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Existence of Positive Solutions for some Dirichlet
Problems with an Asymptotically Homogeneous
Operator *

Marta Garcia-Huidobro, Raul Mandasevich & Pedro Ubilla

Abstract
Existence of positive radially symmetric solutions to a Dirichlet prob-
lem of the form
—div(A(|Du|)Du) = f(u) in Q
u=0 on O0f)
is studied by using blow-up techniques. It is proven here that by choosing
the functions sA(s) and f(s) among a certain class called asymptotically

homogeneous, the blow-up method still provides the a-priori bounds for
positive solutions. Existence is proved then by using degree theory.

1 Introduction

In this paper we consider the existence of positive radially symmetric solutions
for the problem

—div(A(|Du|)Du) = f(u) in Q
o |

u=~0 on 0N

where Q = B(0,R), R > 0, is the ball of radius R in RY and the function
f: R — R is continuous. For some functions A : R — R, the radial solutions of
(D) satisty the nonlinear boundary value problem

—(rN o)) =N f(u) in (0, R)
(Dr)
u'(0) =0 =u(R)
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where r = |z|, £ € RN and ¢ : R — R is an odd increasing homeomorphism of
R, that is, an odd increasing homeomorphism from R onto R, given by ¢(s) =
sA(s). In (D), ' denotes derivative with respect to r.
In the rest of the paper we will deal with problem (D,) in the “superlinear”
case, that is, when
lim ) = +o00. (1)
s——+o00 (b(s)
and ¢, f belong to a class of functions to be described later.

By a solution to this problem we will understand a function v € C*[0, R]
with ¢(u’) € C1[0, R] and such that (D,.) is satisfied.

It is well known that for the homogeneous case, that is when ¢(s) = |s[P~2s,
p > 1, the use of blow up techniques allows to transform the question of a-
priori bounds for positive solutions to some superlinear problems into a problem
of non-existence of positive solutions in R for a certain limiting equation.
This limiting equation having the same left hand side nonlinear operator as the
original equation, due to the homogeneity. See [GS] for the case of a scalar
equation and p = 2, and [CMM] for the case of a system of p, g-Laplacians. See
also [PvV] for related results.

The natural question of whether this method can be extended to cover the
radial situation posed by problem (D,), when the function ¢ is no longer ho-
mogeneous arises.

We give here a positive answer to this question by restricting the functions
¢, f to a special class. This, being strongly motivated by some previous works
done for the one dimensional case, see [GMZ1], [GMZ2], [GMZ3], and [U].

We now describe the class of functions ¢, f we will consider in order to
formulate our model problem. Throughout this paper we will assume that ¢ is
an odd homeomorphism of R satisfying

. QS(O—S) _ p—1
|sl\ll>noo o) o forall o€ R4 (2)

for some p > 1 and f satisfies

flos) _ s
Jm S T o forall oeRy (3)

for some ¢ > 0, where R, := [0, +00).

Conditions of this type, even without the monotonicity assumption on ¢,
have been very much used in Applied Probability in a different context than the
one we will do here, see for instance [R], [S] and the references therein. Indeed
from [R] or [S] we have the following general definition. Let h: Ry — R, be a
measurable function that satisfies

o h(os)
s—+o00 h(S)

= o1 forall o €R;. (4)
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We will say then that h is asymptotically homogeneous with index q, for short
AH or ¢-AH. We point out that in [R], [S], functions h satisfying (4) are called
reqularly varying of index q, nevertheless from our point of view it will be more
illustrative to call them asymptotically homogeneous.

In this sense if the function ¢(s) = sA(s) in (D,) is AH of index p — 1, we
will say that the corresponding operator in (D,) or (D) is an asymptotically
homogeneous operator.

Thus, with this notation, we will require that ¢ be a (p — 1)-AH odd home-
omorphism of R for some p > 1 and that the continuous function f be 6-AH for
some 9 > 0.

Condition (1) implies that § > p — 1, see Section 2. We observe that the
case 6 = p — 1 is indeed allowed as the following example shows:

El
Vits2’

For later use we define the following functions

#(s) = | “o(r)ar | b= [ T (r)ar. (5)

#(s) = |s|"~%s f(s) = [sP~?slog(1 + |s]).

and following [FP] or [PS] we define the Legendre transform of ® by
H{(s) = sp(s) — B(s). (6)

Also we will set

dp(s) =|s/" s forall seR and p>1,

and p* = P
p—1
We end this section by establishing the organization of this paper. In Sec-
tion 2 we establish and prove our main result for existence of positive solutions.
In Section 3 we show some examples that illustrate our results, and finally in the
Appendix, we prove some properties of the class of asymptotically homogeneous

functions that we use throughout this paper.

