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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF THE DIRICHLET PROBLEM FOR A NONLINEAR
PSEUDOPARABOLIC EQUATION
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ABSTRACT. This article concerns the initial-boundary value problem for non-
linear pseudo-parabolic equation

ut — Ugat — (1 4+ p(uz))uze + (1 +o(ug))u = f(z,t), 0<z<1l, 0<t<T,
u(0,t) = u(1,t) =0,
u(x, 0) = to(z),
where f, 49, pu, o are given functions. Using the Faedo-Galerkin method and
the compactness method, we prove that there exists a unique weak solution
u such that w € L(0,T;Hj N H?), o' € L?(0,T;HJ) and |ullpoo(gp) <
max{||to||zoo (s Ifllzec (@)} Also we prove that the problem has a unique
global solution with H'-norm decaying exponentially as t — 4oo. Finally,

we establish the existence and uniqueness of a weak solution of the problem
associated with a periodic condition.

1. INTRODUCTION

Consider the following initial-boundary value problem for the pseudo-parabolic
equation arising in third-grade fluid flows

wy— (14 p(tg) gy —QUzze+ (V+ B0 (ug) ) u = f(z,t), 0<z <1, 0<t<T, (L1)

with the boundary conditions

u(0,t) = u(l,t) =0, (1.2)
and with the initial condition
u(z,0) = to(x), (1.3)
or the T-periodic condition
u(z,0) = u(z, T), (1.4)

where a > 0, 8 > 0, v > 0 are given constants and f, g, u, o are given functions
satisfying conditions specified later.
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The pseudo-parabolic equation
Up — Ugat = F(x, 8, Ugy Uge), 0<z <1 t>0 (1.5)

with the initial condition u(x,0) = Go(x) and with the difrerent boundary condi-
tions, has been extensively studied by many authors, see for example [2], [3], [6],
[10], [T4] among others and the references given therein. In these works, many re-
sults about existence, regularity, asymptotic behavior, and decay of solutions were
obtained.

Equations of type (L.5) with a one time derivative appearing in the highest
order term are called pseudo-parabolic or Sobolev equations, and arise in many
areas of mathematics and physics. We refer to the monographs of Alshin [I],
and of Carroll [7] for references and results on pseudoparabolic or Sobolev type
equations. Mathematical study of pseudo-parabolic equations goes back to works
of Showalter in the seventies, since then, numerous of interesting results about
linear and nonlinear pseudo-parabolic equations have been obtained. We also refer
to [12] for asymptotic behavior and to [I3] for nonlinear problems.

An important special case of the model is the Benjamin-Bona-Mahony-Burgers
(BBMB) equation

Up + Uy + Uy — Vigy — @2 Uggy = 0, (1.6)

it was studied by Amick et al in [2], where v > 0, « =1, x € R, t > 0. The authors
proved that solution of with initial data in L' N H? decays to zero in L? norm
as t — +oo. With v > 0, « > 0, z € [0,1], ¢ > 0, the model has the form
was also investigated earlier by Bona and Dougalis in [6], where uniqueness, global
existence and continuous dependence of solutions on initial and boundary data were
established and the solutions were shown to depend continuously on v > 0 and on
a > 0.

The Benjamin-Bona-Mahony (BBM) equation is introduced in [5], in 1972, as
a model for describing long - wave behavior. Since then, the periodic boundary
value problems, the initial value problems and the initial boundary value problems,
for various generalized BBM equations have been studied. On the other hand,
many people have studied the large time behaviors of solutions to the initial value
problems for various generalized BBM equations, such as BBMB equations with
a Burgers-type dissipative term appended, see [14]. Medeiros and Miranda [10]
studied another special case, namely

ut+f(u)r — Ugat :g(l’,t), (17)

where u = u(z,t), 0 < x < 1, and ¢t > 0 is the time. They proved existence,
uniqueness of solutions for f in C* and regularity in the case f(s) = s2/2. Arnold et
al.[3] considered the following equation from the point of view of periodic solutions

— (aUugt)r + cur = —(aug)y + Buy +v, x €R, t€[0,T]. (1.8)

Here, the authors proved the existence, uniqueness and regularity of solutions under
the hypothesis that o, 3 and v are C'-functions of z, ¢t and u, and that they are
bounded together with their first derivatives.

It is well known that equation arises within frameworks of mathematical
models in engineering and physical sciences on third-grade fluid flows, see [4} 8] [11]
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and references therein. For example, the following equation of motion for the un-
steady flow of third-grade fluid over the rigid plate with porous medium is investi-
gated

ou 0%u 0u ouN20%u 0 ou 2
Por =P Mgt Gﬁs(a—y) i %{u taig, + 253(8—11) }u (1.9)
fory > 0, t > 0, where u is the velocity component, p is the density, x the coefficient
of viscosity, @1 and (3 are the material constants, see [4].
Motivated by the above mentioned works, because of mathematical context, we

study of the existence, uniqueness and exponential decay of solutions for Dirichlet
problem (L.I)-(L.3) or (1.4). This article is organized as follows. In section 2, under
appropriate conditions of «, 3, v, f, ug, p, 0 we prove the existence of a unique
solution on (0,T), for every T' > 0 and the boundedness of the solution. In section
3, we study exponential decay of solutions. In section 4, we prove the existence and
uniqueness of a T-periodic weak solution.

