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EXISTENCE AND ASYMPTOTIC EXPANSION OF SOLUTIONS
TO A NONLINEAR WAVE EQUATION WITH A MEMORY

CONDITION AT THE BOUNDARY

NGUYEN THANH LONG, LE XUAN TRUONG

Abstract. We study the initial-boundary value problem for the nonlinear

wave equation

utt −
∂

∂x
(µ(x, t)ux) + K|u|p−2u + λ|ut|q−2ut = f(x, t),

u(0, t) = 0

−µ(1, t)ux(1, t) = Q(t),

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where p ≥ 2, q ≥ 2, K, λ are given constants and u0, u1, f, µ are given func-

tions. The unknown function u(x, t) and the unknown boundary value Q(t)
satisfy the linear integral equation

Q(t) = K1(t)u(1, t) + λ1(t)ut(1, t)− g(t)−
Z t

0
k(t− s)u(1, s)ds,

where K1, λ1, g, k are given functions satisfying some properties stated in the

next section. This paper consists of two main sections. First, we prove the

existence and uniqueness for the solutions in a suitable function space. Then,
for the case K1(t) = K1 ≥ 0, we find the asymptotic expansion in K, λ, K1 of

the solutions, up to order N + 1.

1. Introduction

In this paper, we consider the following problem: Find a pair of functions (u, Q)
satisfying

utt −
∂

∂x
(µ(x, t)ux) + F (u, ut) = f(x, t), 0 < x < 1, 0 < t < T, (1.1)

u(0, t) = 0, (1.2)

−µ(1, t)ux(1, t) = Q(t), (1.3)

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.4)

where F (u, ut) = K|u|p−2u+λ|ut|q−2ut, with p, q ≥ 2, K, λ are given constants and
u0, u1, f , µ are given functions satisfying conditions specified later; the unknown
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function u(x, t) and the unknown boundary value Q(t) satisfy the integral equation

Q(t) = K1(t)u(1, t) + λ1(t)ut(1, t)− g(t)−
∫ t

0

k(t− s)u(1, s)ds, (1.5)

where g, k, K1, λ1 are given functions. Santos [10] studied the asymptotic behavior
of solution of problem (1.1), (1.2) and (1.4) associated with a boundary condition
of memory type at x = 1 as follows

u(1, t) +
∫ t

0

g(t− s)µ(1, s)ux(1, s)ds = 0, t > 0. (1.6)

To make such a difficult condition simpler, Santos transformed (1.6) into (1.3), (1.5)
with K1(t) = g′(0)

g(0) , and λ1(t) = 1
g(0) positive constants.

In the case λ1(t) ≡ 0, K1(t) = h ≥ 0, µ(x, t) ≡ 1, the problem (1.1)–(1.5) is
formed from the problem (1.1)–(1.4) wherein, the unknown function u(x, t) and the
unknown boundary value Q(t) satisfy the following Cauchy problem for ordinary
differential equations

Q′′(t) + ω2Q(t) = hutt(1, t), 0 < t < T,

Q(0) = Q0, Q′(0) = Q1,
(1.7)

where h ≥ 0, ω > 0, Q0, Q1 are given constants [6].
An and Trieu [1] studied a special case of problem (1.1)–(1.4) and (1.7) with

u0 = u1 = Q0 = 0 and F (u, ut) = Ku + λut, with K ≥ 0, λ ≥ 0 are given
constants. In the later case the problem (1.1)–(1.4) and (1.7) is a mathematical
model describing the shock of a rigid body and a linear viscoelastic bar resting on
a rigid base [1].

From (1.7) we represent Q(t) in terms of Q0, Q1, ω, h, utt(1, t) and then by
integrating by parts, we have

Q(t) = hu(1, t)− g(t)−
∫ t

0

k(t− s)u(1, s)ds, (1.8)

where

g(t) = −(Q0 − hu0(1)) cos ωt− 1
ω

(Q1 − hu1(1)) sin ωt, (1.9)

k(t) = hω sinωt. (1.10)

Bergounioux, Long and Dinh [2] studied problem (1.1), (1.4) with the mixed bound-
ary conditions (1.2), (1.3) standing for

ux(0, t) = hu(0, t) + g(t)−
∫ t

0

k(t− s)u(0, s)ds, (1.11)

ux(1, t) + K1u(1, t) + λ1ut(1, t) = 0, (1.12)

where

g(t) = (Q0 − hu0(0)) cos ωt +
1
ω

(Q1 − hu1(0)) sinωt, (1.13)

k(t) = hω sinωt. (1.14)

where h ≥ 0, ω > 0, Q0, Q1, K, λ, K1, λ1 are given constants.
Long, Dinh and Diem [7] obtained the unique existence, regularity and as-

ymptotic behavior of the problem (1.1), (1.4) in the case of µ(x, t) ≡ 1, Q(t) =
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K1u(1, t) + λut(1, t), ux(0, t) = P (t) where P (t) satisfies (1.7) with utt(1, t) is re-
placed by utt(0, t).

Long, Ut and Truc [9] gave the unique existence, stability, regularity in time
variable and asymptotic behavior for the solution of problem (1.1)–(1.5) when
F (u, ut) = Ku + λut. In this case, the problem (1.1)–(1.5) is the mathematical
model describing a shock problem involving a linear viscoelastic bar.

The present paper consists of two main parts. In Part 1 we prove a theorem of
global existence and uniqueness of weak solutions (u, Q) of problem (1.1) - (1.5).
The proof is based on a Galerkin type approximation associated to various energy
estimates-type bounds, weak-convergence and compactness arguments. The main
difficulties encountered here are the boundary condition at x = 1 and with the ad-
vent of the nonlinear term of F (u, ut). In order to solve these particular difficulties,
stronger assumptions on the initial conditions u0, u1 and parameters K, λ will be
modified. We remark that the linearization method in the papers [3, 7] cannot be
used in [2, 5, 6]. In addition, in the case of K1(t) ≡ K1 ≥ 0, we receive a theorem
related to the asymptotic expansion of the solutions with respect to K, λ, K1 up
to order N +1. The results obtained here may be considered as the generalizations
of those in An and Trieu [1] and in Long, Dinh, Ut and Truc [2, 3], [5-10].