2 Existence of positive solutions.

In this section we will show that problem (D,.), that we recall next

—(rV o) =V f(u) in (0, R)
(Dr)
u’'(0) =0 = u(R),

has positive solutions assuming that the homeomorphism ¢ satisfies (2) and the
nonlinearity f satisfies (3), sf(s) > 0 for s > 0 and it is superlinear with respect

to ¢.



4 Existence of Positive Solutions EJDE-1995/10

Let ®,®, and H as in (5) and (6) respectively. We have that

H(s) = @.(¢(s)), (7)

and that H is an even function of s. Since ®, is p*-AH and ¢ is (p — 1)-AH, it
is easy to see, by using Proposition 4.1 in the Appendix that

. H(os)
sginoo H(S)

and hence H is p-AH.
Let F(s) = [, f(r)dr. We note that from Karamata’s theorem, see [R,

Theorem 0.6], by using (2) and (3) it follows that
D(s) 1 . F(s) 1

= — d = —
st o0 sp(s) p < sf(s) d+1

=oP forallo e Ry, (8)

9)
Now, from (9), given £ > 0 there exists so > 0 such that for all s > s

F/
6+1—5<S (5)

1 .
Fs) <d+1+e¢

Hence, solving this differential inequality we obtain
AsPe < f(s) < Ay8°Te for all s > 5. (10)
Similarly, it can be shown that
AzsPT178 < ¢p(s) < AgsPHTE for all s > s (11)
where A; := A;(¢) >0 i=1,...,4. Hence (10) and (11) yield that

f(S) < ésé—(p—l)-',-Zs (12)

B(s) ~ Az

and thus we see that (1) implies that § > p — 1.
Next, and for later purposes we consider the equation

H(z) = F(s). (13)

Since F is strictly increasing for s greater than some sy > 0, and F(s) —
+00 as s — +oo it is clear that for each s > sg, equation (13) will have a
unique solution which we denote by z(s). Define now g : (s, +00) — RT, where
R* := (0, +00) by

g(s) = ——. (14)
We have the following proposition.

Proposition 2.1 If (1) holds, then g(s) — +00 as s — +oo.
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Proof. We have that
F(s) = H(sg(s))
thus, if g(s,) < M for some sequence {s,}, s, — +0oo, then
F(sn) _ H(spM)
On the other hand,

< — MP as n— oo. (15)

and
D(s) _ D(s) B 1
0.(6(s))  sd(s) —D(s)  £E 1
hence, from (9),
lim d(s) _ 1

s=too Bu(p(s))  p-1
Thus, (15) contradicts (1) by L’Hépital’s rule.
Now we establish our main existence result.

Theorem 2.1 Suppose that ¢ is an increasing odd homeomorphism of R, f :
R — R is continuous , satisfies sf(s) > 0, and is ultimately increasing. Assume
also that ¢ and f satisfy the superlinear condition (1) and that there exist p,
with 1 < p < N, and § > 0 such that

(i) lim_ Z(E’SS)) =oP 1 forall oe€R,.

(i) lim_ f;fg) =0% forall oeR,.
(iii) }1_}1% % =+o00o and liItILiélf (Z(E;) >0, forevery oeRT,
(iv) 6 < N(Z}V_i_l;—Fp.

Then problem (D,) has a positive solution.

The proof of this theorem will be done in three steps. We note that finding
positive solutions of problem (D,.) is equivalent to finding nontrivial solutions
to the problem

o (Y =l in 0 R)
w'(0) =0=u(R)
Indeed, if u(r) is a nontrivial solution of (A), then «/(R) < 0 for all r € (0, R)
and since u(R) = 0 we find that u(r) > 0, for all » € (0, R). This shows that
u(r) is a positive solution of problem (D,.).
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Step 1. Abstract formulation of problem (A4). Let Cx denote the closed
subspace of C[0, R] defined by

Cy ={ueCl0,R] : u(R)=0},

then Cy is a Banach space for the norm || || := || ||co-
By direct verification it can be seen that w is a solution to (A) if and only if
u is a fixed point of the operator Tp : Cx — Cx defined by

mon = [ o7 [ [ € auie e s (16)

Define now the operator T': C4 x Ry — Cy, by

Tw.7)r) = [ o [ i) + e (17)

We have that T' sends bounded sets of C'x x R, into bounded sets of C»
and that T'(u,0) = To(u). We prove now the following.

