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Abstract

Using the Leggett-Wiliams fixed point theorem, we show the existence of at least three
solutions to a system of first-order nonlinear functional differential equations. These
solutions have non-negative components which makes them suitable for hematopoiesis
models.
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1 Introduction

We prove the existence of at least three periodic solutions, with nonnegative components, to
the system of differential equations

u′(t) = A(t, u)u(t) + λf(t, ut)) . (1.1)

Here A is a diagonal n × n matrix whose entries depend on t and on the unknown function
u = (u1, u2, . . . , un)T . We assume that the diagonal entries ai(t, u) ∈ C(R,R) are periodic in
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t, with a common period T (T -periodic for short). The parameter λ is positive and assumed
to be known, or at least its range. The function f = (f1, f2, . . . , fn)T has each component
in C(R,R) and is T -periodic whenever u is T -periodic. Here ut denotes a functional that
depends on t and satisfies the conditions stated below. Typical examples of such functionals
are evaluations u(h(t)), and memory terms

∫ t

−∞ k(s)u(s) ds.
The above system includes the scalar differential equations

u′(t) = a(t)g(u)u(t) − λb(t)f(t, u(t− τ )),
u′(t) = ∓a(t)u(t) ± λf(t, u(t − τ ))

that have been studied by several authors [1, 2, 11, 14]. For A(t, u) = A(t) in (1.1), Jiang
et al [3] proved the existence and non-existence of a nonnegative periodic solution. Zhang et
al [14] used Krasnoselskii fixed point theorem to show the existence of two solutions for the
above equation. Padhi et al [8] obtained the existence of three nonnegative periodic solutions
to the scalar equation

u′(t) = −a(t)u(t) − λb(t)f
(
t, u(h(t))

)
. (1.2)

Motivated by these studies, we set up (1.1) to include all of the above equations, and show
the existence of three nonnegative periodic solutions.

2 Preliminaries

All functions in this article are assumed to be in the space of continuous functions, equipped
the supremum norm ‖u‖ = max1≤i≤n supt |ui(t)|. We shall use the following as general
assumptions throughout this paper.

(A1) There exist continuous T -periodic functions b, c such that 0 ≤ b(t) ≤ |ai(t, u)| ≤ c(t) for
1 ≤ i ≤ n and all T -periodic functions u. Furthermore,

∫ T

0
b(t) dt > 0.

(A2) fi(t, ut)
∫ T

0
ai(s, us) ds ≤ 0 for 1 ≤ i ≤ n and 0 ≤ t ≤ T .

(A3) f(t, ut) is a continuous function of u, when u is bounded and continuous; i.e., for each
ε > 0 there exists δ > 0 such that ‖φ− ψ‖ < δ implies ‖f(t, φt) − f(t, ψt)‖ < ε.

From the periodicity of the solution and the assumption that u is known in the non-linear
parts of (1.1), we can construct a Green’s kernel. In fact the solutions of (1.1) satisfy the
integral equation

u(t) = λ

∫ t+T

t

G(t, s)f(s, us) ds,

where G(t, s) is a diagonal matrix of entries

Gi(t, s) =
exp

( ∫ t

s
ai(θ, uθ) dθ

)

exp
(
−

∫ T

0
ai(θ, uθ) dθ

)
− 1

.

These entries are bounded as follows:

α :=
exp

(
−

∫ T

0 c(θ) dθ
)

exp
(
−

∫ T

0
b(θ) dθ

)
− 1

≤ |Gi(t, s)| ≤
exp

( ∫ T

0 c(θ) dθ
)

exp
(
−

∫ T

0
c(θ) dθ

)
− 1

=: β . (2.1)
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Note that G(t, s) is T -periodic in both variables and that Gi and
∫ T

0
ai have opposite signs.

Therefore, by (A2), fi and Gi have the same sign.
The following concept will be used in the statement of the Leggett-Williams fixed point

theorem. Let E be a Banach space and K be a cone in E. A mapping ψ is said to be a
concave nonnegative continuous functional on K if ψ : K → [0,∞) is continuous and

ψ(µx + (1 − µ)y) ≥ µψ(x) + (1 − µ)ψ(y), x, y ∈ K, µ ∈ [0, 1].

Let c1, c2, c3 be positive constants. With K and E as defined above, we define

Kc1 = {y ∈ K : ‖y‖ < c1}, K(ψ, c2, c3) = {y ∈ K : c2 ≤ ψ(y), ‖y‖ < c3}.

