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EXISTENCE AND ASYMPTOTIC EXPANSION OF SOLUTIONS
TO A NONLINEAR WAVE EQUATION WITH A MEMORY
CONDITION AT THE BOUNDARY

NGUYEN THANH LONG, LE XUAN TRUONG

ABSTRACT. We study the initial-boundary value problem for the nonlinear
wave equation
it = Ao, ) + Klul?2u -+ Ml = (2,0,
u(0,t) =0
—u(1, Bus (1,8) = Q1)
u(z,0) = up(x), ut(z,0) =ui(x),

where p > 2, ¢ > 2, K, A are given constants and ug, u1, f, 4 are given func-
tions. The unknown function u(z,t) and the unknown boundary value Q(t)
satisfy the linear integral equation

t
Q(t) = K1 (t)u(1,t) + A1 (H)ue(1,t) — g(t) — /0 k(t — s)u(1, s)ds,

where K1, A1, g, k are given functions satisfying some properties stated in the
next section. This paper consists of two main sections. First, we prove the
existence and uniqueness for the solutions in a suitable function space. Then,
for the case K1(t) = K1 > 0, we find the asymptotic expansion in K, A\, K1 of
the solutions, up to order N + 1.

1. INTRODUCTION

In this paper, we consider the following problem: Find a pair of functions (u, Q)
satisfying

Ugt — %(u(m,t)um) + F(u,ut) = f(z,t), 0<z<l, 0<t<T,
u(0,t) =0,
—p(1, t)ua(1,t) = Q(1),
u(z,0) = uo(x), w(x,0) = ui(z),
where F(u,u;) = K|u|P~2u+\|ug|9~2us, with p, ¢ > 2, K, X are given constants and

ug, u1, f, p are given functions satisfying conditions specified later; the unknown
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function u(x,t) and the unknown boundary value Q(t) satisfy the integral equation

Qt) = Ki(t)u(l,t) + M (t)ue(1,8) — g(t) — /0 k(t — s)u(l, s)ds, (1.5)

where g, k, K1, A1 are given functions. Santos [10] studied the asymptotic behavior
of solution of problem (|L.1f), (1.2]) and (1.4) associated with a boundary condition
of memory type at x = 1 as follows

u(l,t) + /0 g(t —s)p(1,s)uzy(1,8)ds =0, ¢>0. (1.6)

To make such a difficult condition smlpler Santos transformed ([L.6]) into (1.3, (L.5)

with K5 (t) = ((0)), and A\ (t) = W positive constants.

In the case A\i(t) = 0, Ki(t) = h > 0, p(z,t) = 1, the problem (L.I)-(L.5) is
formed from the problem (L.I)—(L.4) wherein, the unknown function u(z,t) and the
unknown boundary value Q(t) satisfy the following Cauchy problem for ordinary

differential equations
Q"(t) +w?Q(t) = huu(1,t), 0<t<T,
Q(0) =Qo, Q'(0)=Q,
where h > 0, w > 0, Qo, Q1 are given constants [6].

An and Trieu [1] studied a special case of problem . ) and ( with
up = u; = Qo = 0 and F(u,us) = Ku + Aug, with K >0, A > 0 are given
constants. In the later case the problem (1.1)—(1.4) and (L.7) is a mathematical
model describing the shock of a rigid body and a linear viscoelastic bar resting on
a rigid base [1].

From (1.7) we represent Q(t) in terms of Qo, Q1, w, h, uu(1,t) and then by
integrating by parts, we have

(1.7)

Q(t) = hu(1,t) — g(t) — /0 E(t — s)u(l, s)ds, (1.8)

where
g(t) = —(Qo — hug(1)) coswt — %(Ql — huy(1)) sinwt, (1.9)
k(t) = hwsin wt. (1.10)

Bergounioux, Long and Dinh [2] studied problem (1.1]), (1.4) with the mixed bound-
ary conditions (1.2)), (1.3)) standing for

e (0,8) = hu(0, ) + g(t /kt—s (0, 5)ds, (1.11)
ug(1,8) + Kiu(l,t) + AMue(1,t) =0, (1.12)
where
g(t) = (Qo — hug(0)) coswt + — (Q1 haiy (0)) sin wt, (1.13)
k(t) = hw smwt. (1.14)

where h > 0, w > 0, Qp, Q1, K, A\, K1, \1 are given constants.
Long, Dinh and Diem [7] obtained the unique existence, regularity and as-
ymptotic behavior of the problem (1.1), (1.4) in the case of u(z,t) = 1, Q(t) =
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Kiu(1,t) + Aug(1,t), ug(0,t) = P(t) where P(t) satisfies with ug(1,t) is re-
placed by w4 (0,t).

Long, Ut and Truc [9] gave the unique existence, stability, regularity in time
variable and asymptotic behavior for the solution of problem f when
F(u,ut) = Ku + Aug. In this case, the problem f is the mathematical
model describing a shock problem involving a linear viscoelastic bar.

