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ABSTRACT 

Feature extraction and selection are essential phases in building machine learning 

classification models, and they have a great impact on the accuracy and the performance 

of the model. However, these phases are expensive, and there is no guarantee that 

manually extracted features will generalize well in different data modalities. Deep 

learning models integrate the phases of feature extraction, selection, and classification 

into a single optimization process. However, they are very computationally expensive 

compared to traditional machine learning algorithms, and they require large training 

datasets to achieve good classification performance.  

This work explores ways of combining the advantages of deep learning and traditional 

machine learning models by building a hybrid classification scheme. The first few layers 

of a convolutional neural network are utilized for feature extraction and selection. 

Subsequently, the extracted features are fed to a traditional supervised learning algorithm 

to perform classification. We evaluate our method on sensor data coming from human 

physiological biosignal measurements and motion tracking data coming from 

accelerometers. Our experimental results show that our hybrid approach outperforms 

deep learning and traditional machine learning algorithms when those are used in 

isolation on small da
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1. INTRODUCTION 

Biosignals have become a significant indicator for medical and psychological 

diagnosis. Extracting meaningful features from these signals is very important to 

understanding human functional state and diagnosing any harmful disease accurately. 

Biosignals are signals collected using sensors and used in diagnosis of diseases and 

Physiological therapy [11]. However, the analysis of biosignals requires detecting 

meaningful events of interest in the signals. Each biosignal has different characteristics and 

features, e.g. amplitude and frequency [2]. The majority of the research involving 

biosignals focuses on hand-engineering features, which require human experts to design 

algorithms to extract meaningful features from biosignals for each specific application. For 

example, meaningful features extracted from EEG signals for sleep staging are different 

from the features that we may need to extract from EEG signals for emotion recognition. 

This makes feature extraction and selection a complicated task. The goal of this research 

is to develop a method that uses deep learning to detect events of interest, from any type 

of biosignal after processing biosignals in an appropriate way to give us a high accuracy. 

Feature extraction is an essential phase in building a trusted model, especially in the 

medical and physiological field where patients are involved, which make the model 

accuracy highly important. Furthermore, due to regulations and privacy concerns, the 

number of available health-related datasets are limited both in number and in size. Different 

machine learning algorithms have been used for making decisions based on the data given 

to the model. However, the accuracy of these algorithms relies heavily on the features 

extracted from the raw data. There is a variety of feature selection methods being used, but 

they are usually computationally expensive and there is no guarantee that they will 
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converge to the optimal features. For example, in [3] the accuracy of the SVM algorithm 

varies depending on the feature selection method used. In feature-dependent methods, the 

main difficulty is to extract the appropriate features. In certain types of data, to extract high 

quality features we need human-like understanding of the raw data. Deep learning comes 

to solve this problem by eliminating the need for separate feature extraction, selection and 

model training phases. Deep learning has shown significant improvement in image 

classification and object detection. In early object detection approaches, people extracted 

features and fed these features to learning algorithms (e.g. SVM) to successfully detect 

objects of interest (e.g. pedestrians) in the image. However, when these methods were used 

to detect several classes other than pedestrians e.g. car, sign or tracks, the accuracy of the 

model dropped [4]. The use of deep convolutional neural network showed a notable 

increase in the performance of detecting objects using highly challenging datasets [5]. In 

addition, deep learning has been used to generate audio-visual features for emotion 

recognition [6]. One of the most important research problems is to develop a method to 

extract features from biosignals that can be efficient for that task. In the last few years, 

deep learning has become one of the most significant ways to extracting features from raw 

data which make feature extraction less dependent on human experts. These research works 

demonstrate promising results that deep learning can learn to select the most appropriate 

features from the raw data and can allow automation feature extraction from physiological 

raw data. 
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1.1 Motivation 

Biosignals have been widely used in a variety of applications for medical diagnosis, 

psychological data analysis and other health-related applications, as shown in Table 1 and 

Table 2. In most of these applications the types of features to be extracted from the signals 

were manually specified. In these applications biosignals go through different steps before 

feeding them to the classifier. Firstly, signals pre-processed to ensure that only signals with 

good quality can pass to the next phase. Secondly, time-domain, frequency-domain and 

time-frequency-domain features are extracted from each recording. The features are then 

passed to feature selection algorithm to select only irredundant and significant features. 

