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EXISTENCE AND EXPONENTIAL STABILITY OF PERIODIC
SOLUTION FOR CONTINUOUS-TIME AND DISCRETE-TIME
GENERALIZED BIDIRECTIONAL NEURAL NETWORKS

YONGKUN LI

ABSTRACT. We study the existence and global exponential stability of posi-
tive periodic solutions for a class of continuous-time generalized bidirectional
neural networks with variable coefficients and delays. Discrete-time analogues
of the continuous-time networks are formulated and the existence and global
exponential stability of positive periodic solutions are studied using the con-
tinuation theorem of coincidence degree theory and Lyapunov functionals. It
is shown that the existence and global exponential stability of positive periodic
solutions of the continuous-time networks are preserved by the discrete-time
analogues under some restriction on the discretization step-size. An example
is given to illustrate the results obtained.

1. INTRODUCTION

In recent years, the stability of the following bidirectional associative neural
networks with or without delays has been extensively studied:

dl‘i(t) i .
o = wilt) + Z;sz’fj(yj(t — 7))+ L, i=1,2,...,1,
= (1.1)
dy; (t) l ,
1 :*bjyj(t)+Z%‘jgi($i(t*0ij))+<]j J=L2,....m
=1

Also some of its generalizations have been studied and various stability conditions
have been obtained [3| AL [5] 6], [TT), 12], [14], 15| 16l 17]. Here pj;, ¢ij, ¢ =1,2,...,1,j =
1,2,...,m are the connection weights through the neurons in two layers: I-layer and
J-layer. On I-layer, the neurons whose states denoted by x;(t) receive the inputs
I; and the inputs outputted by those neurons in J-layer via activation functions
(output-input functions) f;, while on J-layer, the neurons whose associated states
denoted by y;(t) receive the inputs J; and the inputs outputted from those neurons
in I-layer via activation functions (output-input functions) g;. And 7, 04,1 =
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1,2,...,1,7 = 1,2,...,m are the associated delays due to the finite transmission
speed among neurons in different layers.

When there is no delay present, reduces to a system of ordinary differential
equations which was investigated by Kosko [7, 8, @] and it produces many nice
properties due to the special structure of connection weights and has practical
applications in storing paired patterns or memories and the ability to search the
desired patterns via both directions: forward and backward directions. See [3] [14,
7, [8, 9] for details about the applications on learning and associative memories.

It is well known that in the study of neural dynamical systems, the periodic
oscillatory behavior of the systems is an important aspect. In this paper, we are
concerned with the following generalized BAM networks with variable coefficients
and delays

dm(;ft) = —a;(t)z;(t) + Z aji(t) fi(y;(t)) + iji(t)gj(yj(t —75:(1)) + Li(t),
j=1 j=1

l l
dy; (¢) 2 .
—u = i@y + D bii () filwi(t) + D aiy (i (st — 0i5(1) + 5 (t),
i=1 i=1
(1.2)

fori=1,2,...,0,j=1,2,...,m.

In this paper, we assume that

(S].) ai,bj € CY(IR7 (0,00)), Tjiy Oij € C(R, [0,00)), Iiajjvpjiaqm' S C(R,R), 1=

L,2,...,1,j=1,2,...,m are all w-periodic functions.
(S2) fj,95, fi,0i € CR,R)i=1,2,...,1,j=1,2,...,m are bounded on R.

(S3) There exist positive number L;, L?, Lf, L? such that

fi(x) = fiw)| < Lz —y| forallz,yeR, j=1,2,...,m,
lgi(x) —g;()| < LYz —y| forallz,yeR, j=1,2,...,m,
\fz(;v)—fl(y)|§L{|x—y\ forallz,y e R, i=1,2,...,1,
Gi(z) — §i(y)| < LIz —y| forallz,yeR, i=1,2,...,1

Our purpose of this paper is by using Mawhin’s continuation theorem of co-
incidence degree theory [2] [13] and by constructing suitable Lyapunov functions
to investigate the stability and existence of periodic solutions of ; then, we
shall use a novel method in formulating discrete-time analogues of the continuous
time networks. It is shown that the existence and global exponential stability of
positive periodic solutions of the continuous-time networks are preserved by the
discrete-time analogues under some restriction on the discretization step-size.

2. EXISTENCE OF PERIODIC SOLUTIONS

In this section, based on the Mawhin’s continuation theorem, we shall study the
existence of at least one positive periodic solution of . First, we shall make
some preparations.

Let X, Y be normed vector spaces, L : Dom L C X — Y be a linear mapping, and
N : X — Y be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dimker L = codimIm L < 400 and Im L is closed in Y. If
L is a Fredholm mapping of index zero, there exist continuous projectors P : X — X
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and @ : Y — Y such that Im P = ker L,ker @ = Im L = Im(I — Q). It follows that
mapping L|pom zAker P : (I — P)X — Im L is invertible. We denote the inverse of
that mapping by Kp. If Q is an open bounded subset of X, the mapping N will be
called L- compact on Q if QN (Q) is bounded and Kp(I —Q)N : Q — X is compact.
Since Im (@ is isomorphic to ker L, there exists an isomorphism J : Im () — ker L.

For convenience of use, we introduce Mawhin’s continuation theorem [2, P. 40]
as follows.

