performance and energy 

points coincide at CPU = 30%. 

 

Table 5.10: Breadth-first search with CPU and GPU 

BFS with CPU and GPU 
CPU % 1M Time (sec) 1M Energy (J) 16M Time (sec) 16M Energy (J) 

100 5.844 380 95.533 8789 
90 5.297 406 99.857 9912 
80 5.083 409 91.004 9493 
70 4.067 405 83.482 8867 
60 4.036 368 74.657 8378 
50 3.932 377 67.473 7883 
40 4.24 413 59.129 7359 
30 4.55 402 51.079 6495 
20 4.606 386 54.016 6701 
10 4.801 415 59.062 6803 
0 5.152 460 63.355 8102 
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Figure 5.13: CPU and GPU BFS runtime 
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Figure 5.14: CPU and GPU BFS energy 
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5.3.4 C++ and OpenCL Matrix Multiplication 

 The results for the OpenCL version of the matrix multiplication are shown in 

Table 5.11 and graphed in Figures 5.15 and 5.16.  Both optimal performance and energy 

points are when the work distributed to the CPU is 20%. 

 

Table 5.11: Matrix multiplication C++ and OpenCL 

Matrix multiplication C++ and OpenCL 

CPU% 

CPU 
Execution 

time 
(sec) 

CPU 
Energy 

(J) 

GPU 
Execution 

time 
(sec) 

GPU 
Energy 

(J) 

Effective 
Execution 

time 
(sec) 

Total 
Energy 

(J) 

100 104.73 16118 0 0 104.73 16118 
90 94.68 14292 0.06 5.5 94.68 14297 
80 82.55 12291 0.44 23.97 82.55 12315 
70 69.70 10963 1.45 91.97 69.70 11055 
60 59.98 9189 3.41 265.55 59.98 9454 
50 53.44 7749 6.63 592 53.44 8341 
40 40.81 6406 11.42 1081 40.81 7487 
30 32.57 5013 18.10 1771 29.26 6784 
20 21.88 3271 26.95 2694 26.95 5965 
10 12.87 2219 38.48 3884 38.48 6103 
0 5.27 681 52.78 5388 52.78 6069 
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Figure 5.15: C++ and OpenCL matrix multiplication runtime 
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Figure 5.16: C++ and OpenCL matrix multiplication Energy 
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5.3.5 C++ and OpenCL Fractal 

 The results are tabulated in Table 5.12 and graphed in Figures 5.17 and 5.18.  The 

optimal performance is when CPU = 20% and optimal energy is when CPU = 0%. 

 

 

Table 5.12: Fractal C++ and OpenCL 

Fractal C++ and OpenCL 

CPU% 

CPU 
Execution 

time 
(sec) 

CPU 
Energy 

(J) 

GPU 
Execution 

time 
(sec) 

GPU 
Energy 

(J) 

Effective 
Execution 

time 
(sec) 

Total 
Energy 

(J) 

100 56.85 8383 0 0 56.85 8383 
90 51.21 7580 0.05 5.12 51.21 7585 
80 47.65 7331 0.38 20.8 47.65 7352 
70 42.68 6269 1.17 74.2 42.68 6343 
60 38.99 6085 2.51 191 38.99 6276 
50 35.87 5463 4.86 396 35.87 5859 
40 31.61 4909 8.11 649 31.61 5558 
30 25.20 3628 11.76 920 25.20 4548 
20 16.75 2413 16.44 1342 16.75 3755 
10 7.42 1182 19.43 1981 19.43 3163 
0 2.04 124 24.80 2521 24.80 2645 
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Figure 5.17: C++ and OpenCL fractal runtime 
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Figure 5.18: C++ and OpenCL fractal energy 
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5.3.6 C++ and OpenCL Breadth-first search (BFS) 

 For the smaller data set size, optimal performance point is when CPU = 10% and 

optimal energy point is when CPU = 0%.  For the larger one, both performance and 

energy points are when CPU = 0%.  The results are shown in Table 5.13 and graphed in 

Figures 5.19 and 5.20. 

