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Abstract. This article concerns the initial-boundary value problem for non-

linear pseudo-parabolic equation

ut − uxxt − (1 + µ(ux))uxx + (1 + σ(ux))u = f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x),

where f , ũ0, µ, σ are given functions. Using the Faedo-Galerkin method and
the compactness method, we prove that there exists a unique weak solution

u such that u ∈ L∞(0, T ;H1
0 ∩ H2), u′ ∈ L2(0, T ;H1

0 ) and ‖u‖L∞(QT ) ≤
max{‖ũ0‖L∞(Ω), ‖f‖L∞(QT )}. Also we prove that the problem has a unique

global solution with H1-norm decaying exponentially as t → +∞. Finally,
we establish the existence and uniqueness of a weak solution of the problem

associated with a periodic condition.

1. Introduction

Consider the following initial-boundary value problem for the pseudo-parabolic
equation arising in third-grade fluid flows

ut−(1+µ(ux))uxx−αuxxt+
(
γ+βσ(ux)

)
u = f(x, t), 0 < x < 1, 0 < t < T, (1.1)

with the boundary conditions

u(0, t) = u(1, t) = 0, (1.2)

and with the initial condition

u(x, 0) = ũ0(x), (1.3)

or the T -periodic condition
u(x, 0) = u(x, T ), (1.4)

where α > 0, β > 0, γ > 0 are given constants and f , ũ0, µ, σ are given functions
satisfying conditions specified later.
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The pseudo-parabolic equation

ut − uxxt = F (x, t, ux, uxx), 0 < x < 1, t > 0 (1.5)

with the initial condition u(x, 0) = ũ0(x) and with the difrerent boundary condi-
tions, has been extensively studied by many authors, see for example [2], [3], [6],
[10], [14] among others and the references given therein. In these works, many re-
sults about existence, regularity, asymptotic behavior, and decay of solutions were
obtained.

Equations of type (1.5) with a one time derivative appearing in the highest
order term are called pseudo-parabolic or Sobolev equations, and arise in many
areas of mathematics and physics. We refer to the monographs of Al’shin [1],
and of Carroll [7] for references and results on pseudoparabolic or Sobolev type
equations. Mathematical study of pseudo-parabolic equations goes back to works
of Showalter in the seventies, since then, numerous of interesting results about
linear and nonlinear pseudo-parabolic equations have been obtained. We also refer
to [12] for asymptotic behavior and to [13] for nonlinear problems.

An important special case of the model is the Benjamin-Bona-Mahony-Burgers
(BBMB) equation

ut + ux + uux − νuxx − α2uxxt = 0, (1.6)

it was studied by Amick et al in [2], where ν > 0, α = 1, x ∈ R, t ≥ 0. The authors
proved that solution of (1.6) with initial data in L1∩H2 decays to zero in L2 norm
as t → +∞. With ν > 0, α > 0, x ∈ [0, 1], t ≥ 0, the model has the form (1.6)
was also investigated earlier by Bona and Dougalis in [6], where uniqueness, global
existence and continuous dependence of solutions on initial and boundary data were
established and the solutions were shown to depend continuously on ν ≥ 0 and on
α > 0.

The Benjamin-Bona-Mahony (BBM) equation is introduced in [5], in 1972, as
a model for describing long - wave behavior. Since then, the periodic boundary
value problems, the initial value problems and the initial boundary value problems,
for various generalized BBM equations have been studied. On the other hand,
many people have studied the large time behaviors of solutions to the initial value
problems for various generalized BBM equations, such as BBMB equations with
a Burgers-type dissipative term appended, see [14]. Medeiros and Miranda [10]
studied another special case, namely

ut + f(u)x − uxxt = g(x, t), (1.7)

where u = u(x, t), 0 < x < 1, and t ≥ 0 is the time. They proved existence,
uniqueness of solutions for f in C1 and regularity in the case f(s) = s2/2. Arnold et
al.[3] considered the following equation from the point of view of periodic solutions

− (auxt)x + cut = −(αux)x + βux + γ, x ∈ R, t ∈ [0, T ]. (1.8)

Here, the authors proved the existence, uniqueness and regularity of solutions under
the hypothesis that α, β and γ are C1-functions of x, t and u, and that they are
bounded together with their first derivatives.

It is well known that equation (1.1) arises within frameworks of mathematical
models in engineering and physical sciences on third-grade fluid flows, see [4, 8, 11]
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and references therein. For example, the following equation of motion for the un-
steady flow of third-grade fluid over the rigid plate with porous medium is investi-
gated

ρ
∂u

∂t
= µ

∂2u

∂y2
+ α1

∂3u

∂y2∂t
+ 6β3

(∂u
∂y

)2 ∂2u

∂y2
− φ

k

[
µ+ α1

∂

∂t
+ 2β3

(∂u
∂y

)2]
u, (1.9)

for y > 0, t > 0, where u is the velocity component, ρ is the density, µ the coefficient
of viscosity, α1 and β3 are the material constants, see [4].

Motivated by the above mentioned works, because of mathematical context, we
study of the existence, uniqueness and exponential decay of solutions for Dirichlet
problem (1.1)-(1.3) or (1.4). This article is organized as follows. In section 2, under
appropriate conditions of α, β, γ, f , ũ0, µ, σ we prove the existence of a unique
solution on (0, T ), for every T > 0 and the boundedness of the solution. In section
3, we study exponential decay of solutions. In section 4, we prove the existence and
uniqueness of a T -periodic weak solution.

2. Preliminaries

Without loss of generality, we consider Problem (1.1) – (1.3) with α = β = γ = 1.
We put Ω = (0, 1) and denote the usual function spaces used in this paper by the

notations Lp = Lp(Ω), Hm = Hm(Ω). Let 〈·, ·〉 be either the scalar product in L2

or the dual pairing of a continuous linear functional and an element of a function
space. The notation ‖ · ‖ stands for the norm in L2 and we denote by ‖ · ‖X the
norm in the Banach space X. We call X ′ the dual space of X.

We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T )→ X measurable, such that

‖u‖Lp(0,T ;X) =
(∫ T

0

‖u(t)‖pXdt
)1/p

<∞ for 1 ≤ p <∞,

and
‖u‖L∞(0,T ;X) = ess sup0<t<T ‖u(t)‖X for p =∞.