2. The existence and uniqueness theorem of solution

Put Ω = (0, 1), QT = Ω×(0, T ), T > 0. We omit the definitions of usual function
spaces: Cm(Ω), Lp(Ω), Wm,p(Ω). We denote Wm,p = Wm,p(Ω), Lp = W 0,p(Ω),
Hm = Wm,2(Ω), 1 ≤ p ≤ ∞, m = 0, 1, . . . The norm in L2 is denoted by ‖ · ‖.
We also denote by 〈·, ·〉 the scalar product in L2 or pair of dual scalar product of
continuous linear functional with an element of a function space. We denote by
‖ · ‖X the norm of a Banach space X and by X ′ the dual space of X. We denote by
Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of the real functions u : (0, T ) → X
measurable, such that

‖u‖Lp(0,T ;X) =
( ∫ T

0

‖u(t)‖p
Xdt

)1/p

< ∞ for 1 ≤ p < ∞,

and
‖u‖L∞(0,T ;X) = ess sup

0<t<T
‖u(t)‖X for p = ∞.

Let u(t), u′(t) = ut(t), u′′(t) = utt(t), ux(t), and uxx(t) denote u(x, t), ∂u
∂t (x, t),

∂2u
∂t2 (x, t), ∂u

∂x (x, t), and ∂2u
∂x2 (x, t), respectively. We put

V = {v ∈ H1(0, 1) : v(0) = 0}, (2.1)

a(u, v) =
∫ 1

0

∂u

∂x

∂v

∂x
dx. (2.2)

The set V is a closed subspace of H1 and on V , ‖v‖H1 and ‖v‖V =
√

a(v, v) = ‖vx‖
are two equivalent norms. Then we have the following result.

Lemma 2.1. The imbedding V ↪→ C0([0, 1]) is compact and

‖v‖C0([0,1]) ≤ ‖v‖V , for all v ∈ V. (2.3)

The proof is straightforward and we omit the details. We make the following
assumptions:

(H1) K, λ ≥ 0,
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(H2) u0 ∈ V ∩H2, u1 ∈ H1,
(H3) g,K1, λ1 ∈ H1(0, T ), λ1(t) ≥ λ0 > 0, K1(t) ≥ 0,
(H4) k ∈ H1(0, T ),
(H5) µ ∈ C1(QT ), µtt ∈ L1(0, T ;L∞), µ(x, t) ≥ µ0 > 0, for all (x, t) ∈ QT ,
(H6) f, ft ∈ L2(QT ).

Then we have the following theorem.

Theorem 2.2. Let (H1)–(H6) hold. Then, for every T > 0, there exists a unique
weak solution (u, Q) of problem (1.1)–(1.5) such that

u ∈ L∞(0, T ;V ∩H2),

ut ∈ L∞(0, T ;V ), utt ∈ L∞(0, T ;L2),

u(1, ·) ∈ H2(0, T ), Q ∈ H1(0, T ).

(2.4)

Remark 2.3. (i) Noting that with the regularity obtained by (2.4), it follows that
the component u in the weak solution (u, Q) of problem (1.1)–(1.5) satisfies

u ∈ L∞(0, T ;V ∩H2) ∩ C0(0, T ;V ) ∩ C1(0, T ;L2),

ut ∈ L∞(0, T ;V ), utt ∈ L∞(0, T ;L2), u(1, ·) ∈ H2(0, T ).
(2.5)

(ii) From (2.4) we can see that u, ux, ut, uxx, uxt, utt ∈ L∞(0, T ;L2) ⊂ L2(QT ).
Also if (u0, u1) ∈ (V ∩ H2) × H1, then the component u in the weak solution
(u, Q) of problem (1.1)–(1.5) belongs to H2(QT )∩L∞(0, T ;V ∩H2)∩C0(0, T ;V )∩
C1(0, T ;L2). So the solution is almost classical which is rather natural since the
initial data u0 and u1 do not belong necessarily to V ∩ C2(Ω) and C1(Ω), respec-
tively.

Proof of the Theorem 2.2. The proof consists of Steps four steps.
Step 1. The Galerkin approximation. Let {wj} be a denumerable base of V ∩H2.
We find the approximate solution of problem (1.1)- (1.5) in the form

um(t) =
m∑

j=1

cmj(t)wj , (2.6)

where the coefficient functions cmj satisfy the system of ordinary differential equa-
tions as follows

〈u′′m(t), wj〉+ 〈µ(t)umx(t), wjx〉+ Qm(t)wj(1) + 〈F (um(t), u′m(t)), wj〉
= 〈f (t), wj〉, 1 ≤ j ≤ m,

(2.7)

Qm(t) = K1(t)um(1, t) + λ1(t)u′m(1, t)−
∫ t

0

k(t− s)um(1, s)ds− g(t), (2.8)

um(0) = u0m =
m∑

j=1

αmjwj → u0 strongly in V ∩H2,

u′m(0) = u1m =
m∑

j=1

βmjwj → u1 strongly in H1.

(2.9)

From the assumptions of Theorem 2.2, system (2.7)–(2.9) has solution (um, Qm)
on an interval [0, Tm]. The following estimates allow one to take Tm = T for all m.
Step 2. A priori estimates: A priori estimates I. Substituting (2.8) into (2.7), then
multiplying the jth equation of (2.7) by c′mj(t), summing up with respect to j and
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afterwards integrating with respect to the time variable from 0 to t, we get after
some rearrangements

Sm(t) = Sm(0) +
∫ t

0

ds

∫ 1

0

µ′(x, s)u2
mx(x, s)dx +

∫ t

0

K ′
1(s)u

2
m(1, s)ds

+ 2
∫ t

0

g(s)u′m(1, s)ds + 2
∫ t

0

u′m(1, s)(
∫ s

0

k(s− τ)um(1, τ)dτ)ds

+ 2
∫ t

0

〈f(s), u′m(s)〉ds,

(2.10)

where

Sm(t) = ‖u′m(t)‖2 + ‖
√

µ(t)umx(t)‖2 + K1(t)u2
m(1, t) +

2K

p
‖um(t)‖p

Lp

+ 2λ

∫ t

0

‖u′m(s)‖q
Lqds + 2

∫ t

0

λ1(s)|u′m(1, s)|2ds.