 

Table 5.13: Breadth-first search C++ and OpenCL 

BFS C++ and OpenCL 
CPU % 1M Time (sec) 1M Energy (J) 16M Time (sec) 16M Energy (J) 

100 5.979 546 142.75 11984 
90 5.512 505 104.31 11398 
80 5.064 479 94.84 10482 
70 4.663 442 86.82 9595 
60 4.278 416 77.93 8554 
50 3.781 348 69.85 7811 
40 3.285 341 61.77 6906 
30 3.107 312 53.72 6008 
20 3.098 274 45.16 5162 
10 3.043 258 36.67 4352 
0 3.425 248 29.31 3080 
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Figure 5.19: C++ and OpenCL BFS runtime 
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Figure 5.20: C++ and OpenCL BFS energy 
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5.4 Summary of Optimal Performance and Energy Points 

 A summary of the optimal performance and energy efficiency results from the 

previous sections for the applications is provided in Table 5.14. 

 

Table 5.14: Summary of optimal points 

Summary of Optimal Points 

Application Accelerator Performance Energy 

R Matrix 

Multiplication 

Xeon Phi 30:70 0:100 
Matrix 

Multiplication 

Xeon Phi	
   40:60 40:60 
Fractal Xeon Phi	
   30:70 50:50 
BFS 1M Xeon Phi	
   86:14 100:0 
BFS 16M Xeon Phi	
   60:40 100:0 
MM gcc GPU 0:100 0:100 
MM icc GPU	
   0:100 0:100 
Fractal gcc GPU	
   0:100 0:100 
Fractal icc GPU	
   0:100 0:100 
BFS 1M GPU	
   50:50 60:40 
BFS 16M GPU	
   30:70 30:70 
MM OpenCL GPU	
   20:80 0:100 
Fractal OpenCL GPU	
   20:80 0:100 
BFS 1M OpenCL GPU	
   30:70 0:100 
BFS 16M OpenCL GPU	
   0:100 0:100 
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6. PREDICTING OPTIMAL HYBRID WORKLOAD DISTRIBUTION 

 Predicting optimal workload partitions can eliminate the exhaustive search which 

tests all different combinations to arrive at an optimal distribution.  With matrix 

multiplication, fractal and breadth-first search hybrid applications, this chapter attempts 

to model and predict workload partitions for optimal performance and optimal energy 

based upon measured parameters. 

 A hybrid application can be modeled with five unique regions: 1) pre-

computation, 2) CPU computation, 3) Xeon Phi or GPU computation, 4) CPU waiting for 

Xeon Phi or GPU, and 5) post-computation regions.  The pre-computation region 

includes allocation or initialization of memory such as allocation and initialization of 

matrices used in matrix multiplication, or reading data from as reading the nodes and 

edges in BFS, or user input.  The CPU is active in this time while the GPU and Xeon Phi 

have yet to be activated.  The CPU computation region is when CPU performs the 

calculations associated with hybrid workload distribution.  The GPU or Xeon Phi are 

active in the GPU or Xeon Phi computation region, which in general occurs at the same 

time as the CPU computation region.  If the CPU completes it work allocated during the 

CPU computation region, it will wait for the GPU or Xeon Phi to finish.  This region is 

the CPU wait region.  The post-computation region occurs after the hybrid calculations 

are complete.  Memory is de-allocated or reset for another computation, and files are 

closed are included in this region.  The CPU is active in this region while the GPU or 

Xeon Phi is not. 
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 The parameters associated with these distinct regions are time, average power, 

energy, work, and rate.  These parameters are used in prediction of optimal workload 

partitions and are listed in Table 6.1. 