On H1, we shall use the norm

‖v‖H1 = (‖v‖2 + ‖vx‖2)1/2.

The following lemma is well known.

Lemma 2.1. The imbedding H1 ↪→ C0(Ω) is compact and

‖v‖C0(Ω) ≤
√

2‖v‖H1 for all v ∈ H1.

Remark 2.2. On H1
0 , ‖v‖H1 and ‖vx‖ are equivalent norms. Furthermore,

‖v‖C0(Ω) ≤ ‖vx‖ for all v ∈ H1
0 .

3. Existence and uniqueness theorem

Without losing of generality, we consider problem (1.1)-(1.3) with α = β = γ = 1.

ut − uxxt −
∂

∂x
(ux + µ̄(ux)) + (1 + σ(ux))u = f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = ũ0(x),
(3.1)
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where µ̄(y) =
∫ y

0
µ(z)dz, y ∈ R.

The weak formulation of (3.1) can be given in the following manner: Find u(t)
defined in the open set (0, T ) such that u(t) satisfies the variational problem

〈ut(t), w〉+ 〈uxt(t), wx〉+ 〈ux(t) + µ̄(ux(t)), wx〉
+ 〈(1 + σ(ux(t)))u(t), w〉 = 〈f(t), w〉,

(3.2)

for all w ∈ H1
0 and the initial condition

u(0) = ũ0. (3.3)

We make the following assumptions:
(H1) ũ0 ∈ H1

0 ∩H2;

(H2) f ∈ L2(0, T ;H1
0 );

(H3) µ ∈ C0(R; R) such that µ(0) = 0, µ(z) > 0, for all z ∈ R, z 6= 0;
(H4) σ ∈ C1(R; R) such that

(i) σ(0) = 0, σ(z) > 0, zσ′(z) > 0, for all z ∈ R, z 6= 0,
(ii) y(

∫ y
0
zσ′(z)dz) ≤ y2σ(y) for all y ∈ R.

An example of the function σ satisfying (H4) is

σ(z) = |z|q,
where q > 1 is a constant. It is obvious that (H4) holds, because

σ(z) = |z|q, σ′(z) = q|z|q−2z,

σ(0) = 0, σ(z) > 0, zσ′(z) = q|z|q > 0, ∀z ∈ R, z 6= 0,

y
(∫ y

0

zσ′(z)dz
)

= qy
(∫ y

0

|z|qdz
)

= qy
|y|qy
q + 1

=
q

q + 1
|y|q+2 =

q

q + 1
y2σ(y) ≤ y2σ(y).

Theorem 3.1. Let T > 0 and (H1)–(H4) hold. Then, problem (3.1) has a unique
weak solution u satisfying

u ∈ L∞(0, T ;H1
0 ∩H2), u′ ∈ L2(0, T ;H1

0 ). (3.4)

Furthermore, we have the estimate

‖u‖L∞(QT ) ≤ max{‖ũ0‖L∞(Ω), ‖f‖L∞(QT )}. (3.5)

Estimate (3.5) appears naturally, both physical and mathematical context, from
the maximum principle in the study of partial differential equation of the kind of
(3.1).

Proof. The proof consists of several steps.
Step 1: The Faedo-Galerkin approximation (introduced by Lions [9]). Consider a
special orthonormal basis {wj} on H1

0 : wj(x) =
√

2 sin(jπx), j ∈ N, formed by the
eigenfunctions of the Laplacian −∆ = − ∂2

∂x2 :

−4wj = λjwj , wj ∈ C∞([0, 1]), λj = (jπ)2, j = 1, 2, . . .

Put

um(t) =
m∑
j=1

cmj(t)wj , (3.6)
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where the coefficients cmj(t) satisfy a system of nonlinear differential equations

〈u′m(t), wj〉+ 〈u′mx(t), wjx〉+ 〈umx(t) + µ̄(umx(t)), wjx〉
+ 〈(1 + σ(umx(t)))um(t), wj〉 = 〈f(t), wj〉, 1 ≤ j ≤ m,

um(0) = u0m,

(3.7)

in which

u0m =
m∑
j=1

βmjwj → ũ0 strongly in H1
0 ∩H2. (3.8)

System (3.7) can be rewritten in the form

c′mi(t) + cmi(t) +
1

1 + λi

[
〈µ̄(umx(t)), wix〉+ 〈σ(umx(t))um(t), wi〉

]
=

1
1 + λi

〈f(t), wi〉,

cmi(0) = βmi, 1 ≤ i ≤ m.

(3.9)

It is clear that for each m there exists a solution um(t) in form (3.6) which
satisfies (3.7) almost everywhere on 0 ≤ t ≤ Tm for some Tm, 0 < Tm ≤ T . The
following estimates allow us to take Tm = T for all m.
Step 2: A priori estimates.

(a) First estimate. Multiplying the jth equation of (3.7)1 by cmj(t) and summing
up with respect to j, afterwards, integrating with respect to the time variable from
0 to t, we obtain after some rearrangements

Sm(t) = Sm(0) + 2
∫ t

0

〈f(s), um(s)〉ds, (3.10)

where

Sm(t) = ‖um(t)‖2H1 + 2
∫ t

0

‖um(s)‖2H1ds

+ 2
∫ t

0

〈µ̄(umx(s)), umx(s)〉ds+ 2
∫ t

0

〈σ(umx(s)), u2
m(s)〉ds.

(3.11)

By u0m → ũ0 strongly in H1
0 ∩H2, we deduce

Sm(0) = ‖u0m‖2H1 ≤ S̄0 ∀m ∈ N, (3.12)

where S̄0 always indicates a constant depending on ũ0.
Note that

yµ̄(y) = y

∫ y

0

µ(z)dz ≥ 0, ∀y ∈ R.

On the other hand, we have

2
∫ t

0

〈f(s), um(s)〉ds ≤
∫ t

0

‖f(s)‖2ds+
∫ t

0

‖um(s)‖2ds

≤
∫ T

0

‖f(s)‖2ds+
1
2
Sm(t).