2. PRELIMINARIES

Without loss of generality, we consider Problem — witha=08=v=1.

We put 2 = (0, 1) and denote the usual function spaces used in this paper by the
notations LP = LP(Q), H™ = H™(Q). Let {-,-) be either the scalar product in L?
or the dual pairing of a continuous linear functional and an element of a function
space. The notation || - || stands for the norm in L? and we denote by || - ||x the
norm in the Banach space X. We call X’ the dual space of X.

We denote by LP(0,7;X), 1 < p < oo for the Banach space of real functions
u: (0,T) — X measurable, such that

T 1/p
Jul o = ([ Tu(oligar) " <0 tor1<p<oc,
0

and
[l (0,7:x) = esssupgcop [[u(t)|x  for p = oo.

On H', we shall use the norm
lollas = (lol* + oz |1)*/2.

The following lemma is well known.

Lemma 2.1. The imbedding H' — C°(Q) is compact and
[vllco@ < V2|ollgr for all v e H'.
Remark 2.2. On H, ||v||g: and ||v,|| are equivalent norms. Furthermore,
[vllco@) < llvall for all v € H;.
3. EXISTENCE AND UNIQUENESS THEOREM
Without losing of generality, we consider problem - witha=8=v=1.

0
Up — Ugpt — 6—x(ux—|—ﬁ(um))+(1+J(um))u:f(gc,t), O<z<1, 0<t<T,

(3.1)
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where fi(y) = [} p(2)dz, y € ]R
The Weak formulatlon of can be given in the following manner: Find u(t)
defined in the open set (0,T ) such that u(t) satisfies the variational problem

(ue(t), w) + (uar(t), we) + (Ua(t) + f(ua(t)), wa)
+ (1 + o(ua () ult), w) = (f(t), w),
for all w € H} and the initial condition
u(0) = ap. (3.3)
We make the following assumptions:
(H1) 6o € HE N H?;

(3.2)

(H2) f € L*(0,T; H});

(H3) u € C°(R;R) such that p(0) =0, u(z) > 0, for all z € R, z # 0;
(H4) o € C*(R;R) such that
(i) o(0) =0, o(z) >0, zo'(2) >0, for all z€ R, z#0,
y(J) 20’ (2)dz) < y*o(y) for all y € R.
An example of the function o satisfying (H4) is

a(2) = |2,
where ¢ > 1 is a constant. It is obvious that (H4) holds, because
o(2) =2, o'(2) = g2z,
o(0) =0, ()>0za'():q|z\q>0 VZER, 2 #0,

= a =
Z/(/O zo'(z )dz =qy / || dz qy 1

— q q+2 _ q < 2
7q+1|y| pEwT o(y) < yPo(y).

Theorem 3.1. Let T > 0 and (H1)-(H4) hold. Then, problem (3.1) has a unique
weak solution u satisfying

uwe L®(0,T; Hi N H?), ' € L*0,T;H}). (3.4)
Furthermore, we have the estimate

1wl Lo (@r) < max{]|to|| Lo (o), L@} (3.5)

Estimate (3.5) appears naturally, both physical and mathematical context, from
the maximum principle in the study of partial differential equation of the kind of

(3-1).

Proof. The proof consists of several steps.
Step 1: The Faedo-Galerkin approximation (introduced by Lions [9]). Consider a
special orthonormal basis {w;} on H} : w;(z) = v2sin(jnz), j € N, formed by the

52
oz "

—Aw; = Nwj,w; € C®([0,1]), ;= (jm)?, j=1,2,...

eigenfunctions of the Laplacian —A = —

Put .
)= cmi(thw;, (3.6)
j=1
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where the coefficients ¢,,;(t) satisfy a system of nonlinear differential equations
(g (£, w;) + (g (), i) + (e (8) + it (1), W)
(L 0 s () (8), w5) = (F (D) wj), 1< j<m, (3.7)

Um (0) = UOm,,

in which
U = Zﬂmjwj — @ip  strongly in Hy N H?. (3.8)
j=1
System (3.7) can be rewritten in the form
1 _
C;ni(t) + Cmi(t) + T+ N [(N(umw(t))a Wiz) + <U(umz(t)>um(t)vwi>}
1 (3.9)
= t 1/

Cmi(o):ﬂmia 1<i<m.

It is clear that for each m there exists a solution u,,(t) in form (3.6) which
satisfies (3.7) almost everywhere on 0 < ¢t < T, for some T},, 0 < T,,, < T. The
following estimates allow us to take T, = T for all m.