The present paper consists of two main parts. In Part 1 we prove a theorem of
global existence and uniqueness of weak solutions (u, Q) of problem - .
The proof is based on a Galerkin type approximation associated to various energy
estimates-type bounds, weak-convergence and compactness arguments. The main
difficulties encountered here are the boundary condition at z = 1 and with the ad-
vent of the nonlinear term of F'(u, u;). In order to solve these particular difficulties,
stronger assumptions on the initial conditions ug, u; and parameters K, \ will be
modified. We remark that the linearization method in the papers [3, 7] cannot be
used in [2, 5, 6]. In addition, in the case of K;(t) = K7 > 0, we receive a theorem
related to the asymptotic expansion of the solutions with respect to K, A\, Ky up
to order N + 1. The results obtained here may be considered as the generalizations
of those in An and Trieu [1] and in Long, Dinh, Ut and Truc [2, 3], [5-10].

2. THE EXISTENCE AND UNIQUENESS THEOREM OF SOLUTION

Put Q= (0,1), Qr = Q2 x(0,T), T > 0. We omit the definitions of usual function
spaces: C™ (), LP(Q), W™P(Q). We denote W™P = W™P(Q), LP = WOP(Q),

m=Wm2(Q),1<p< oo, m=0,1,... The norm in L? is denoted by | - ||.
We also denote by (-,-) the scalar product in L? or pair of dual scalar product of
continuous linear functional with an element of a function space. We denote by
||| x the norm of a Banach space X and by X’ the dual space of X. We denote by
L?(0,T;X), 1 < p < oo for the Banach space of the real functions u : (0,7) — X
measurable, such that

T » 1/p
o = (| (o) <0 for1<p<oc,
0

and
lul| o< (0,75 x) = esssup |lu(t)||x for p = oco.
0<t<T

Lft u(t), u'(t) = w(t), u ( ) = uy(t), ug(t), and uz,(t) denote u(x,t), 2 5 (x,1),
24 (2, t), 3%(z,t), and I4 (w t), respectively. We put

V ={ve H'0,1):v(0) =0}, (2.1)
a(u,v) = / %%d (2.2)

The set V is a closed subspace of H! and on V, ||v|| 1 and ||v||v = v/a(v,v) = ||Jvs|
are two equivalent norms. Then we have the following result.

Lemma 2.1. The imbedding V — C°([0,1]) is compact and
||'UHCO([071]) < ||v|lv, for all veV. (2.3)

The proof is straightforward and we omit the details. We make the following
assumptions:

(H1) K, A >0,
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) UQGVQH2,U1 EHl,

) g, K1, € Hl(O,T), Al(t) > X >0, Kl(t) >0,

) k€ HY(0,T),

) € CYHQr), g € LY0,T5 L), u(z,t) > po > 0, for all (z,t) € Qr,
(H6) £, fi € L2(Qr).

Then we have the following theorem.

Theorem 2.2. Let (H1)-(H6) hold. Then, for every T > 0, there exists a unique
weak solution (u, Q) of problem 7 such that
ue€ L0, T;V N H?),

uy € L0, T; V), wuy € L(0,T; L?), (2.4)

u(1,-) € H*(0,T), Q€ H'(0,T).
Remark 2.3. (i) Noting that with the regularity obtained by (2.4)), it follows that
the component u in the weak solution (u, Q) of problem (L.I)-(L.5) satisfies
uwe€ L0, T; VN H?)NC%0,T;V)nC0,T; L?),
ug € L0, T; V), uy € L=(0,T; L?), w(l,-) € H*(0,T).
(ii) From we can see that u, Uz, Us, Ugs, Uge, Uy € L(0,T; L) C L*(Qr).

Also if (ug,u1) € (V N H?) x H!, then the component u in the weak solution
(u, Q) of problem (L.I)-(L.5) belongs to H*(Q7)NL>(0,T;VNH?)NC(0,T;V)N
C1(0,T;L?). So the solution is almost classical which is rather natural since the
initial data ug and u; do not belong necessarily to V N C?(Q2) and C'(Q), respec-
tively.

(H2
(H3
(H4
(H5

(2.5)

Proof of the Theorem 2.2. The proof consists of Steps four steps.
Step 1. The Galerkin approximation. Let {w;} be a denumerable base of V' N H2.
We find the approximate solution of problem (1.1))- (1.5)) in the form

U (t) = Z Cmj (B)w;, (2.6)

where the coefficient functions c,,; satisfy the system of ordinary differential equa-
tions as follows

(U (8), w5) + () tme (1), wia) + Quu(t)w; (1) 4 (F(wm (t), s, (1)), wy) @7
=(f(t),w;), 1 <j<m, '
Qult) = K (D (1.0) + M (10) = [kt = (Lsds —gl0).  (25)

Um (0) = ugm, = i Qm;w; — ug  strongly in V' N H?,
= (2.9)
ul, (0) = uy = Z Bmjw; — uy  strongly in H'.