(3.13)

Therefore,

Sm(t) ≤ 2S̄0 + 2
∫ T

0

‖f(s)‖2ds ≤ C(1)
T . (3.14)
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(b) Second estimate. Next, by replacing wj in (3.7)1 by −wjxx, we obtain that

〈u′mx(t), wjx〉+ 〈∆u′m(t),∆wj〉+ 〈∆um(t),∆wj〉
+ 〈umx(t), wjx〉+ 〈µ(umx(t))∆um(t),∆wj〉
+ 〈σ′(umx(t))um(t)∆um(t) + σ(umx(t))umx(t), wjx〉
= 〈fx(t), wjx〉, 1 ≤ j ≤ m.

(3.15)

Similar to (3.7)1, we have

Pm(t) = Pm(0)− 2
∫ t

0

[
〈σ′(umx(s))um(s)∆um(s), umx(s)〉

+ 〈σ(umx(s)), |umx(s)|2〉
]
ds+ 2

∫ t

0

〈fx(s), umx(s)〉ds

= Pm(0) + I1 + I2,

(3.16)

where

Pm(t) = ‖umx(t)‖2 + ‖∆um(t)‖2 + 2
∫ t

0

(‖umx(s)‖2 + ‖∆um(s)‖2)ds

+ 2
∫ t

0

〈µ(umx(s)), |∆um(s)|2〉ds.
(3.17)

From u0m → ũ0 strongly in H1
0 ∩H2, we deduce

Pm(0) = ‖umx(0)‖2 + ‖4um(0)‖2 = ‖u0mx‖2 + ‖4u0m‖2 ≤ P̄0 ∀m ∈ N, (3.18)

where P̄0 always indicates a constant depending on ũ0.
Estimating I1. Note that

− 2〈σ′(umx(s))umx(s)∆um(s), um(s)〉

= −2
∫ 1

0

σ′(umx(x, s))umx(x, s)∆um(x, s)um(x, s) dx

= −2
∫ 1

0

um(x, s)
∂

∂x
(
∫ umx(x,s)

0

zσ′(z)dz) dx

= −2
[
um(x, s)

( ∫ umx(x,s)

0

zσ′(z)dz
)∣∣∣1

0

−
∫ 1

0

umx(x, s)
(∫ umx(x,s)

0

zσ′(z)dz
)
dx
]

= 2
∫ 1

0

umx(x, s)
(∫ umx(x,s)

0

zσ′(z)dz
)
dx

≤ 2
∫ 1

0

u2
mx(x, s)σ(umx(x, s)) dx

= 2〈σ(umx(s)), |umx(s)|2〉,

(3.19)

since y
( ∫ y

0
zσ′(z)dz

)
≤ y2σ(y) for all y ∈ R. Hence

I1 = −2
∫ t

0

[
〈σ′(umx(s))um(s)∆um(s), umx(s)〉

+ 〈σ(umx(s)), |umx(s)|2〉
]
ds ≤ 0.

(3.20)
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Estimating I2.

I2 = 2
∫ t

0

〈fx(s), umx(s)〉ds ≤
∫ T

0

‖fx(s)‖‖umx(s)‖ds

≤
∫ T

0

‖fx(s)‖
√
Sm(s)ds ≤

√
C

(1)
T

∫ T

0

‖fx(s)‖ds.
(3.21)

It follows from (3.16), (3.18), (3.20), (3.21) that

Pm(t) ≤ P̄0 +
√
C

(1)
T

∫ T

0

‖fx(s)‖ds ≤ C(2)
T . (3.22)

(c) Third estimate. Multiplying the jth equation of (3.7)1 by c′mj(t) and summing
up with respect to j, afterwards, integrating with respect to the time variable from
0 to t, we obtain after some rearrangements

Qm(t) = Qm(0)− 2
∫ t

0

〈σ(umx(s))um(s), u′m(s)〉ds+ 2
∫ t

0

〈f(s), u′m(s)〉ds

= Qm(0) + J1 + J2,

(3.23)

where

Qm(t) = ‖um(t)‖2H1 + 2
∫ t

0

‖u′m(s)‖2H1ds+ 2
∫ 1

0

µ̃(umx(x, t)) dx, (3.24)

µ̃(z) =
∫ z

0

µ̄(y)dy ≥ 0 ∀z ∈ R.

Estimating Qm(0). From u0m → ũ0 strongly in H1
0 ∩ H2, we can deduce the

existence of a constant Q̄0 > 0 independent of m such that

Qm(0) = ‖u0m‖2H1 + 2
∫ 1

0

µ̃(u0mx(x)) dx ≤ Q̄0 ∀m ∈ N. (3.25)

Estimating J1. By (3.22), we have

|umx(x, s)| ≤ ‖umx(s)‖C0([0,1]) ≤
√

2‖umx(s)‖H1

≤
√

2
√
‖umx(s)‖2 + ‖∆um(s)‖2 ≤

√
2
√

2‖∆um(s)‖2

≤ 2‖∆um(s)‖ ≤ 2
√
Pm(s) ≤ 2

√
C

(2)
T .
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Hence

J1 = −2
∫ t

0

〈σ(umx(s))um(s), u′m(s)〉ds

≤ 2 sup
|z|≤2

q
C

(2)
T

σ(z)
∫ t

0

‖um(s)‖‖u′m(s)‖ds

≤ 2 sup
|z|≤2

q
C

(2)
T

σ(z)
∫ t

0

√
Sm(s)‖u′m(s)‖ds

≤ 2
√
C

(1)
T sup
|z|≤2

q
C

(2)
T

σ(z)
∫ t

0

‖u′m(s)‖ds

≤ 2TC(1)
T sup
|z|≤2

q
C

(2)
T

σ2(z) +
1
2

∫ t

0

‖u′m(s)‖2ds

≤ 2TC(1)
T sup
|z|≤2

q
C

(2)
T

σ2(z) +
1
4
Qm(t).

(3.26)

Estimating J2.

J2 = 2
∫ t

0

〈f(s), u′m(s)〉ds

≤ 2
∫ T

0

‖f(s)‖2ds+
1
2

∫ t

0

‖u′m(s)‖2ds

≤ 2
∫ T

0

‖f(s)‖2ds+
1
4
Qm(t).