Step 2: A priori estimates.

(a) First estimate. Multiplying the j** equation of 1 by ¢m;(t) and summing
up with respect to j, afterwards, integrating with respect to the time variable from
0 to t, we obtain after some rearrangements

t
Sut) = 51 0) 42 [ (F(5),m(5)ds, (3.10)
0
where
t
sm<w:=num<wnzl+-2[;num<@n%uw
t t (311)
42 [ (s (9), s (s +2 [ (0l (5)), 12, (5)) .
0 0
By uom — o strongly in H N H?, we deduce
Sm(0) = Juomll3n < S ¥m €N, (3.12)

where S always indicates a constant depending on 1.
Note that

y
ya(y) = y/ w(z)dz >0, VyeR.
0
On the other hand, we have

2 [ un(Nds < [P+ [ ()]s o1

T 1
< [ 15 Pds+ 5500
0
Therefore,

T
Sin(t) < 250 + 2/ 1f(s)|2ds < OV, (3.14)
0



6 L. T. P. NGOC, D. T. H. YEN, N. T. LONG EJDE-2018,/77
(b) Second estimate. Next, by replacing w; in (3.7)1 by —wjzz, we obtain that

(U (), wjz) + (Aup, (1), Awj) + (Aup(t), Awj)
+ (U (1), wjfc> + (U (1)) At (1), ij>

+ (0" (Ui () ) (8) Aty () + 0 (U (8)) e (), W) (3.15)
= (fa(t), wjz), 1< j <m.
Similar to 17 we have
Pon(t) = Pon(0) — 2 /O (0t ()t (5) Dt (5), tna ()
+ (o (uma(5)), |umm(3)|2>]d5+ 2/ (Fa(5), e (5))ds (3.16)
0
= Pp(0) + 11 + Iy,
where
Po(®) = s (O + [ 8001 + 2 | (s 5)1 + |t (5) )

’ (3.17)

2 / (it (5)), | Dt (5)] ) s

From wug,, — o strongly in H} N H?, we deduce
Prn(0) = [[tma (O)[* + [ Aunm (0)[1* = Juomall® + [[Auom||* < Py ¥m €N, (3.18)
where Py always indicates a constant depending on .
Estimating I;. Note that

- 2<U,(Umx(5))Umx(5)Aum(S)v U (8))

= —2/0 0 (U (T, 8) ) Umma (T, 8) Aty (7, 8) U (T, 8) do
(3.19)

(z,8)0 (Umz(z, 8)) dx

mx

= 2(0(Uma(s)), |umw(5)|2>a
since y( [} 20’ (2)dz) < y?o(y) for all y € R. Hence
L=-2 /0 (0" (s ()1t () At (5.t (5))

(3.20)
+ (0 (Uma(s)), |um<s>|2>}ds <.
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Estimating Is.

t T
Iy = 2/0 (fe(s), tma (s))ds S/O [[fa () 1uma (s) | ds

. - (3.21)
< / 1£2(5)1v/Sim(5)ds < /O / 12 (s)llds.
0 0
It follows from (3.16]), (3.18]), (3.20), (3.21) that
T
Pal®) < Pt /O [ fu(o)lds < CF. (3.22)
0

(c) Third estimate. Multiplying the j** equation of (3.7)1 by ¢},;(t) and summing
up with respect to j, afterwards, integrating with respect to the time variable from
0 to t, we obtain after some rearrangements

Qunlt) = Q@ (0) — 2 / (0t (3)) i (5), 1 (5))ds + 2 / (F(s), i (5)) ds
=Qm(0)+ J1 + Ja,

where

t 1
Qun(t) = llum(B)]2 +2 / et () 2 dls + 2 / ez, 8) d, (3.24)

(=) = / i)y =0 VieR.

Estimating Q. (0). From ug,, — o strongly in H} N H?, we can deduce the
existence of a constant )y > 0 independent of m such that

1
Qun(0) = [Jugm |21 +2 /0 A(tome(2))dz < Qo VmeN.  (3.25)

Estimating J1. By (3.22)), we have

[tmar (2, 8)| < e (8) [ coo,11) < V2t (5)]] e

< V2 [t ()] + [[Awn (5)[2 < V21/2[[ Aur (5)]2
< 2| At (8)]| < 2¢/Pra(s) < 24/ CF.
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Hence

J = -2 /0 (0t (5) )t (), 1 (5)) s

<2 sup U(Z)/OIIUm(S)IIIIULz(S)IIdS

lz|<2y/CP
t
<2 sup U(Z)/ MHU;@(S)H"ZS
EESNES 0
. (3.26)
<2/C) s o) [ (o)
21<2y/CP 0
1 1 ¢
<orc) s )+ [ i ()Pds
|s1<2,/C® 0
(1) 2 1
<2TC;’  sup U(Z)JrZQm(t)’
lz1<2y/C$
FEstimating Jo.
t
T2 =2 [ (7). (s
0
T 1 t
<2 [P+ 5 [ (o) (3.27)
0 0