(2.11)

Using the inequality

2ab ≤ βa2 +
1
β

b2, ∀a, b ∈ R,∀β > 0, (2.12)

and the following inequalities

Sm(t) ≥ ‖u′m(t)‖2 + µ0‖umx(t)‖2 + 2λ0

∫ t

0

|u′m(1, s)|2ds, (2.13)

|um(1, t)| ≤ ‖um(t)‖C0(Ω) ≤ ‖umx(t)‖ ≤

√
Sm(t)

µ0
, (2.14)

we shall estimate respectively the following terms on the right-hand side of (2.10)
as follows ∫ t

0

ds

∫ 1

0

µ′(x, s)u2
mx(x, s)dx ≤ 1

µ0
‖µ′‖C0(QT )

∫ t

0

Sm(s)ds, (2.15)∫ t

0

K ′
1(s)u

2
m(1, s)ds ≤ 1

µ0

∫ t

0

|K ′
1(s)|Sm(s)ds, (2.16)

2
∫ t

0

g(s)u′m(1, s)ds ≤ 1
β
‖g‖2L2(0,T ) +

β

2λ0
Sm(t), (2.17)

2
∫ t

0

u′m(1, s)
( ∫ s

0

k(s− τ)um(1, τ)dτ
)
ds

≤ β

2λ0
Sm(t) +

1
βµ0

T‖k‖2L2(0,T )

∫ t

0

Sm(s)ds,

(2.18)

2
∫ t

0

〈f (s), u′m(s)〉ds ≤ ‖f‖2L2(QT ) +
∫ t

0

Sm(s)ds. (2.19)

In addition, from the assumptions (H1), (H2), (H5) and the embedding H1(0, 1) ↪→
Lp(0, 1), p > 1, there exists a positive constant C1 such that for all m,

Sm(0) = ‖u1m‖2 + ‖
√

µ(0)u0mx‖2 + K1(0)u2
0m(1) +

2K

p
‖u0m‖p

Lp ≤ C1 (2.20)
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Combining (2.10), (2.11), (2.15)–(2.20) and choosing β = λ0
2 , we obtain

Sm(t) ≤ M
(1)
T +

∫ t

0

N
(1)
T (s)Sm(s)ds, (2.21)

where

M
(1)
T = 2C1 +

4
λ0
‖g‖2L2(0,T ) + 2‖f‖2L2(QT ),

N
(1)
T (s) = 2[1 +

2
λ0µ0

T‖k‖2L2(0,T ) +
1
µ0
‖µ′‖C0(QT ) +

1
µ0
|K ′

1(s)|],

N
(1)
T ∈ L1(0, T ).

(2.22)

By Gronwall’s lemma, we deduce from (2.21), (2.22), that

Sm(t) ≤ M
(1)
T exp(

∫ t

0

N
(1)
T (s)ds) ≤ CT , for all t ∈ [0, T ]. (2.23)

A priori estimates II. Now differentiating (2.7) with respect to t , we have

〈u′′′m(t), wj〉+ 〈µ(t)u′mx(t) + µ′(t)umx(t), wjx〉+ Q′
m(t)wj(1)

+ K(p− 1)〈|um|p−2u′m, wj〉+ λ(q − 1)〈|u′m|q−2u′′m, wj〉
= 〈f ′(t), wj〉,

(2.24)

for all 1 ≤ j ≤ m. Multiplying the jth equation of (2.24) by c′′mj(t), summing up
with respect to j and then integrating with respect to the time variable from 0 to
t, we have after some rearrangements

Xm(t) = Xm(0) + 2〈µ′(0)u0mx, u1mx〉 − 2〈µ′(t)umx(t), u′mx(t)〉

+ 2
∫ t

0

〈µ′′(s)umx(s), u′mx(s)〉ds + 3
∫ t

0

ds

∫ 1

0

µ′(x, s)|u′mx(x, s)|2dx

− 2
∫ t

0

(
K ′

1(s)− k(0)
)
um(1, s)u′′m(1, s)ds

− 2
∫ t

0

(
K1(s) + λ′1(s)

)
u′m(1, s)u′′m(1, s)ds

+ 2
∫ t

0

u′′m(1, s)
(
g′(s) +

∫ s

0

k′(s− τ)um(1, τ)dτ
)
ds

− 2(p− 1)K
∫ t

0

〈|um(s)|p−2u′m(s), u′′m(s)〉ds + 2
∫ t

0

〈f/(s), u′′m(s)〉ds,

(2.25)
where

Xm(t) = ‖u′′m(t)‖2 + ‖
√

µ(t)u′mx(t)‖2 + 2
∫ t

0

λ1(s)|u′′m(1, s)|2ds

+
8
q2

(q − 1)λ
∫ t

0

‖ ∂

∂s

(
|u′m(s)|

q−2
2 u′m(s)

)
‖2ds.

(2.26)

From the assumptions (H1), (H2) , (H5), (H6) and the imbedding H1(0, 1) ↪→
Lp(0, 1), p > 1, there exists positive constant D̃1 depending on µ, u0, u1, K, λ, p,
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q, f such that

Xm(0) + 2〈µ′(0)u0mx, u1mx〉

= ‖u′′m(0)‖2 + ‖
√

µ(0)u1mx‖2 + 2〈µ′(0)u0mx, u1mx〉
≤ ‖µ(0)u0mxx + µx(0)u0mx −K|u0m|p−2u0m − λ|u1m|q−2u1m + f(0)‖2

+ ‖
√

µ(0)u1mx‖2 + 2‖µ′(0)‖L∞(Ω)‖u0mx‖‖u1mx‖ ≤ D̃1,

(2.27)

for all m. Using the inequality (2.12) where β is replaced by β1 and the following
inequalities

Xm(t) ≥ ‖u′′m(t)‖2 + µ0‖u′mx(t)‖2 + 2λ0

t∫
0

|u′′m(1, s)|2ds, (2.28)

|um(1, t)| ≤ ‖um(t)‖C0(Ω) ≤ ‖umx(t)‖ ≤

√
Sm(t)

µ0
≤

√
CT

µ0
, (2.29)

|u′m(1, t)| ≤ ‖u′m(t)‖C0(Ω) ≤ ‖u′mx(t)‖ ≤

√
Xm(t)

µ0
, (2.30)

we estimate, without difficulty the following terms in the right-hand side of (2.25)
as follows

−2〈µ′(t)umx(t), u′mx(t)〉 ≤ β1Xm(t) +
1

β1µ0
CT ‖µ′‖2C0(QT )

, (2.31)

2
∫ t

0

〈µ′′(s)umx(s), u′mx(s)〉ds

≤ 2
∫ t

0

‖µ′′(s)‖L∞‖umx(s)‖‖u′mx(s)‖ds

≤ β1
1
µ0

∫ t

0

‖µ′′(s)‖L∞‖umx(s)‖2ds + β1µ0

∫ t

0

‖µ′′(s)‖L∞‖u′mx(s)‖2ds

≤ β1

∫ t

0

‖µ′′(s)‖L∞Xm(s)ds +
CT

β1µ0
‖µ′′‖L1(0,T ;L∞),

(2.32)