Lemma 2.1. Let Q C X be an open bounded set and let N : X — Y be a continuous
operator which is L-compact on Q (i.e., QN : Q =Y and Kp(I — Q)N : Q@ —» Y
are compact). Assume

(a) for each X € (0,1), x € 0Q(Dom LLz # ANz,
(b) for each x € 9 ker L. QNx # 0,
(¢) deg(JNQ, Q2 ker L,0) # 0.

Then Lz = Nx has at least one solution in () Dom L.
Our result about the existence of periodic solutions of (1.2)) is as follows.

Theorem 2.2. Assume that (S1) and (S2) hold. Then system (1.2)) has at least
one w-periodic solution.

Proof. To use the continuation theorem of coincidence degree theory to establish
the existence of an w-periodic solution of (T.2), we take X =Y = {u € C(R,R*™) :
u(t+w) =wu(t)} and |ju|| = Zi;ﬂ maxye(o,o) |i(t)|, then X is a Banach space. Set

L:DomILNX, Lu=4(t), uveX,

where Dom L = {u € C'(R,R*™)} and N : X = X, N[z1,..., 20,91, Ym]|’ =

—ay(t)za (1) + 3070 agi () £5(y; () + 200, pjn (g5 (ys (¢ — 51 (1))) + Li(t) ]

—ar (D) (t) + 3270 a () f(y; (1) + Yo pin()gs(y (t — (1)) + Li(t)
=b1(O)y1(t) + > i1 bin () fiwi(t)) + D21 @1 () Gi(xi(t — 031 (1)) + Ji(2)

b (£)ym (£) + S5y bim (1) fi (2 (t)) +'zﬁ:1 Girn (1)93 (i (t = Tim (1)) + T (1) |

Define two projectors P and @ as

1 w
Pu:Qu:—/ u(t)dt,u € X.
0

w

Clearly, ker L = R*™ ImL = {(z1,%2,..., 2,1, -,Ym)’ € X : fowxi(t)dt =
O,fowyj(t)dt =0,0 =1,2,...,0,j = 1,2,...,m} is closed in X and dimker L =
codimIm L = [+ m. Hence, L is a Fredholm mapping of index zero. Furthermore,
similar to the proof of [I0, Theorem 1], one can easily show that N is L-compact
on Q with any open bounded set @ C X. Corresponding to operator equation
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Lu = ANu, X € (0,1), we have

dxgl-t( ) _ A[_az i Zaﬂ ()£ (w5 (0) + > psi(t)g (y; (t — 752(2)) +1i(t)},
j=1
l

dyé't(t) - )\[ —bj(t)y;(t) + Z bis () fi(zi(t)) + Z Qi ()i (s (t — 035 ())) + Jj(t)}

(2.
fori=1,2,...,1,j =1,2,...,m. Suppose that (z1,Z2,...,21,Y1,Y2,- -, Ym)
is a solution of (2.1) for some A € (0,1). Let &,(; € [ ,w] such that x;(&;
maxyeo,o] 7i(t) and y;((;) = maxepo,w) ¥;(t),7 = 1,2,...,1, =1,2...,m, then

I »®Z

ai(&)x Zaﬂ &) fi(y; (&) +2pﬂ €95 (y; (& — m54(&))) + Li(&)

Jj=1 =

and

l
b;(Ci)y;(G) = Z i (G) fi(@i(G) +un 09i(@i(G — 0i5(G)) + T3(G)s

=1

fori=1,2,...,1,7=1,2,...,m. Hence,

ai(&)ai(&) < Y lagi(E)NIFi (ys G+ Y psi(€)l1g; (v (& — m( @) + L&),

j*l jfl
(@ Yj CJ ) < Z‘bm CJ Hfz(xz Cj |+Z|QU CJ 119 (x 2( UZJ(CJ)))‘ + |Jj(éj)|
i=1 i=1

fori=1,2,...,l, 7=1,2,...,m. Therefore,

_ 1
z;(&) < ~mMa™ + mMpM + IM], i=1,2,...,1,
a
- 1
y; () < g[lebM +1Mzg™ + JM], j=1,2,...,m,
where
Q_té?éri]{al() i=1,2,...,n}, Q:tér[léi]{bj(t), i=1,2,...,1},
My = sup{|fj( N, i=12,....,m}, M,;= sgg{|gj(u)|, i=1,2,...,m},
u
Mf - Sup{‘.ﬂ( )|a Z = 1a2a'~'al}7 Mg = Sup{|§7(“)|vl = 172a'~'7l}a
ueER ueER
G‘M :trer%(?}:;]{‘aﬂ( )|7ZZ 1327'“;17 ]: 1727-~'7m}a

WM = max {|b;(t)], i=1,2,...,1, j=1,2,...,m},

te[0,w]
M - -
= (D, i=1,2,....0,7=1,2,...,m},
p = max {[pji(t)], i J }
qM: HlaX{|qu( )‘7i:1527"'7laj:1a27""m}7
te0,w

™ = max {\I( Wei=1,2,...,1}, JM = max {|J;(t)|,j =1,2,...,m}.
tel0,w te[0,w]
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§ g [0, w] be such that xi(gi) = mingeo ) 24 (t) and y; (QJ) = mingeo,w) ¥ (1),
=1,2,...,1,5=1,2,...,m, then

Zaﬂ §)1i(wi(E,)) + me )95 (i (€, — 754(£,))) + Li(€,)