The selected features are then used to train the classifier to identify the right label for each 

instance. However, these features extracting methods may not generalize well in larger 

populations due to the diversity between subjects and recording environment. This problem 

occurs because of the hand-engineering approach of extracting features from biosignals, 

based on their characteristics in the available dataset. Hand-engineering tends to be used 

by a variety of biosignal-related applications to reduce the amount of data fed to the 

classifier and to improve the generalization of the model.  

Deep learning is a branch of machine learning which consists of linear and 

nonlinear multilayer processing neurons. A deep neural network utilizes these layers and 

neurons to extract features from raw data. In images and audio, the features extracted from 

the deep learning are very effective and outperform other machine learning classifier that 

have been trained using feature extracted using hand-engineering methods. However, deep 

learning has not been yet successfully utilized for biosignals analysis, mainly due the 

limited number of datasets available for the task. In this work, we develop a hybrid learning 

model that can detect various events of interest, from different physiological signals, while 
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eliminating the need for separate feature extraction and selection steps. We test this model 

on different classification problems that involve physiological signals. One of the main 

drawbacks of deep learning is that it requires large amounts of data to successfully train 

multiple layers of neurons and provide high classification accuracy. To overcome the need 

for large amounts of data, we will experiment with hybrid learning methods, where at the 

lowest level, only a few layers of a convolutional neural network are used to automatically 

extract features from raw biosignals. Subsequently, the extracted features from different 

layers will be fed to classic supervised learning algorithms (e.g. SVM) which require 

smaller amounts of data to achieve high accuracy. 

1.2 Biosignals and their Applications 

Table 1 lists a set of biosignals, their originating tissue/organ and the physiological 

characteristic that they measure. Table 2 list a set of applications where biosignals have 

been used along with corresponding published work. 

Table 1: Electrical Biosignals, Biosignals can be also none-electrical including acoustic, 

mechanical, magnetic, optic and chemical signals. 

Biosignal Tissue/Organ Measure 

Electroencephalogram (EEG) Brain Brain Activity 

Electrocardiogram (ECG) Heart Heart Rate 

Electromyography (EMG) Muscles Muscles Activity 

Electrooculography (EOG) Eye Eye Movement 

Electrodermal Activity (EDA) Skin Skin Conductance 
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Table 2: Biosignals application examples. 

 Applications Signals 

[7] Sleep analysis EEG 

[8] Emotion recognition EMG, ECG, EDA and other non-electrical 

biosignals. 

[9] Lie detection EEG, EDA 

[10] Stress Monitoring ECG, EDA  

[11] Seizures detection EEG, ECG 

[12] Brain-Computer Interfaces for Speech 

Communication. 

EEG, EMG 

 

1.3 Challenges 

The key challenge in this research is optimizing the Convolutional Neural Network 

(CNN) for each data set. There are a number of aspects that need to be considered during building 

and optimizing the CNNs. To fully optimize the CNNs we should be aware that the value of 

hyperparameters can affect how smooth is the learning process and the model behavior.  

The CNNs hyperparameters are the number of layers, the size of the filters for convolution 

and the convolution stride for each convolutional layer, the pooling region size and the 

pooling stride for each pooling layer, and the number of units for each fully-connected 

layer. The number of layers, the size and the number of features map in each layer can 

significantly change the deep model behavior and the features that the model can learn as 

shown in figure 1. Large number of layers can cause overfitting while small number of 

layers can cause underfitting. The size of the filters can also affect the learning process 

because different size of filters captures different features and usually large filters capture 

less features than the small filters. Another aspect that we need to be aware of is the 
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regularization penalty value. The L2 weight decay lambda can limit the model learning if 

the value chosen is too large or too small, however without the L2 weight decay the model 

can easily overfit to the noise in the signals which result in undesired behavior because this 

weight decay helps the model to learn smoother filters. Also setting the learning rate 

without suffering from Knockout Problem because we are using the ReLU activation 

function and this can easily be avoided by applying batch normalization. The need of 

optimizing and fine tuning the hyperparameters means we must run the CNNs model 

unspecific number of time and we are aware that that the CNNs training process takes a 

significant amount of time. 