T
1
<2 [ 176)Pds+ 1Qn (0.
0
Then, it follows from (3.23), (3-25)(3.27) that

T
Qum (1) gz(@o+2Tc<T1> sup  o2(z) +2 / [ f(s)||2ds) <c®. (3.28)
|z]<2y/C? 0

Step 3: Limiting process. Thanks to (3.14)), (3.22), (3.28]) there exists a subse-
quence of {u, }, still denoted by {u,} such that

Up — u  in L(0,T; Hy N H?) weakly*,
ul, —u' in L?(0,T; H) weakly.

m

(3.29)

Using the compactness lemma of Lions [9 p.57], and applying Fischer-Riesz
theorem, from (3.29), there exists a subsequence of {u,,}, denoted by the same
symbol satisfying

Uy — u  strongly in L?(0,T; H}) and a.e. in Qr,

) (3.30)
Uma — Uy strongly in L°(Qr) and a.e. in Q7.
Then, it follows from (3.30)), that
(U (2,1)) — (ug(z,t a.e., (z,t) in Qr,
fi(tma (2, 1)) — [i(us (2, 1)) (z,t) in Qr (331)

0 (U (2, 8) ) tum (2, 1) — o(ug(z,t))u(z,t) ae., (x,t) in Qr.
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On the other hand, by (3.22)), we have

[tme (2, )] < Humz(t)”CO([O,l]) < \/§||umm(t)||H1

< 2| A ()] < 2¢/Po(t) < 21/ CS;

|auma (2, )] < sup__|p(2)] < Ors
|z]<2y/C® (3.32)

|0 (e (2, ) )t (5 8)] < [|tima (8) [0 (wma (2, 1))]

< \/C’:(FQ) sup |o(z)] < Cr.
|

z|<24 /8P
Applying the dominated convergence theorem, from (3.31)), (3.32)) we obtain
fi(tme) — (ug)  strongly in L*(Qr),

0 (U )ty — 0(ug)u  strongly in L*(Qr).
Passing to the limit in (3.7]) by (3.8), (3.29), (3.30) and (3.33|), we have u satis-
fying
(ue(t), w) + (uar (), wa) + (ua(t) + fi(ue(t), we) + (1 + o (ua(t)))u(t), w)
= (f(t),w), Vw € Hy, (3.34)

(3.33)

Furthermore,
u€ L0, T; Hy N H?), o' € L*0,T;Hp).

Step 4: Uniqueness of the solution. Let u and v be two weak solutions of (3.1
such that

u,v € L*(0,T; Hy N H?), u,v € L*(0,T; Hy). (3.35)
Then w = u — v satisfies
(we(t), ) + (Wat (1), Ya) + (W (1), yo) + (w(t),y)
+ (Alus (1) = Bve(t)), yo) + (0 (ue(t))u — o (ve(t))v,y) =0, Yy € Hy,
w(0) =0,
w,v,w € L®(0,T; Hy N H?),  ug,ve,wy € L*(0,T; Hy).

(3.36)

Take y = w = u — v, in (3.36); and integrating with respect to ¢, we obtain

p(t) = *2/0 (1(uz(s)) = (v2(5)), wa(s))ds

_ 2/0 (o(ug(s))u(s) — o(ve(s))v(s), w(s))ds (3.37)

= p1(t) + p2(t),

where

p(t) = w(t) 2 +2 / ()12 (3.38)
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Estimating p1(t). Using the monotonicity of the function z — [i(z), we obtain

pr(t) = —2 / (i(ua(5)) — (02 (), wa(s))ds < 0. (3.39)

Estimating p2(t). We have
w = [o(ug)w + (o(uy) — o(vg))v]w
= o(uz)w? + (0(uz) — o(vsg))vw (3.40)
> (o(ug) — o(vs))vw.
This implies
(o(ug(s))u(s) — o(va(s))v(s), w(s))ds

t

2 | (lo(ua(s)) = o(va(s))] v(s), w(s))ds
A (3.41)
; |

pa(t) = =2

S— >—

<
<

2 [ lo(ua(s)) = a(va(s)] v(s)llwls)lds

< 2/0 lo(ua(8)) = o (va(s)) vz (8)|[w(s)l|ds.

