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Existence of Positive Solutions for some Dirichlet

Problems with an Asymptotically Homogeneous

Operator ∗

Marta Garćıa-Huidobro, Raul Manásevich & Pedro Ubilla

Abstract

Existence of positive radially symmetric solutions to a Dirichlet prob-
lem of the form

−div(A(|Du|)Du) = f(u) in Ω

u = 0 on ∂Ω

is studied by using blow-up techniques. It is proven here that by choosing
the functions sA(s) and f(s) among a certain class called asymptotically
homogeneous, the blow-up method still provides the a-priori bounds for
positive solutions. Existence is proved then by using degree theory.

1 Introduction

In this paper we consider the existence of positive radially symmetric solutions
for the problem

(D)

{
−div(A(|Du|)Du) = f(u) in Ω

u = 0 on ∂Ω

where Ω = B(0, R), R > 0, is the ball of radius R in RN and the function
f : R→ R is continuous. For some functions A : R→ R, the radial solutions of
(D) satisfy the nonlinear boundary value problem

(Dr)

−(rN−1φ(u′))′ = rN−1f(u) in (0, R)

u′(0) = 0 = u(R)
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where r = |x|, x ∈ RN and φ : R→ R is an odd increasing homeomorphism of
R, that is, an odd increasing homeomorphism from R onto R, given by φ(s) =
sA(s). In (Dr),

′ denotes derivative with respect to r.
In the rest of the paper we will deal with problem (Dr) in the “superlinear”

case, that is, when

lim
s→+∞

f(s)

φ(s)
= +∞. (1)

and φ, f belong to a class of functions to be described later.
By a solution to this problem we will understand a function u ∈ C1[0, R]

with φ(u′) ∈ C1[0, R] and such that (Dr) is satisfied.
It is well known that for the homogeneous case, that is when φ(s) = |s|p−2s,

p > 1, the use of blow up techniques allows to transform the question of a-
priori bounds for positive solutions to some superlinear problems into a problem
of non-existence of positive solutions in RN for a certain limiting equation.
This limiting equation having the same left hand side nonlinear operator as the
original equation, due to the homogeneity. See [GS] for the case of a scalar
equation and p = 2, and [CMM] for the case of a system of p, q-Laplacians. See
also [PvV] for related results.

The natural question of whether this method can be extended to cover the
radial situation posed by problem (Dr), when the function φ is no longer ho-
mogeneous arises.

We give here a positive answer to this question by restricting the functions
φ, f to a special class. This, being strongly motivated by some previous works
done for the one dimensional case, see [GMZ1], [GMZ2], [GMZ3], and [U].

We now describe the class of functions φ, f we will consider in order to
formulate our model problem. Throughout this paper we will assume that φ is
an odd homeomorphism of R satisfying

lim
|s|→∞

φ(σs)

φ(s)
= σp−1 for all σ ∈ R+ (2)

for some p > 1 and f satisfies

lim
s→+∞

f(σs)

f(s)
= σδ for all σ ∈ R+ (3)

for some δ > 0, where R+ := [0,+∞).
Conditions of this type, even without the monotonicity assumption on φ,

have been very much used in Applied Probability in a different context than the
one we will do here, see for instance [R], [S] and the references therein. Indeed
from [R] or [S] we have the following general definition. Let h : R+ → R+ be a
measurable function that satisfies

lim
s→+∞

h(σs)

h(s)
= σq for all σ ∈ R+. (4)
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We will say then that h is asymptotically homogeneous with index q, for short
AH or q-AH. We point out that in [R], [S], functions h satisfying (4) are called
regularly varying of index q, nevertheless from our point of view it will be more
illustrative to call them asymptotically homogeneous.

In this sense if the function φ(s) = sA(s) in (Dr) is AH of index p − 1, we
will say that the corresponding operator in (Dr) or (D) is an asymptotically
homogeneous operator.

Thus, with this notation, we will require that φ be a (p− 1)-AH odd home-
omorphism of R for some p > 1 and that the continuous function f be δ-AH for
some δ > 0.

Condition (1) implies that δ ≥ p − 1, see Section 2. We observe that the
case δ = p− 1 is indeed allowed as the following example shows:

φ(s) = |s|p−2s
|s|

√
1 + s2

, f(s) = |s|p−2s log(1 + |s|).

For later use we define the following functions

Φ(s) =

∫ s

0

φ(τ)dτ , Φ∗(s) =

∫ s

0

φ−1(τ)dτ. (5)

and following [FP] or [PS] we define the Legendre transform of Φ by

H(s) = sφ(s) − Φ(s). (6)

Also we will set

φp(s) = |s|p−2
s for all s ∈ R and p > 1,

and p∗ =
p

p− 1
.