1.4 Summary of Methodology and Findings 

In this research, we introduce a hybrid model that can learn features from the raw 

singles. The main purpose of this model is to automate the process of features extraction 

by utilizing the feature extraction capabilities of deep learning. In our model, we utilize 

Convolutional Neural Networks (CNNs) to extract features, and then we fed the extracted 

features to a traditional supervised learning algorithm to perform the classification. We 

evaluate our model on sensor data coming from human physiological biosignal 

measurements and motion tracking data coming from accelerometers. We compared the 

performance of our model with the previous studies that have been conducted on the same 

datasets that we used, where they utilize hand-engineering features for classification. The 

results demonstrated that our model can achieve a similar performance compared to the 

state-of-the-art methods, and without utilizing any hand-engineered features. We believe 

that our approach provides a general framework for classifying sensor signals. 
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2. BACKGROUND AND RELATED WORK 

2.1 Biosignals Processing 

The traditional approach for biosignal analysis consist of several phases that require 

a human expert in the loop. The first phase is pre-processing the signals to ensure only 

quality signals is remain. This pre-processing includes correcting inaccurate signals, 

removing aircrafts, normalizing the signals to a range of values, and passing them through 

filters to remove any noise. 

    The second phase is extracting features from the pre-processed signals. The extracting 

method depends heavily on a human expert who can specify which features are meaningful 

and useful for the intended application.  The Fourier transform is one of the most common 

tools to extract frequency domain features. Another tool that is commonly used to extract 

features from biosignals is the Wavelet transforms which can extract time domain features. 

The third phase is to select a subset from the extracted features before passing the features 

to the machine learning model. This phase reduces the number of features by selecting the 

most significant features, to reduce redundancy and speed up the training process. It also 

helps the model to generalize well without overfitting. The last phase is to pass the selected 

features to the machine learning classifier to build a trained model [13]. 

2.2 Using Deep learning on Biosignals 

There are some works that have used deep learning for biosignals but most of the 

published research applies deep neural networks for specific applications, which uses deep 

learning to extract features and predict the classes labels. On this section, we will discuss 

a few early examples of work that use deep learning with physiological signals. 

Using deep learning for automatic sleep staging based on the EEG signals, Tsinalis 

et.al. applied a Convolutional Neural Network (CNN) for sleep staging.  They used CNN 
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to extract features from a single channel EEG signal and to classify the sleep stages. They 

used raw EEG signals and without any signal pre-processing. By feeding raw data to CNNs 

they were able to compare the result with a research that they conducted on the same dataset 

using hand-engineering time-frequency analysis-based feature extraction and Morlet 

wavelet. Their model is effective in extracting features from a single channel EEG signal 

for sleep staging application only. They did not use polysomnogram (PSG) signals and 

their model has been tested only on EEG signals that have been collected from the Fpz-Cz 

channel [14]. Martinez, et.al. used deep learning to extract features from biosignals for 

emotion recognition. They studied and analyzed the impact of using different feature 

extraction and selection methods compared to the feature extracted from feeding raw 

signals to the Convolutional Neural Network (CNN). They used deep learning network for 

feature extraction and for classification. They used EMG, EDA and blood volume pulse 

signals that have been collected for emotion recognition purpose. They conclude that using 

deep learning for automatic feature extraction could be as effective as ad-hoc manual 

feature extraction methods. They also expect deep learning to be more effective when using 

large physiological datasets. [15]. Stober et.al., at the Brain and Mind Institute at University 

of Western Ontario, applied a CNN to detect events of interests from EEG signals which 

have been collected from different channels to determine what music the subject is listening 

to during the EEG recording. For better accuracy, all stimuli from all subjects has been 

normalized to the same length and the EEG and EOG signals have been pre-processed to 

remove unwanted artifacts. The main purpose of their work is to extract interpretable 

features from EEG that can be used to distinguish between the different music stimuli [16].  

Ian Walker, at the Imperial College of Science Technology and Medicine, developed a 
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deep learning model to classify user intent generated by motor imagery and EEG signal. 