(3.27)

Then, it follows from (3.23), (3.25)–(3.27) that

Qm(t) ≤ 2
(
Q̄0 + 2TC(1)

T sup
|z|≤2

q
C

(2)
T

σ2(z) + 2
∫ T

0

‖f(s)‖2ds
)
≤ C(3)

T . (3.28)

Step 3: Limiting process. Thanks to (3.14), (3.22), (3.28) there exists a subse-
quence of {um}, still denoted by {um} such that

um → u in L∞(0, T ;H1
0 ∩H2) weakly*,

u′m → u′ in L2(0, T ;H1
0 ) weakly.

(3.29)

Using the compactness lemma of Lions [9, p.57], and applying Fischer-Riesz
theorem, from (3.29), there exists a subsequence of {um}, denoted by the same
symbol satisfying

um → u strongly in L2(0, T ;H1
0 ) and a.e. in QT ,

umx → ux strongly in L2(QT ) and a.e. in QT .
(3.30)

Then, it follows from (3.30), that

µ̄(umx(x, t))→ µ̄(ux(x, t)) a.e., (x, t) in QT ,

σ(umx(x, t))um(x, t)→ σ(ux(x, t))u(x, t) a.e., (x, t) in QT .
(3.31)
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On the other hand, by (3.22), we have

|umx(x, t)| ≤ ‖umx(t)‖C0([0,1]) ≤
√

2‖umx(t)‖H1

≤ 2‖4um(t)‖ ≤ 2
√
Pm(t) ≤ 2

√
C

(2)
T ;

|µ̄(umx(x, t))| ≤ sup
|z|≤2

q
C

(2)
T

|µ̄(z)| ≤ CT ;

|σ(umx(x, t))um(x, t)| ≤ ‖umx(t)‖|σ(umx(x, t))|

≤
√
C

(2)
T sup
|z|≤2

q
C

(2)
T

|σ(z)| ≤ CT .

(3.32)

Applying the dominated convergence theorem, from (3.31), (3.32) we obtain

µ̄(umx)→ µ̄(ux) strongly in L2(QT ),

σ(umx)um → σ(ux)u strongly in L2(QT ).
(3.33)

Passing to the limit in (3.7) by (3.8), (3.29), (3.30) and (3.33), we have u satis-
fying

〈ut(t), w〉+ 〈uxt(t), wx〉+ 〈ux(t) + µ̄(ux(t)), wx〉+ 〈(1 + σ(ux(t)))u(t), w〉
= 〈f(t), w〉, ∀w ∈ H1

0 ,

u(0) = ũ0.

(3.34)

Furthermore,
u ∈ L∞(0, T ;H1

0 ∩H2), u′ ∈ L2(0, T ;H1
0 ).

Step 4: Uniqueness of the solution. Let u and v be two weak solutions of (3.1)
such that

u, v ∈ L∞(0, T ;H1
0 ∩H2), u′, v′ ∈ L2(0, T ;H1

0 ). (3.35)

Then w = u− v satisfies

〈wt(t), y〉+ 〈wxt(t), yx〉+ 〈wx(t), yx〉+ 〈w(t), y〉
+ 〈µ̄(ux(t))− µ̄(vx(t)), yx〉+ 〈σ(ux(t))u− σ(vx(t))v, y〉 = 0, ∀y ∈ H1

0 ,

w(0) = 0,

u, v, w ∈ L∞(0, T ;H1
0 ∩H2), ut, vt, wt ∈ L2(0, T ;H1

0 ).

(3.36)

Take y = w = u− v, in (3.36)1 and integrating with respect to t, we obtain

ρ(t) = −2
∫ t

0

〈µ̄(ux(s))− µ̄(vx(s)), wx(s)〉ds

− 2
∫ t

0

〈σ(ux(s))u(s)− σ(vx(s))v(s), w(s)〉ds

= ρ1(t) + ρ2(t),

(3.37)

where

ρ(t) = ‖w(t)‖2H1 + 2
∫ t

0

‖w(s)‖2H1ds. (3.38)
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Estimating ρ1(t). Using the monotonicity of the function z 7→ µ̄(z), we obtain

ρ1(t) = −2
∫ t

0

〈µ̄(ux(s))− µ̄(vx(s)), wx(s)〉ds ≤ 0. (3.39)

Estimating ρ2(t). We have

w = [σ(ux)w + (σ(ux)− σ(vx))v]w

= σ(ux)w2 + (σ(ux)− σ(vx))vw

≥ (σ(ux)− σ(vx))vw.

(3.40)

This implies

ρ2(t) = −2
∫ t

0

〈σ(ux(s))u(s)− σ(vx(s))v(s), w(s)〉ds

≤ −2
∫ t

0

〈[σ(ux(s))− σ(vx(s))] v(s), w(s)〉ds

≤ 2
∫ t

0

‖ [σ(ux(s))− σ(vx(s))] v(s)‖‖w(s)‖ds

≤ 2
∫ t

0

‖σ(ux(s))− σ(vx(s))‖‖vx(s)‖‖w(s)‖ds.

(3.41)

Put M = ‖u‖L∞(0,T ;H1
0∩H2) + ‖v‖L∞(0,T ;H1

0∩H2) and LM = sup|z|≤M |σ′(z)|, we
have

|σ(ux)− σ(vx)| ≤ LM |wx|. (3.42)

Hence

ρ2(t) ≤ 2LM
∫ t

0

‖wx(s)‖‖vx(s)‖‖w(s)‖ds

≤ 2MLM

∫ t

0

‖wx(s)‖‖w(s)‖ds

≤MLM

∫ t

0

ρ(s)ds.

(3.43)

Then, from (3.37), (3.39), (3.43) it follows that

ρ(t) ≤MLM

∫ t

0

ρ(s)ds. (3.44)

By Gronwall’s lemma, (3.44) leads to ρ(t) = 0, i.e., w = u− v = 0.
Step 5: Proof of the estimate(3.5). First, let us assume that

u0(x) ≤M, a. e., x ∈ Ω, and max{‖ũ0‖L∞ , ‖f‖L∞(QT )} ≤M. (3.45)

Then z = u−M satisfies the initial and boundary value

zt − zxxt −
∂

∂x
(zx + µ̄(zx)) + z + (z +M)σ(zx)

= f(x, t)−M, 0 < x < 1, 0 < t < T,

z(0, t) = z(1, t) = −M,

z(x, 0) = ũ0(x)−M.