We end this section by establishing the organization of this paper. In Sec-
tion 2 we establish and prove our main result for existence of positive solutions.
In Section 3 we show some examples that illustrate our results, and finally in the
Appendix, we prove some properties of the class of asymptotically homogeneous
functions that we use throughout this paper.

2 Existence of positive solutions.

In this section we will show that problem (Dr), that we recall next

(Dr)

−(rN−1φ(u′))′ = rN−1f(u) in (0, R)

u′(0) = 0 = u(R),

has positive solutions assuming that the homeomorphism φ satisfies (2) and the
nonlinearity f satisfies (3), sf(s) ≥ 0 for s ≥ 0 and it is superlinear with respect
to φ.
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Let Φ,Φ∗ and H as in (5) and (6) respectively. We have that

H(s) = Φ∗(φ(s)), (7)

and that H is an even function of s. Since Φ∗ is p∗-AH and φ is (p− 1)-AH, it
is easy to see, by using Proposition 4.1 in the Appendix that

lim
s→+∞

H(σs)

H(s)
= σp for all σ ∈ R+, (8)

and hence H is p-AH.
Let F (s) =

∫ s
0
f(τ)dτ. We note that from Karamata’s theorem, see [R,

Theorem 0.6], by using (2) and (3) it follows that

lim
s→+∞

Φ(s)

sφ(s)
=

1

p
and lim

s→+∞

F (s)

sf(s)
=

1

δ + 1
. (9)

Now, from (9), given ε > 0 there exists s0 > 0 such that for all s ≥ s0

δ + 1− ε <
sF ′(s)

F (s)
< δ + 1 + ε.

Hence, solving this differential inequality we obtain

A1s
δ−ε ≤ f(s) ≤ A2s

δ+ε for all s ≥ s0. (10)

Similarly, it can be shown that

A3s
p−1−ε ≤ φ(s) ≤ A4s

p−1+ε for all s ≥ s0 (11)

where Ai := Ai(ε) > 0 i = 1, . . . , 4. Hence (10) and (11) yield that

f(s)

φ(s)
≤
A2

A3
sδ−(p−1)+2ε (12)

and thus we see that (1) implies that δ ≥ p− 1.
Next, and for later purposes we consider the equation

H(z) = F (s). (13)

Since F is strictly increasing for s greater than some s0 > 0, and F (s) →
+∞ as s → +∞ it is clear that for each s > s0, equation (13) will have a
unique solution which we denote by z(s). Define now g : (s0,+∞)→ R+, where
R+ := (0,+∞) by

g(s) =
z(s)

s
. (14)

We have the following proposition.

Proposition 2.1 If (1) holds, then g(s)→ +∞ as s→ +∞.
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Proof. We have that
F (s) = H(sg(s))

thus, if g(sn) ≤M for some sequence {sn}, sn → +∞, then

F (sn)

H(sn)
≤
H(snM)

H(sn)
→Mp as n→∞. (15)

On the other hand,
F (s)

H(s)
=
F (s)

Φ(s)
·

Φ(s)

Φ∗(φ(s))

and
Φ(s)

Φ∗(φ(s))
=

Φ(s)

sφ(s)− Φ(s)
=

1
sφ(s)
Φ(s) − 1

,

hence, from (9),

lim
s→+∞

Φ(s)

Φ∗(φ(s))
=

1

p− 1
.

Thus, (15) contradicts (1) by L’Hôpital’s rule.
Now we establish our main existence result.

Theorem 2.1 Suppose that φ is an increasing odd homeomorphism of R, f :
R→ R is continuous , satisfies sf(s) ≥ 0, and is ultimately increasing. Assume
also that φ and f satisfy the superlinear condition (1) and that there exist p,
with 1 < p < N, and δ > 0 such that

(i) lim
s→+∞

φ(σs)

φ(s)
= σp−1 for all σ ∈ R+.

(ii) lim
s→+∞

f(sσ)

f(s)
= σδ, for all σ ∈ R+.

(iii) lim
t→0

φ(t)

f(t)
= +∞ and lim inf

t→0

φ(tσ)

φ(t)
> 0, for every σ ∈ R+,

(iv) δ <
N(p− 1) + p

N − p
.

Then problem (Dr) has a positive solution.