3
∫ t

0

ds

∫ 1

0

µ′(x, s)|u′mx(x, s)|2dx ≤ 3
µ0
‖µ′‖C0(QT )

∫ t

0

Xm(s)ds, (2.33)

−2
∫ t

0

(K ′
1(s)− k(0))um(1, s)u′′m(1, s)ds ≤ β1

2λ0
Xm(t) +

CT

β1µ0
‖K ′

1 − k(0)‖2L2(0,T ),

(2.34)

− 2
∫ t

0

(K1(s) + λ′1(s))u
′
m(1, s)u′′m(1, s)ds

≤ 2
β1µ0

∫ t

0

(|K1(s)|2 + |λ′1(s)|2)Xm(s)ds +
β1

2λ0
Xm(t),

(2.35)
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2
∫ t

0

u′′m(1, s)(g′(s) +
∫ s

0

k′(s− τ)um(1, τ)dτ)ds

≤ β1

2λ0
Xm(t) +

2
β1

[‖g′‖2L2(0,T ) +
CT

µ0
T‖k′‖2L1(0,T )],

(2.36)

−2(p− 1)K
∫ t

0

〈|um(s)|p−2u′m(s), u′′m(s)〉ds ≤ 2
p− 1
√

µ0
K(

CT

µ0
)

p−2
2

∫ t

0

Xm(s)ds,

(2.37)

2
∫ t

0

〈f/(s), u′′m(s)〉ds ≤ β1

∫ t

0

Xm(s)ds +
1
β1
‖f ′‖2L2(QT ). (2.38)

In terms of (2.25), (2.27), (2.31)–(2.38) and by the choice of β1 > 0 such that

β1(1 +
3

2λ0
) ≤ 1

2
,

we obtain

Xm(t) ≤ M̃
(2)
T +

∫ t

0

N
(2)
T (s)Xm(s)ds, (2.39)

where

M̃
(2)
T = 2D̃1 +

2CT

β1µ0
[‖µ′‖2

C0(QT )
+ ‖µ′′‖L1(0,T ;L∞) + ‖K ′

1 − k(0)‖2L2(0,T )]

+
2
β1

[2‖g′‖2L2(0,T ) +
2CT

µ0
T‖k′‖2L1(0,T ) + ‖f ′‖2L2(QT )],

N
(2)
T (s) = 2β1 + 4

p− 1
√

µ0
K(

CT

µ0
)

p−2
2 +

6
µ0
‖µ′‖C0(QT ) + 2β1‖µ′′(s)‖L∞

+
4

β1µ0
(|K1(s)|2 + |λ′1(s)|2),

N
(2)
T ∈ L1(0, T ).

(2.40)

From (2.39)–(2.40) and applying Gronwall’s inequality, we obtain that

Xm(t) ≤ M
(2)
T exp

( ∫ t

0
N

(2)
T (s)ds

)
≤ CT for all t ∈ [0, T ]. (2.41)

On the other hand, we deduce from (2.8), (2.11), (2.23), (2.26) and (2.41), that

‖Q′
m‖2L2(0,T ) ≤

5DT

2λ0
‖λ1‖2∞ +

5T 2CT

µ0
‖k′‖2L2(0,T ) + 5‖g′‖2L2(0,T )

+
5DT

µ0
(‖K1 + λ′1‖2L2(0,T ) + ‖K ′

1 − k(0)‖2L2(0,T )),
(2.42)

where ‖λ1‖∞ = ‖λ1‖L∞(0,T ). From the assumptions (H3) and (H4), we deduce
from (2.42), that

‖Qm‖H1(0,T ) ≤ CT for all m, (2.43)

where CT is a positive constant depending only on T .
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Step 3. Limiting process. From (2.11), (2.23), (2.26), (2.41) and (2.43), we deduce
the existence of a subsequence of {(um, Qm)} still also so denoted, such that

um → u in L∞(0, T ;V ) weak*,

u′m → u′ in L∞(0, T ;V ) weak*,

u′′m → u′′ in L∞(0, T ;L2) weak*,

um(1, ·) → u(1, ·) in H2(0, T ) weakly,

Qm → Q̃ in H1(0, T ) weakly.

(2.44)

By the compactness lemma in Lions [4: p.57] and the imbedding H2(0, T ) ↪→
C1([0, T ]), we can deduce from (2.44)1,2,3,4,5 the existence of a subsequence still
denoted by {(um, Qm)} such that

um → u strongly in L2(QT ),

u′m → u′ strongly in L2(QT ),

um(1, ·) → u(1, ·) strongly in C1([0, T ]),

Qm → Q̃ strongly in C0([0, T ]).

(2.45)

From (2.8) and (2.45)3 we have that

Qm(t) → K1(t)u(1, t) + λ1(t)u′(1, t)− g(t)−
∫ t

0

k(t− s) u(1, s)ds ≡ Q(t) (2.46)

strongly in C0([0, T ]).
Combining (2.45)4 and (2.46), we conclude that

Q(t) = Q̃(t). (2.47)

By means of the inequality∣∣|x|δ−2x− |y|δ−2y
∣∣ ≤ (δ − 1)Rδ−2|x− y|quad∀x, y ∈ [−R;R], (2.48)

for all R > 0, δ ≥ 2, it follows from (2.39), that

||um|p−2um − |u|p−2u| ≤ (p− 1)Rp−2|um − u| with R =

√
CT

µ0
. (2.49)

Hence, it follows from (2.45)1 and (2.49), that

|um|p−2um → |u|p−2u strongly in L2(QT ). (2.50)

By the same way, we deduce from (2.48), with R =
√

CT

µ0
and (2.44)3, (2.45)2, that

|u′m|q−2u′m → |u′|q−2u′ strongly in L2(QT ). (2.51)
Passing to the limit in (2.7)–(2.9) by (2.44)1,5, (2.46), (2.47), (2.50) and (2.51) we
have (u, Q) satisfying

〈u′′(t), v〉+ 〈µ(t)ux(t), vx〉+ Q(t)v(1) + 〈K|u|p−2u + λ|u′|q−2u′, v〉
= 〈f(t), v〉, ∀v ∈ V,

(2.52)

u(0) = u0, u′(0) = u1, (2.53)

Q(t) = K1(t)u(1, t) + λ1(t)ut(1, t)− g(t)−
∫ t

0

k(t− s)u(1, s)ds, (2.54)
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On the other hand, from (2.44)5, (2.52) and assumptions (H5)-(H6) we have

uxx =
1

µ(x, t)
(u′′ − µxux + K|u|p−2u + λ|u′|q−2u′ − f) ∈ L∞(0, T ;L2). (2.55)