B (E) = S bi(¢ it +Zq” o) + J(C,)
=1

fori=1,2,...,1,7=1,2,...,m. Thus,

wl€)ni(E)
S AT \—Zm Mgs us €, — ()]~ 15(E)
b )

>—§n;b< Mot |—Z|q” Was(a:(c, — o€ )]~ 1C,)

fori=1,2,...,1,7=1,2,...,m. Therefore,
_ 1
xi (&) > —g[meaM +mMgp™ + 1M,

y;i(GG) = = [IM ™ + 1My + T

\o-\»—l

for i = 1,2,...,1, j = 1,2,...,m. Denote C = L[mMsa™ + mMyp™ + IM] +
M M + IMg™M + JM] + D, where D is a positive constant. Then it is clear
that C is independent of A\. Now we take 2 = {u € X : ||u|| < C'}. This €2 satisfies

condition (a) in Lemma . When u € 0Q(ker L = 0QR*™ u is a constant
vector in R™™™ with |lul| = C. Then

l m
UTQNU = Z { - az$ + Za]zmzf] y] Z ]szgj y] + xzjz}
i=1 j=1
m
+Z{_ Y5 +Zbljyjfl l'z Z Z]ngz x; +ijj} <0,
j=1 i=1 i=1
where u = (z1,%2,...,2Z1,Y1,Y2,---,Ym). 1 necessary, we can let C be large such

that

l
Z{ — ;X +Zaj’b‘r2fj yj +ijzngj(yj)+ I_}

i=1 j=1

m

+Z{_ Y5 +Zbl]y]f1 T +Z%]ngz ;) +yj‘] } <0.

So for any u € 9Q (" ker L, QNu # 0. This proves that condition (b) in Lemma
is satisfied.
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Furthermore, let ¥(v;u) = —yu + (1 — v)@QNu, then for any = € 9Q N ker L,
uTW(y;u) <0, we get

deg{JQN,QNker L,0} = deg{—u,QNker L,0} # 0,

hence condition (c) of Lemmal2.1]is also satisfied. Thus, by Lemma[2.1] we conclude
that Lu = Nu has at least one solution in X, that is, (1.2)) has at least one w-periodic
solution. The proof is complete. (I

Next, we shall construct some suitable Lyapunov functionals to derive the suf-
ficient conditions which ensure that the global exponential stability of periodic
solutions of the system (1.2)) associated with the initial conditions

xi(s) = pi(s), se€[-1,0,, 7= II%&X]{TJZ( )i =1,2,...,0,5=1,2,...,m},

tefo

yi(s) =vi(s), se€[-0,0], o= n%ax]{a”( )i =1,2,...,0,5=1,2,...,m},

telo
where ¢; € C([-7,0],R),9; € C([-0,0,R),i =1,2,...,0,7 =1,2,...,m. In the
sequel, we will use the following notation:

= min a;(t), b= min b;(t), a} = max |p;(t)],

am™ =
te[0,w] T tejow] Tt te[o,w]

K2

M M M
bij —tggﬁ |(Jw( s Tji :tggﬁ |TJ2( s 055 :tfe%aﬁ |Uu< B

M — .
Pji = max i), @ = max, lqi; ()],

where i =1,2,...,[, 7 =1,2,...,m

Our result about the global exponential stability of periodic solutions of (1.2} is
as follows.
Theorem 2.3. Assume that (S1)-(S8) hold. Furthermore, assume

(P1) Fori=1,2,...,l and j = 1,2,...,m, 0;j,7j; € C(R,[0,00)) satisfy

oM = trer%gic)]aj(t) <1, M= max 7/,(t) <1,

(P2)

ai >Z(b7’JL'L 7), 12172,...7l,

i=1 1= Tij
l M7g
M
m Mpf o pjz o
by >E ( L; 3\4) j=12,...,m,

jl

[

then (L.2)) has a unique w-periodic solution (x%,2%,...,27,y5,v4,...,y5)" and,
moreover, there exist constants n > 0 and A > 1 such that for t > 0,

PAOREAGIR Z ly; (1) — y; (D)

l
<23 s fai(s) |+Z sup_ () = 3 9)1].

i—1 S€[-7,0] 1 8€[—0,0]
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Proof. Let x(t) = {x1(t),z2(t), ..., xi(t), y1(t), y2(t), . . ., ym(t
lution of (L.2), and x*(t) = {z7(¢),z5(t),...,z; (), yi(t),v5(t),...,y5(t)} be an
w-periodic solution of (1.2)). Then

d* (1) — a2 (1))
dt

< —alw(t) — af(t)] + Z al! LIy, (t) — 3 (1)

+ 3 M Lyt — 1i(t) -yt — (D))
d(y; (1) — y5(8) - 22
e T A0 |+ZbMLf\xz ]

+ D alf Llai(t — o) — @7 (t = 0y (1),

=1

fori =1,2,...,1, 7=1,2,...,m. Let F; and G; be defined by

m . (]MLg SO‘M
Fi(gi):ar_gi_z:(b?f[/{ 1]17/]\/[), i=1,2,...,1,
j=1 9ij
l M79g ¢

m Py Ljes iy
Gi(¢) =0 =G =D (a L)+ F ), i=12.m,
i=1 Jt

where €;,(; € [0,00). It is clear that

m M4

—a - (bMLf (]”7/2]\4>>07 i=1,2,...,1,
o
j=1 ij

! pMLY
G =ty =3 (MLl + ) >0, =12 m
Ji

i=1
Since F;(-) and G,(-) are continuous on [0,00) and Fj(e;), G;({;) — oo as &;,(; —
oo, there exist ¢7,(; > 0 such that Fi(e;) = 0,G;(¢;) = 0 for ; € (0,¢7) and
Fi(ei) > 0,G;(¢j) > 0 for ¢; € (0,¢}). By choosing