From the assumptions of Theorem 2.2, system f has solution (U, @m)
on an interval [0, T,,]. The following estimates allow one to take T,, = T for all m.
Step 2. A priori estimates: A priori estimates I. Substituting into , then
multiplying the j** equation of by ¢;,;(t), summing up with respect to j and
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afterwards integrating with respect to the time variable from 0 to t, we get after
some rearrangements

S (t) :Sm(0)+/() ds/o u’(x,s)ufm(x,s)da:—i-/o Ki(s)u?,(1,s)ds

+ 2/0 g(s)ul,(1,8)ds + 2/0 u;n(l,s)(/s k(s — T)um (1, 7)dr)ds (2.10)

0
1o / (F(5), uln(5))ds,
where

S (t) = [ (D17 + [V 1) uma (O + Ky (t)ur, (1, t)+%\\um()ll’£p

. . (2.11)
+2/\/0 ||u;n(s)||§qu+2/0 (8| (1, 5)Pds.
Using the inequality
2ab < Ba’® + %b"’, Va,be R,V3 >0, (2.12)
and the following inequalities
Sin(t) 2 [um, (DI + solltma (8% + 20 /02S [t (1, 5) s, (2.13)
an (L] < @y < a0 < 1/ 222, (2.14)

we shall estimate respectively the following terms on the right-hand side of (2.10)

as follows
t 1 1 ¢
/ ds/ ’u/(x,s)u%w(x,s)dxg7HM’”COQ7T / Sim(8)ds, (2.15)
0

/ K ()2, (1, 8)ds < 7/ K (5)|Sm()ds (2.16)
2 [ o0t 1,905 < Sl + om0 (217)
2 ul, (1, ) Sk(s—r)um(l,T)dT ds

/0 (/0 ) (2.18)

S (t) + ! —T|k|7 /ts (s)d
2 'm(8)ds
2/\ 5 L2(0,T) o

2 / (F (), (5))ds < [ 12200y + / Sn(5)ds. (2.19)

In addition, from the assumptions (H1), (H2), (H5) and the embedding H'(0,1) —
LP(0,1), p > 1, there exists a positive constant C; such that for all m,

2K
Sm(0) = [lurm|* + [V 1(0)womal* + K1(0)ug,, (1 )+7IIUOmH§p <Cr o (2:20)
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Combining (2:10), (2-11)), ([2-15)-(220) and choosing 8 = 22, we obtain

t
Sp(t) < M + / NI (8)Sn(s)ds, (2.21)
0
where
4
1
M =21+ - llgEao.m + 21 e en
(1) 2 2 Lo Lo (2.22)
NP (s)y =201 + —=—T|k + = — 4+ —|K!(s)]], :
v (8) = 20+ TRl o,y + I ooy + 1K)

N e LY(0,T).
By Gronwall’s lemma, we deduce from (2.21)), (2.22)), that

t
S (t) < M exp( / N (s)ds) < Cp, for all t € [0,T]. (2.23)
0

A priori estimates 11. Now differentiating (2.7) with respect to ¢ , we have
(U (1), w;) + () (8) + 1 ()t (t), wjz) + Qpy ();(1)
+ K (p = 1) (Jum [P, w;) + Mg — D){Ju, | ur, w;) (2.24)
= <f,(t>7wj>’

for all 1 < j < m. Multiplying the j*"* equation of (2.24) by Cmj(t), summing up
with respect to j and then integrating with respect to the time variable from 0 to
t, we have after some rearrangements

Xm(t) = Xm (O) + 2<:u/(0)u0mwa ulmm> - 2</’L/(t)umw (t) ul (t)>

’ mx

+2 | (1t () () 3 / s / (e ()P
) /Ot (K (5) — k(0))tm (1, s)ud" (1, 5)dls

— 2/075 (Kl(s) + A’l(s))u;n(l,s)u;’n(l,s)ds

4 2/(: u(1,) (g () + /0 K (s — 7Yt (1, 7)dr) ds

201K [ ()P0l (), ()} + 2 / () ),

(2.25)

where

Xon(0) = [ (01 + VRO 2 [ Na(o)lu (1, s
< - ) 0 (2.26)
+ 230 = 0 [ 15 (91 F 4 () s

From the assumptions (H1), (H2) , (H5), (H6) and the imbedding H'(0,1) —
LP(0,1), p > 1, there exists positive constant D; depending on p, ug, u1, K, A, p,
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q, f such that
X (0) + 2(p" (0)uoma s Utma)
= urr O)1” + [V1(0)tamez 1> + 201’ (0)toma, Uima)
< [|1(0)uomas + ta(0)uome — K [uom[P~*uom — Auim|?™ *urm + f(0)]?
+ 11V (0 wrmal* + 201 (0 2= (@) [uomal lurme|l < D1,

for all m. Using the inequality (2.12)) where 3 is replaced by 3; and the following
inequalities