Thus u ∈ L∞(0, T ;V ∩H2) and the existence of the theorem is proved completely.
Step 4. Uniqueness of the solution. Let (u1, Q1), (u2, Q2) be two weak solutions
of problem (1.1)–(1.5), such that

ui ∈ L∞(0, T ;V ∩H2), u′i ∈ L∞(0, T ;H1), u′′i ∈ L∞(0, T ;L2),

ui(1, ·) ∈ H2(0, T ), Qi ∈ H1(0, T ), i = 1, 2.
(2.56)

Then (u, Q) with u = u1 − u2 and Q = Q1 −Q2 satisfy the variational problem

〈u′′(t), v〉+ 〈µ(t)ux(t), vx〉+ Q(t)v(1) + K〈|u1|p−2u1 − |u2|p−2u2 , v〉
+λ〈|u′1|q−2u′1 − |u′2|q−2u′2, v〉 = 0 ∀v ∈ V,

u(0) = u′(0) = 0,

(2.57)

and

Q(t) = K1(t)u(1, t) + λ1(t)u′(1, t)−
∫ t

0

k(t− s) u(1, s)ds. (2.58)

We take v = u′ in (2.57)1, and integrating with respect to t, we obtain

σ(t) ≤
∫ t

0

‖
√
|µ′(s)|ux(s)‖2ds +

∫ t

0

K ′
1(s)u

2(1, s)ds

+ 2
∫ t

0

u′(1, s)ds

∫ s

0

k(s− τ) u(1, τ)dτ

− 2K

∫ t

0

〈|u1|p−2u1 − |u2|p−2u2, u
′〉ds,

(2.59)

where

σ(t) = ‖u′(t)‖2 + ‖
√

µ(t)ux(t)‖2 + K1(t)u2(1, t) + 2
∫ t

0

λ1(s)|u′(1, s)|2ds. (2.60)

Noting that

σ(t) ≥ ‖u′(t)‖2 + µ0‖ux(t)‖2 + 2λ0

∫ t

0

|u′(1, s)|2ds, (2.61)

|u(1, t)| ≤ ‖u(t)‖C0(Ω) ≤ ‖ux(t)‖ ≤

√
σ(t)
µ0

. (2.62)

We again use inequalities (2.12) and (2.48) with δ = p, R = maxi=1,2 ‖ui‖L∞(0,T ;V ),
then, it follows from (2.59)–(2.62), that

σ(t) ≤ 1
µ0

∫ t

0

(‖µ′‖C0(QT ) + |K ′
1(s)|)σ(s)ds +

β

2λ0
σ(t)

+
T

βµ0
‖k‖2L2(0,T )

∫ t

0

σ(τ)dτ +
1

√
µ0

(p− 1)KRp−2

∫ t

0

σ(s)ds.

(2.63)

Choosing β > 0, such that β 1
2λ0

≤ 1/2, we obtain from (2.63), that

σ(t) ≤
∫ t

0

q1(s)σ(s)ds, (2.64)
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where

q1(s) =
2
µ0

(‖µ′‖C0(QT ) + |K ′
1(s)|) +

2T

βµ0
‖k‖2L2(0,T ) +

2
√

µ0
(p− 1)KRp−2,

q1 ∈ L2(0, T ).
(2.65)

By Gronwall’s lemma, we deduce that σ ≡ 0 and Theorem 2.2 is completely proved.
�

Remark 2.4. In the case p, q > 2, K < 0, and λ < 0, the question of existence for
the solutions of problem (1.1)–(1.5) is still open. However we have also obtained
the answer of problem (1.1)–(1.5) when p = q = 2 and K, λ ∈ R published in [9].

3. Asymptotic expansion of the solution

In this part, we consider two given functions u0, u1 as ũ0, ũ1, respectively. Then
we assume that K1(t) = K1 is a nonnegative constant and (ũ0, ũ1, f , µ, g, k, λ1)
satisfy the assumptions (H2)-(H6). Let (K, λ,K1) ∈ R3

+. By Theorem 2.2, the
problem (1.1)–(1.5) has a unique weak solution (u, Q) depending on (K, λ,K1):

u = u(K, λ,K1), Q = Q(K, λ,K1).

We consider the following perturbed problem, where K, λ, K1 are small parameters
such that, 0 ≤ K ≤ K∗, 0 ≤ λ ≤ λ∗, 0 ≤ K1 ≤ K1∗:

Au ≡ utt −
∂

∂x
(µ(x, t)ux) = −KF (u)− λG(ut) + f(x, t), 0 < x < 1, 0 < t < T,

u(0, t) = 0,

Bu ≡ −µ(1, t)ux(1, t) = Q(t),

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

Q(t) = K1u(1, t) + λ1(t)ut(1, t)− g(t)−
∫ t

0

k(t− s)u(1, s)ds,

(3.1)
where F (u) = |u|p−2u, G(ut) = |ut|q−2ut, p > N ≥ 2, q > N ≥ 2. We shall study
the asymptotic expansion of the solution of problem (PK,λ,K1) with respect to ( K,
λ, K1). We use the following notation. For a multi-index γ = (γ1, γ2, γ3) ∈ Z3

+ and
−→
K = (K, λ,K1) ∈ R3

+, we put

|γ| = γ1 + γ2 + γ3, γ! = γ1!γ2!γ3!,

‖
−→
K‖ =

√
K2 + λ2 + K2

1 ,
−→
Kγ = Kγ1λγ2Kγ3

1 ,

α, β ∈ Z3
+, β ≤ α ⇐⇒ βi ≤ αi ∀i = 1, 2, 3.

First, we shall need the following Lemma.

Lemma 3.1. Let m, N ∈ N and vα ∈ R, α ∈ Z3
+, 1 ≤ |α| ≤ N . Then

(
∑

1≤|α|≤N

vα
−→
Kα)m =

∑
m≤|α|≤mN

T (m)[v]α
−→
Kα, (3.2)
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where the coefficients T (m)[v]α, m ≤ |α| ≤ mN depending on v = (vα), α ∈ Z3
+,

1 ≤ |α| ≤ N are defined by the recurrence formulas

T (1)[v]α = vα, 1 ≤ |α| ≤ N,

T (m)[v]α =
∑

β∈A
(m)
α

vα−βT (m−1)[v]β , m ≤ |α| ≤ mN,m ≥ 2,

A(m)
α = {β ∈ Z3

+ : β ≤ α, 1 ≤ |α− β| ≤ N,m− 1 ≤ |β| ≤ (m− 1)N}.