Put M = ||ull Lo 0,112 nm2) + [0l Lo 0,73 0m2) and Loy = supy, < 0" (2)], we
have

o (ug) — o(vs)| < Laglws)- (3.42)

Hence

t
palt) < 2 [ s (6) o)l (o) s
t
<MLy [ s fw(s)]ds (3.43)
0
t
SMLM/ p(s)ds.
0
Then, from (3.37), (3-39), (3.43) it follows that

p(t) < MLM/O p(s)ds. (3.44)

By Gronwall’s lemma, (3.44)) leads to p(t) =0, i.e., w=u—v =0.
Step 5: Proof of the estimate(3.5). First, let us assume that

ug(z) < M, a. e, xzeQ,and max{|tol e, | fllLe@m)} < M. (3.45)

Then z = u — M satisfies the initial and boundary value

2t — Zpat — (%(zx +ia(ze))+ 2+ (z24+ M)o(zy)

=flz,t) - M, 0<z<1,0<t<T, (3.46)
2(0,t) = 2(1,t) = —M,
2(x,0) = @g(x) — M.
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Multiplying equation by v € Hi, then integrating by parts with respect
to variable z, after some rearrangements, one has
(20(t), v) + (22e(t), v2) + (22(t) + [i22(t)), V2)
+ (2(t) + (2(t) + M)o(z2(t)), v) (3.47)
= (f(t) — M,v), forallve Hj.
From assumption (H1)—(H4) we deduce that the solution of the initial and bound-

ary value problem (3.1)) satisfies u € L>°(0,T; H N H?), v’ € L*(0,T; H}), so that
we are allowed to take v = 2+ = 2(|z| + z) in (3.47))). Thus, it follows that

(), 2 () + (zae(t), 2 (8)) + (2 (t) + (2 (1)), 27 (8))
+{2(8) + (2(8) + M)o(za(t)), 2 () (3.48)
= (f(t) — M, z* (1))
Hence
%%wz<mw4zum>+w<ﬂﬁ+wwmﬁ
=—wu<» ) - « () + M)o(2F (1)), 2 (1)) (3.49)
()~ Mzt (1) <

since M > max{||to|| o, Hf”Loo(QT)} and
1

2 (t), 2T = 1ztx, 2T (x,t)de = 2Tz, ) 2T (x,t) da
(o), 2 (1)) A (2, t)2 (2, 1) d A (F (@, 1)) (1) d

z>0
1d [! ) )
= O de = = — ) d (3.50)
s [ o= 38 e pas
1d )
thHz @I,

and on the domain z > 0 we have 2T = 2, z, = (1), and z, = (2);.

Integrating (3.49)), we obtain
125 O + 2 @1 < 127017 + |25 (0)]. (3.51)

Since 27 (2,0) = (u(x,0) — M)t = (dg(x) — M)+t =0, 2] (2,0) = 0, we obtain
2 ()% + ||z (1)]|> = 0. Thus 2+ =0 and u(x,t) < M, for a.e. (x,t) € Qr.

The case —M < ug(z), a.e., x € Q, and M > max{||dol/z, || f|lz=(@s)} can
be dealt with, in the same manner as above, by considering z = u+ M and 2z~ =
1(|z| = =), we also obtain 2~ = 0 and hence u(z,t) > —M, for a.e. (z,t) € Qr.

From the above, one obtains |u(z,t)| < M, a.e. (z,t) € Qr, i.e.,

[ullzoe(@ry < M, (3.52)
for all M > max{||tg||ze~,||f|lL>(qs)}. This implies (3.5). The proof is complete.
O

4. EXPONENTIAL DECAY OF SOLUTIONS

This section investigates the decay of the solution of (3.1f). For this purpose, we
make the following assumption.

(H5) f € L*(R4; HY) and there exist two constants Cp > 0, 79 > 0 such that
| f(®)]| < Coe™0t, for all t > 0.
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Theorem 4.1. Assume that (H1), (H3)—(H5) hold. Then, problem (3.1) has a
unique weak solution u satisfying

uwe L0, T; Hy N H?), o € L*(0,T;Hy) for all T >0, (4.1)
and there ezist positive constants C, v such that
lu(®)|| g < Cexp(—vt) for allt > 0. (4.2)

Proof. Multiplying the j*" equation of (3.7)1 by ¢ (t) and summing with respect
to j, after some rearrangements, we obtain

d _
Sl Ol + 2l (Ol + 20t (£), e (1)) + 2(0 (wma (8)), 17, () (4.3)
= 2(f(t), um(t))-
Note that
20f(8), um (t)) < 2[f @) um @O < 2[f @)l tom @) ]| 10
1 (4.4)
< %Hf(t)ll2 + 20t (1) 1311
for all § > 0.
It follows from (4.3)), (4.4)) that
d
%”um(t)"ill +2(1 = 8)lum (1) I3
. . (4.5)
< — 2< —C2e720t for all :
_25||f(t)H _25006 , foralldo >0
Choose § and +y such that
0<d<l1l, 0<~vy<min{l—0d,}. (4.6)
Then from (4.5)), (4.6) we have
d 1 _
@llum(t)llip + 29 [[um (D)7 < 275036 2ot (4.7)
Integrating (4.7)), we obtain
02
(O < (o3 + ——2—— e 2, 4.8
(@l < (1ol + 525 )e (48)
Letting m — +oo in (4.8), we obtain
Ju(t) s < T g (1)
2 (4.9)
< (o3 + ——2—)e 2, forall t > 0.
< (lolli + g5y )" forall 62
This implies (4.2, and completes the proof. O