Proposition 2.2 The operator T is completely continuous.

Proof. Let {(un,7,)} be a bounded sequence in Cx x R, | say
lunlloo +7n < C, forallm e N, (18)

and set
vp =T (un, ), neN.

We want to show that {v,} has a convergent subsequence. By (18) and (17),
vn, € C0, R], for all n € N and satisfies

B )] = — /OTiNl(f(lun(i)l)wLTn)df

T
e
— N b

where C' is a positive constant. Thus the sequence {v},} is bounded and since
the sequence {v,} is bounded also, the existence of a convergent subsequence
follows from the Ascoli Arzela’s Theorem.

To show now that T is continuous, let {(un,7,)} be a sequence in Cy x Ry
converging to (u,7) € Cx x Ry and set

R
Un (1) :/ hn(s)ds neN,
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where

(s) =67 [sr [ € un() + )]

Clearly we have that h,(s) — h(s) for each s € [0, R|, where

)= [ [ (@) + )],

Thus, since {h,} is bounded, it follows from Lebesgue’s dominated convergence
theorem that

|hn — hllL10,r) — 0 as n — oo.

If
R
v(r) := / h(s)ds,
then
[vn — vl < [[hn = hllL1(0,R)
and hence

T(up, ) =vp > v=T(u,7) asn— oo.

This concludes the proof of proposition 2.2. O

Step 2. A-priori bounds. We will show here that solutions (u,7) € Cx xR
of the equation

uw="T(u,T) (19)

are a priori bounded. This will be done by using blow-up techniques.
We first prove the following.

Proposition 2.3 Suppose that there exists a sequence {(un,Tn)} of solutions
of (19) such that

ltn|l + 7 — 00 as n — oo, (20)
then

(i) ||un|| = o0 as n — oco; and

Tn

W Tun)

—0
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Proof. We have that for each n € N the pair (uy, 7,,) satisfies

wi) = [ 67 [ [l 7] as

and thus
R
R Rr
- > 1Ty gs > (2T 21
loll = a0) 2 [ 671y ds 2 TG (21)
from which (i) follows. To show (ii) we have that by (21) and large n,
R 1o 0(lul) _ o3 lunl) olunl) )

2N f(lunl) = Fllual) — @(lunl) f(luall)’
Thus by (1), and the fact that ¢ is (p-1)-AH, we obtain that

Tn

F(llunll)

We will now prove that solutions to (19) are a-priori bounded.

—0asn—o0. 0O

Lemma 2.1 Suppose (u,7) € Cy X Ry is a solution of (19), then there is a
constant C, independent of u and 7, such that

lu| +7 < C (23)

Proof. We argue by contradiction and thus we assume there is a sequence
{(tn, )} in Cx x Ry such that (un,7,) satisfies (19) and such that

|tun|| + 7 — 00 as n — oo.

In order to simplify the writing, we set t,, := ||uy|| and z, := z(¢,) for each
n € N, where the function z(-) is defined in (13). Let us consider the change of
variables

_
y = t r
- un@")
wn(y> = t
Then from (19), we find that w,, satisfies
d _ ) _
_d_y(yN 1¢(znwn(y>>>zn = tnyN l(f(tnwn(y» +Tn) (24)
wn(0) = 1, 1, (0) = 0, wy(RZ2) =0, (25)

tn
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n

d
where here and henceforth () := d_y( ). We note that j—

n

= g(tn), with g as

n

defined in (14), and thus from propositions 2.1 and 2.3, j— — 400 as n — 0.