Theorem 2.1 (Leggett-Williams fixed point theorem [5]). Let (E, ‖ · ‖) be a Ba-
nach space and K ⊂ E a cone, and c4 a positive constant. Suppose there exists a con-
cave nonnegative continuous functional ψ on K with ψ(u) ≤ ‖u‖ for u ∈ K̄c4 and let
A : K̄c4 → K̄c4 be a completely continuous mapping. Assume that there are numbers
c1, c2, c3, c4 with 0 < c1 < c2 < c3 ≤ c4 such that

(i) {u ∈ K(ψ, c2, c3) : ψ(u) > c2} 6= φ, and ψ(Au) > c2 for all u ∈ K(ψ, c2, c3);

(ii) ‖Au‖ < c1 for all u ∈ K̄c1 ;

(iii) ψ(Au) > c2 for all u ∈ K(ψ, c2, c4) with ‖Au‖ > c3.

Then A has at least three fixed points u1, u2, u3 in K̄c4 . Furthermore, ‖u1‖ ≤ c1 < ‖u2‖, and
ψ(u2) < c2 < ψ(u3).

In this article, let E be the set of continuous T -periodic functions, which forms a Banach
space under the norm ‖u‖ = max1≤i≤n sup0≤t≤T |ui(t)|. Then we define the operator A on E
by

(Au)(t) = λ

∫ t+T

t

G(t, s)f(s, us) ds.

Recall that by (A2), the functions Gi and fi have the same sign so that Aui is non-negative.
Furthermore,

(Aui)(t) = λ

∫ t+T

t

|Gi(t, s)||fi(s, us)| ds ≤ λβ

∫ T

0

|fi(s, us)| ds .

Taking the supremum on t,

‖(Aui)(t)‖ ≤ λβ

∫ T

0

|fi(s, us)| ds .

Also we have

(Aui)(t) ≥ λα

∫ T

0

|fi(s, us)| ds .

Combining the two inequalities above,

(Aui)(t) ≥
α

β
‖(Aui)(t)‖. (2.2)
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Motivated by this inequality, we define the cone K in E as

K = {u ∈ E : ui(t) ≥
α

β
‖ui‖, for t ∈ [0, T ] and 1 ≤ i ≤ n} ,

so that A(K) ⊂ K. From assumptions (A1)–(A3), it is also clear that A is a completely
continuous operator on K; see [4, Lemma 2.3]. Furthermore the existence of solutions of
(1.1), with nonnegative components, is equivalent to the existence of fixed points for A in K.
On the cone K, we define concave functional

ψ(u) = min
1≤i≤n

inf
0≤t≤T

ui(t) .

3 Main results

To prove our main result, we state the following conditions in terms of the bounds α and β
defined by (2.1).

(H1) There exists a positive constant c1 such that

λβ

∫ T

0

|fi(t, ut)|dt < c1 for 1 ≤ i ≤ n and u ∈ K with ‖u‖ ≤ c1 . (3.1)

(H2) There exists a positive constant c2 > c1 such that

c2 < λα

∫ T

0

|fi(t, ut)|dt for 1 ≤ i ≤ n and u ∈ K with c2 ≤ ‖u‖ ≤ βc2/α . (3.2)

(H3) There exists a constant c4 ≥ βc2/α =: c3 such that

λβ

∫ T

0

|fi(t, ut)|dt ≤ c4 for 1 ≤ i ≤ n and u ∈ K with ‖u‖ ≤ c4 . (3.3)

Theorem 3.1. Assuming (H1)–(H3), the conditions for the Leggett-Williams theorem are
satisfied and therefore (1.1) has at least three nonnegative periodic solutions.