5. EXISTENCE AND UNIQUENESS OF A T-PERIODIC WEAK SOLUTION

In this section, we shall consider problem (1.1)), (1.2)), (L.4)) with the constants
o = ﬁ = ’)/ = 1’

Ut — Ugxt — (1 =+ l’[’(ul))ull + ( + U(ul))u = f(.’l?,t), 0<z< 17 0<t< T7
(

(5.1)
We make the following assumptions:
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(H6) f is T-periodic in t, i.e., f(x,0) = f(z,T).

Remark 5.1. The weak formulation of problem ([5.1)) can be given in the following
manner: Find u € L*°(0,T; H} N H?) with u' € L?(0,T; H}), such that u satisfies
the variational equation

/0<u’(t)+u(t),w(t)>dt+/o (L (8) + 1w (£), 1w, (8) dt

T

T
+ [ w0y as [ wupo.ema o

= /T<f(t),w(t)> dt, for all w € L*(0,T; H}),
0

Theorem 5.2. Let T > 0 and (H2), (H3), (H4), (H6) hold. Then problem (5.1)
has a weak solution u such that

u € L=(0,T; Hy N H?) and u' € L*(0,T; Hy). (5.3)

Furthermore, if |[ul| Lo (0,7 nm2) < R, with R sup |o”(2)| < 2, then the solution
|z|<V2R
1S unique.

Proof. The proof consists of several steps.

Step 1: Consider the basis {w;} as above. Let W,, be the linear space generated
by w1, ws, ..., wy,. We consider the following problem.

Find a function w,,(¢) in the form satisfying the nonlinear differential equa-
tion system 1 and the T-periodic condition

U (0) = wm (T). (5.4)

We consider an initial value problem given by , where ug,, is given in W,.

It is clear that for each m, there exists a solution w,,(¢) in the form which
satisfies almost everywhere on 0 < t < T, for some T,,, 0 < T,, < T. The
following a priori estimates allow us to take T, = T for all m.

Step 2: A priori estimates. Multiplying the j*" equation of ([3.7)1 by ¢m;(?)
and summing with respect to j, we obtain

o (1) 3+ 2t 01+ 20t (1)), s (1)

+ 2[ v/ 0 (e (1) ) (8) ]| (5.5)
= 2(f (1), um(t)).

We estimate without difficulty the term 2{f(¢), un, (t)) as follows

2£(8), 1 (1) < 5 FOI + 261 Jan (OIF < 55 IFOIF + 201l un(Ol, (5.0

for all 41, 0 < 61 < 1.
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Hence, from (5.5)), (5.6) it follows that

[t () [[Fr + 2(1 = 1) [[um (D711 + 2(A(ma (1)), tma (1))
+ 2” V O (U (1)) um ()

(5.7)
< 55 IS

Next, multiplying the j* equation of (3.14]) by Cmj(t) and summing with respect
to j, we obtain

d

%”Umr(t)”?{l + 2|[tma (

)12
+ 2< /(umw(t))

||H1 Jr2”\/ Um:c Aum
m(E) At (t) + 0 (Uma (1)) Uma (), Uma (1))

(5.8)
Similarly, we have
2(0" (e ()t (8) At () + 0 (e (8) )i (), s (1))
= 2/0 U (T, ) Ui (2, 8) 0" (W (2, 1) ) Aty (2, ) d
1
+ 2/0 u?, (2,8)0 (Ume (2, 1)) dx
1 9 Uz (T, t) 1 (59)
:2/0 um(m,t)a(/o dm+2/0 u?, (U (2,1)) dz

1 umw(w,t) 1
= —2/ umm(x,t)</ dx+2/ u?,
0 0 0

o(Uma(x,t)) dx
= 2/01 [ugnx(x,t)a(umm(m,t)) - um(x,t)(/um(m " ya’(y))} dz >0,

0
and this implies

d
%Humr(t)”?{l +2(1 = 61) | wme ()

O+ 20V 1t (1) Dt (E
2
< o O

)12
(5.10)
for all 41, 0 < 61 < 1.

It follows from (5.7)), (5.10]) that

=

() + et ()] + 200 = 1) () s + s (6 )
1
5 £ O,

IA

(5.11)
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Integrating (5.11)), we have
[t (0) 32 + et () [

< (H’U’OmH?L]l + [ woma| 3 — R2>e_2(1—51)t

L (5.12)
+ (R2 + —/ 62(1*51)5Hf(5)||%1d5> p—2(1=d1)t
201 Jo
< (HuOmep + lltomal|%s — R2)6*2(1751)t LR
where R2 = sup R(t),
0<t<T
t _
Ri(t) = ielzu—aﬁ o €20 f(s)]|2ds, 0<t<T, (5.13)
wra=s 17Ol t=0.
Therefore, if we choose ug,, such that ||u0m||§{1 + ||u0mz‘|%{1 < R2, we obtain
from (5.12)) that

Let B, (0, R) be a closed ball in the space W,, of linear combinations of the
functions wy, wa, ..., Wy, with the norm

Uom ||+ = Uom || 1 Uomaz || 1+
l[wom|| l[om I3+ + 1l IF

Let us define - -
Fm : Bm(0,R) — B,,,(0,R)

U, > U (T).