Let My > 0 be a constant. In the next argument we will suppose that
Rg(tn) > My, for all n, by passing to a subsequence if necessary.
Dividing both sides of (24) by yV~!, we may re-write it as

diy[d)(znwn(y))]zn + (f(thwn(y)) + 1)t = _¥¢(znwn(y))zm

and on multiplying both sides of this equation by ), we obtain that

d

& [H (2ntn(y)) + F(tnwn(y)) + mntnwn(y)] < 0. (26)

Hence, by integrating (26) on (0,y), we find that

H(ann(y)) + F(tnwn(y)) + Tntnwn(y) < F(tn) + Tntn,

and thus
Tntn
} <
Tn tnf(tn)
= H(z,)|1 .
e Firy P |
But — 0 and — d + 1 as n — o0, hence there exists a constant
f(tn) F(ta)

C > 0 such that

This implies that

. H=Y(CH(z,))
anto)] < L),

and since from (8) and Proposition 4.1 in the Appendix

H—l
H%ES) »CF as s— ~+o0,
there exists a constant C; > 0 such that

lwn(y)| <C1 forall neN andall yel0,M).

Thus the sequence {w, } is equicontinuous. Since it is also uniformly bounded,
an application of Ascoli Arzela’s theorem yields that {w,} contains a convergent
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subsequence, which we denote again by {w,}, say w, — w in C[0, My] as
n — oo. Integrating (24) on [0, y] C [0, My], we find that

~0(zntin(y) = 2L, ) (28)
where
_ 1 Y No1 [ f(tawn(s)) Tn
hati) = g [ (R ) 29)

We show now that {h,(y)} is a convergent sequence for each y € [0, My] by an
application of Lebesgue’s dominated convergence theorem.

Using that f is ultimately increasing, say for x > 1 > 0, we have that there
is a zg > 0 such that

<1 (30)

for all x > xy and for all o € [0, 1]. Indeed there is a unique x¢ > z; such that

flzo) = Jmax f(s) =M.

Let ¢ € (0,1) and consider the term % for x > xg. If ox > x9, then
f(ox) < f(x) and thus (30) holds. If now oz < xg, then

flox) < M = f(zo) < f()

and again (30) holds.
Thus from (30) we have that

f(tnwn(s))
) (81)

for all s € [0, Mp] and large n. In particular this implies that {h,(y)} is a
bounded sequence. We will show next that for each sg € [0, My]

lim J(tnwn(s0))

We know that wy(so) — w(so) as n — oo. If w(sg) > 0, then for large n,
thw(so) > zo and (32) follows from the fact that f is ultimately increasing and
(#3). If w(sp) = 0, we have to distinguish the two cases corresponding to the
sequence {t,wn(so)} being bounded or not. We only show that

lim f(tnwn(s0))

= (w(s0))’. (32)

=0 (33)
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for the latter situation. We argue by contradiction and thus we suppose that

Note that by (31), po < 1. We have that there is subsequence {n;} of positive
integers such that

lim f(tnk Wy, (30))

k—o0 f(tnk ) — Ho

with {t,, wn, (so)} an unbounded sequence. Thus, passing to a subsequence if
necessary, we can suppose that t,, wp, (so) > o.
Now, since wy, (sg) — 0, given € > 0 there is a kg := ko(e, po) such that

tny, Wny (S0) < €tn, o, forall k> ko,

then
f(tnk Wn,, (80>> f(tnk 6#0)
fm) = Jlm) (34
But
. f(tnkgﬂo) _ 4
Jm i) (ep0)” < &°,

since f is §—AH, thus letting k¥ — oo in (34) we find that
Ho § 567

which is a contradiction, and then (33) holds.
Applying Lebesgue’s dominated convergence theorem to the right hand side
of (29) we conclude that {h,(y)} converges to

1 Yoy
h(y) = ﬁ/o sV 1w‘5(s)ds,

for each y € [0, My].
Solving for iy, (y) in (28) we find

¢~ (o (y)p(2n))

—ip (y) = o 1(6(2) for y € (0, My] (35)
where
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From (6) and (9) it follows that

tnf(tn) ) H(zn)
F(tn)  2nd(2n)

—>(6+1)<1—%) =f asn— oo,

Thus for each y € [0, My

lim o (y) = Bh(y). (36)

n—0o0

Integrating (35) from 0 to y € (0, M|, we obtain

—w _ Y ¢~ an(s)o(zn)) s
L) = [ 7

and by using (36), Proposition 4.1, and Lebesgue’s dominated convergence the-
orem, and by letting n — oo in (37), we find that

1—w(y) = /Oy B (h(s)) s (38)

Then, differentiating (38) we obtain

*

—w'(y) = 7 (h(y)P T,
which yields

! /6 v N—-1_6
—¢p(w'(y)) = T s™ T w (s)ds.