Proof. First we show that A maps K̄c4 into K̄c4 . For u in K̄c4 , using (2.1) and (3.3), we have

‖Aui‖ ≤ λ

∫ t+T

t

|Gi(t, s)||fi(s, us)| ds ≤ λβ

∫ T

0

|fi(s, us)| ds ≤ c4 ,

which proves that A(K̄c4) ⊂ K̄c4 . Now, we prove (i) in Theorem 2.1. The set {u ∈
K(ψ, c2, c3) : ψ(u) > c2} is not empty because the constant function ui(t) = (c2 + c3)/2
is in this set. For each function u in K(ψ, c2, c3), we have c2 ≤ ‖u‖ ≤ c3 = βc2/α. Then
using the definition of ψ, that Gi and fi have the same sign, (2.1), and (3.2), we have

ψ(Au) = min
i

inf
t
λ

∫ t+T

t

|Gi(t, s)||fi(s, us)| ds ≥ min
i
λα

∫ T

0

|fi(s, us)| ds > c2
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which implies (i). Now, we prove (ii) in Theorem 2.1. For u in K̄c1 , using (2.1) and (3.1), we
have

‖Aui‖ ≤ λ

∫ t+T

t

|Gi(t, s)||fi(s, us)| ds ≤ λβ

∫ T

0

|fi(s, us)| ds < c1

which proves (ii). Now, we prove (iii) in Theorem 2.1. From the definition of ψ and (2.1),

ψ(Au) = min
i

inf
t
λ

∫ t+T

t

|Gi(t, s)||fi(s, us)| ds ≥ min
i
λα

∫ T

0

|fi(s, us)| ds .

From ‖Au‖ > c3 = βc2/α and (2.1), we have

c3 < ‖Aui‖ ≤ λβ

∫ T

0

|fi(s, us)| ds .

Combining the two inequalities above, ψ(Au) > c2, which proves (iii). Once the conditions
for the Leggett-Williams theorem are satisfied, the operator A has at least three fixed points
that correspond to solutions of (1.1).

Related results

Several versions of Theorem 3.1 can be stated (and have been stated for particular cases)
using the following four lemmas.

Lemma 3.2. Condition (3.1) in (H1) is implied by

βλ lim sup
‖u‖→0

∫ T

0

|fi(t, ut)| dt/‖u‖ < 1, ∀i.

In turn, this condition is implied by

βλT lim sup
‖u‖→0

max
0≤t≤T

|fi(t, ut)|/‖u‖ < 1, ∀i.

Proof. From the definition of limit superior, for each 0 < ε < 1, there exists a δ > 0 such that

βλ

∫ T

0

|fi(t, ut)| dt < ε‖u‖ for ‖u‖ < δ, ∀i .

Select c1 < δ. Then for u in K̄c1 ,

βλ

∫ T

0

|fi(t, ut)| dt < ε‖u‖ < ‖u‖ ≤ c1, ∀i,

which implies (3.1).

Lemma 3.3. Condition (3.2) in (H2) is implied by

c2 < λαT |fi(t, ut)| for t ∈ [0, T ], ∀i, u ∈ K with c2 ≤ ‖u‖ ≤ βc2/α .
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Lemma 3.4. Condition (3.3) in (H3) is implied by

βλ lim sup
‖u‖→∞

∫ T

0

|f(t, ut)| dt/‖u‖ < 1, ∀i .

In turn, this condition is implied by

βλT lim sup
‖u‖→∞

max
0≤t≤T

|f(t, ut)|/‖u‖ < 1, ∀i .

Proof. From the definition of limit superior, there exist positive constants ε < 1 and δ > 0
such that

βλ

∫ T

0

|f(t, ut)| dt < ε‖u‖ for ‖u‖ ≥ δ, ∀i .

From (A3), when ‖u‖ ≤ δ, βλ
∫ T

0
‖f(t, ut)‖ is bounded by a positive constant r. Select

c4 = r/(1 − ε). Then for u in K̄c4 ,

βλ

∫ T

0

|fi(t, ut)| dt ≤ ε‖u‖ + r ≤ εc4 + r ≤ c4

which implies (H3).

When we know only the range of λ, rather than its value, Hypotheses (H1)–(H3) need to
be modified as follows.

Theorem 3.5. When λ1 ≤ λ ≤ λ2, Theorem 3.1 remains valid if we replace (3.1)–(3.3),
respectively, by

λ2β

∫ T

0

|fi(t, ut)|dt < c1 for 1 ≤ i ≤ n and u ∈ K with ‖u‖ ≤ c1 , (3.4)

c2 < λ1α

∫ T

0

|fi(t, ut)|dt for u ∈ K with c2 ≤ ‖u‖ ≤ βc2/α , (3.5)

λ2β

∫ T

0

|fi(t, ut)|dt ≤ c4 for 1 ≤ i ≤ n and u ∈ K with ‖u‖ ≤ c4 . (3.6)

Table 1 shows some choices of λ1 and λ2 found in the indicated references.