(3.46)
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Multiplying equation (3.46) by v ∈ H1
0 , then integrating by parts with respect

to variable x, after some rearrangements, one has

〈zt(t), v〉+ 〈zxt(t), vx〉+ 〈zx(t) + µ̄(zx(t)), vx〉
+ 〈z(t) + (z(t) +M)σ(zx(t)), v〉
= 〈f(t)−M, v〉, for all v ∈ H1

0 .

(3.47)

From assumption (H1)–(H4) we deduce that the solution of the initial and bound-
ary value problem (3.1) satisfies u ∈ L∞(0, T ;H1

0 ∩H2), u′ ∈ L2(0, T ;H1
0 ), so that

we are allowed to take v = z+ = 1
2 (|z|+ z) in (3.47)). Thus, it follows that

〈zt(t), z+(t)〉+ 〈zxt(t), z+
x (t)〉+ 〈zx(t) + µ̄(zx(t)), z+

x (t)〉
+ 〈z(t) + (z(t) +M)σ(zx(t)), z+(t)〉
= 〈f(t)−M, z+(t)〉.

(3.48)

Hence
1
2
d

dt
(‖z+(t)‖2 + ‖z+

x (t)‖2) + ‖z+
x (t)‖2 + ‖z+(t)‖2

= −〈µ̄(z+
x (t)), z+

x (t)〉 − 〈(z+(t) +M)σ(z+
x (t)), z+(t)〉

+ 〈f(t)−M, z+(t)〉 ≤ 0,

(3.49)

since M ≥ max{‖ũ0‖L∞ , ‖f‖L∞(QT )} and

〈zt(t), z+(t)〉 =
∫ 1

0

zt(x, t)z+(x, t) dx =
∫ 1

0,z>0

(z+(x, t))t z+(x, t) dx

=
1
2
d

dt

∫ 1

0,z>0

|z+(x, t)|2 dx =
1
2
d

dt

∫ 1

0

|z+(x, t)|2 dx

=
1
2
d

dt
‖z+(t)‖2,

(3.50)

and on the domain z > 0 we have z+ = z, zx = (z+)x and zt = (z+)t.
Integrating (3.49), we obtain

‖z+(t)‖2 + ‖z+
x (t)‖2 ≤ ‖z+(0)‖2 + ‖z+

x (0)‖2. (3.51)

Since z+(x, 0) = (u(x, 0) −M)+ = (ũ0(x) −M)+ = 0, z+
x (x, 0) = 0, we obtain

‖z+(t)‖2 + ‖z+
x (t)‖2 = 0. Thus z+ = 0 and u(x, t) ≤M , for a.e. (x, t) ∈ QT .

The case −M ≤ u0(x), a.e., x ∈ Ω, and M ≥ max{‖ũ0‖L∞ , ‖f‖L∞(QT )} can
be dealt with, in the same manner as above, by considering z = u + M and z− =
1
2 (|z| − z), we also obtain z− = 0 and hence u(x, t) ≥ −M , for a.e. (x, t) ∈ QT .

From the above, one obtains |u(x, t)| ≤M , a.e. (x, t) ∈ QT , i.e.,

‖u‖L∞(QT ) ≤M, (3.52)

for all M ≥ max{‖ũ0‖L∞ , ‖f‖L∞(QT )}. This implies (3.5). The proof is complete.
�

4. Exponential decay of solutions

This section investigates the decay of the solution of (3.1). For this purpose, we
make the following assumption.

(H5) f ∈ L2(R+;H1
0 ) and there exist two constants C0 > 0, γ0 > 0 such that

‖f(t)‖ ≤ C0e
−γ0t, for all t ≥ 0.
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Theorem 4.1. Assume that (H1), (H3)–(H5) hold. Then, problem (3.1) has a
unique weak solution u satisfying

u ∈ L∞(0, T ;H1
0 ∩H2), u′ ∈ L2(0, T ;H1

0 ) for all T > 0, (4.1)

and there exist positive constants C, γ such that

‖u(t)‖H1 ≤ C exp(−γt) for all t ≥ 0. (4.2)

Proof. Multiplying the jth equation of (3.7)1 by cmj(t) and summing with respect
to j, after some rearrangements, we obtain

d

dt
‖um(t)‖2H1 + 2‖um(t)‖2H1 + 2〈µ̄(umx(t)), umx(t)〉+ 2〈σ(umx(t)), u2

m(t)〉

= 2〈f(t), um(t)〉.
(4.3)

Note that
2〈f(t), um(t)〉 ≤ 2‖f(t)‖‖um(t)‖ ≤ 2‖f(t)‖‖um(t)‖H1

≤ 1
2δ
‖f(t)‖2 + 2δ‖um(t)‖2H1 ,

(4.4)

for all δ > 0.
It follows from (4.3), (4.4) that

d

dt
‖um(t)‖2H1 + 2(1− δ)‖um(t)‖2H1

≤ 1
2δ
‖f(t)‖2 ≤ 1

2δ
C2

0e
−2γ0t, for all δ > 0.

(4.5)

Choose δ and γ such that

0 < δ < 1, 0 < γ < min{1− δ, γ0}. (4.6)

Then from (4.5), (4.6) we have
d

dt
‖um(t)‖2H1 + 2γ‖um(t)‖2H1 ≤

1
2δ
C2

0e
−2γ0t. (4.7)

Integrating (4.7), we obtain

‖um(t)‖2H1 ≤
(
‖ũ0‖2H1 +

C2
0

4δ(γ0 − γ)

)
e−2γt. (4.8)

Letting m→ +∞ in (4.8), we obtain

‖u(t)‖2H1 ≤ lim inf
m→+∞

‖um(t)‖2H1

≤
(
‖ũ0‖2H1 +

C2
0

4δ(γ0 − γ)

)
e−2γt, for all t ≥ 0.

(4.9)

This implies (4.2), and completes the proof. �

5. Existence and uniqueness of a T-periodic weak solution

In this section, we shall consider problem (1.1), (1.2), (1.4) with the constants
α = β = γ = 1,

ut − uxxt − (1 + µ(ux))uxx + (1 + σ(ux))u = f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0,

u(x, 0) = u(x, T ).
(5.1)

We make the following assumptions:
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(H6) f is T -periodic in t, i.e., f(x, 0) = f(x, T ).