77:min{€T7€;7""er’cfvcgw'wg;;}?
we obtain
m . g 7]0—
gMLie o )
Fi(n) =a]" —n— Z(bi‘fo 7?_ — )20, i=1,2,...,1,
Jj=1 U]
l g
Le77
Gi(n) —n— (MLf p“i,M)zo, i=1,2,....m.
= 1=

Now let us define
ui(t) = e™|x;(t) — xf(t)], t€[-7,00),i=1,2,...,1,
v (t) = e"y; (t) =y (1)
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Then it follows from and ([2.3) that

d*ui(t) Mpty, ~ it
g =@ +Za Ljv )+;PﬁL§€“()Uj(t—Tﬁ(t))»
d*o;(t) My f M d et
<o +Zb Liu )+;qzj LIy, (t — 045(1)),
(2.4)
1=1,2,...,n,j=1,2,...,m. Consider a Lyapunov function defined by
l m g
L e" t
Z (uz Z il v;i(s) ds)
— 1—- 7' t—75(t)
= " (2.5)
= q; Lgenaw t .
D (IR sty SErS)
j=1 1 - U t—o;j (t)

and we note that V(¢) > 0 for t > 0 and V(0) is positive and finite. Calculating
the derivatives of V' along the solutions of (2.4), we get

S Sl IR WEIURS s »<t>}
&1[«) 0+ Zqﬁ U o)
<32 (or - S - zw
ONCEEEEE = N
- Zl; Fy(n)ui(t) — ilGj(n)vJ(t) <0, t>0

It follows that V(¢) < V(0) for ¢t > 0 and hence from ([2.3)) and (2.5) we obtain

l
= Py Ly

Zuz(t) + Z’Uj(t) < Z (UZ(O) + Z 1— T{M

i=1 j=1 i=1 j=1
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It follows from (2.3) and (2.6) that

l m
D lwilt) = O]+ Y ly(t)
i=1 j=1
l m  Myg, nrM
. pji Lje \
<e ntz(HZ v _JT{M ) sup |zi(s) — 27 (s)]

s€[—7,0]
- Mp9enol (2.7)
qZ e'!"ii ) . .
" JZ:; <1 ' Z i — o ) seb[EE,O] 195 (s) — 45 (s)]
l
<A 30 s la(s) = ai(s)] + Z s () - 6]

i—1 S€[—7,0]

where t > 0 and

l M71d 7]0’%
p z q;. Lie ij
A= m {1 J Ji} > 1.
1<i<l E13L)<(j<m * Z /M 1+ Z 1 — g!M =

***** i=1 Tij
The uniqueness of the periodic solution is follows from (2.7]). This completes the
proof. ([l

3. DISCRETE-TIME ANALOGUES

In this section, we shall use a semi-discretization technique to obtain the discrete-
time analogue of . For convenience, we use the following notations. Let Z
denote the set of integers; Z§ = {0,1,2,...}; [a,b]z = {a,a+1,...,b—1,b}, where
a,b € Z,a < b; [a,00)z = {a,a+1,a+2,...}, where a € Z. While there is no unique
way of obtaining a discrete-time analogue from the continuous-time network ,
we begin by approximating the network by equations with piecewise constant
arguments of the form

dl‘i(t) o )
dt - _az Zajl f] yj( ))

+ ;pﬁ([g]h)gj (yj(([%]h) - Tji([%]h))) +L([7]h).

(3.1)

t

4 ;nlqij([,i]h)gi (#: (710 = o ([711)) + (5 18),

where i = 1,2,...,n, j = 1,2,...,m, t € [nh,(n+ 1)h), n € Z§ and h is a fixed
positive real number denoting a uniform discretization step-size and [r] denotes the
integer part of r € R. We note that [¢/h] = n for t € [nh, (n+1)h). For convenience,
we use the notations a;(n) = a;(nh), bj(n) = bi(nh), a;i(n) = a;i(nh), pji(n) =
pji(nh), bij(n) = bij(nh), qij(n) = qij(nh), 75i(n) = 75i(nh), oy;(n) = oi;(nh),
I;(n) = I;(nh), J;j(n) = Jj(nh), z;i(n) = z;(nh), and y;(n) = y;(nh). With these
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preparations, (3.1)) can be rewritten as

dt
= _az + Za’jl f] y] + ijz gj (yj( le(n))) + Ii(n)u
J=1
dy;(t)
dt
l
= —bj(n)y;(n) + Z bij )+ Z ij(n)gi(zi(n — 0ij(n))) + J;(n),

i=1

(3.2)
wherei =1,2,...,l,5=1,2,...,m,t € [nh, (n+1)h), n € Z§. The initial values of
will be given below in (3.6). Integrating over the interval [nh,t), where
t < (n+1)h, we get

1( )t e%i (n)nh
xi(t)eai(n)t _ xi(n)efai(n)nh _ ( o {Zaﬂ f] y] n))
+ me)gj(yj(n = 7)) + L)},
R N L Ay R o
i (0 =y (n)e (o N bt