(2.27)

Xin(t) 2 [ (1 + pol |y (8)] +2Ao/IU” (1, 5)[ds, (2.28)
[um (1, )] < [Jum ()| co@y < [luma(t) \/ ,/ (2:29)
[t (1, )] < [t (D)l o @) < Nt (] < v (2.30)

we estimate, without difficulty the following terms in the right-hand side of (2.25))
as follows

=2(p (8t (£), Unp (1)) < P1 Xom (8) + WCTHM 20 @m): (2.31)

2 / (5t (5), e (5)) s
<9 / 1" () et () (5)

- . (2.32)
Sﬁl*/ IIM”(S)IILmIIum(S)HQdS+ﬂ1uo/ 11" ()l oo Nt ()P lis
Ko Jo 0
K " CT "
< By / I (5) = X () + 5 20
0 110
t 1 3 t
3/ ds/ W (, 8)|ub, (2, 8)[2de < 7””’”00(@)/ X (s)ds, (2.33)
0 0 Ho 0
! / ﬁl C(T 2
—2/0(K1(8)—k(0))um(1,8) m (1, 8)d8<§X (t) + Bia ||K1 kO)I72(0,1)>
(2.34)
t
_2/ (K (s) + N, (), (1, $)ul' (1, 8)ds
0 (2.35)

2 ' 2 ! 2 A
< o [ IR + MR (5)ds + 5 X, 0),
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2/0 u;;l(l,s)(g’(s)Jr/O K'(s — T)um(1, 7)dT)ds

; , . (2.36)
T
< 2)\1 Xom(t) + E[HQ/H%Q(QT)J'_ m —T|K 121 0.1
20— DK [ (7t )l s < 2225 [
237)

/ (Y ().l (5))ds < / Xn(s)ds + U Boary (239)

In terms of (2.25)), (2.27)), (2.31)—(2.38)) and by the choice of 5; > 0 such that

3 1
1+ —)< =
Bill+50) < 5
we obtain
__ t
X (t) < MP + /0 NP (8) X (s)ds, (2.39)
where
MY = 2D, +ﬂ—m N Zoigm + 110 i) + 1K1 = k(0) [320,1)]
2 2CT
F[2||9 ||L2 or) T TTWC/”LI(OT +1f ||L2(QT)]
C
N®(s) = 28, + 42 L p(CT i oo + 280l (s) ]| pe (2:40)
7 (5) s (uo) uollu lco@m) " (s)llc
4
+ —— (K1 ()2 + |\ (s)]?),
ﬂ1u0<| ()7 + [A1(s)[7)
N e LY(0,T).
From ([2.39)—(2.40) and applying Gronwall’s inequality, we obtain that
Xon(t) < M exp (3 NP (s)ds) < Cp for all t € [0,T]. (2.41)

On the other hand, we deduce from (2.8), (2.11), (2.23)), (2.26]) and (2.41)), that

5DT 5T*Cr
Q% 1120,y < H>\1||2 1K1 20,2y + 519 20,7
5D (2.42)
T
+ W(HKI + )‘IIH%Q(O,T) + ||K1 - k(0)||2L2(0,T))7
where [[A1]lcoc = [[A1]lzoe(0,7)- From the assumptions (H3) and (H4), we deduce
from ([2.42)), that
HQmHHl(QT) < Cr for all m, (2.43)

where Cr is a positive constant depending only on T
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Step 3. Limiting process. From (2.11]), (2.23)), (2.26]), (2.41)) and (2.43)), we deduce
the existence of a subsequence of {(u,, @)} still also so denoted, such that

Um — u  in L®(0,T;V)  weak®,
u,, —u' in L=(0,T;V) weak*,
u — -/ in L®(0,T;L?) weak* (2.44)
Um(1,-) — u(l,-) in H*(0,T) weakly,
Qm — Q in HY(0,T) weakly.

By the compactness lemma in Lions [4: p.57] and the imbedding H?(0,T) <
C*([0,T7), we can deduce from (2.44)123 45 the existence of a subsequence still
denoted by {(um,@m)} such that

Upm — u  strongly in L*(Qr),
ul — ' strongly in L*(Qr),
U (1,-) — u(1,-) strongly in C*([0,T7),
Qm — Q strongly in C°([0,T7).
From and (2-45)3 we have that

Qm(t) — Ki(t)u(l,t) + M (H)u'(1,¢) — g(t) — /0 E(t —s)u(l,s)ds = Q(t) (2.46)

strongly in C°([0, T).
Combining ([2.45)4 and (2.46)), we conclude that

Q) = Q). (2.47)

(2.45)

By means of the inequality
[|21° 22 — [y°~%y| < (6 = DR’ ?|2 — ylquadvz,y € [-R; R], (2.48)
for all R > 0, § > 2, it follows from ([2.39)), that

[t [P 2, — [P~ 20| < (p — 1)RP"2|uy, — u|  with R = /@. (2.49)
Ho
Hence, it follows from ([2.45)); and (2.49)), that