(3.3)

The proof of the above lemma can be found in [11]. Let (u0, Q0) ≡ (u0,0,0,
Q0,0,0) be a unique weak solution of the following problem (as in Theorem 2.2)
corresponding to (K, λ,K1) = (0, 0, 0); i.e.,

Au0 = P0,0,0 ≡ f(x, t), 0 < x < 1, 0 < t < T,

u0(0, t) = 0, Bu0 = Q0(t),

u0(x, 0) = ũ0(x), u′0(x, 0) = ũ1(x),

Q0(t) = −g(t) + λ1(t)u′0(1, t)−
∫ t

0

k(t− s)u0(1, s)ds,

u0 ∈ C0(0, T ;V ) ∩ C1(0, T ;L2) ∩ L∞(0, T ;V ∩H2),

u′0 ∈ L∞(0, T ;H1), u′′0 ∈ L∞(0, T ;L2),

u0(1, ·) ∈ H2(0, T ), Q0 ∈ H1(0, T ).

Let us consider the sequence of weak solutions (uγ , Qγ), γ ∈ Z3
+, 1 ≤ |γ| ≤ N ,

defined by the following problems (P̃γ):

Auγ = Pγ , 0 < x < 1, 0 < t < T,

uγ(0, t) = 0, Buγ = Qγ(t),

uγ(x, 0) = u′γ(x, 0) = 0,

Qγ(t) = Q̂γ(t) + λ1(t)u′γ(1, t)−
∫ t

0

k(t− s)uγ(1, s)ds,

uγ ∈ C0(0, T ;V ) ∩ C1(0, T ;L2) ∩ L∞(0, T ;V ∩H2),

u′γ ∈ L∞(0, T ;H1), u′′γ ∈ L∞(0, T ;L2),

uγ(1, ·) ∈ H2(0, T ), Qγ ∈ H1(0, T ),

(3.4)

where Pγ , Q̂γ , |γ| ≤ N are defined by the recurrence formula

Q̂γ(t) = 0, 1 ≤ |γ| ≤ N, γ3 = 0,

Q̂γ(t) = uγ1,γ2,γ3−1(1, t), 1 ≤ |γ| ≤ N, γ3 ≥ 1,
(3.5)
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and

P1,0,0 = −F (u0), P0,1,0 = −G(u′0), P0,0,1 = 0,

P0,0,γ3 = 0, 2 ≤ γ3 ≤ N,

P0,γ2,γ3 = −
|γ|−1∑
m=1

1
m!

G(m)(u′0)T
(m)[u′]0,γ2−1,γ3 , 2 ≤ γ2 + γ3 ≤ N, γ2 ≥ 1,

Pγ1,0,γ3 = −
|γ|−1∑
m=1

1
m!

F (m)(u0)T (m)[u]γ1−1,0,γ3 , 2 ≤ γ1 + γ3 ≤ N, γ1 ≥ 1,

Pγ = −
|γ|−1∑
m=1

1
m!

[F (m)(u0)T (m)[u]γ1−1,γ2,γ3 + G(m)(u′0)T
(m)[u′]γ1,γ2−1,γ3 ],

2 ≤ |γ| ≤ N, γ1 ≥ 1, γ2 ≥ 1,

(3.6)
here we have used the notation u = (uγ), γ ∈ Z3

+, |γ| ≤ N . Let (u, Q) =
(uK,λ,K1 , QK,λ,K1) be a unique weak solution of problem (3.1). Then (v,R), with

v = u−
∑
|γ|≤N

uγ
−→
Kγ ≡ u− h, R = Q−

∑
|γ|≤N

Qγ
−→
Kγ ,

satisfies the problem

Av ≡ vtt −
∂

∂x
(µ(x, t)vx)

= −K
[
F (v + h)− F (h)

]
− λ

[
G(vt + ht)−G(ht)

]
+ ẼN (

−→
K), 0 < x < 1, 0 < t < T,

v(0, t) = 0, Bv ≡ −µ(1, t)vx(1, t) = R(t),

R(t) = K1v(1, t) + λ1(t)vt(1, t) + G̃N (
−→
K)−

∫ t

0

k(t− s)v(1, s)ds,

v(x, 0) = vt(x, 0) = 0,

v ∈ C0(0, T ;V ) ∩ C1(0, T ;L2) ∩ L∞(0, T ;V ∩H2),

v′ ∈ L∞(0, T ;H1), v′′ ∈ L∞(0, T ;L2),

v(1, ·) ∈ H2(0, T ), R ∈ H1(0, T ),

(3.7)

where

ẼN (
−→
K) = f(x, t)−KF (h)− λG(ht)−

∑
|γ|≤N

Pγ
−→
Kγ , (3.8)

G̃N (
−→
K) =

∑
|γ|=N+1,γ3≥1

uγ1,γ2,γ3−1(1, t)
−→
Kγ . (3.9)

Then, we have the following lemma.

Lemma 3.2. Let (H2)–(H6) hold. Then

‖ẼN (
−→
K)‖L∞(0,T ;V ) ≤ C̃1N‖

−→
K‖N+1, (3.10)

‖G̃N (
−→
K)‖H2(0,T ) ≤ C̃2N‖

−→
K‖N+1, (3.11)
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for all
−→
K = (K, λ, K1) ∈ R3

+, ‖
−→
K‖ ≤ ‖

−→
K∗‖ with

−→
K∗ = (K∗, λ∗,K1∗), where C̃1N ,

C̃2N are positive constants depending only on the constants ‖
−→
K∗‖, ‖uγ‖L∞(0,T ;V ),

‖u′γ‖L∞(0,T ;V ), (|γ| ≤ N), ‖uγ1,γ2,γ3−1(1, ·)‖H2(0,T ), (|γ| = N + 1, γ3 ≥ 1).

Proof. In the case of N = 1, the proof of Lemma 3.2 is easy, hence we omit the
details, which we only prove with N ≥ 2. Put

h = u0 + h1, h1 =
∑

1≤|γ|≤N

uγ
−→
Kγ . (3.12)

By using Taylor’s expansion of the function F (h) = F (u0 + h1) around the point
u0 up to order N − 1, we obtain

F (h) = F (u0) +
N−1∑
m=1

1
m!

F (m)(u0)hm
1 +

1
N !

F (N)(u0 + θ1h1)hN
1 , (3.13)

where 0 < θ1 < 1. By Lemma 3.1, we obtain from (3.13), after some rearrangements
in order to of

−→
Kγ , that

KF (h) = KF (u0)

+
∑

2≤|γ|≤N, γ1≥1

|γ|−1∑
m=1

1
m!