Remark 5.1. The weak formulation of problem (5.1) can be given in the following
manner: Find u ∈ L∞(0, T ;H1

0 ∩H2) with u′ ∈ L2(0, T ;H1
0 ), such that u satisfies

the variational equation∫ T

0

〈u′(t) + u(t), w(t)〉 dt+
∫ T

0

〈u′x(t) + ux(t), wx(t)〉 dt

+
∫ T

0

〈µ̄(ux(t)), wx(t)〉 dt+
∫ T

0

〈σ(u(t), ux(t))u(t), w(t)〉 dt

=
∫ T

0

〈f(t), w(t)〉 dt, for all w ∈ L2(0, T ;H1
0 ),

u(0) = u(T ).

(5.2)

Theorem 5.2. Let T > 0 and (H2), (H3), (H4), (H6) hold. Then problem (5.1)
has a weak solution u such that

u ∈ L∞(0, T ;H1
0 ∩H2) and u′ ∈ L2(0, T ;H1

0 ). (5.3)

Furthermore, if ‖u‖L∞(0,T ;H1
0∩H2) ≤ R, with R sup

|z|≤
√

2R

|σ′(z)| < 2, then the solution

is unique.

Proof. The proof consists of several steps.

Step 1: Consider the basis {wj} as above. Let Wm be the linear space generated
by w1, w2, . . . , wm. We consider the following problem.

Find a function um(t) in the form (3.6) satisfying the nonlinear differential equa-
tion system (3.7)1 and the T -periodic condition

um(0) = um(T ). (5.4)

We consider an initial value problem given by (3.7), where u0m is given in Wm.
It is clear that for each m, there exists a solution um(t) in the form (3.6) which

satisfies (3.7) almost everywhere on 0 ≤ t ≤ Tm for some Tm, 0 < Tm ≤ T . The
following a priori estimates allow us to take Tm = T for all m.

Step 2: A priori estimates. Multiplying the jth equation of (3.7)1 by cmj(t)
and summing with respect to j, we obtain

d

dt
‖um(t)‖2H1 + 2‖um(t)‖2H1 + 2〈µ̄(umx(t)), umx(t)〉

+ 2‖
√
σ(umx(t))um(t)‖2

= 2〈f(t), um(t)〉.

(5.5)

We estimate without difficulty the term 2〈f(t), um(t)〉 as follows

2〈f(t), um(t)〉 ≤ 1
2δ1
‖f(t)‖2 + 2δ1‖um(t)‖2 ≤ 1

2δ1
‖f(t)‖2 + 2δ1‖um(t)‖2H1 , (5.6)

for all δ1, 0 < δ1 < 1.
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Hence, from (5.5), (5.6) it follows that

d

dt
‖um(t)‖2H1 + 2(1− δ1)‖um(t)‖2H1 + 2〈µ̄(umx(t)), umx(t)〉

+ 2‖
√
σ(umx(t))um(t)‖2

≤ 1
2δ1
‖f(t)‖2.

(5.7)

Next, multiplying the jth equation of (3.14) by cmj(t) and summing with respect
to j, we obtain

d

dt
‖umx(t)‖2H1 + 2‖umx(t)‖2H1 + 2‖

√
µ(umx(t))4um(t)‖2

+ 2〈σ′(umx(t))um(t)∆um(t) + σ(umx(t))umx(t), umx(t)〉
= 2〈fx(t), umx(t)〉.

(5.8)

Similarly, we have

2〈σ′(umx(t))um(t)∆um(t) + σ(umx(t))umx(t), umx(t)〉

= 2
∫ 1

0

um(x, t)umx(x, t)σ′(umx(x, t))∆um(x, t) dx

+ 2
∫ 1

0

u2
mx(x, t)σ(umx(x, t)) dx

= 2
∫ 1

0

um(x, t)
∂

∂x

(∫ umx(x,t)

0

yσ′(y)
)
dx+ 2

∫ 1

0

u2
mx(x, t)σ(umx(x, t)) dx

= −2
∫ 1

0

umx(x, t)
(∫ umx(x,t)

0

yσ′(y)
)
dx+ 2

∫ 1

0

u2
mx(x, t)σ(umx(x, t)) dx

= 2
∫ 1

0

[
u2
mx(x, t)σ(umx(x, t))− umx(x, t)

(∫ umx(x,t)

0

yσ′(y)
)]
dx ≥ 0,

(5.9)

and this implies

d

dt
‖umx(t)‖2H1 + 2(1− δ1)‖umx(t)‖2H1 + 2‖

√
µ(umx(t))4um(t)‖2

≤ 1
2δ1
‖fx(t)‖2,

(5.10)

for all δ1, 0 < δ1 < 1.
It follows from (5.7), (5.10) that

d

dt

[
‖um(t)‖2H1 + ‖umx(t)‖2H1

]
+ 2(1− δ1)(‖um(t)‖2H1 + ‖umx(t)‖2H1)

≤ 1
2δ1
‖f(t)‖2H1 .

(5.11)
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Integrating (5.11), we have

‖um(t)‖2H1 + ‖umx(t)‖2H1

≤
(
‖u0m‖2H1 + ‖u0mx‖2H1 −R2

)
e−2(1−δ1)t

+
(
R2 +

1
2δ1

∫ t

0

e2(1−δ1)s‖f(s)‖2H1ds
)
e−2(1−δ1)t

≤
(
‖u0m‖2H1 + ‖u0mx‖2H1 −R2

)
e−2(1−δ1)t +R2,

(5.12)

where R2 = sup
0≤t≤T

R1(t),

R1(t) =

{
1

2δ1
1

e2(1−δ1)t−1

∫ t
0
e2(1−δ1)s‖f(s)‖2H1ds, 0 < t ≤ T,

1
4δ1(1−δ1)‖f(0)‖2H1 , t = 0.

(5.13)

Therefore, if we choose u0m such that ‖u0m‖2H1 + ‖u0mx‖2H1 ≤ R2, we obtain
from (5.12) that

‖um(t)‖2H1 + ‖umx(t)‖2H1 ≤ R2, i.e., Tm = T for all m. (5.14)

Let B̄m(0, R) be a closed ball in the space Wm of linear combinations of the
functions w1, w2, . . . , wm, with the norm

‖u0m‖∗ =
√
‖u0m‖2H1 + ‖u0mx‖2H1 .