(5.15)

We prove that F,, is continuous. Let ugm, tom € Bm(0,R) and let y,,(t) =
U (t) — U (t), where up,(t) and %, (t) are solutions of the system (3.7)1 on [0, 7]
satisfying the initial conditions ., (0) = ug;, and @, (0) = o, respectively. Then,
ym(t) satisfies the differential equation

(Y (1) + ym (1), wj) + (Y () + Yma (1), Wjz)
+ <ﬁ(umw(t)) - p’('amaj(t))v wjac) (516)
+ (0 (U (1)) Um (t) — 0 (Ume () Um (t), w;) = 0,
1 < 5 < 'm, with initial condition
ym(o) = Uom — Uom.- (517)

Using the same arguments as before, we can show that

%llym(t)ll%r1 +2ym Ol + 2(A(uma(t) = ltma (), Yma (t))
+ 2(0 (e () )t () = 0 (i ()t (1), ym (1)) = 0.
On the other hand, we have
(i(tma (8)) = itima (1)), Yma (1)) = 0; (5.19)
2(0 (tma (t))um () = 0 (tUma (t))Um (), ym (1))
= 2/ v/ 0 (tma ()Y (0)* + 2(0 (e (8)) = 0 (i (1)), G (6)Ym (1))

(5.18)

(5.20)
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Putting Kr = sup |o’(z)], we have
|z|<V2R

2(0 (tma (t)) = 0 (Uma(t)), tm (£)ym (1))

< 2|t ()] [[ym () o (wma (1)) — o (@ma ()]

< 2K gt () [9m (D) | [ (1)

< RRllﬂmz(t)llllym(t)Hﬁp < RER|lym ()31
It follows from ([5.18] - ) that

£||ym(7f)||?q1 + (2= RER)|ym ()7 < 0. (5.22)

Integrating inequality (5.22)), we obtain

(5.21)

lym (D) 172 < 52T ugm, — Gom |31,

or

1 ~
| F o (tom) — Fon(Gom) || a1 < exp ((iRKR - 1)T) [wom — Gom g1 (5.23)

Note that, on W, ||[vom||gr and ||vom||« = \/Hvomﬂip + [[vomz |31 are equiva-
lent norms, hence, there exist two constants Dy,, > 0, Ds,, > 0 such that

Dimlvom|l« < Jvom|lgr < Daml|vom|«  for all vg,, € W,. (5.24)
It follows from ([5.23)), (5.24) that

Do,
||fm(u0m) - fm(QOm)H* < D2
Im

1 ~
exp((5RER = DT)[uom — tomll. (5.25)

for all ugy,, tom € Win.

Hence, F,, : B,,,(0,R) — B,,(0,R) is continuous. Applying the fixed point
theorem of Brouwer, we have (for every m) a function ug,, € B,,(0, R) such that
the solution of the initial value problem is a T-periodic solution of the system
(3.7)1. This solution satisfies the inequality a.e., in [0, 7] and consequently,

by (5.11) we have

et ()1 72 + ||umx(t)H§p +2(1 - 51)/0 (lum ()7 + e ()] 72)ds

(5.26)
On the other hand, we multiplying the ;" equation of (3.7); by Cm;(t) and

summing up with respect to j, afterwards, integrating with respect to the time
variable from 0 to 7', we obtain after some rearrangements

T , ) T d ) 1~
2 [+ [ [l @1 +2 [ ine(o.0) do] a
T
42 [ {0t (1)) (1), () (5.27)
0

_o / (F(E), il (8)) i,

where ji(z) = [ i(y)dy > 0 for all z € R.
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From (5.4)), we obtain

T d 1
| [l ®Brs 2 [ a0 ] at
0 0 . (5.28)
ot ()25 — [ (021 +2 / it (2, T)) = it (,0))] diz = 0.
Moreover,
T T
2 / CF(E), il (1))t < 2 / £ (1)
. T (5.29)
<o [ o) [ 0P
0 2 0
Putting ogp = sup o(z), we have
|2|<V2R
T
2 / (0t (1)t (1), 1 (8)
0
T
< 20n [ Jum Ol (9] (5.30)
0
T 1 T
< QRCTR/ |ul, ()] dt < 2T R%0% + §/ (|l (t) || dt.
0 0
It follows from ([5.27)), (5.28)), (5.29) and (5.30)), that
T T
/ el (O dt < 2TR?0% + 2 / 1£(8)|%dt < Cr., (5.31)
0 0

for all m € N, for all ¢ € [0,T], where Cr always indicates a bound depending on
T.