T qu n)gi(wi(n — oij(n))) + Jj(n)},

1=1,2,...,1,j=1,2,...,m. By allowing t — (n + 1)h in the above expression,
we obtain

l?i(TL —+ 1) = o:i(n)ef‘“(" + Olz Z ajl f] y] )

+ ai(h Zpﬂ n)gi(yj(n —75i(n)) + (W) ;(n), i=1,2,...,1,

l

yi(n+1) = y;(n)e ™" + B;(h) Z bij(n) fi(zi(n))
+ﬁ] ZQU TL—O'”( ))>+ﬁj(h)Jj<n)’ J=12...,m,
(3.4)
where
1— e—ai(n)h 1— e—bj(n)h
a;(h) = Wvﬁj(h) = W,

i=1,2,...,0,i=1,2,...,m,n €Z{. It is not difficult to verify that a;(h) > 0,
Bi(h) > 0if a;,b;, h > 0 and a;(h) ~ h+ O(h?), B;(h) =~ h+ O(h?) for small h > 0.
Also, one can show that (3.4) converges towards (1.2) when A — 0. In studying
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the discrete-time analogue (3.4]), we assume that
h € (0,00), ajb;:Z—(0,00), aji,pji,bij,qij, 1i:Z— R,

3.5
Tiiyoij L — 28, i=1,2,...,1, j=1,2,....m (3:5)

and the nonlinear activation functions fj;, g;, i, s satisfy (S2) and (S3). The system
(3.4) is supplemented with initial values given by
z;i(s) = pi(s),s € [-7,0]z, 7=  max  sup{r;(n),n€Z},i=1,2,...,1,

LIS

yi(s) = v;(s),s € [-0,0]z,0 = 1Si£r£?%<jgmsup{aij(n),n €Z},j=1,2,...,m,
(3.6)

where ¢;(-) and ;(-) denote real-valued continuous functions defined on [—7,0]
and [—o, 0], respectively.
In what follows, for convenience, we will use the following notation:

mo_ ; pm — bi(n)),
o = _min Aai(m)}, b= max {b;(n)}
af = max fau(l) 0 = max (b)),
i = emax  {lpsi(n)]}, a4y = emax  {lai; ()]},
M _ M _
Tii = e[lglgxl {|sz( ) 055 —nefgfifl}z{'(fij(")'}’
fori=1,2,...,land j =1,2,...,m. Also define
o = max {a%(n)}, W= max {bf\f

1<i<i, 1<5<m 1<i<i, 1<j<m
My = sup{lfs ()], j = 1,2,...,m}, M, =sup{lg;(@l.j =1,2,...,m},
u€R u€eR
M =sup{|fi(u)|,i=1,2,...,1}, Mz=sup{|g:i(v)],i=1,2,...,1},

u€R u€R

™ = I; i =1,2,...,01}, JM= J:(n)|,j=1,2,....,m}.

ne[ror}‘?;}—(l]z{' (n)|7z )& ’ } ne[rOr}f;)—(l]zﬂ ](n)‘ J m}
The following result was given in [I, Lemma 3.2].

Lemma 3.1. Let f : Z — R be w-periodic, i.e., f(k+w) = f(k). Then for any
fixed ny,mo € I, and any k € Z, one has

7)< Fo)+ 315G+ 1) = £(5)l,

s=0
f(n) > f(ng) — Z|f +1) = f(s)].

Using Lemma we shall show the following result about the existence of at
least one periodic solution of (3.4]).

Theorem 3.2. Assume that (S2), (S3) and (3.5) hold. Furthermore, assume that
(S4) ai,aji, pji, Li, by, 045, i3, 5,0 = 1,2,...,0,5 = 1,2,...,m are all w-periodic
functions, where w > 1 is a positive integer.

(S5)

1 w—1
h<19§z,1§]§m{_Tln( w )’_@n( w )}
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Then system (3.4]) has at least one w-periodic solution.

Proof. Define

lg={u={un)}:uln) e R*™ ncz}.
Let 1% C lg denotes the subspace of all w periodic sequences equipped with the
norm || - ||, i.e.,

I+m
Tl = max - |u;(n)],
K3

Hu” = ||(U1,U2...,ul+’m) nG[U,UJ*l]Z

where v = {(u1(n),u2(n),...,utm(n)),n € Z} € 1¥. It is not difficult to show
that [ is a finite-dimensional Banach space. Let

w—1

¢ ={u={um)} €1¥: Y un) =0},

n=0

2 ={u={u(n)} €l*:un)=ceR™ neZ}
Then it is easy to check that l§ and [ are both closed linear subspaces of {“ and
=0 ely,diml =1+ m.
Take X =Y = [“ and let

1 o) e 1) by () Sy ajn(n) f 5 () ]
| | e 1) ) S ) fy s ()
vi y1(n)(e M — 1) 4+ B (h) X4 bia (n) fi(xi(n))

[l () (O~ 1) - BB S Bin () fo(a(m)),

ar(h) X270, pin ()g5(y;(n — 751 (n))) + ar ()i (n) ]

ar(h) S pit(D)g; (3 (n — mn(n))) + u(A) ()
Bi(h) S, qin (n)gi(zi(n — 11 (n)) + Bu(h)Ji(n) |