Table 1: Hypotheses when λ1 ≤ λ ≤ λ2

Theorem 3.5 Ref. [8] Ref. [8] Ref. [8]
λ1 ≤ λ ≤ λ2

1
2β ≤ λ ≤ 1

β
α
β ≤ λ ≤ 1 1 ≤ λ ≤ β 1

2T ≤ λ ≤ 1
T

(3.4)
∫ T

0 |fi| < c1 β
∫ T

0 |fi| < c1 β2
∫ T

0 |fi| < c1
β
T

∫ T

0 |fi| < c1

(3.5) c2 <
α
2β

∫ T

0
|fi| c2 <

α2

β

∫ T

0
|fi| c2 < α

∫ T

0
|fi| c2 <

α
2T

∫ T

0
|fi|

(3.6)
∫ T

0
|fi| ≤ c4 β

∫ T

0
|fi| ≤ c4 β2

∫ T

0
|fi| ≤ c4

β
T

∫ T

0
|fi| ≤ c4
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4 Applications

As a particular case of (1.1), we have the scalar equation

u′(t) = −γ(t)u(t) + p(t)
um(t− τ (t))

1 + un(t − τ (t))
, (4.1)

which is a hematopoiesis model; it describes the production of red blood cells. In this model
it is realistic to assume the periodicity of some parameters, because of the periodic variations
of the environment, which play an important role in many biological and ecological systems.
Mackey and Glass [6] also used this equation, with a continuous function as initial condition,
to describe some physiological control systems. Here γ, p, τ are continuous periodic positive
functions with a common period T , and the constants m,n, T are positive. Existence of a
solution to (4.1) has been proved by Wan et al [10], while global attractivity has been studied
by Wang and Li [12]. The Green’s kernel for this equation is

G(t, s) =
exp

( ∫ s

t
γ(θ) dθ

)

δ − 1
, where δ = exp

( ∫ T

0

γ(θ) dθ
)
.

This kernel is bounded as
1

δ − 1
≤ G(t, s) ≤ δ

δ − 1
.

The cone K is defined by

K = {u ∈ E : u(t) ≥
1
δ
‖u‖, for t ∈ [0, T ]} ,

and the operator A by

(Au)(t) =
∫ t+T

t

G(t, s)p(s)
um(s − τ (s))

1 + un(s − τ (s))
ds .

As explained in the proof of the next theorem, the condition (ii) of the Leggett-Williams
theorem is satisfied if there exists a positive constant c2 such that

1
δ − 1

∫ t+T

t

p(s) ds
(c2/δ)m

1 + (δc2)n
> c2 .

We select c2 as the minimizer of the function f(c) = (δ − 1)c(c/δ)−m(1 + (δc)n). This choice
of c2 leads the assumption in the following result.

Theorem 4.1. Assume n > m − 1 > 0 and
∫ T

0

p(s) ds > δ2m−1(δ − 1)
( n

1 + n−m

)(1 + n −m

m− 1
)(m−1)/n

. (4.2)

Then the hypotheses of Theorem 2.1 are satisfied and, therefore, (4.1) has at least three non-
negative periodic solutions.
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Proof. From the definition of the cone K, ‖u‖/δ ≤ u(s − τ (s)) ≤ ‖u‖ for s ∈ [0, T ]. Then

1
‖u‖

∫ T

0

G(t, s)p(s)
um(s − τ (s))

1 + un(s− τ (s))
ds ≤ δ

δ − 1

∫ T

0

p(s) ds
‖u‖m−1

1 + (‖u‖/δ)n
.

Since limx→∞ xm−1/(1+xn) = 0, the right-hand side of the above inequality approaches zero
as ‖u‖ → ∞. By Lemma 3.4, this implies (H3), for c4 arbitrarily large, which in turn implies
A(K̄c4 ) ⊂ K̄c4 . On the other hand, since limx→0 x

m−1/(1 + xn) = 0, the right-hand side of
the above inequality approaches zero as ‖u‖ → 0. By Lemma 3.2, this implies (H1), for c1
arbitrarily small, which in turn implies (ii) of Theorem 2.1. To prove (i) of Theorem 2.1, we
set

c2 =
1
δ

( m− 1
1 + n −m

)1/n

and c3 = δc2. Note that the set {u ∈ K(ψ, c2, c3) : ψ(u) > c2} is not empty because the
constant function u = (c2 + c3)/2 is in this set. For each u in the cone K with c2 ≤ ψ(u) and
‖u‖ ≤ c3, we have c2 ≤ ‖u‖ ≤ c3 and c2/δ ≤ u(s − τ (s)) ≤ c2δ. Then

ψ(Au) ≥ 1
δ − 1

∫ T

0

p(s) ds
(c2/δ)m

1 + (c2δ)n
> c2 .