[ |P™ 2, — |u[P™2u  strongly in L*(Qr). (2.50)
By the same way, we deduce from ([2.48)), with R = % and ([2.44))3, (2.45))2, that
lul |97 2wl — [u/|97%u’ strongly in L*(Qr). (2.51)

Passing to the limit in (2.7)-(2.9) by [@.44)1,5, (2.46), (2.47), (2.50) and (2.51) we

have (u, @) satisfying
(W (8),0) + (e (1), 02) + QO0(L) + (Kl + Au =24, v)
= (f(t),v), Yvevy,

(2.52)
w(0) = ug, u'(0) = uy, (2.53)

Q) = K1 (t)u(1,t) + M (t)ue(1,t) — g(t) — /0 k(t — s)u(l, s)ds, (2.54)
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On the other hand, from (2.44))5, (2.52)) and assumptions (H5)-(H6) we have
1
= W(u” — patiy + KuP~2u + Ao/ |72 — f) € L=(0,T; L?).  (2.55)
p(z,
Thus u € L>(0,T;V N H?) and the existence of the theorem is proved completely.
Step 4. Uniqueness of the solution. Let (u1,Q1), (u2, @Q2) be two weak solutions

of problem (1.1)—(L.5), such that
u; € L°°(0,T; VN H?), u,eL>®0,T;HY), u/ecL>0,T;L?,
ui(1,-) € H*(0,T), Qi€ H'(0,T), i=1,2.

uJE(E

(2.56)

Then (u, Q) with u = u; — uz and Q = Q1 — Q2 satisfy the variational problem
(" (0,5) + (10000 + QD + Kl = a2 0
(|| — |ub| Pub, ) =0 Yo eV, (2.57)
u(O) = 4/(0)=0,
and ,
Q) = K1(H)u(1,t) + M (H)u'(1,t) — / k(t — s)u(l, s)ds. (2.58)
We take v = v in 17 and integrating with resopect to t, we obtain

t t
< [ IV Pds + [ K, s
0 0
t s
+2/ u'(l,s)ds/ k(s —71)u(l,7)dr (2.59)
0 0
t
=2 [l = ol s,

0

where

a(t) = |l &)1 + |V t)us (8)]|* + Ky ( )2(17t)-|—2/0 A (s)|u/(1,5)2ds. (2.60)

Noting that

70 W (O + ol + 2% [ o' (1,9)P s, (2.61)
o(t
(1,01 < JuOllonm) < sl < 1/ 2. (262)

We again use inequalities (2.12]) and (2.48)) with § = p, R = max;—12 ||[us|| L (0,7;v),
then, it follows from (2.59)—(2.62)), that

1 k / - /5 S ia
olt) < %/o (Iellco@r) + K)o (s)ds + 55-a(t) (2.63)

T t 1 K
+ — &%, /UTdT+7p—1KRp72/USdS.
ﬂuo” 1220, ; (1) \//To( ) ; (s)

Choosing (3 > 0, such that ﬂﬁ < 1/2, we obtain from (2.63)), that

U(t)§/0 q1(s)o(s)ds, (2.64)
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where

2 . 2T
s) = — —— | K(s)]) + —
a1 (s) MO(II# lco@m) + 1K1(s)]) o

q1 € L*(0, 7).

2
&7 +—((p—-1)KR'?,
LoD T g (2.65)

By Gronwall’s lemma, we deduce that 0 = 0 and Theorem 2.2 is completely proved.
O

Remark 2.4. In the case p, ¢ > 2, K < 0, and A < 0, the question of existence for
the solutions of problem ([1.1)—(1.5) is still open. However we have also obtained
the answer of problem (1.1)—(1.5) when p = ¢ =2 and K, A € R published in [9].

3. ASYMPTOTIC EXPANSION OF THE SOLUTION

In this part, we consider two given functions wug, u; as ug, u1, respectively. Then
we assume that K;(t) = K is a nonnegative constant and (ug, w1, f, i, g, k, A1)
satisfy the assumptions (H2)-(H6). Let (K, \ K1) € R3. By Theorem 2.2, the
problem 7 has a unique weak solution (u, Q) depending on (K, A, K1):

u=u(K,\ K1), Q=Q(K,\ Kj).
We consider the following perturbed problem, where K, A\, K; are small parameters
such that, 0 < K < K,, 0 <A<\, 0 < Ky < K4

0
Au = uy — %(u(x,t)uz) =-—KF(u)— )\G(ut) + f(z,t), O0<z<l,0<t<T,
u(0,1) =
Bu= —pu(1,t)u <1 D= Q.
u(z,0) = up(x), wu(x,0) = (x),
Q) = Kru(1,8) + M (Due(1, ) / k(t — s)u(l, )ds,

(3.1)
where F(u) = |[uP~?u, G(ut) = |ug|?%us, p> N > 2, ¢ > N > 2. We shall study
the asymptotic expansion of the solution of problem (Pg x k,) with respect to ( K,
A, K1). We use the following notation. For a multi-index v = (71,72, 73) € Z3 and

it
K = (K,)\ K;) € R, we put

IV =m+7+7 A=mlrehs)

K| = /K2 + X2+ K2, K7=K"\?K}",

a,BEZY, B<a+epFi<a Vi=123.
First, we shall need the following Lemma.