The main purpose of his research is to analyze brainwaves in order to convert user intent 

into actionable signals. He applied CNNs to EEG signals generated from motor imagery to 

classify user intent. He used this model to develop a pilot game to help pilots get through 

the obstacles that they may face in the real-world training course by using a virtual training 

course [17].  
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3. METHODOLOGY 

The building methodology for our hybrid model consist of two main phases: 1) build 

and train a CNN using early stopping to stop the training if no improvement in the accuracy 

is obtained after a certain number of steps; 2) extract features the convolutional and fully 

connected layers and pass them to traditional machine learning classifiers.  

3.1 Convolutional Neural Networks (CNNs)  

Convolutional Neural Networks (CNNs) are biologically-inspired variants of the 

Multiple Layer Perceptrons (MLPs) [18]. They are special kind of neural networks and the 

most widely applied deep learning model in last few years. They have gained momentum 

in the field of computer vision, especially in two-dimensional image applications. In the 

medical field, they have been mostly used in medical imaging, e.g. Brain MRI, for 

detecting tumors. However, CNNs have not been widely used in biosignals applications, 

where one-dimensional biosignals, such as electroencephalography (EEG), are utilized. 

Recently there have been some efforts which applied CNNs in biosignal related 

applications, especially in sleep staging applications that use EEG signal channels. Even 

though CNNs have been introduced as a type of neural network they have a special 

architecture that make them stand over the ordinary neural networks. The architecture of 

CNNs usually is composed of a convolutional layer, activation function, and a max pooling 

layer, also known as down-sampling layer. The convolutional layer implements a 

convolution operation. CNNs are built based on three basic ideas, i.e., local receptive fields, 

weight sharing, and pooling [19]. 
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 3.1.1 Local Connectivity and Parameters Sharing 

Local connectivity, or sparse connectivity, cuts down the computational cost 

without affecting the performance. Unlike the fully connected layers in neural networks 

where all neurons in one layer are connected to all neurons in the next layer, the 

Convolutional Neural Networks (CNNs) are locally connected. Convolutional layers are 

technically locally connected layers with shared weight. This connectivity comes from 

passing the same filter over all unit positions, i.e. receptive field, on the input stream as 

shown in figure 1. These units share the same weight vector and bias. Sharing parameters 

in this way allows the CNNs to detect the features regardless of their position in the input 

stream. Moreover, parameter sharing improves the CNNs learning efficiency because it 

significantly reduces the number of the parameters being learnt and optimized, and enable 

the CNNs to achieve better generalization on the given problems [20]. 

3.2 Convolutional Neural Network Architecture 

3.2.1 Convolutional Layer 

Each Convolutional layer consists of a number of parameters for its filter. Usually 

the filter is small in comparison to the input volume, but these filters extend through the 

full depth of the input volume. In convolutional network terminology, the first argument 

the convolutional function takes is often referred to as the input, and the second argument 

is the kernel size while the output is the feature map that is going to be the input for the 

next layer. In machine learning applications, the input is usually a multidimensional array 

of data and the kernel of the filter is usually a multidimensional array of parameters that 

are adapted by the learning algorithm. These multidimensional arrays are known as tensors 

because each element of the input and kernel must be explicitly stored separately. For 
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example, if a convolutional layer has an input with size 5x5x20 this size can be explained 

as the Height x Width and the number of filters in the layer. It is worth mentioning that this 

format may change from one platform to another, i.e. in TensorFlow [21] the format of 

convolutional layer is height x width x number of filters in the layer while in Theano [22] 

the format is different. However, in both Theano and TensorFlow the forward propagation 

goes through the same process of sliding each filter across the width and height of the input 

volume in order to compute the dot products that result from adapting the filter over the 

input tensor. As a result of sliding the filter over the width and height of the input volume 

the output of the layer will be a 2-dimensional activation map and this map is the input for 

the next layer. During the training of forward and backward propagation, the filters will 

learn, with the help of the activation function. At each convolutional layer, the filter will 

learn different features, and as we go further in the CNNs, the filters in the deeper layers 

will learn complex patterns of features. The resulting feature map from applying the filter 

in each layer will be the stacked along the depth dimension and produce the output volume 

for the next layer. Moreover, in each convolutional layer we need to set the value of the 

stride. The value of the stride controls how the filter is applied to the input and thus controls 

the number of feature maps resulting from applying this filter to the input. Stride refers to 

the spacing of the receptive fields in the previous layer. Figure 1 presents a convolutional 

layer with a stride of two and filter of size 3x3 over an input stream of size 5 x 5. Each 

Element in the output grid is computed by elementwise multiplying the input with the filter 

and summing it up [23]. 
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Figure 1. Example of a learned 3 × 3 convolutional filters passing over a 5 × 5 input with 

stride = 2 to produce a 2 × 2 output. In the input grid the unite positions or receptive fields 

are marked with red, blue, green and purple are sharing the same filter weights. 