Step 3: The limiting process. By (5.14]) and (5.31]) we deduce that, there exists a
subsequence of {u,,}, still denoted by {u,,} such that

Uy, — u  in L(0,T; Hy N H?) weakly*,

5.32
ul, — v in L?(0,T; Hy) weakly. (5.32)

From ([5.4)), we obtain
u(0) = u(T). (5.33)
Using the compactness lemma of Lions [9] p.57] and applying Fischer-Riesz the-
orem, from ([5.32)), there exists a subsequence of {u,,}, denoted by the same symbol
satisfying
Uy — u  strongly in L*(0,T; Hy) and a.e. in Qr, (5.34)
Ume — Uy  strongly in L? (Qr) and a.e. in Q. '
Applying an argument similar to the one used in the proof of Theorem we
have
fi(tme) — fi(ug)  strongly in L*(Qr),

o (5.35)
(U )Um — o(ug)u  strongly in L*(Qr).
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Denote by {¢;, ¢ = 1,2,...} the orthonormal base in the real Hilbert space
L?(0,T). The set {¢;w;, i, j = 1,2,...} forms an orthonormal base in L2(0,T; Hg).

From 1 we have
T T
/0 <u;n (t) + Um(t)a w]Cz(t» dt + /0 <u;mc (t) + Uz (t)v wiji (t)> dt

+ /O <ﬂ(umx (t))v wjx(i (t» dt + /0 <U(umm (t))um (t)v w]Cz(t» dt
T
= [

foralli,j,1<j<m,ieN.
For i and j fixed, we deduce from (5.32)) that

T T
/ (Wl (£) + tn (8), ;G (1)) dt — / (! (£) + u(t), wyGi() dt,
0 0

T T
/ (e (£) + U (1), o Gi(t)) dt — / (u () + e (t), wjoGi(t)) dt.
0 0

Furthermore, by (5.35), we have
| tiuma ) wssG0) e = [ a6 w560 at,
0 0
T T
/ <U(umw (t))um(t)7 w; G (t)> dt — / <O’(Ux (t))U(t), wJCz(t)> dt.
0 0

Passing to the limit in (5.36)) by (5.37)), (5.38)), we have

T

T
/(a’(t)+u(t),wj§,»(t)>dt+/ (ul, (t) + ug (t), wiL i (1)) di
0 0
T ~ T
n / (i(ua(1)), w;aGo (1)) dt + / (0 (1t (1)) (1), ;G (1)
T
- / (), wi (1)) dt.

This equation holds for every i, j € N, i.e., the equation
T T
/ (! (1) + u(t), wt)) dt + / (ul(£) + s (1), wy (1)) dt
0 0
+ / (i (1)), wa () dt + / (o (g (1))u(t), w(t)) dt
T
= / (f@t),w(t))dt, forall we L*(0,T;Hy),
0

is satisfied.

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

Step 4: Uniqueness of the solutions. Let v and @ be two solutions of (5.2]) such
that [|ull o o, rim2nm2y < B, 8]l Lo o,mim2nme) < R, with Rsup),  sp |0’ (2)] < 2.
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Then v = u — u satisfies

/ (W () + v(t), w(t)) dt + / (WL () + va(t), wa (8)) d
0 0

r (5.41)
+/0 (o(uz(t))u(t) — otz (t)a(t), w(t)) dt =0, Yw € L*(0,T;HY),
v(0) = o(T)
v,u, i € L0, T; HY N H?), o' @’ € L*(0,T; Hy).
Taking w = v in 1 and using 2, we obtain
T
| @ ®.ete) dt = S1o@? - Slo)E = o (5.4
0
T 1 1
/ (e (1), v (1)) dt = 5 o (T)]|* = 5llva(0)[|* = 0; (5.43)
0
| Gt = o). va(e) de > 0 (5.44)
T
/ (0 (uz (t))u(t) — ot (t))a(t),v(t)) dt
0 (5.45)

/ /o () 0(8)] Pt + / ([0 (s (1)) — o (@a(t)]a(t), v(t)) d.
As for , we have
T 1 . T
/ (foor2 (1)) — o i (1))]a(0) v(1)) e < 5 R / lo(Zdt, (5.46)
0 0

with K = SUp|,<,/3r |0’ (2)|. Hence

T T
/ ()|t + / (ilua () — it (0)), va (1)) dt + / I/ lan)o()|2dt

0

1 . T
< SRR [ ol
0

(5.47)

iRKR = %Rl |S<u3R|a'(z)| < 1, we deduce from (5.47)) that fOT lv(t)]|3:dt =0,
z|<v2

i.e., v =u—u = 0. This completes the proof. (]
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