Table 6.1: Parameters used for predictions 

 Units Parameter Description 

€ 

TC  CPU computation time 

€ 

TX  Xeon Phi computation time 

€ 

TG  GPU computation time 

€ 

Tpre pre-computation time 

€ 

Tpost  post-computation time 

Time seconds 

€ 

Twait  CPU waiting time 

€ 

EC  CPU computation energy 

€ 

EX  Xeon Phi computation energy 

€ 

EG  GPU computation energy 

€ 

Epre  pre-computation energy 

Energy Joules 

€ 

Epost  post-computation energy 

€ 

W  All hybrid work 

€ 

WC  CPU work 

€ 

WX  Xeon Phi work 

€ 

WG  GPU work 

€ 

Wpre  pre-computation work 

Work 109 
calculations 
per second 

€ 

Wpost  post-computation work 

€ 

PC  CPU computation power 

€ 

PX  Xeon Phi computation power 

€ 

Pwait  power consumed by CPU while 
waiting for GPU or Xeon Phi 

€ 

Ppre  pre-computation power 

Power Watts 

€ 

Ppost  post-computation power 

€ 

RC  CPU computation rate 

€ 

RG  GPU computation rate Rate 109 
calculations 
per second 

€ 

RX  Xeon Phi computation rate 
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 Application time is the total time the application executes on the computing 

system.  It is the sum of the pre- and post- computation times plus the longer of the Xeon 

Phi/GPU or CPU computation time and described with the following equation: 

€ 

Application Time = Tpre +max TC ,TX orTG( ) +Tpost  

 The application energy can be described similarly.  The energy of the pre- and 

post- computation regions, the CPU computation energy, the energy of the CPU wait 

region if applicable, and energy of the Xeon Phi or GPU are summed together to give the 

total energy.  This is the total energy the application consumes. 

€ 

Application Energy = Epre + EC + EX or EG( ) + Ewait + Epost  

 Power is the average power of the region and is the energy of the region divided 

by the time for that region.  Each region has an associated average power. 

€ 

Power =
Energy
Time  

Similar to time and energy, the application work can be described as the sum of the pre-

and post-computation, the CPU computation plus the Xeon Phi or GPU computation 

work.  The CPU does no work during the CPU wait region. 

€ 

Application Work =Wpre +WC + WX orWG( ) +Wpost  

 With the exception of the CPU wait region, each region has a rate of work.  Rate 

of work is work divided by time. 

€ 

R =
W
T

 

 For the application, the pre- and post-computation regions remain constant while 

the CPU, GPU or Xeon Phi computation regions vary based on the selected partition.  

Thus, in predicting and modeling, the parameters pre- and post-computation regions may 
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be discarded from the calculations of the optimal work partitions.  Thus, the 

measurements of application power, time, energy and work must account for all the 

regions to accurately predict optimal performance or energy partitions. 

 

6.1 Hybrid Code Running on CPU and Xeon Phi 

 Hybrid computation is a subset of the entire application.  Thus, the time in the 

hybrid computation time does not include pre- or post- computation time, but just the 

maximum of either the CPU or Xeon Phi computation times. 

€ 

Hybrid time = max TC ,TX( )  

The data transfer to the Xeon Phi is included in the Xeon Phi computation time.  Optimal 

performance occurs when the time periods of the two processors overlap exactly, when 

the Xeon Phi computation time equals CPU computation time.   

€ 

TC = TX  

 The sum of the CPU work and Xeon Phi work is the total hybrid work.  This can 

be described by the following equation: 

€ 

W =WC +WX . 

Work divided by time yields rate.  Rate describes the computation rate of the CPU or 

Xeon Phi and is dependent on hardware, software, memory and cache use, and data 

transfer.  The rate of the CPU and Xeon Phi is given by the two following equations, 

respectively.   

€ 

RC =
WC

TC  

€ 

RX =
WX

TX  
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Using the previous equations, optimal performance for the CPU and Xeon Phi are related 

by the following equation. 

€ 

WX

RX
=
WC

RC . 

Because work of the CPU and work of the Xeon Phi are related to the total work, they 

can be described by the two following equations respectively. 

€ 

WC = αW  

€ 

WX = 1−α( )W  

€ 

where α :α ∈ 0 :1[ ]  

 

Combining the previous equations yields the computational mapping for optimal 

performance is as follows: 

€ 

W 1−α( )
RX

=
αW
RC  

€ 

α perf =
RC

RX + RC
 

€ 

where α perf represents optimal performance partiton. 