The proof of this theorem will be done in three steps. We note that finding
positive solutions of problem (Dr) is equivalent to finding nontrivial solutions
to the problem

(A)

{
−(rN−1φ(u′))′ = rN−1f(|u|) in (0, R)

u′(0) = 0 = u(R)

Indeed, if u(r) is a nontrivial solution of (A), then u′(R) < 0 for all r ∈ (0, R)
and since u(R) = 0 we find that u(r) > 0, for all r ∈ (0, R). This shows that
u(r) is a positive solution of problem (Dr).



6 Existence of Positive Solutions EJDE–1995/10

Step 1. Abstract formulation of problem (A). Let C# denote the closed
subspace of C[0, R] defined by

C# = {u ∈ C[0, R] : u(R) = 0},

then C# is a Banach space for the norm ‖ ‖ := ‖ ‖∞.
By direct verification it can be seen that u is a solution to (A) if and only if

u is a fixed point of the operator T0 : C# → C# defined by

T0(u)(r) =

∫ R

r

φ−1
[ 1

sN−1

∫ s

0

ξN−1f(|u(ξ)|)dξ
]
ds. (16)

Define now the operator T : C# × R+ → C#, by

T (u, τ)(r) =

∫ R

r

φ−1
[ 1

sN−1

∫ s

0

ξN−1(f(|u(ξ)|) + τ)dξ
]
ds (17)

We have that T sends bounded sets of C# × R+ into bounded sets of C#

and that T (u, 0) = T0(u). We prove now the following.

Proposition 2.2 The operator T is completely continuous.

Proof. Let {(un, τn)} be a bounded sequence in C# × R+ , say

‖un‖∞ + τn ≤ C, for all n ∈ N, (18)

and set

vn = T (un, τn), n ∈ N.

We want to show that {vn} has a convergent subsequence. By (18) and (17),
vn ∈ C1[0, R], for all n ∈ N and satisfies

|φ(v′n(r))| =
1

rN−1

∫ r

0

ξN−1(f(|un(ξ)|) + τn)dξ

≤
C̃R

N
,

where C̃ is a positive constant. Thus the sequence {v′n} is bounded and since
the sequence {vn} is bounded also, the existence of a convergent subsequence
follows from the Ascoli Arzèla’s Theorem.

To show now that T is continuous, let {(un, τn)} be a sequence in C# ×R+

converging to (u, τ) ∈ C# × R+ and set

vn(r) =

∫ R

r

hn(s)ds n ∈ N,
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where

hn(s) = φ−1
[ 1

sN−1

∫ s

0

ξN−1(f(|un(ξ)|) + τn)dξ
]
.

Clearly we have that hn(s)→ h(s) for each s ∈ [0, R], where

h(s) := φ−1
[ 1

sN−1

∫ s

0

ξN−1(f(|u(ξ)|) + τ)dξ
]
.

Thus, since {hn} is bounded, it follows from Lebesgue’s dominated convergence
theorem that

‖hn − h‖L1(0,R) → 0 as n→∞.

If

v(r) :=

∫ R

r

h(s)ds,

then

‖vn − v‖ ≤ ‖hn − h‖L1(0,R)

and hence

T (un, τn) = vn → v = T (u, τ) as n→∞.

This concludes the proof of proposition 2.2. 2

Step 2. A-priori bounds. We will show here that solutions (u, τ) ∈ C#×R+

of the equation

u = T (u, τ) (19)

are a priori bounded. This will be done by using blow-up techniques.
We first prove the following.

Proposition 2.3 Suppose that there exists a sequence {(un, τn)} of solutions
of (19) such that

‖un‖+ τn →∞ as n→∞, (20)

then

(i) ‖un‖ → ∞ as n→∞; and

(ii)
τn

f(‖un‖)
→ 0.
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Proof. We have that for each n ∈ N the pair (un, τn) satisfies

un(r) =

∫ R

r

φ−1
[ 1

sN−1

∫ s

0

ξN−1(f(|un|) + τn)dξ
]
ds

and thus

||un|| = un(0) ≥

∫ R

R/2

φ−1(
sτn

N
) ds ≥

R

2
φ−1(

Rτn

2N
) (21)

from which (i) follows. To show (ii) we have that by (21) and large n,

R

2N

τn

f(‖un‖)
≤
φ( 2

R
‖un‖)

f(‖un‖)
=
φ( 2

R
‖un‖)

φ(‖un‖)

φ(‖un‖)

f(‖un‖)
. (22)

Thus by (1), and the fact that φ is (p-1)-AH, we obtain that

τn

f(‖un‖)
→ 0 as n→∞. 2

.
We will now prove that solutions to (19) are a-priori bounded.