Let us define
Fm : B̄m(0, R)→ B̄m(0, R)

u0m 7→ um(T ).
(5.15)

We prove that Fm is continuous. Let u0m, ū0m ∈ B̄m(0, R) and let ym(t) =
um(t) − ūm(t), where um(t) and ūm(t) are solutions of the system (3.7)1 on [0, T ]
satisfying the initial conditions um(0) = u0m and ūm(0) = ū0m, respectively. Then,
ym(t) satisfies the differential equation

〈y′m(t) + ym(t), wj〉+ 〈y′mx(t) + ymx(t), wjx〉
+ 〈µ̄(umx(t))− µ̄(ūmx(t)), wjx〉
+ 〈σ(umx(t))um(t)− σ(ūmx(t))ūm(t), wj〉 = 0,

(5.16)

1 ≤ j ≤ m, with initial condition

ym(0) = u0m − ū0m. (5.17)

Using the same arguments as before, we can show that

d

dt
‖ym(t)‖2H1 + 2‖ym(t)‖2H1 + 2〈µ̄(umx(t))− µ̄(ūmx(t)), ymx(t)〉

+ 2〈σ(umx(t))um(t)− σ(ūmx(t))ūm(t), ym(t)〉 = 0.
(5.18)

On the other hand, we have

〈µ̄(umx(t))− µ̄(ūmx(t)), ymx(t)〉 ≥ 0; (5.19)

2〈σ(umx(t))um(t)− σ(ūmx(t))ūm(t), ym(t)〉

= 2‖
√
σ(umx(t))ym(t)‖2 + 2〈σ(umx(t))− σ(ūmx(t)), ūm(t)ym(t)〉.

(5.20)
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Putting K̃R = sup
|z|≤
√

2R

|σ′(z)|, we have

2〈σ(umx(t))− σ(ūmx(t)), ūm(t)ym(t)〉
≤ 2‖ūmx(t)‖‖ym(t)‖‖σ(umx(t))− σ(ūmx(t))‖

≤ 2K̃R‖ūmx(t)‖‖ym(t)‖‖ymx(t)‖

≤ K̃R‖ūmx(t)‖‖ym(t)‖2H1 ≤ RK̃R‖ym(t)‖2H1 .

(5.21)

It follows from (5.18)-(5.21) that

d

dt
‖ym(t)‖2H1 + (2−RK̃R)‖ym(t)‖2H1 ≤ 0. (5.22)

Integrating inequality (5.22), we obtain

‖ym(T )‖2H1 ≤ e(RK̃R−2)T ‖u0m − ū0m‖2H1 ,

or

‖Fm(u0m)−Fm(ū0m)‖H1 ≤ exp
((1

2
RK̃R − 1

)
T
)
‖u0m − ū0m‖H1 . (5.23)

Note that, on Wm, ‖v0m‖H1 and ‖v0m‖∗ =
√
‖v0m‖2H1 + ‖v0mx‖2H1 are equiva-

lent norms, hence, there exist two constants D1m > 0, D2m > 0 such that

D1m‖v0m‖∗ ≤ ‖v0m‖H1 ≤ D2m‖v0m‖∗ for all v0m ∈Wm. (5.24)

It follows from (5.23), (5.24) that

‖Fm(u0m)−Fm(ū0m)‖∗ ≤
D2m

D1m
exp((

1
2
RK̃R − 1)T )‖u0m − ū0m‖∗ (5.25)

for all u0m, ū0m ∈Wm.
Hence, Fm : B̄m(0, R) → B̄m(0, R) is continuous. Applying the fixed point

theorem of Brouwer, we have (for every m) a function u0m ∈ B̄m(0, R) such that
the solution of the initial value problem (3.7) is a T -periodic solution of the system
(3.7)1. This solution satisfies the inequality (5.14) a.e., in [0, T ] and consequently,
by (5.11) we have

‖um(t)‖2H1 + ‖umx(t)‖2H1 + 2(1− δ1)
∫ t

0

(‖um(s)‖2H1 + ‖umx(s)‖2H1)ds

≤ R2 +
1

2δ1

∫ T

0

‖f(s)‖2H1ds ≤ CT .
(5.26)

On the other hand, we multiplying the jth equation of (3.7)1 by c′mj(t) and
summing up with respect to j, afterwards, integrating with respect to the time
variable from 0 to T , we obtain after some rearrangements

2
∫ T

0

‖u′m(t)‖2H1dt+
∫ T

0

d

dt

[
‖um(t)‖2H1 + 2

∫ 1

0

µ̃(umx(x, t)) dx
]
dt

+ 2
∫ T

0

〈σ(umx(t))um(t), u′m(t)〉 dt

= 2
∫ T

0

〈f(t), u′m(t)〉 dt,

(5.27)

where µ̃(z) =
∫ z

0
µ̄(y)dy ≥ 0 for all z ∈ R.
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From (5.4), we obtain∫ T

0

d

dt

[
‖um(t)‖2H1 + 2

∫ 1

0

µ̃(umx(x, t)) dx
]
dt

= ‖um(T )‖2H1 − ‖um(0)‖2H1 + 2
∫ 1

0

[µ̃(umx(x, T ))− µ̃(umx(x, 0))] dx = 0.

(5.28)

Moreover,

2
∫ T

0

〈f(t), u′m(t)〉 dt ≤ 2
∫ T

0

‖f(t)‖‖u′m(t)‖ dt

≤ 2
∫ T

0

‖f(t)‖2dt+
1
2

∫ T

0

‖u′m(t)‖2dt.
(5.29)

Putting σR = sup
|z|≤
√

2R

σ(z), we have

2
∫ T

0

〈σ(umx(t))um(t), u′m(t)〉 dt

≤ 2σR
∫ T

0

‖um(t)‖‖u′m(t)‖ dt

≤ 2RσR
∫ T

0

‖u′m(t)‖ dt ≤ 2TR2σ2
R +

1
2

∫ T

0

‖u′m(t)‖2dt.

(5.30)

It follows from (5.27), (5.28), (5.29) and (5.30), that∫ T

0

‖u′m(t)‖2H1dt ≤ 2TR2σ2
R + 2

∫ T

0

‖f(t)‖2dt ≤ CT , (5.31)

for all m ∈ N, for all t ∈ [0, T ], where CT always indicates a bound depending on
T .