[ Bin (1) Y21 i (n)ﬁz‘(mi(n.— Tim (1)) + B (h) Jm (1)

rzeX, neZ,
(Lu)(n) =u(n+1) —u(n),u € X,n € Z.
It is easy to see that L is a bounded linear operator with
ker L =17, Im L =1[j,dim ker L =14 m = codimIm L,

then it follows that L is a Fredholm mapping of index zero. Define

w—1 w—1
1 1
Pu==-Y X -3 Y.
u=— 2 u(s), veX, Qu P v(s), ve

It is not difficult to show that P and @ are continuous projectors such that

ImP=%kerL, ImL=%kerQ =Imn(I - Q).
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Furthermore, the generalized inverse (to L) Kp : InL — ker P(|Dom L exists,
which is given by

Kp(w) = " u(s) — - 30w shuls).
s=0 s=0

Obviously, QN and Kp(I — Q)N are continuous. Since X is a finite-dimensional
Banach space, one can easily show that Kp(I — Q)N(Q) is compact for any open
bounded set Q2 C X. Moreover, QN () is bounded, and hence N is L-compact on
Q) with any open bounded set Q@ C X. We now are in a position to search for an
appropriate open, bounded subset 2 C X for the continuation theorem.
Corresponding to operator equation Lu = ANu, A € (0,1), we have

zi(n+1) = w4(n) = A = zi(n)(1 — 7 0IM) 4 Zaﬂ n) i (y; ()

+ai(h Zp” )5 (53 (n = 75s(n)) + ca(W)Li(n) },

l

yj(nJrl)*yj(n):A{*yj(n)(lfe PR 1 85 (h) Y big(n) filzi(n)

+ 5 (h qu n)gi:(n = ai5(n))) + B;()J;(n) |

where i =1,2,...,1, j = 1,2,...,

Suppose that {(z1(n),x2(n),...,z1(n),y1(n),y2(n),...,ym(n))T} € X is a solu-
tion of system for a certain A € (0,1). Summing on both sides of from
0 to w — 1 with respect to n, we obtain

w—1 w—1
zi(s)(1—e ™ (s)h Z Zaﬂ $).fi(;(s))
s=0 =0
w—1 w—1
+ a;(h Zp]z $)9; (s (s — 75i(s))) + Z a; (h)L;(s),
s=0 s=0
(3.8)
fori=1,2,...,l, and
w—1 l
> uils)(1— et Zﬁ; ) D bij(s) filai(s))
s=0 s=0 =1
w—1 w—1
+ Z /3j Zq” gz .Z'l UU(S))) + Z ﬁj(h)‘]] (S)
s=0 5=0
(3.9)
for j =1,2,...,m. Let n;,n; € [0,w — 1]z such that
zi(ni) = ne[g?gg} {zi(n)},  y;(ny) = ne[rg}gx {y;(n)},

fori=1,2,...,1, 7 =1,2,...,m, then it follows from and . ) that

w—1

w—1
zi(ni) Y (1—e ") >3 " ai(h) Zaji(s)fj(yj(s))
s=0 j=1

s=0
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z_: Zpﬂ $)95(y; (s — 75i(s))) + z_: a;(h)I;(s),

fori=1,2,..., l and

yi() S (1 — e H O >Zﬂg 'S b () Fax(5)
s=0

=1

F3 B0 S g e)inan(s - o) + 3 (1)
s=0 i=1 s=0

for j =1,2,...,m. Hence
wi(n) = [ 3= O] T [ )Y )05 (5)

s=0 s=0 7j=1
w—1 w—1

+5 ailh Zpﬂ )95 (3 (s = 734(5)) + 3 il Li(5)|
s= s=0

LS 1(1—e-a om] TS ass(3)I1fs (s ()

{z_% } [z_:o ; a (3.10)

3 i)Y ()l wsls — ()] + Zaz 10]
s=0 j=1

s=0
= —Ai, 1= 1, 2,..., l
and
w—1 4 w—1 l
ys () = [ S (= e O] T[S 85 3 bis(s) filwi(s)
s= s=0 i=1
w—1 l w—1
+ 3000 Y0 ()wils — @) + S HWLE] g,

s=0 i=1 5=0 '

Let n},n; € [0,w — 1]z such that

i(nj) = {zi(n)},  y;(nj) = min - {y;(n)},

nE[Ow 1]z nel0,w—1]z

fori=1,2,...,1,j=1,2,...,m. Again, it follows from (3.8)) and (3.9) that

() S (1 - ey < ij 0()S a0l 0y ())
s=0 j=1

s=0
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w—1 w—1
Z Zp“ 5)9;(y; (s — 75i(s))) + Z ;i (h)1;(s)
s=0 s=0
forie=1,2,..., [ and
w—1 w—1 l
0(05) (1= e 0" < 32 6503 b))
5=0 =0 i=1
w—1 w—1
ZQU gz 5_01] ))+Zﬁj(h‘)‘] ( )
=0 s=0
for j=1,2,...,m. Hence
w—1 _1 w—1 m
wi(n}) < [ S0 = O] T3 aih) Y ajils) 5(s(s)
s=0 s=0 7j=1
w—1 w—1
ijz $)9;(y; (s — 75i(s))) + ;}ai(h)fi(s)} (3.12)
w—1
< wal(h)[ (1—e 2 )] [ma™ M; 4+ mp™ M, + 1]
s=0
— Ay, i=1,2,...,1
and
w—1
yi(m) < [ Do (= e ten] [Zﬂj > ()15
s=0 i=1
w—1
+ 2 ﬂj Z qU gz 5 - 011 + Z /8] ] (313)
w—1
< wB;(h) [ Y- e—ba'@)h)} [IBM M + 1M M; + M)
s=0
=B, j=12...m
According to , we have
[2i(n +1) = @i(n)| < A{Ja(m)| (1 = e 4 Z a6 (3 ()]