Lemma 2.1 Suppose (u, τ) ∈ C# × R+ is a solution of (19), then there is a
constant C, independent of u and τ , such that

‖u‖+ τ ≤ C (23)

Proof. We argue by contradiction and thus we assume there is a sequence
{(un, τn)} in C# × R+ such that (un, τn) satisfies (19) and such that

‖un‖+ τn →∞ as n→∞.

In order to simplify the writing, we set tn := ||un|| and zn := z(tn) for each
n ∈ N, where the function z(·) is defined in (13). Let us consider the change of
variables 

y =
zn

tn
r

wn(y) =
un(r)

tn
.

Then from (19), we find that wn satisfies

−
d

dy
(yN−1φ(znẇn(y)))zn = tny

N−1(f(tnwn(y)) + τn) (24)

wn(0) = 1, ẇn(0) = 0, wn(R
zn

tn
) = 0, (25)
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where here and henceforth ˙( ) :=
d

dy
( ). We note that

zn

tn
= g(tn), with g as

defined in (14), and thus from propositions 2.1 and 2.3,
zn

tn
→ +∞ as n→∞.

Let M0 > 0 be a constant. In the next argument we will suppose that
Rg(tn) > M0, for all n, by passing to a subsequence if necessary.

Dividing both sides of (24) by yN−1, we may re-write it as

d

dy
[φ(znẇn(y))]zn + (f(tnwn(y)) + τn)tn = −

N − 1

y
φ(znẇn(y))zn,

and on multiplying both sides of this equation by ẇn we obtain that

d

dy
[H(znẇn(y)) + F (tnwn(y)) + τntnwn(y)] ≤ 0. (26)

Hence, by integrating (26) on (0, y), we find that

H(znẇn(y)) + F (tnwn(y)) + τntnwn(y) ≤ F (tn) + τntn,

and thus

H(znẇn(y)) ≤ F (tn)
[
1 +

τntn

F (tn)

]
= H(zn)

[
1 +

τn

f(tn)

tnf(tn)

F (tn)

]
.

But
τn

f(tn)
→ 0 and

tnf(tn)

F (tn)
→ δ + 1 as n → ∞, hence there exists a constant

C > 0 such that
H(znẇn(y)) ≤ CH(zn).

This implies that

|ẇn(y)| ≤
H−1(CH(zn))

H−1(H(zn))
, (27)

and since from (8) and Proposition 4.1 in the Appendix

H−1(Cs)

H−1(s)
→ C

1
p as s→ +∞,

there exists a constant C1 > 0 such that

|ẇn(y)| ≤ C1 for all n ∈ N and all y ∈ [0,M0].

Thus the sequence {wn} is equicontinuous. Since it is also uniformly bounded,
an application of Ascoli Arzèla’s theorem yields that {wn} contains a convergent
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subsequence, which we denote again by {wn}, say wn → w in C[0,M0] as
n→∞. Integrating (24) on [0, y] ⊂ [0,M0], we find that

−φ(znẇn(y)) =
tnf(tn)

zn
hn(y) (28)

where

hn(y) =
1

yN−1

∫ y

0

sN−1
(f(tnwn(s))

f(tn)
+

τn

f(tn)

)
ds. (29)

We show now that {hn(y)} is a convergent sequence for each y ∈ [0,M0] by an
application of Lebesgue’s dominated convergence theorem.

Using that f is ultimately increasing, say for x ≥ x1 > 0, we have that there
is a x0 > 0 such that

f(σx)

f(x)
≤ 1 (30)

for all x ≥ x0 and for all σ ∈ [0, 1]. Indeed there is a unique x0 ≥ x1 such that

f(x0) = max
s∈[0,x1]

f(s) := M.

Let σ ∈ (0, 1) and consider the term
f(σx)

f(x)
for x ≥ x0. If σx ≥ x0, then

f(σx) ≤ f(x) and thus (30) holds. If now σx < x0, then

f(σx) ≤M = f(x0) ≤ f(x)

and again (30) holds.
Thus from (30) we have that

f(tnwn(s))

f(tn)
≤ 1 (31)

for all s ∈ [0,M0] and large n. In particular this implies that {hn(y)} is a
bounded sequence. We will show next that for each s0 ∈ [0,M0]

lim
n→∞

f(tnwn(s0))

f(tn)
= (w(s0))

δ. (32)

We know that wn(s0) → w(s0) as n → ∞. If w(s0) > 0, then for large n,
tnw(s0) > x0 and (32) follows from the fact that f is ultimately increasing and
(ii). If w(s0) = 0, we have to distinguish the two cases corresponding to the
sequence {tnwn(s0)} being bounded or not. We only show that

lim
n→∞

f(tnwn(s0))

f(tn)
= 0 (33)
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for the latter situation. We argue by contradiction and thus we suppose that

lim sup
n→∞

f(tnwn(s0))

f(tn)
= µ0 > 0.