F (m)(u0)T (m)[u]γ1−1,γ2,γ3

−→
Kγ + R(1)(F,

−→
K),

(3.14)
where

R(1)(F,
−→
K)

= K
N−1∑
m=1

1
m!

F (m)(u0)
∑

N≤|γ|≤mN

T (m)[u]γ
−→
Kγ +

1
N !

F (N)(u0 + θ1h1)KhN
1 ,

(3.15)

Similarly, we use Taylor’s expansion of the function G(ht) = G(u′0 +h′1) around the
point u′0 up to order N − 1, we obtain

λG(ht) = λG(u′0) +
∑

2≤|γ|≤N, γ2≥1

|γ|−1∑
m=1

1
m!

G(m)(u′0)T
(m)[u′]γ1,γ2−1,γ3

−→
Kγ

+ R(2)(G,
−→
K),

(3.16)

where

R(2)(G,
−→
K)

= λ

N−1∑
m=1

1
m!

G(m)(u′0)
∑

N≤|γ|≤mN

T (m)[u′]γ
−→
Kγ + λ

1
N !

G(N)(u′0 + θ2h
′
1)(h

′
1)

N ,

(3.17)
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and 0 < θ2 < 1. Combining (3.6), (3.8), (3.14)–(3.17), we then obtain

ẼN (
−→
K) = f(x, t)−KF (u0)− λG(u′0)

−
∑

2≤|γ|≤N, γ1≥1

|γ|−1∑
m=1

1
m!

F (m)(u0)T (m)[u]γ1−1,γ2,γ3

−→
Kγ

−
∑

2≤|γ|≤N, γ2≥1

|γ|−1∑
m=1

1
m!

G(m)(u′0)T
(m)[u′]γ1,γ2−1,γ3

−→
Kγ

−
∑
|γ|≤N

Pγ
−→
Kγ −R(1)(F,

−→
K)−R(2)(G,

−→
K)

= −R(1)(F,
−→
K)−R(2)(G,

−→
K).

(3.18)

We shall estimate respectively the following terms on the right-hand side of (3.18).
Estimate for R(1)(F,

−→
K). By the boundedness of the functions uγ , γ ∈ Z3

+, |γ| ≤ N
in the function space L∞(0, T ;H1), we obtain from (3.13), that

‖R(1)(F,
−→
K)‖L∞(0,T ;L2)

≤ |K|
N−1∑
m=1

∑
N≤|γ|≤mN

1
m!
‖F (m)(u0)‖L∞(0,T ;V )‖T (m)[u]γ‖L∞(0,T ;L2)|

−→
Kγ |

+
1

N !
K‖F (N)(u0 + θ1h1)‖L∞(0,T ;V )‖h1‖N

L∞(0,T ;V ).

(3.19)

Using the inequality

|
−→
Kγ | ≤ ‖

−→
K‖|γ|, for all γ ∈ Z3

+, |γ| ≤ N, (3.20)

it follows from (3.19) and (3.20) that

‖R(1)(F,
−→
K)‖L∞(0,T ;L2) ≤ C̃

(1)
1N‖

−→
K‖N+1, ‖

−→
K‖ ≤ ‖

−→
K∗‖, (3.21)

where

C̃
(1)
1N =

N−1∑
m=1

∑
N≤|γ|≤mN

Cm
p−1‖u0‖p−m−1

L∞(0,T ;V )‖T
(m)[û]γ‖L∞(0,T ;L2)‖

−→
K∗‖|γ|−N

+ CN
p−1‖

−→
K∗‖−N (

∑
|γ|≤N

‖uγ‖L∞(0,T ;V )‖
−→
K∗‖|γ|)p−1,

(3.22)

−→
K∗ = (K∗, λ∗,K1∗), and Cm

p−1 = (p−1)(p−2)...(p−m)
m! .

Estimate for R(2)(G,
−→
K). From (3.17) We obtain in a similar manner corresponding

to the above part, that

‖R(2)(G,
−→
K)‖L∞(0,T ;L2) ≤ C̃

(2)
1N‖

−→
K‖N+1, ‖

−→
K‖ ≤ ‖

−→
K∗‖, (3.23)

where

C̃
(2)
1N =

N−1∑
m=1

∑
N≤|γ|≤mN

Cm
q−1‖u′0‖

q−m−1
L∞(0,T ;V )‖T

(m)[û′]γ‖L∞(0,T ;L2)‖
−→
K∗‖|γ|−N

+ CN
q−1‖

−→
K∗‖−N (

∑
|γ|≤N

‖u′γ‖L∞(0,T ;V )‖
−→
K∗‖|γ|)q−1.

(3.24)
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Therefore, it follows from (3.18), (3.21)–(3.24) that

‖ẼN (
−→
K)‖L∞(0,T ;L2) ≤ (C̃(1)

1N + C̃
(2)
1N )‖

−→
K‖N+1 ≡ C̃1N‖

−→
K‖N+1,

‖
−→
K‖ ≤ ‖

−→
K∗‖.

(3.25)

Hence, the first part of Lemma 3.2 is proved.
With G̃N (

−→
K), then, we obtain from (3.9) in a similar manner to the above part,

that
‖G̃N (

−→
K)‖H2(0,T ) ≤ C̃2N‖

−→
K‖N+1, (3.26)

where
C̃2N =

∑
|γ|=N+1,γ3≥1

‖uγ1,γ2,γ3−1(1, ·)‖H2(0,T ). (3.27)

The proof of Lemma 3.2 is complete. �

Theorem 3.3. Let (H2)–(H6) hold. Then, for every
−→
K ∈ R3

+, with 0 ≤ K ≤ K∗,
0 ≤ λ ≤ λ∗, 0 ≤ K1 ≤ K1∗, problem (3.1) has a unique weak solution (u, Q) =
(uK,λ,K1 , QK,λ,K1) satisfying the asymptotic estimations up to order N + 1 as
follows

‖u′ −
∑
|γ|≤N

u′γ
−→
Kγ‖L∞(0,T ;L2) + ‖u−

∑
|γ|≤N

uγ
−→
Kγ‖L∞(0,T ;V )

+ ‖u′(1, ·)−
∑
|γ|≤N

u′γ(1, ·)
−→
Kγ‖L2(0,T )

≤ D̃∗
N‖
−→
K‖N+1,

(3.28)

and
‖Q−

∑
|γ|≤N

Qγ
−→
Kγ‖L2(0,T ) ≤ D̃∗∗

N ‖
−→
K‖N+1, (3.29)

for all
−→
K ∈ R3

+, ‖
−→
K‖ ≤ ‖

−→
K∗‖, D̃∗

N and D̃∗∗
N are positive constants independent

of
−→
K , the functions (uγ , Qγ) are the weak solutions of problems (3.4), γ ∈ Z3

+,
|γ| ≤ N .