+ai(h Zmz Mg (s (n = 75 ()] + s (W L) |}

< l|zi(n )|(1— —ay h)—l—a(h)[maMMf-i-mpMMg—i—IM]
(3.14)
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and
l

lyj(n+1) —y;(n)] < A{ij(n)l(l — e P 4 8i(h) Y i ()| filzi(n)]

i=1

+ 05 (h Zm )13:(i(n = 02 ()| + B ()| ()]}

< |yj(n)|(1 — M) + B ()WY My + ip™ My + TM],
(3.15)
where i = 1,2,...,0, 7 = 1,2,...,m. It follows from (3.10), (3.12)), (3.14) and
Lemma [3.1] that for i = 1,2,...,1,

zi(n) < xi(n +Z|xzs+1 ) — zi(s)]

s=0

<A+ (1—e Z\xl )| + wai (k) [ma™ My + mp™ M, + 1]

and

> A, —(1- e h Z|xl — wa( )[maMMf—FmpMMg—&—IM].
Thus,
w—1
zi(n)] < A; + (1= =) Y [2i(s)] + wai () [ma My + mp™ My + 1] (3.16)
s=0

fori=1,2,...,l. Summing on both sides of (3.16]) from 0 to w — 1 with respect to
n, we obtain

w—1
> lzils)
s=0
w—1

< wA; +w(l—e %) Z|30z )| + w?a;(h)[ma™ My + mp™ M, + 1M]
s=0

fori=1,2,...,l. Since 0 < h < — mln(‘”T_l) fori=1,2,...,l, we have

w—1

> lails)

s=0

<[ —w(l—e )t |:(-L)Ai + w?a;(h)(ma™ My 4+ mp™ M, + IM)}
=, i=1,2,...,1

In view of (3.16]) and (3.17)), we get

lzi(n)| < A + (1 — e~ M) Oy + way(h)[ma™ My + mp™ M, 4+ IM] := E,

(3.17)
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for i = 1,2,...,1. Similarly, it follows from (3.11)), (3.13), (3.15) and Lemma
that

lyj ()| < Bi+ (1 — e % ") D + wB; (W)[Ib™ M + 1™ My + JM) = F},
for 5 =1,2,...,m. where
Dj =1 —w(l—e ") wB; + w8 (h)(Ib™ My + 1g™ M, + TY)],

for j =1,2,...,m. Denote C' = Zi:l Eﬁ—zgn:l F;+H, where H > 0is a constant.
Clearly, C' is independent of A\. Now we take Q = {z € X : ||z|| < C}. The rest of
the proof is similar to that of the proof of Theorem and will be omitted. The
proof is complete. O

Theorem 3.3. Assume that (52)-(S3) and (3.5) hold. Furthermore, assume that
7ii(n) =1, oij(n) =0 € ZT, ne Z,i,j =1,2,...,m are constants and

(P3)

a§”>2(b£fo+qw Lg) i=1,2,...,1,

1

~ <

b > (a%Lf+pﬂLg>, j=1,2,....m,

1=

=

then the w-periodic solution {(x%(n),xz5(n),..., x5 (n),yi(n),ys(n),...,y510)T} of
(3.4) is unique and is globally exponentially stable in the sense that there exist
constants X\ > 1 and § > 1 such that

Z| i(n) |+Z|y] *y] n)|
(){Z sup  [21(5) |+Z sup [y (s) — 3 ()1},

i—1 €l TO]Z 1 8€[—0,0]z

(3.18)

forneZt.

Proof. Let x(n) = {(x1(n),z2(n),...,21(n),y1(n),y2(n), ..., ym(n))T} be an arbi-
trary solution of (3.4), and

z*(n) = {(@7(n), 23(n),..., a7, (n), 55 (n), 43 (n), ...,y (n)) T}
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be an w-periodic solution of (3.4). Then
[zi(n+ 1) — 27 (n+1)|

< Jas(n) = 2;(n)|e™ """ + ai(h Za LY ly;(n) =y} (n)]
+a;(h Zpﬂ Lily;(n — 75i(n))) — y; (n — 75:(n)))l,
lyi(n+1) —yi(n+1)] < ly;(n) —y;(n)|e " + B;(h ZbMLflwz i (n)]
+ B;(h ZQML% (n —0ij(n)) — zi(n — 0i;(n))l,
(3.19)

where ¢ =1,2,...,0, 7 =1,2,...,m. Now we consider functions I';(-,-) and ©;(-,-),
1=1,2,...,1,5=1,2,...,m, defined by

Fi(ﬂ’hn) —1_ Mie—a,;(n)h — picii( ZbMLf ZqMLl]e cr T4+1

Q;(vj,n) =1—vje b™Mh _yiai(h ZaMLf Zp%Lgﬂ T” +1

where p;,v; € [1,00), n € [O,w—l]z,2=1,2,...,l,]:1,27...,m. Since

Ti(1,n) =1 —e %MWM _q,(h) Zb{‘fo —ai(h)) gL
j=1 =
= a;(h) [al(n) Z bﬁ\fo Z sz\ng}
j=1
> a;(h) [a;" — Zbi‘f[{ — Zqil\fL?] >0
j=1 j=1
forn € [0,w—1]z,i=1,2,...,1, and
1
0;(1,n) =1—¢ btimh _ ZaMLf Bi(h) > p} LY