Thus w is a nonnegative nontrivial solution in [0, Mj] to the initial value problem

~lyV T p(w' )] = By e’ (y) (39)
w'(0) =0, w(0)=1. (40)

By using next a diagonal iterative scheme, see for example the last part of the
proof of [CMM, Proposition 4.1], w can be extended to all R, as a nonnegative
solution of (39)-(40). Furthermore, and arguing like in [CMM], it can be shown
that w is indeed a positive solution of class C2(0,+00) of (39)-(40). Since
N-p
[CMM]. In case that § = p — 1, it is well known (see for example [DM, Lemma
5.3]), that every solution of (39)-(40) with 8 > 0 is oscillatory in (0,4o00) and
hence the contradiction. Thus, lemma 2.1 is proved. O

, this is a contradiction in the case that § > p — 1, see [NS] or
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Step 3. Proof of Theorem 2.1. From Lemma 2.1, if (u,7) is a solution of
(19), ie.,

uw="T(u,T)

then |lu]] < C and 0 < 7 < C, where C' is a positive constant. Thus if B(0, R;)
denotes the ball centered at 0 in Cx with radius Ry > C, we have that

u#T(u,T)

for any (u,7) € 9B(0,R1) x [0, R1]. Hence if I denotes the identity in Cy we
have that the Leray-Schauder degree of the operator

I-T(,7):B(0,R) = Cyg

is well defined for every 7 € [0, R;]. Then, by the properties of the Leray-
Schauder degree, we have that

deg; g(I —T(-,7), B(0,Ry),0) = deg.s(I—T(,Ry),B(0,Ry),0)
= 0, (41)

since (19) does not have solutions on B(0, R1)) x {R1}. Thus from (41) and the
fact that T'(u, 0) = To(u)

degLS(I—TQ,B(O,Rl),O) =0. (42)
Next, let us define the operator S : [0,1] x Cg — Cy,

R s
SO = [ o7l [ € ) delas. (43)

Then as in step 1, it can be proved that S is a completely continuous operator.
We note that S(1,-) = To.

Claim. There exist an € > 0 such that the equation

u=S(\u) (44)
has no solution (u, A) with v € 8B(0,¢) and A € [0,1].
Proof of the claim. We argue by contradiction and thus we assume that there

are sequences {u,} and {A,} with ||u,|| =&, — 0 as n — oo and A, € [0,1]
such that (un, \,) satisfies (44) for each n € N. We have that (u,, A,) satisfies

wi) = [ o7 [ [ e @i as
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which, by the first in (iii), implies that for n large

en <07 (olen) B2V R

where p is a positive arbitrarily small number. Thus

o(%2) < o). (45)

If R < 1, we immediately reach a contradiction. If now R > 1, let us set
o =1/R, then

#(0en) _ ur
<R

)

and we reach a contradiction by the second of (iii) and the fact that p is arbitrary.
Thus the claim holds.

It follows from this claim and the properties of the Leray Schauder degree
that for € > 0 small,

drs(I —S(A,-),B(0,¢),0) = constant for all X € [0,1].
Thus
drs(I — Ty, B(0,¢),0) = drs(I,B(0,¢),0) =1,

and then by (42) and (44) and the excision property of the Leray-Schauder
degree we obtain that there must be a solution of the equation

u = To(u)

in B(0,R;) \ B(0,¢). This concludes the proof of the theorem. O

3 Examples.

In this section we wish to show by mean of simple examples the applicability of
our main theorem.

Example 3.1. Let ¢ be defined by
B(s) = > cidy,(s)
i=1

where for simplicity we assume «; > 0 for ¢ = 1,n. Also p;y1 > p; > 1, for
1=1,...,n—1.
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In a similar form let f be defined by
fl&) =Y Bjlsl s,
j=1

where again for simplicity we assume 3; > 0 for j = 1,...,m, with §;41 > ¢; >
1,forj=1,...,m—1.
Then it is clear that

¢(US) _ (Tpn_l ¢(US) _ Upl—l

sBI—iI-loo (5) and 31_% o(5) for all o eRy,
and that
f(os) =%, forall oeRy.
s——+00 f(s)
It can also be verified that if §; > p; — 1, then
lim @ = +400
s—0 (S)

Thus, if N > p,, and

N(pn_l)“‘pn

1<, <

all the conditions of Theorem 2.1 are satisfied and hence for ¢ and f as defined
above, problem (D,) has a positive solution, and therefore the problem

n
—div(>_ a;|Du

i=1

m
Pim2Dy) = Y Bilul’~tu in Q
j=1

u=20 on 0f)
has a positive radial solution of class C*.