 

3.2.2 Max Pooling Layer 

It is common to place a pooling layer after the convolutional layers in most CNN 

applications. The main function of the pooling layer is to reduce the spatial size of the input 

by reducing the number of the parameters and in result reducing the computation size in 

CNNs. Pooling layers also control the overfitting problem that learning applications face 

usually when using the deep learning models. The pooling layer operates independently on 

every depth slice of the input and resizes that slice by using the max operation. The max 

pooling function reports the maximum output within a rectangle neighborhood. This means 

the pooling layer helps to make the representation invariant to small transitions of the input. 

Small invariant transition means that the value of the output does not change as we translate 

the input by the same factor. What this means is that in most CNNs application, like face 

recognition, the goal is to recognize if there is a face in the image, not the pixel position of 

the face in the image. So, by shifting or down sampling the size of the image we still have 
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a face on the image even though the pixel position or the size of the image is different than 

the original input. An example of max pooling is if we used 2 by 2 pooling size with stride 

size of 2 which is the most common stride size with max pooling, the pooling layer will 

down sample every input depth slice by 2 [24]. The MAX operation would in this case be 

taking a max over 4 numbers, i.e. square region of 2 by 2 as shown in figure 2. 

 

Figure 2. Max pooling with 2 x 2 pooling size and stride size 1. 

 

3.2.3 Fully Connected layer:  

The output from the last convolutional layer, or last max pooling layer, is fed to 

fully connected layer as an input. Neurons in a fully connected layer have full connections 

to all activations in the previous layer, as seen in regular Neural Networks. Their 

activations can hence be computed with a matrix multiplication followed by a bias offset. 
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3.3 Convolutional Neural Network Optimization  

3.3.1 Batch Normalization 

A recently developed technique by Ioffe and Szegedy [25] called batch 

normalization improves the deep neural network initialization by explicitly forcing the 

activations functions throughout a network to take on a unit Gaussian distribution at the 

beginning of the training. The main reason of using batch normalization is to avoid killing 

the activation function and the gradient vanishing problems. A large gradient could cause 

the weight to be updated in a way that the neuron will never be activated on any data point 

again. The gradient vanishing problem could happen if a change on the deep net parameters 

causes a very small change in the output which means the network is not able to learn 

effectively. Using batch normalization helps to avoid these problem that could affect the 

performance of the neural network. This technique works by normalizing activations 

throughout the network to prevent any small changes to the parameters from having a larger 

change in the gradients convergence. This means it prevent the change in learning rate from 

causing gradient non-convergence or gradient vanishing. In neural networks, if the 

parameter is too small or too large this may affect the gradient during the backpropagation 

and either causes model exploding or model non-convergence. By using batch 

normalization, the gradient during the backpropagation will not be affected by the scale of 

the learning rate. On the other hand, the batch normalization is not guaranteed to normalize 

the values to be Gaussian nor independent and can’t guarantee to help the gradient 

propagation to behave better during the training process [25]. 
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3.3.2 Regularization 

There are several ways to prevent the Neural Networks from overfitting, especially when 

the training dataset is not large 

L2 Regularization 

L2 is a regularization technique with a weight decay parameter, which adds a penalty into 

the loss function to prevent large values of the parameters in the model. The weight decay 

is called lambda and this parameter needs to be fine-tuned because it can limit the model 

capabilities of learning long-term dependencies. The lambda value decides the degree of 

penalty that we want to add to the loss function and can affect how smoother the CNN 

filters are. L2 is the most common form of regularization in CNNs [26]. 

L1 Regularization  

The L1 regularization has the property that makes the weight vectors to become sparse 

during optimization. Neurons with L1 regularization use only a sparse subset of the input 

which makes these neurons able to recognize the noise in the input. However, L1 takes 

long computation time compared to L2 and this is because final weight vector that results 

from using L2 is usually diffuse while using L1 the final weight vectors are large sparse 

vectors. In most cases L1 regularization is used to help perform feature selection in sparse 

feature spaces. In practice, it has been proved that L2 preforms than L1 [27]. 