 

 For optimal performance, the partition depends upon the measured rates of the 

CPU and Xeon Phi. 

Table 6.2: CPU and Xeon Phi partitions 

Parameter Description 

€ 

α  CPU partition 

€ 

α perf  Optimal CPU partition for performance 
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 The optimal energy partition is defined by the minimum energy expended by the 

application.  Because the pre- and post- computation energies remain fixed as the hybrid 

work is partition, those energy parameters may be discarded when calculating optimal 

energy.  Optimal energy can be related by the following equation: 

€ 

Optimal Energy = min E α :α ∈ 0 :1[ ]( ) = EC + EX +max Ewait ,0( ) 

 While the CPU waiting energy cannot be negative, it is included to derive the next 

equation.  Consequently, to determine the optimal energy distribution, only the CPU and 

Xeon Phi computational energies and the CPU waiting energy effect the calculation.  In 

substituting the equations above, the optimal energy is given with the following equation: 

 

€ 

min E α :α ∈ 0 :1[ ]( ) =
α⋅ PC
RC

+
1−α( )⋅ PX

RX

+max 1−α
RX

−
α
RC

,0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ Pwait  

 

 The CPU waiting power, CPU rate and computation power, Xeon Phi rate and 

computation power were measured for the applications and are listed in Table 6.3.  



	
  66	
  

 

Table 6.3: CPU and Xeon Phi measured parameters 

 CPU Xeon Phi 

 

€ 

Pwait  

€ 

RC  

€ 

PC  

€ 

RX  

€ 

PX  
R MM 47.3 150.3 170 322.5 196.5 
MM 55.5 46.96 185.9 74.10 177.7 

Fractal 55.5 28.9 139.3 43.6 154 
BFS 

1M 

54.9 179.6 182 38.7 126.2 
BFS 

16M 

53 5.12 153 3.55 141 
 

 

 Performance and energy optimal points were calculated and predicted from the 

measured parameters.  They are shown in Table 6.4 with very good agreement between 

measured and predicated.  While data was taken every 10%, BFS with 1M nodes was 

tested at additional workload distributions to determine the optimal performance point of 

86%. 

 

Table 6.4: CPU and Xeon Phi measured and predicted optimal performance and energy 

Predicted and Measured Hybrid CPU + Xeon Phi Optimal  

 Performance Energy 

 Measured Predicted Measured Predicted 
R Matrix 

Multiplication 

30:70 32:68 0:100 0:100 
Matrix 

Multiplication 

40:60 39:61 40:60 38:62 
Fractal 30:70 39:61 50:50 40:60 
BFS 1M 86:14 82:18 100:0 100:0 
BFS 16M 60:40 60:40 100:0 100:0 
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 For matrix multiplication in the R scripting language, a second optimal 

performance point exists at 0:100, representing a difference of just 0.3% 

 

6.2 Hybrid Code Running on CPU and GPU 

 The CPU and GPU follow similarly for work partition prediction.   The optimal 

performance is given as follows: 

€ 

α perf =
RC

RG + RC
 

 

And the optimal energy for the CPU and GPU workload partition is given below: 

 

€ 

min E α :α ∈ 0 :1[ ]( ) =
α⋅ PC
RC

+
1−α( )⋅ PG

RG

+max 1−α( )
RG

−
α
RC

,0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ Pwait  

 

The measure parameters for the applications were tallied and are listed in Table 6.5. 
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Table 6.5: CPU and GPU measured parameters 

CPU and GPU Measured Model Parameters 
 CPU GPU 

 

€ 

Pwait  

€ 

RC  

€ 

PC  

€ 

RG  

€ 

PG  

MM gcc 206.5 19.8 154.5 864 52.5 
MM icc 261 45.8 181.9 1014 52.5 

Fractal gcc 61.1 23.8 147.3 661 54.9 
Fractal icc 80.6 28.0 140.2 678 54.9 
BFS 1M 57.9 97.6 126 45 115 
BFS 16M 72.3 6.23 102.6 11.0 92.9 

MM OpenCL 31.8 19.1 153.8 37.9 102.1 

Fractal 
OpenCL 45.3 23.4 147.4 53.5 101.6 

BFS 1M 
OpenCL 42.3 95.3 75.8 208 30.0 

BFS 16M 
OpenCL 44 3.8 76.9 67.8 55.3 

 

 

 The measured parameters were then used the model to predict the optimal 

partition for performance and energy and are listed in Table 6.6.  The granularity for 

these measurements is 10%. 