In the first example the operator ¢ and the nonlinearity f, are asymptotic
to powers at +00, in the sense that, f(s) or ¢(s) divided by a suitable power of
s tends to a constant as s — 400, as it can be directly checked. We will give
next an example where both ¢ and f are not asymptotic to a power.

Example 3.2. Let us define the increasing homeomorphism v of R and the
function g by

() = dq(s)log(1 +|s|) and g(s) = [s]* " log(1 + |s])s,
with ¢ > 1 and g > 0. Then it can be checked that
”lp(O'S) _ q—1 and ”lp(O'S) q

o) o)

for all o€ Ry,
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im 9los) =ct forall oeRy,
s—+o0 g(s)
where neither 1 nor g are asymptotic to a power at +o0o. Also, it can be directly

checked that if > ¢ — 1, then

im M:—i—oo and limM:—l—oo
A 5s) = g(s)
Thus, if N > ¢, and
N(g—1)+gq
-1
q <p< N—q

we have that all the conditions of Theorem 2.1 are satisfied with ¥ and g in
the place of ¢ and f and hence (D,) has a positive solution, and therefore the
problem

{ —div(|Du|?2?log(1 + |Du|)Du) = |u[*"1log(1l + |u|)u in Q

u=~0 on 0f)

has a positive radial solution of class C!.

It follows from Proposition 4.1 (4¢) in the Appendix that the composition of
two asymptotically homogeneous operators is also asymptotically homogeneous.
We use this fact to obtain a third example as a combination of the previous two.

Example 3.3. Define the functions € and h as follows

0(s) = (pot)(s) and h=fog

where ¢, f are as in example 3.1 and v, g as in example 3.2, then in particular
# is an odd increasing homeomorphism of R.
By Proposition 4.1 (i), we have immediately that 6 is (r — 1)-AH and h is
p-AH, with
r=(pn—1(g-1)+1 and p=dnpu.

It can be directly verified that

. 0(os)
TS

=gl VP forall oeRy,
and if
por —(@—1)(p1 —1) >0 and 61> (p1 —1)

with at least one of the inequalities strict, then

imwz 00
Son) T
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Finally, if

Ng=1pn -1 +(@-1pn—1)+1
N—-(g—Dp.—1)—-1 7
with &,, > (pn, — 1), we have that all the conditions of Theorem 2.1 are fulfilled

with 6 and h in the place of ¢ and f in that theorem. Hence (D,) has a positive
solution and therefore the problem

(= 1)(pn—1) < dmp <

—div(>] az|Du|®i=D@=D=1(1og(1 4 | Du|)"* "' Du)
i=1

=3 Bilul " (log(1 + [u)¥u in Q
j=1

u=0 on 0N

has a positive radial solution of class C*.

Remark. For simplicity the right hand side functions in the above exam-
ples have been chosen as increasing odd homeomorphisms of R. It is nevertheless
clear how to modify these functions so that they satisfy the asymptotic condi-
tions required by Theorem 2.1.

4 Appendix

Here, and for the sake of completeness, we briefly state and prove some of the
properties of AH functions we have used. For other properties of AH functions
we have used, we refer to [R] or [S].

Our first proposition shows that if ¢ is AH then so is ¢!, and that the
composition of AH functions is also AH.

Proposition 4.1 (i) Suppose that ¢ is an increasing odd homeomorphism of R
that is (p-1)-AH, then

I G0

mgl}}oo m = d)p* (0’) for all o cR. (46)

(i) Suppose x, ¥ : Ry — Ry are (p-1)-AH and (q-1)-AH respectively, with

X ultimately increasing, and x(s), ¥(s) = +oco as s — +oo. Then x o ¢ is
(r-1)-AH, withr = (p —1)(¢ — 1) + 1.

Proof . (i) It suffices to prove the result for o € (0,1). Hence, let o € (0,1)
be a fixed number and {x,} a sequence such that z,, — +0co as n — oo. The
¢ (oxy)
¢~ (zn)

sequence { } is a bounded sequence and thus it contains a convergent



18 Existence of Positive Solutions EJDE-1995/10

subsequence, that we called the same, say

-1
)
Then, given € > 0, we can find an ny € N such that
¢~ own)
¢~ (@)
Setting t, = ¢~ !(z,),n € N, and using that ¢ is increasing, we find that

¢p(L—¢) <o < gp(L+e)

=L e|0,1].