Note that by (31), µ0 ≤ 1. We have that there is subsequence {nk} of positive
integers such that

lim
k→∞

f(tnkwnk(s0))

f(tnk)
= µ0

with {tnkwnk(s0)} an unbounded sequence. Thus, passing to a subsequence if
necessary, we can suppose that tnkwnk(s0) > x0.

Now, since wnk(s0)→ 0, given ε > 0 there is a k0 := k0(ε, µ0) such that

tnkwnk(s0) ≤ εtnkµ0, for all k > k0,

then

f(tnkwnk(s0))

f(tnk)
≤
f(tnkεµ0)

f(tnk)
. (34)

But

lim
k→∞

f(tnkεµ0)

f(tnk)
= (εµ0)

δ ≤ εδ,

since f is δ−AH, thus letting k →∞ in (34) we find that

µ0 ≤ ε
δ,

which is a contradiction, and then (33) holds.
Applying Lebesgue’s dominated convergence theorem to the right hand side

of (29) we conclude that {hn(y)} converges to

h(y) =
1

yN−1

∫ y

0

sN−1wδ(s)ds,

for each y ∈ [0,M0].
Solving for ẇn(y) in (28) we find

−ẇn(y) =
φ−1(αn(y)φ(zn))

φ−1(φ(zn))
for y ∈ (0,M0] (35)

where

αn(y) =
tnf(tn)

znφ(zn)
hn(y) =

tnf(tn)

F (tn)
·
H(zn)

znφ(zn)
hn(y).
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From (6) and (9) it follows that

tnf(tn)

F (tn)
·
H(zn)

znφ(zn)
→ (δ + 1)

(
1−

1

p

)
=: β as n→∞,

Thus for each y ∈ [0,M0]

lim
n→∞

αn(y) = βh(y). (36)

Integrating (35) from 0 to y ∈ (0,M0], we obtain

1− wn(y) =

∫ y

0

φ−1(αn(s)φ(zn))

φ−1(φ(zn))
ds, (37)

and by using (36), Proposition 4.1, and Lebesgue’s dominated convergence the-
orem, and by letting n→∞ in (37), we find that

1− w(y) =

∫ y

0

βp
∗−1(h(s))p

∗−1ds. (38)

Then, differentiating (38) we obtain

−w′(y) = βp
∗−1(h(y))p

∗−1,

which yields

−φp(w
′(y)) =

β

yN−1

∫ y

0

sN−1wδ(s)ds.

Thus w is a nonnegative nontrivial solution in [0,M0] to the initial value problem

−[yN−1φp(w
′(y))]′ = βyN−1wδ(y) (39)

w′(0) = 0, w(0) = 1. (40)

By using next a diagonal iterative scheme, see for example the last part of the
proof of [CMM, Proposition 4.1], w can be extended to all R+, as a nonnegative
solution of (39)-(40). Furthermore, and arguing like in [CMM], it can be shown
that w is indeed a positive solution of class C2(0,+∞) of (39)-(40). Since

δ <
N(p− 1) + p

N − p
, this is a contradiction in the case that δ > p− 1, see [NS] or

[CMM]. In case that δ = p− 1, it is well known (see for example [DM, Lemma
5.3]), that every solution of (39)-(40) with β > 0 is oscillatory in (0,+∞) and
hence the contradiction. Thus, lemma 2.1 is proved. 2
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Step 3. Proof of Theorem 2.1. From Lemma 2.1, if (u, τ) is a solution of
(19), i.e.,

u = T (u, τ)

then ‖u‖ ≤ C and 0 ≤ τ ≤ C, where C is a positive constant. Thus if B(0, R1)
denotes the ball centered at 0 in C# with radius R1 > C, we have that

u 6= T (u, τ)

for any (u, τ) ∈ ∂B(0, R1) × [0, R1]. Hence if I denotes the identity in C# we
have that the Leray-Schauder degree of the operator

I − T (·, τ) : B(0, R)→ C#

is well defined for every τ ∈ [0, R1]. Then, by the properties of the Leray-
Schauder degree, we have that

degLS(I − T (·, τ), B(0, R1), 0) = degLS(I − T (·, R1), B(0, R1), 0)

= 0, (41)

since (19) does not have solutions on B(0, R1))×{R1}. Thus from (41) and the
fact that T (u, 0) = T0(u)

degLS(I − T0, B(0, R1), 0) = 0. (42)

Next, let us define the operator S : [0, 1]× C# → C#,

S(λ, u) =

∫ R

r

φ−1[
λ

sN−1

∫ s

0

ξN−1f(|u(ξ)|)dξ]ds. (43)

Then as in step 1, it can be proved that S is a completely continuous operator.
We note that S(1, ·) = T0.