Lemma 3.1. Let m, N € Nandv, € R, a € Zi, 1< |a] < N. Then

(Y wEY" = Y TMpRLE, (3.2)

1<al<N m<|al<mN
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where the coefficients T [v],, m < |a| < mN depending on v = (va), a € Z2,
1 < |a| < N are defined by the recurrence formulas

TW W]y =va, 1<la] <N,
T [v]q = Z Vo_gT ™ Vv)g, m<|a| <mN,m>2,
Beal™
Al =(3ezd :B<a,1<|a—B<N,m-1<|8]<(m—1)N}.

The proof of the above lemma can be found in [11]. Let (ug, Qo) = (0,00,
Q0,0,0) be a unique weak solution of the following problem (as in Theorem 2.2)
corresponding to (K, A\, K1) = (0,0,0); i.e.,

AUOZH)’O’()Ef(if,t), 0<(E<1,0<t<T,
uo(0,t) =0, Bug = Qo(t),
up(z,0) = ug(x), wugy(z,0)=u1(x),
t
Qo(t) = —g(t) + M (t)ug(1,t) — / k(t — s)ug(1, s)ds,
0
ug € C°(0,T; V)N CH0,T; L*) N L>=(0,T;V N H?),
up € L0, T; HY), wf € L>=(0,T;L?),
ug(1,-) € H*(0,T), Qo € H'(0,T).

Let us consider the sequence of weak solutions (u-,Q~), v € Zi, 1<y <N,

defined by the following problems (P, ):

Auy=P,, 0<z<1, 0<t<T,
uy(0,8) =0, Bu, = Q4(t),
uy(2,0) = v (x,0) =0,
t
Q) = Qy(0)+ M0 (1.0) = [ kit = s)u, (1. 5)as. (3.4)
u, € C°(0,T;V)NCH0,T; L*) N L=(0,T;V N H?),
w, € L®(0,T;H"), uJeL>®0,T;L?,
u,(1,-) € H*(0,T), Q. € H'(0,T),

where P, @'w |7] < N are defined by the recurrence formula

@'Y(t)207 1§|’Y|§N7 73207
Q’Y<t) = u’71’72>’73*1(1’t)7 1 S |7| S N, 3 Z 17
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and
Pioo=—F(u), Poio=-G(up), Poo1=0,
PO,O,’yg.:Oa QSVBSNa
[y]—1 1
Po o s = — Z ﬁG(m) (ué)T(m) [uqo,"m*l,"y;;v 2<7m+73<Nr=>1,
m=1 :
lv|—1 1
Py == Z ﬁF(m) (uO)T(m) [u]%fl,o,vga 2<m+m<Nmn=1,
m=1 '
[vl-1 1
Py= =3 O (o) T [uly, -0, + G ()T ], 5,10,
m=1 :

2< SN 21y >1,
(3.6)
here we have used the notation u = (uy), v € Z3, |y| < N. Let (v,Q) =
(uk Kk, QK oa Kk, ) be a unique weak solution of problem . Then (v, R), with

v=1u— Z ufyﬁvzu—h, R=Q - Z szv,
V<N [vI<N

satisfies the problem

Av =~ 3 (ula, )
= —K[F(v+h) — F(h)] = A[G(v; + he) — G(hy)]
+EN(I?), O<zr<l, 0<t<T,
v(0,t) =0, Bv=—pu(l,t)v.(1,t) = R(t),

R(t) = K1o(1, ) + M (D)ve(1, £) + Gn (K) — /t Kt —s)o(1,s)ds, 57
0

v(z,0) = v(z,0) = 0,
v e CY0,T;V)NCH0,T; L*) N L>=(0,T;V N H?),
v € L0, T; HY), " € L*>(0,T; L?),
v(1,:) € H*(0,T), Re H'0,T),

where

[vI<N

— oy
Gn(K) = Z u’Yh’Yz,’Ys—l(lat)K : (3.9)
[7[=N+1,v3>1

Then, we have the following lemma.
Lemma 3.2. Let (H2)-(H6) hold. Then
~ — ~ —
IEN (K )|z 0.1:v) < Civ [ K[IVFY, (3.10)
N (T ~ TFIN+1
IGN (K20, < Con || K7, (3.11)
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— — — ~
for all K = (K, )\, K1) € RS, |K|| < || Ky with K. (K*,)\*,Kl*) where C1n,
Con are positive constants depending only on the constants ||K I, 1yl Loe 0,150y 5
10| 0.mvys (0] < N sy =1 (L 20,1y, (0] = N 41,95 > 1).