L—e< <L+e¢ for all n > ng.

from where (7) follows.

To show (i3), let o € (0,1) and € > 0 be given. Then, there is 5o = so(0)
such that
Y(os)
P(s)
for all s > so where we take ¢ < ¢4(0). Since x is ultimately increasing, we
have from (47) that

X((9q(0) —2)d(s)) _ x(¥(os)) _ x((¢q(0) +€)¥(s))
x(¥(s)) x(¥(s) ~ x(¥(s))

for large s. Thus, letting s go to +o0o in (48) we find that

—e+ ¢g(0) < < 5+¢q(0>a (47)

< (48)

. L X(W(os))
¢P(¢q(0) 6) é ls—>+oof XW(S))
< limsup x(¥los)) < @p(pq(o) +¢).

s—otoo X(¥(s))

Then (i) follows, since 0 < & < ¢4(0) is arbitrary. O
The final part of this section is dedicated to the following natural question,
which is interesting in its own. What happens if instead of (2) we assume that

. Plos) _
(He) SBIEOO o) e(c) foreach oe€Ry,

where e is not supposed a-priori to be a positive power. If (He) is assumed, and

$(os)
¢(s)

locally integrable. We will show in our next proposition that a simple condition
on the average of e in [0, 1] implies that e is a positive power. Let us set

€= /01 e(o) do,

since is an increasing function of o, then e is nondecreasing and hence

then we have
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Proposition 4.2 Suppose that ¥ : Ry — Ry is a continuous function such
that ¥(s) > 0 for s > 0 with ¥(s) = 400 as s = +00, and satisfying (He) with
1 in the place of ¢. Then

g€ (0,1) if and only if  e(o) =o' forall o€R,, (49)

1
where p > 1. In this case € = —.

Proof. We only have to show that € € (0,1) implies that e(o) = 0P~ 1. We
will first prove the proposition in the case that ¢ is increasing. Let o € (0, 1].
Then for x > 0,

U (o) B TC p(r)dr
(@)~ Jy @ (50)

where U(z) := fom ¥ (7)dr. Making the change of variables 7 = xs in the integral
of (50), we find that

V(ox)  [71(xs) <
i = )y S 1

P(zs)

Since < 1, for each s € [0,1], from Lebesgue’s dominated convergence

theorem it follows that

i \I/(gg;)_ Ues s:=F(o

In particular, for o =1,

(@)
)

=E(1)=e (53)
On the other hand, since ¥ is of class C!, by L’Hépital’s rule it follows that

:Egr-ir-loo U(x

=0 e(0). (54)

~—

Letting  — 400 in

V(ox) V(ox) ¥(x)
@) ~ W) o) (%)

and using (52), (53), (54), it follows that

E(o) = éoe(o),
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thus
E(o)
6(0) - eo )
and hence e is continuous in (0, 1]. Then F satisfies the differential equation
E'(0) 1
=, 56
E(o) éo (56)

Now, € = E(1) € (0,1), and the fact that E is nondecreasing in [0, 1] imply the
existence of a o, € [0, 1] such that

o, = inf{o € (0,1] | E(c) > 0}.

Integrating (56) on [0, 1], with o € [0+, 1], we find that

E(o) = %ap, (57)

1
with p = —. Clearly then, o, must be zero and (57) holds for all o € [0, 1]. Thus
e

1
forall o € [0,1], and p== > 1.
€
That e(o) = oP~! holds for all o € (1,+00) follows by setting u = 1/ in
(He).
We prove now the result for the general case. To this end we consider
¥ : Ry — Ry defined by ¥(s) = [ ¢(r)dr. By (He) and an application of
L’Hopital’s rule we have that

- U(os)
s—foo W(s)

=oce(o) = E(0) forall oeR,.

Let now E := fol oe(o) do, then € € (0,1) implies that E € (0,1). Thus by

1
the previous argument, E(c) = 097! with ¢ = o > 1. It follows that
E
e(o) = Blo) =092, forall ocRT.

Fzé—/ol(/ote(a)da)dt

we find that ¢ = p+1 for some p > 1. This concludes the proof of the proposition.
O

Using then that
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