_ [ ZaMLf ZPMLQ}
[ ZaMLf ZPMLQ}

for n € [0,w — 1]z, j = 1,2,...,m. Using the continuity of I';(y;,n) and ©;(v;,n)
on [1,00) with respect to p; and v;, respectively, for every n € [0,w — 1]2 and
the fact that I';(u;,n) — —oo as u; — oo and O,(v;,n) — —oo as v; — o0
uniformly in n € [0,w — 1]z, ¢ =1,2,...,1, j = 1,2,...,m, we see that there exist
vi(n),vi(n) € (1,00) such that I';(u;(n),n) = 0 and ©;(vj(n),n) = 0 for n €

77
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0,w—=1]z,i=12,...,l, j = 1,2,...,m. By choosing A = min{y;(n),v;(n),n
O,w—1]z,i=1,2,...,1,j=1,2,. m}, where A > 1, we obtain I';(A,n) >0 and
@()\,n)>0foralln€[0,w 1]2,2—12 ..7l,]—12 ,m, that is,

Ae %M 4 Ay (h ZbMLf + ZqMLQG AT <1, ne0,w— 1]z,

A7t MR o ( ZaMLf + Zp?{Lgej(h)xffH <1,n€0,w-—1]
=1

fori=1,2,...,l,7=1,2,...,m. Hence

m m N m . ey
Ae M 4 N (h) Y Y LT+ g LI0;(h)a T <1,
o~ ! (3.20)
e b 4 Aoy ( ZaMLf + Zp%L?Qj(h))\T%'H <1,
i=1
fori=1,2,...,l,5=1,2,...,m. Now let us consider
ui(n) = )\"W,n €l|-1,00)z, i=1,2,...,1,
’ (3.21)
vi(n) = )\"M,n €[-m,00)z, j=12,....m
B;(h)
Using (3.4) and (3.21)), we derive that
Aui(n) < —(1 =A™ Mui(n) + XY 8 (h)all LI, (n)
+D B LINT i(n —75), i=1,2,...,1,
(3.22)
Avj(n) < —(1 — e U h Jvj(n —|—)\z:ozZ )b;; qul (n)
+3 aih)g LIy (n —0y5), j=1,2,....m
We consider the Lyapunov function
l n—1
Vi = 3 (utm) + z@ LTS 0(s)
i=1 §=n—Tj;
m n—1 (323)
3 (0 + Y xS )
Jj=1 =1 s=n—o;;

Calculating the difference AV (n) = V(n+ 1) — V(n) along (3.22), we obtain

l m
=3 (= A Myui(n) = A B (myad Ly ()
j=1

i=1
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= BRIV () = 37 (1= Ae T oy ()

l l

Ay (MY Liuy(n) — 3~ ai(h)gl LI +1ui(n)>
=1 =1

l
Z(l—Ae‘a M Aai(h ZbMLf ZqMLgA%H) wi(n)

i=1

U

(1 et )\ﬁ] ZCLMLf Zp%Lg)‘T +1) ( )
1

Using (3.20) in the above we deduce that AV (n) < 0 for n € Z{. From this result
and (3.23)) it follows that

<.
Il

!
Zul + Zva )< V(0) forneZt. (3.24)
i=1

Thus

l m
Zwm . Zvj<n>

-1

MN

< (uz—<o> S SIOTI S vj(s))
i=1 j=1 S=—Tji
m -1
+Z< +Zaz Jal LING 3T ui(S))
j=1 §=—0j

<

-

(1+ain) ZqML%“ B) o s Al =)

s€[—0o,0]

i=1

m

1
M Q)\T M1 i * .
+J 1(1+6] E pML m)ﬂj(h) S i) =yl

Therefore, we obtain the assertion (3.18]), where

5— max{maxi<;<; a;(h), maxi<;<m G; (h)}o_ > 1

min{min; <;<; o;(h), mini<;j<m B;(h)}

and

o= max {1+ai(h)2qf‘;[[,lg)\fff\f+lgij,1+ﬂ] Zp;\fLQAT +1 }

1<i<l, 1<j<m °
Jj=1

We conclude from (3.18]) that the unique periodic solution of (3.4) is globally ex-
ponentially stable and this completes the proof. (I
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in

4. AN EXAMPLE

Consider the following BAM neural networks system with discrete delays

(ii? = —aii(t) + 3 piiW i (st = ma) + Li(t), i =1,2,
d J2:1 (4.1)
% = —b;(t)y; (t) + ZQij(t>gi(xi(t o)+ i), =12,

which for 4,5 = 1,2, f;(u) = arctan(u + j), ¢;(u) = Ty a;(t) = 5(cost + 2),

b;(t) =sint+4, p;i(t) = —sin(i+j)t, ¢;;(t) = jl sint, 7j;,0;; are positive constants,
I;(t), J;(t) are any continuous 27-periodic functions. Then it is easy to show that
satisfies all the conditions of Theorem hence has a unique 27-periodic
solution which is globally exponential stable.
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