The above inequality follows from (4.2) and the choice of c2. Here we have used that 1 +
(c2δ)n = n/(1 + n−m) and that

(c2/δ)m = c2
1

δ2m−1

( m − 1
1 + n−m

)(m−1)/n
.

The above inequality implies (i). Now, we prove (iii) in Theorem 2.1. Note that

ψ(Au) ≥ 1
δ − 1

∫ t+T

t

p(s)
um(s − τ (s))

1 + un(s − τ (s))
ds .

From ‖Au‖ > c3 = δc2, we have

c3 < ‖Au‖ ≤ δ

δ − 1

∫ t+T

t

p(s)
um(s − τ (s))

1 + un(s − τ (s))
ds .

Combining the two inequalities above, ψ(Au) > c2, which proves (iii). By the Leggett-
Williams theorem, (4.1) has at least three nonnegative periodic solutions.

Note that a function in K can not have zeros, unless it is identically zero. Therefore, the
second and the third solutions obtained in Theorem 4.1 are positive. The first solution will
be positive if for example f(t, 0) is not identically zero, which seems to be very restrictive.

Remark

The hematopoiesis model (4.1) withm = 1 was considered in [8]. Unfortunately, [8, Theorems
3.8–3.11] are incorrect: The fact that

lim sup
u→o

max
0≤s≤T

p(s)u
1 + un

= 0

does not imply (ii) in Theorem 2.1.
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Second example

Consider the scalar delay differential equation

u′(t) = −γ(t)u(t) + p(t)um(t− τ (t)) exp
(
− ru(t− τ (t))

)
, (4.3)

where γ, p, τ are continuous periodic positive functions with a common period T , and the
constants m, r, T are positive. The Green’s kernel G, and the cone K are the same as above.
While the operator A is

(Au)(t) =
∫ t+T

t

G(t, s)p(s)um(s − τ (s)) exp
(
− ru(s− τ (s))) ds .

For proving (ii) in the Leggett-Williams theorem, we need a positive constant c2 such that

1
δ − 1

∫ t+T

t

p(s) ds(c2/δ)m exp
(
− rδc2) > c2 .

We select c2 as the minimizer of the function f(c) = (δ − 1)c(c/δ)−merδc. This choice of c2
leads the assumption in the following result.

Theorem 4.2. Assume that m > 1 and that
∫ T

0

p(s) ds > δ(δ − 1)
( rδ2e

m − 1
)m−1

. (4.4)

Then the hypotheses of Theorem 2.1 are satisfied and, therefore, (4.3) has at least three non-
negative periodic solutions.

Proof. This proof is similar to the one in Theorem 4.1; so we only sketch it. Since limx→∞ xm−1e−rx =
0, Lemma 3.4 implies (H3), for c4 arbitrarily large, which in turn impliesA(K̄c4 ) ⊂ K̄c4 . Since
limx→0 x

m−1e−rx = 0, Lemma 3.2 implies (H1), for c1 arbitrarily small, which in turn implies
(ii) of Theorem 2.1. To prove (i) of Theorem 2.1, we set

c2 =
m − 1
rδ

and c3 = δc2. For each u in the cone K with c2 ≤ ψ(u) and ‖u‖ ≤ c3, we have c2 ≤ ‖u‖ ≤ c3
and c2/δ ≤ u(s − τ (s)) ≤ c2δ. Then

ψ(Au) ≥
1

δ − 1

∫ T

0

p(s) ds(c2/δ)me−rc2δ > c2 .

The above inequality follows from (4.4) and the choice of c2. Therefore, (i) is satisfied. The
proof of (iii) is the same as in Theorem 4.1. Then by the Leggett-Williams theorem, (4.1) has
at least three nonnegative periodic solutions.

Equation (4.3) withm = 1 was also considered in [8]. However, the conditions for applying
the Leggett-Williams are not satisfied.
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