Remark 3.4. In [9], as in this special case for problem (1.1)–(1.5), Long, Ut and
Truc have obtained a result about the asymptotic expansion of the solutions with
respect to two parameters (K, λ) up to order N + 1.

Proof of Theorem 3.3. First, we note that, if the data
−→
K satisfy

0 ≤ K ≤ K∗, 0 ≤ λ ≤ λ∗, 0 ≤ K1 ≤ K1∗, (3.30)

where K∗, λ∗, K1∗ are fixed positive constants. Therefore, the a priori estimates of
the sequences {um} and {Qm} in the proof of theorem 2.2 satisfy

‖u′m(t)‖2 + µ0‖umx(t)‖2 + 2λ0

∫ t

0

|u′m(1, s)|2ds ≤ MT ,∀t ∈ [0, T ], (3.31)

‖u′′m(t)‖2 + µ0‖u′mx(t)‖2 + 2λ0

∫ t

0

|u′′m(1, s)|2ds ≤ MT ,∀t ∈ [0, T ], (3.32)

‖Qm‖H1(0,T ) ≤ MT , (3.33)

where MT is a constant depending only on T , ũ0, ũ1, λ0, µ0, f , g, k, µ, λ1, K∗,
λ∗, K1∗ (independent of

−→
K). Hence, the limit (u, Q) in suitable function spaces of
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the sequence {(um, Qm)} defined by (2.7)– (2.9) is a weak solution of the problem
(1.1)–(1.5) satisfying the a priori estimates (3.31)–(3.33).

Multiplying the two sides of (3.7)1 with v′, and integrating in t, we find without
difficulty from Lemma 3.2 that

σ(t) ≤ 2T (
2
λ0

C̃2
2N + C̃2

1N )‖
−→
K‖2N+2

+ 2[1 + K +
1
µ0
‖µ′‖C0(QT ) +

2
λ0µ0

T‖k‖2L2(0,T )]
∫ t

0

σ(s)ds

+ 2K

∫ t

0

‖F (v + h)− F (h)‖2ds,

(3.34)

where

σ(t) = ‖v′(t)‖2 + ‖
√

µ(t)vx(t)‖2 + K1v
2(1, t) + 2

∫ t

0

λ1(s)|v′(1, s)|2ds. (3.35)

By using the same arguments as in the above part we can show that the component
u of the weak solution (u, Q) of problem (PK,λ,K1) satisfies

‖u′(t)‖2 + µ0‖ux(t)‖2 + 2λ0

∫ t

0

|u′(1, s)|2ds ≤ MT ,∀t ∈ [0, T ], (3.36)

where MT is a constant independent of K, λ, K1. On the other hand,

‖h‖L∞(0,T ;V ) ≤
∑
|γ|≤N

‖uγ‖L∞(0,T ;V )‖
−→
K∗‖|γ| ≡ R1. (3.37)

We again use inequality (2.48) with δ = p, R = max{R1,
√

MT

µ0
}, then, it follows

from (3.35)–(3.37), that∫ t

0

‖F (v + h)− F (h)‖2ds ≤ 1
µ0

(p− 1)2R2p−4

∫ t

0

σ(s)ds. (3.38)

Combining (3.34) and (3.38), we then obtain

σ(t) ≤ 2T (
2
λ0

C̃2
2N + C̃2

1N )‖
−→
K‖2N+2 + σ1T

∫ t

0

σ(s)ds, (3.39)

for all t ∈ [0, T ], where

σ1T = 2
[
1+K∗+

1
µ0
‖µ′‖C0(QT ) +

2
λ0µ0

T‖k‖2L2(0,T ) +
1
µ0

(p−1)2R2p−4K∗
]
, (3.40)

By Gronwall’s lemma, we obtain from (3.39) that

σ(t) ≤ 2T (
2
λ0

C̃2
2N + C̃2

1N )‖
−→
K‖2N+2 exp(Tσ1T ) ≡ D̃

(1)
T ‖

−→
K‖2N+2, (3.41)

for all t ∈ [0, T ] and all
−→
K ∈ R3

+, ‖
−→
K‖ ≤ ‖

−→
K∗‖. It follows that

‖v′(t)‖2 + µ0‖vx(t)‖2 + 2λ0

∫ t

0

|v′(1, s)|2ds ≤ σ(t) ≤ D̃
(1)
T ‖

−→
K‖2N+2. (3.42)

Hence

‖v′‖L∞(0,T ;L2) + ‖v‖L∞(0,T ;V ) + ‖v′(1, ·)‖L2(0,T ) ≤ D̃∗
N‖
−→
K‖N+1, (3.43)
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or
‖u′ −

∑
|γ|≤N

u′γ
−→
Kγ‖L∞(0,T ;L2) + ‖u−

∑
|γ|≤N

uγ
−→
Kγ‖L∞(0,T ;V )

+ ‖u′(1, ·)−
∑
|γ|≤N

u′γ(1, ·)
−→
Kγ‖L2(0,T )

≤ D̃∗
N‖
−→
K‖N+1,

(3.44)

for all
−→
K ∈ R3

+, ‖
−→
K‖ ≤ ‖

−→
K∗‖, where D̃∗

N is a constant independent of
−→
K . On the

other hand, it follows from (3.11), (3.43), that

‖R‖L2(0,T ) ≤ K1‖v‖L∞(0,T ;V ) + ‖λ1‖∞‖v′(1, ·)‖L2(0,T ) + ‖G̃N (
−→
K)‖L2(0,T )

+
√

1
µ0

T‖k‖L2(0,T )

( ∫ T

0

σ(s)ds
)1/2

≤ D̃∗∗
N ‖

−→
K‖N+1,

(3.45)

hence,

‖Q−
∑
|γ|≤N

Qγ
−→
Kγ‖L2(0,T ) ≤ D̃∗∗

N ‖
−→
K‖N+1, (3.46)

where D̃∗∗
N is a constant independent of

−→
K . The proof of Theorem 3.3 is complete.

�

Remark 3.5. For the case (K, λ,K1) ∈ R2 ×R+, but p = q = 2, we have received
a theorem of the asymptotic expansion for the weak solution (u, Q) of problem
(1.1)–(1.5) with respect to three mentioned parameters; however, the detailes of
proof have been omitted.
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