Proof. In the case of N = 1, the proof of Lemma 3.2 is easy, hence we omit the
details, which we only prove with N > 2. Put

h=u+h,hi= Y wK". (3.12)
1<hI<N

By using Taylor’s expansion of the function F'(h) = F(ug 4+ h1) around the point
ug up to order N — 1, we obtain
N-1
F(h) )+ Zl %F“”) uo) " + N!F(N)(uo + 61h1)RY, (3.13)
where 0 < 0 < 1. By Lemma 3.1, we obtain from ([3.13)), after some rearrangements
—
in order to of K7, that

KF(h) = KF(ug)

[v]—1

n Z Z (m) (m) [U]'ylfl,'yz,’YS ?'y + R(l)(F, [_())7
2<[y|<N, 21 m=1
(3.14)
where
RD(FK)
(3.15)

N-1
1
=K Y —F™() » T, K7+ N F(N)(uo + O1h) KR,
m=1 " N<[y|<mN

Similarly, we use Taylor’s expansion of the function G(h:) = G(ug+ h)) around the
point u( up to order N — 1, we obtain

[v|—1

N
AG(hy) = MG (ug) + Z Z G(m) T(m)[ Tve—14s K

2<|v|<N, 72>1 m=1 (316)

+ R(Q)(G,?L

1 1
=AY =Gy YD TR KT + Ay GO + 0l ()
m=1 N<|y|<mN '
(3.17)
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and 0 < #3 < 1. Combining (3.6)), (3.8]), (3.14)—(3.17)), we then obtain
~ =
En(K) = f(z,t) = KF(uo) — AG(up)

[v]—1

(m)( (m) K
Z Z 7F (wo)T™ [u ]’71—1,’72373‘[{7

2<]y|<N, y1>1 m=1

[v]—1

N Z Z G(m T(m)[ ]71,%4,%27 (3.18)

2<]y|<N, y2>1 m=1

— — —
- Y PK'—RW(F K)-R?(G,K)
[vI<N

= -RD(F,K) - R? (G, K).

We shall estimate respectlvely the following terms on the right-hand side of -

Estimate for RV (F, K) By the boundedness of the functions u., v € Z3, [y < N
in the function space L>(0,7T; H'), we obtain from (3.13), that

-
||R(1)(Fa K)HL""(O,T;Lz)
1 m m T*
< |K]| Z Z EHF( (o) | Lo (0.7:v) 1T [uly | Lo 0,752y | K 7| (3.19)
m=1 N<|y[<mN
1
+ MKHF(N)(UO + 91h1>||L°°(0,T;V)||h1Hg°°(O,T;V)'

Using the inequality

T g Il 3
|K | <|IK|M, forall y € Z3, |y < N, (3.20)
it follows from and (| - ) that
~(1) =2 — —
||R<1 (F, K)||p~or22) < CHIE N, K| < K], (3.21)
where
N-—1
~(1 m m —
ON=3" 3 il pan 1T sl o 0,70 B =Y
m=1 N<|y|<mN (3.22)
— —
+OY KN gl o 1| P
[vI<N

I’(_*) = (K*) )‘*aKl*)7 a“nd C}anl = (p_l)(p_Q?“.(p_m)'

m:

Estimate for R® (G, I_(>) From (3.17) We obtain in a similar manner corresponding
to the above part, that

- ~(2) T2 — -
IR@(G, K|~ 0.1:02) < CRIE N, K] < 1K), (3.23)
where
1 m) [ - —_
o) = Z Yo Ol 1T @5 s o oy | K1Y
m= 1N<|’y|<mN (324)

+ N KN (Y e 0.7 | FE || 19
[vI<N
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Therefore, it follows from (3.18]), (3.21)—(3.24) that
~ = ~ ~ — ~ —
1En (K )| 0,7:02) < (Ciy + CODIE N = Con | K1V,
— —
K| < | K-

Hence, the first part of Lemma 3.2 is proved.

With G N(f), then, we obtain from (3.9)) in a similar manner to the above part,
that

(3.25)

”GN(I_())HH?(O,T) < CQNH?”N—H, (3.26)
where B
Con = Z [t 7275 =1 (1, ) L2 0,7)- (3.27)
[v|=N+1,v3>1
The proof of Lemma 3.2 is complete. ]

Theorem 3.3. Let (H2)-(H6) hold. Then, for every K ¢ R?, with 0 < K < K.,
0 <A<\, 0< Ky < Ky, problem (3.1) has a unique weak solution (u,Q) =
(ur . aK,, QraK,) Ssatisfying the asymptotic estimations up to order N + 1 as
follows

/ 1 TFy Ty
Ju" — Z uy K Lo (0,7522) + [lu — Z Uy K7 || Lo 0,7;v)
7SN [vI<N

N
' (1) = D wh (1)K 2o (3.28)
[vI<SN
~ —
< Dy |l K [N,
and - o
1Q— > QK20 < DNIK|NT, (3.29)
lvIsN
7 3 7 P % Ty %% -y -
for_a}ll K € Ry, [|[K| < ||K.||, Dy and Dy are positive constants independent
of K, the functions (u,, Q~) are the weak solutions of problems (3.4), v € Zi,
vl < N.