Claim. There exist an ε > 0 such that the equation

u = S(λ, u) (44)

has no solution (u, λ) with u ∈ ∂B(0, ε) and λ ∈ [0, 1].

Proof of the claim. We argue by contradiction and thus we assume that there
are sequences {un} and {λn} with ‖un‖ = εn → 0 as n → ∞ and λn ∈ [0, 1]
such that (un, λn) satisfies (44) for each n ∈ N. We have that (un, λn) satisfies

un(r) =

∫ R

r

φ−1
[ λn

sN−1

∫ s

0

ξN−1f(|un(ξ)|)dξ
]
ds
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which, by the first in (iii), implies that for n large

εn ≤ φ
−1
(
φ(εn)

µR

N

)
R,

where µ is a positive arbitrarily small number. Thus

φ
(εn
R

)
≤
µR

N
φ(εn). (45)

If R ≤ 1, we immediately reach a contradiction. If now R > 1, let us set
σ = 1/R, then

φ
(
σεn

)
φ
(
εn

) ≤ µR

N
,

and we reach a contradiction by the second of (iii) and the fact that µ is arbitrary.
Thus the claim holds.

It follows from this claim and the properties of the Leray Schauder degree
that for ε > 0 small,

dLS(I − S(λ, ·), B(0, ε), 0) = constant for all λ ∈ [0, 1].

Thus

dLS(I − T0, B(0, ε), 0) = dLS(I,B(0, ε), 0) = 1,

and then by (42) and (44) and the excision property of the Leray-Schauder
degree we obtain that there must be a solution of the equation

u = T0(u)

in B(0, R1) \B(0, ε). This concludes the proof of the theorem. 2

3 Examples.

In this section we wish to show by mean of simple examples the applicability of
our main theorem.

Example 3.1. Let φ be defined by

φ(s) =
n∑
i=1

αiφpi(s)

where for simplicity we assume αi > 0 for i = 1, n. Also pi+1 > pi > 1, for
i = 1, ..., n− 1.
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In a similar form let f be defined by

f(s) =
m∑
j=1

βj|s|
δj−1s,

where again for simplicity we assume βj > 0 for j = 1, . . . ,m, with δj+1 > δj >
1, for j = 1, ...,m− 1.

Then it is clear that

lim
s→+∞

φ(σs)

φ(s)
= σpn−1 and lim

s→0

φ(σs)

φ(s)
= σp1−1 for all σ ∈ R+,

and that

lim
s→+∞

f(σs)

f(s)
= σδm , for all σ ∈ R+.

It can also be verified that if δ1 > p1 − 1, then

lim
s→0

φ(s)

f(s)
= +∞.

Thus, if N > pn, and

pn − 1 < δm <
N(pn − 1) + pn

N − pn

all the conditions of Theorem 2.1 are satisfied and hence for φ and f as defined
above, problem (Dr) has a positive solution, and therefore the problem−div(

n∑
i=1

αi|Du|pi−2Du) =
m∑
j=1

βj |u|δj−1u in Ω

u = 0 on ∂Ω

has a positive radial solution of class C1.

In the first example the operator φ and the nonlinearity f, are asymptotic
to powers at +∞, in the sense that, f(s) or φ(s) divided by a suitable power of
s tends to a constant as s → +∞, as it can be directly checked. We will give
next an example where both φ and f are not asymptotic to a power.

Example 3.2. Let us define the increasing homeomorphism ψ of R and the
function g by

ψ(s) = φq(s) log(1 + |s|) and g(s) = |s|µ−1 log(1 + |s|)s,

with q > 1 and µ > 0. Then it can be checked that

lim
s→+∞

ψ(σs)

ψ(s)
= σq−1 and lim

s→0

ψ(σs)

ψ(s)
= σq for all σ ∈ R+,
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lim
s→+∞

g(σs)

g(s)
= σµ for all σ ∈ R+,

where neither ψ nor g are asymptotic to a power at +∞. Also, it can be directly
checked that if µ > q − 1, then

lim
s→+∞

g(s)

φ(s)
= +∞ and lim

s→0

φ(s)

g(s)
= +∞.