 



	
  69	
  

 

Table 6.6: CPU and GPU measured and predicted optimal performance and energy 

CPU and GPU Optimal 

 Performance Energy 

 Measured Predicted Measured Predicted 

MM gcc 0:100 3:97 0:100 2:98 

MM icc 0:100 4:96 0:100 4:96 

Fractal gcc 0:100 3:97 0:100 2:98 

Fractal icc 0:100 3:97 0:100 2:98 

BFS 1M 50:50 46:54 60:40 46:54 

BFS 16M 30:70 36:64 30:70 36:64 

MM OpenCL 20:80 33:67 0:100 2:98 

Fractal OpenCL 20:80 30:70 0:100 2:98 

BFS 1M 
OpenCL 30:70 31:69 0:100 2:98 

BFS 16M 
OpenCL 0:100 5:95 0:100 2:98 

 

 The performance in the ranges between 10% and 30% CPU present at most a 2% 

difference and yield a range of minimal runtimes.  In general, there is very good 

agreement between predicted and measured. 
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7. CONCLUSION 

 This section summarizes the contributions and work done in this thesis, and 

provides recommendations for work in the future 

 

7.1 Contribution 

 Historically, it has been difficult to predict the best performance and energy 

efficiency operating points of hybrid applications.  For this thesis, applications are 

developed to enable measurement of hybrid performance and energy efficiency over the 

entire range of workload distributions.  From the results, for many cases, the optimal 

performance and optimal energy operating points do not coincide.  And for these 

applications, the selection of the workload distribution for either the optimal performance 

or energy is not obvious.  Thus, this thesis presents prediction methodologies for optimal 

performance or optimal energy operating points for these sample applications, which can 

likely be extended to other applications.  The prediction equations not only extend to the 

CPU and GPU but also CPU and Xeon Phi combinations for a variety of sample 

applications.  In addition, the methodology accurately predicts the CPU and Xeon Phi 

workload division in an R scripting language application using an entirely different 

workload division technique, the environment variables.  The optimal hybrid 

performance operating point may benefit other R applications, which typically run with 

multiple hours long execution time, providing a execution time performance and allowing 

larger data sets to be run.  In addition, power data from the on-chip power monitoring of 

the CPU and accelerators and measured performance data can be applied to the equations 

to provide accurate predictions.   
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 Many times, programs can be rather difficult to adapt to hybrid use.  This thesis 

presents a general guideline on adapting already-parallel applications to hybrid use of a 

CPU and Xeon Phi or CPU and GPU.  These methods provide guidelines and workload 

division examples.  In addition, for the R scripting language, this thesis provides the 

information on open source R language enabled to use MKL and a detailed list  of 

environment variables that allow parallel and hybrid use.   

 

7.2 Future Work 

 In this work, I presented a method to predict workload division for hybrid 

applications, enabling optimal energy or performance predictions.  There are many 

directions to extend this work.  First, verify and confirm predictions with other 

applications.  Although the applications cover computational intensive applications and a 

data intensive transfer application, there are many other applications for which the 

prediction methodology can be verified.  Second, because the measurements on these 

applications were performed on a node on a single system, measurement on other 

platforms using other CPUs and other GPUs, and next generation of Xeon Phi.   Third, 

the applications can be optimized for more efficient memory accesses, execution time or 

energy, thread affinity and hyperthreading.  All of these can tweak the optimal points.  

High transfer rates between CPU and Xeon Phi or GPU can be optimized.  And finally, a 

software enabled machine learning to automatically sample, measure and provide optimal 

hybrid distribution for performance or energy can be added to programs.  This would 

automate the steps done in this thesis to create a very quick, efficient, application. 
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