Remark 3.4. In [9], as in this special case for problem (1.1)—(1.5)), Long, Ut and
Truc have obtained a result about the asymptotic expansion of the solutions with
respect to two parameters (K, \) up to order N + 1.

Proof of Theorem[3.3. First, we note that, if the data K satisfy
0<K<K. 0<A<A, 0<FK, <K, (3.30)

where K, A, K1, are fixed positive constants. Therefore, the a priori estimates of
the sequences {u,,} and {@Q,,} in the proof of theorem 2.2 satisfy

¢
[, (D17 + pol|ma () ]1* + QAO/ |up, (1, 8)[*ds < My, ¥t € [0,T], (3.31)
0
t
[[urr, (D117 + polltn,, (01> + 2>\o/0 um, (1, 8)[*ds < Mp,Vt € [0,T], (3.32)
Q&1 0,7y < Mr, (3.33)

where My is a constant depending only on T, g, U1, Ao, to, f, g, k, 1, A1, K,
—
Ax, K14 (independent of K). Hence, the limit (u, @) in suitable function spaces of
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the sequence {(tum, Qm)} defined by (2.7)- 2.9) is a weak solution of the problem
. 11.5) satisfying the a pr10r1 estlmates 13.31])

Multlplymg the two sides of (3.7] 1 with o’ , and mtegratmg in t, we find without
difficulty from Lemma 3.2 that

2 ~ ~ —
o(t) < QT(7022N +Ciy) | K22

2 t
214 Kt e + 5o T ) [ o()s (339

+2K/0 IF (v + h) — F(h)||%ds,
where
a(t) = v/ ()]|? + v/ p(t)ve()]* + K1v3(1, t)+2/0 Ai(s)|v'(1,8))%ds.  (3.35)

By using the same arguments as in the above part we can show that the component
u of the weak solution (u, Q) of problem (Pxk x Kk, ) satisfies

t
[ ()1 + pollua (8)]1* + 2/\0/ ' (1, 5)ds < My, vt € [0,T], (3.36)
0
where Mr is a constant independent of K, A\, K;. On the other hand,
E—
IBllzeory < Iyl v I Kl = Ry (3.37)
[vI<N

We again use inequality (2.48) with 6 = p, R = max{R1, {/ %}, then, it follows

from (3.35)~(3.37), that

t 1 t
/ |F(v+h) — F(h)|?ds < M—(p - 1)2R2P*4/ o(s)ds. (3.38)
0 0 0
Combining ({3.34) and (3.38]), we then obtain
2 — —~ t
o(t) < 275 G + CRIR PN 4 our [ (o), (3.39)
0 0

for all ¢ € [0, T], where
2 1 _
oir = 2[1+K*+ ||u o ++— gt T||k\|L2(O T)+ ( —1)°R**7*K,], (3.40)
By Gronwall’s lemma, we obtain from (3.39) that
2 ~ ~ — ~ —
o(t) < 27(5-Chy + Ci)IK P exp(Torr) = DY IK|PY2, - (3.41)
— — —
for all t € [0,7] and all K € R, ||[K| < ||K.]|. It follows that
t
~ —
1o/ ()17 + pollow (1) + 220 / ['(1,9)Pds < o(t) < DY |KIPVF2. (342)
0

Hence

~ =
1"l 0,7522) + 1ol Loe 0,7y + 10 (1, ) 220,y < DRIE NN, (3.43)
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or

I = Y K| tlu— 3 K7
ol L*(0,T;L2) u Uy L>(0,T;V)
|[v[<N [v|<N

N
+ Hu,(l") - Z ufy(l")K’yHLz(O,T) (3'44)
[vI<N

< Dy |IE|M*,
— — — ~ . —
for all K € RY, ||K|| < ||K.||, where D} is a constant independent of K. On the

other hand, it follows from (3.11), (3.43]), that
~ =
R 20,1y < Kil[v]lLoe(o,m3v) + A lloo [V (1, ) L200,1) + 1G N (K) || 22(0,1)

1 T 1/2
[ —T R 3.45
=+ 10 (LIP3 0,T) (/0 U(S)d3> ( )

~ —
< DN [KE M,
hence,

— ~ —
Q= > QK l120m) < DNIENT, (3.46)
[vI<N

~ —
where DY} is a constant independent of K. The proof of Theorem 3.3 is complete.
O

Remark 3.5. For the case (K, )\, K1) € R? x Ry, but p = ¢ = 2, we have received
a theorem of the asymptotic expansion for the weak solution (u, Q) of problem
f with respect to three mentioned parameters; however, the detailes of
proof have been omitted.
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