Thus, if N > q, and

q − 1 < µ <
N(q − 1) + q

N − q
,

we have that all the conditions of Theorem 2.1 are satisfied with ψ and g in
the place of φ and f and hence (Dr) has a positive solution, and therefore the
problem{

−div(|Du|q−2 log(1 + |Du|)Du) = |u|µ−1 log(1 + |u|)u in Ω

u = 0 on ∂Ω

has a positive radial solution of class C1.
It follows from Proposition 4.1 (ii) in the Appendix that the composition of

two asymptotically homogeneous operators is also asymptotically homogeneous.
We use this fact to obtain a third example as a combination of the previous two.

Example 3.3. Define the functions θ and h as follows

θ(s) = (φ ◦ ψ)(s) and h = f ◦ g

where φ, f are as in example 3.1 and ψ, g as in example 3.2, then in particular
θ is an odd increasing homeomorphism of R.

By Proposition 4.1 (ii), we have immediately that θ is (r − 1)-AH and h is
ρ-AH, with

r = (pn − 1)(q − 1) + 1 and ρ = δmµ.

It can be directly verified that

lim
s→+0

θ(σs)

θ(s)
= σ(q−1)(p1−1) for all σ ∈ R+,

and if
µδ1 − (q − 1)(p1 − 1) ≥ 0 and δ1 ≥ (p1 − 1)

with at least one of the inequalities strict, then

lim
s→0

θ(s)

h(s)
= +∞.
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Finally, if

(q − 1)(pn − 1) < δmµ <
N(q − 1)(pn − 1) + (q − 1)(pn − 1) + 1

N − (q − 1)(pn − 1)− 1
,

with δm ≥ (pn − 1), we have that all the conditions of Theorem 2.1 are fulfilled
with θ and h in the place of φ and f in that theorem. Hence (Dr) has a positive
solution and therefore the problem

−div(
n∑
i=1

αi|Du|(pi−1)(q−1)−1(log(1 + |Du|)pi−1
Du)

=
m∑
j=1

βj |u|µδj−1(log(1 + |u|)δju in Ω

u = 0 on ∂Ω

has a positive radial solution of class C1.

Remark. For simplicity the right hand side functions in the above exam-
ples have been chosen as increasing odd homeomorphisms of R. It is nevertheless
clear how to modify these functions so that they satisfy the asymptotic condi-
tions required by Theorem 2.1.

4 Appendix

Here, and for the sake of completeness, we briefly state and prove some of the
properties of AH functions we have used. For other properties of AH functions
we have used, we refer to [R] or [S].

Our first proposition shows that if φ is AH then so is φ−1, and that the
composition of AH functions is also AH.

Proposition 4.1 (i) Suppose that φ is an increasing odd homeomorphism of R
that is (p-1)-AH, then

lim
x→+∞

φ−1(σx)

φ−1(x)
= φp∗(σ) for all σ ∈ R. (46)

(ii) Suppose χ, ψ : R+ → R+ are (p-1)-AH and (q-1)-AH respectively, with
χ ultimately increasing, and χ(s), ψ(s) → +∞ as s → +∞. Then χ ◦ ψ is
(r-1)-AH, with r = (p− 1)(q − 1) + 1.

Proof . (i) It suffices to prove the result for σ ∈ (0, 1). Hence, let σ ∈ (0, 1)
be a fixed number and {xn} a sequence such that xn → +∞ as n → ∞. The

sequence {
φ−1(σxn)

φ−1(xn)
} is a bounded sequence and thus it contains a convergent
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subsequence, that we called the same, say

lim
n→∞

φ−1(σxn)

φ−1(xn)
= L ∈ [0, 1].

Then, given ε > 0, we can find an n0 ∈ N such that

L− ε <
φ−1(σxn)

φ−1(xn)
< L+ ε for all n ≥ n0.

Setting tn = φ−1(xn), n ∈ N, and using that φ is increasing, we find that

φp(L− ε) ≤ σ ≤ φp(L+ ε)

from where (i) follows.
To show (ii), let σ ∈ (0, 1) and ε > 0 be given. Then, there is s0 = s0(σ)

such that

−ε+ φq(σ) <
ψ(σs)

ψ(s)
< ε+ φq(σ), (47)

for all s > s0 where we take ε < φq(σ). Since χ is ultimately increasing, we
have from (47) that

χ((φq(σ) − ε)ψ(s))

χ(ψ(s))
≤
χ(ψ(σs))

χ(ψ(s))
≤
χ((φq(σ) + ε)ψ(s))

χ(ψ(s))
(48)

for large s. Thus, letting s go to +∞ in (48) we find that

φp(φq(σ)− ε) ≤ lim inf
s→+∞

χ(ψ(σs))

χ(ψ(s))

≤ lim sup
s→+∞

χ(ψ(σs))

χ(ψ(s))
≤ φp(φq(σ) + ε).