Step 3: The limiting process. By (5.14) and (5.31) we deduce that, there exists a
subsequence of {um}, still denoted by {um} such that

um → u in L∞(0, T ;H1
0 ∩H2) weakly*,

u′m → u′ in L2(0, T ;H1
0 ) weakly.

(5.32)

From (5.4), we obtain
u(0) = u(T ). (5.33)

Using the compactness lemma of Lions [9, p.57] and applying Fischer-Riesz the-
orem, from (5.32), there exists a subsequence of {um}, denoted by the same symbol
satisfying

um → u strongly in L2(0, T ;H1
0 ) and a.e. in QT ,

umx → ux strongly in L2(QT ) and a.e. in QT .
(5.34)

Applying an argument similar to the one used in the proof of Theorem 3.1, we
have

µ̄(umx)→ µ̄(ux) strongly in L2(QT ),

σ(umx)um → σ(ux)u strongly in L2(QT ).
(5.35)
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Denote by {ζi, i = 1, 2, . . . } the orthonormal base in the real Hilbert space
L2(0, T ). The set {ζiwj , i, j = 1, 2, . . . } forms an orthonormal base in L2(0, T ;H1

0 ).
From (3.7)1 we have∫ T

0

〈u′m(t) + um(t), wjζi(t)〉 dt+
∫ T

0

〈u′mx(t) + umx(t), wjxζi(t)〉 dt

+
∫ T

0

〈µ̄(umx(t)), wjxζi(t)〉 dt+
∫ T

0

〈σ(umx(t))um(t), wjζi(t)〉 dt

=
∫ T

0

〈f(t), wjζi(t)〉 dt,

(5.36)

for all i, j, 1 ≤ j ≤ m, i ∈ N.
For i and j fixed, we deduce from (5.32) that∫ T

0

〈u′m(t) + um(t), wjζi(t)〉 dt→
∫ T

0

〈u′(t) + u(t), wjζi(t)〉 dt,∫ T

0

〈u′mx(t) + umx(t), wjxζi(t)〉 dt→
∫ T

0

〈u′x(t) + ux(t), wjxζi(t)〉 dt.
(5.37)

Furthermore, by (5.35), we have∫ T

0

〈µ̄(umx(t)), wjxζi(t)〉 dt→
∫ T

0

〈µ̄(ux(t)), wjxζi(t)〉 dt,∫ T

0

〈σ(umx(t))um(t), wjζi(t)〉 dt→
∫ T

0

〈σ(ux(t))u(t), wjζi(t)〉 dt.
(5.38)

Passing to the limit in (5.36) by (5.37), (5.38), we have∫ T

0

〈u′(t) + u(t), wjζi(t)〉 dt+
∫ T

0

〈u′x(t) + ux(t), wjxζi(t)〉 dt

+
∫ T

0

〈µ̄(ux(t)), wjxζi(t)〉 dt+
∫ T

0

〈σ(ux(t))u(t), wjζi(t)〉 dt

=
∫ T

0

〈f(t), wjζi(t)〉 dt.

(5.39)

This equation holds for every i, j ∈ N, i.e., the equation∫ T

0

〈u′(t) + u(t), w(t)〉 dt+
∫ T

0

〈u′x(t) + ux(t), wx(t)〉 dt

+
∫ T

0

〈µ̄(ux(t)), wx(t)〉 dt+
∫ T

0

〈σ(ux(t))u(t), w(t)〉 dt

=
∫ T

0

〈f(t), w(t)〉 dt, for all w ∈ L2(0, T ;H1
0 ),

(5.40)

is satisfied.

Step 4: Uniqueness of the solutions. Let u and ū be two solutions of (5.2) such
that ‖u‖L∞(0,T ;H1

0∩H2) ≤ R, ‖ū‖L∞(0,T ;H1
0∩H2) ≤ R, with R sup|z|≤√2R |σ′(z)| < 2.
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Then v = u− ū satisfies∫ T

0

〈v′(t) + v(t), w(t)〉 dt+
∫ T

0

〈v′x(t) + vx(t), wx(t)〉 dt

+
∫ T

0

〈µ̄(ux(t))− µ̄(ūx(t)), wx(t)〉 dt

+
∫ T

0

〈σ(ux(t))u(t)− σ(ūx(t))ū(t), w(t)〉 dt = 0, ∀w ∈ L2(0, T ;H1
0 ),

v(0) = v(T ),

v, u, ū ∈ L∞(0, T ;H1
0 ∩H2), v′, u′, ū′ ∈ L2(0, T ;H1

0 ).

(5.41)

Taking w = v in (5.41)1 and using (5.41)2, we obtain∫ T

0

〈v′(t), v(t)〉 dt =
1
2
‖v(T )‖2 − 1

2
‖v(0)‖2 = 0; (5.42)∫ T

0

〈v′x(t), vx(t)〉 dt =
1
2
‖vx(T )‖2 − 1

2
‖vx(0)‖2 = 0; (5.43)∫ T

0

〈µ̄(ux(t))− µ̄(ūx(t)), vx(t)〉 dt ≥ 0; (5.44)∫ T

0

〈σ(ux(t))u(t)− σ(ūx(t))ū(t), v(t)〉 dt

=
∫ T

0

‖
√
σ(ux(t))v(t)‖2dt+

∫ T

0

〈[σ(ux(t))− σ(ūx(t))]ū(t), v(t)〉 dt.
(5.45)

As for (5.21), we have∫ T

0

〈[σ(ux(t))− σ(ūx(t))]ū(t), v(t)〉 dt ≤ 1
2
RK̃R

∫ T

0

‖v(t)‖2H1dt, (5.46)

with K̃R = sup|z|≤√2R |σ′(z)|. Hence∫ T

0

‖v(t)‖2H1dt+
∫ T

0

〈µ̄(ux(t))− µ̄(ūx(t)), vx(t)〉 dt+
∫ T

0

‖
√
σ(ux(t))v(t)‖2dt

≤ 1
2
RK̃R

∫ T

0

‖v(t)‖2H1dt.

(5.47)
By 1

2RK̃R = 1
2R sup
|z|≤
√

2R

|σ′(z)| < 1, we deduce from (5.47) that
∫ T

0
‖v(t)‖2H1dt = 0,

i.e., v = u− ū = 0. This completes the proof. �
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