Then (ii) follows, since 0 < ε < φq(σ) is arbitrary. 2
The final part of this section is dedicated to the following natural question,

which is interesting in its own. What happens if instead of (2) we assume that

(He) lim
s→+∞

φ(σs)

φ(s)
= e(σ) for each σ ∈ R+,

where e is not supposed a-priori to be a positive power. If (He) is assumed, and

since
φ(σs)

φ(s)
is an increasing function of σ, then e is nondecreasing and hence

locally integrable. We will show in our next proposition that a simple condition
on the average of e in [0, 1] implies that e is a positive power. Let us set

e =

∫ 1

0

e(σ) dσ,

then we have
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Proposition 4.2 Suppose that ψ : R+ → R+ is a continuous function such
that ψ(s) > 0 for s > 0 with ψ(s)→ +∞ as s→ +∞, and satisfying (He) with
ψ in the place of φ. Then

e ∈ (0, 1) if and only if e(σ) = σp−1 for all σ ∈ R+, (49)

where p > 1. In this case e =
1

p
.

Proof. We only have to show that e ∈ (0, 1) implies that e(σ) = σp−1. We
will first prove the proposition in the case that ψ is increasing. Let σ ∈ (0, 1].
Then for x > 0,

Ψ(σx)

xψ(x)
=

∫ σx

0

ψ(τ)dτ

xψ(x)
, (50)

where Ψ(x) :=
∫ x

0
ψ(τ)dτ. Making the change of variables τ = xs in the integral

of (50), we find that

Ψ(σx)

xψ(x)
=

∫ σ

0

ψ(xs)

ψ(x)
ds. (51)

Since
ψ(xs)

ψ(x)
≤ 1, for each s ∈ [0, 1], from Lebesgue’s dominated convergence

theorem it follows that

lim
x→+∞

Ψ(σx)

xψ(x)
=

∫ σ

0

e(s)ds := E(σ). (52)

In particular, for σ = 1,

lim
x→+∞

Ψ(x)

xψ(x)
= E(1) = ē. (53)

On the other hand, since Ψ is of class C1, by L’Hôpital’s rule it follows that

lim
x→+∞

Ψ(σx)

Ψ(x)
= σ e(σ). (54)

Letting x→ +∞ in

Ψ(σx)

xψ(x)
=

Ψ(σx)

Ψ(x)

Ψ(x)

xψ(x)
, (55)

and using (52), (53), (54), it follows that

E(σ) = ēσe(σ),
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thus

e(σ) =
E(σ)

ēσ
,

and hence e is continuous in (0, 1]. Then E satisfies the differential equation

E′(σ)

E(σ)
=

1

ēσ
. (56)

Now, ē = E(1) ∈ (0, 1), and the fact that E is nondecreasing in [0, 1] imply the
existence of a σ∗ ∈ [0, 1] such that

σ∗ = inf{σ ∈ (0, 1] | E(σ) > 0}.

Integrating (56) on [σ, 1], with σ ∈ [σ∗, 1], we find that

E(σ) =
1

p
σp, (57)

with p =
1

ē
. Clearly then, σ∗ must be zero and (57) holds for all σ ∈ [0, 1]. Thus

e(σ) = E′(σ) = σp−1,

for all σ ∈ [0, 1], and p =
1

ē
> 1.

That e(σ) = σp−1 holds for all σ ∈ (1,+∞) follows by setting µ = 1/σ in
(He).

We prove now the result for the general case. To this end we consider
Ψ : R+ → R+ defined by Ψ(s) =

∫ s
0 ψ(τ)dτ. By (He) and an application of

L’Hôpital’s rule we have that

lim
s→+∞

Ψ(σs)

Ψ(s)
= σe(σ) := E(σ) for all σ ∈ R+.

Let now E :=
∫ 1

0 σe(σ) dσ, then e ∈ (0, 1) implies that E ∈ (0, 1). Thus by

the previous argument, E(σ) = σq−1 with q =
1

E
> 1. It follows that

e(σ) =
E(σ)

σ
= σq−2, for all σ ∈ R+.

Using then that

E = e−

∫ 1

0

(

∫ t

0

e(σ) dσ )dt

we find that q = p+1 for some p > 1. This concludes the proof of the proposition.
2
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