 Dropout Layer 

Dropout is an extremely effective, simple and recently introduced regularization technique 

by Srivastava et al [28] that complements the other methods (L1, L2). The dropout layer 

works by temporarily dropping out some random units in the neural network. The network 

drops out these units along with all their incoming and outgoing connections. In the training 

phase, dropout is implemented by only keeping a neuron active with some probability (a 
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hyperparameter) while in the testing phase, the drop out probability will be set to zero. The 

output at test time is the same as the output at training time even though at the test time the 

removed units are present, but the weights of these units are multiplied by the dropout 

probability. In this work, we employee dropout layers and we fine tune the dropout 

probability to find the best value. The number of dropout layers and their location is 

important because it can affect the performance significantly. 

 

Figure 3. It shows the difference between the Fully Connected Neural Network before 

and after adding Dropout Layers [28]. 

 

3.3.3 Activation Function (Rectified linear unit (ReLU)) 

Activations are a major choice point when designing neural networks. They 

determine how the inputs are transformed throughout the network, which is essential for 

the network’s ability to learn complex functions. A purely linear activation function could 

be chosen at each layer, but then the outputs would be simply linear transformations of the 

inputs, thus ruling out the ability to learn more complex functional forms. Thus, non-linear 

activations are preferred for their increased flexibility.  
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Traditionally, researchers have used the sigmoidal (1.0) function and tangent (1.1) in the 

past because they are both non-liner and have easily computable derivatives, which is 

significant for efficient computation of the optimization function.  

𝜎(𝑧) =
1

1+𝑒−𝑧
           (1.0) 

tanh(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
    (1.1) 

In all experiments, we used the ReLU activation function (1.2) because It has been proved 

to be computationally faster than other common activation function (i.e. tanh and sigmoid) 

and because it doesn’t need any normalization or expensive operations such as exponential 

computation [29]. It also has been proved by Krizhevsky et al that ReLU is six times faster 

than tanh on CIFAR-10 [30]. It also does not suffer from the gradient vanish problem. 

However, using ReLU may cause another problem. If the learning rate used within the 

optimization function is large the CNNs may suffer from the Knockout Problem. This 

problem occurs when the large gradient causes the weights of some neuron to be updated 

in such way that the neuron activation function, i.e. ReLU, will be fragile and will never 

activated again at any data point and the gradient of this neuron will be zero through the 

training process. However, to prevent this problem we apply batch normalization when the 

learning rate used is large. The ReLU works by using the MAX operation: 

     𝑅𝑒𝐿𝑈(𝑧) = max⁡(0, 𝑧) (1.2) 
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Figure 4. The blue line represents how the ReLU activation function work. 

 

3.3.4 Loss Function (SoftMax with Cross-Entropy) 

This loss function computes the SoftMax and Cross-Entropy between the real label 

and the predicted labels. The combination of these two cost functions measures the 

probability of the error in the discrete classification tasks where classes are mutually 

exclusive. For example, each data segment is labeled with only one label and no two labels 

are assign to the same data segment or instance.  

SoftMax Classifier  

It is a type of activation layer that is usually used for multi-classification in logistic 

regression models. It interprets the outputs of the fully connected layer or the last layer in 

the deep learning network as probabilities. The calculated probabilities are in range 

between 0 and 1 and the sum of these probabilities is equal to 1. Mathematically the 

SoftMax function is shown below: 

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1
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Where z is a vector of the inputs to the output layer, j is set of the output units indexes, j = 

1, 2, ..., K [31]. 

Cross Entropy Cost Function 

If a function that the deep learning use to measure the error at a SoftMax layer. 

 𝐶 = −
1⁡

𝑛
⁡∑ ⁡[𝑦𝐼𝑛⁡𝑎 + (1 − 𝑦)𝐼𝑛(1 − 𝑎)]𝑛  

Where n is the total number training inputs, the sum is over all training inputs, x, and y is 

the corresponding desired output [31]. 

3.3.5 Mini Batch (Batch size) 

The batch term means group of examples, and in deep learning it is the number of 

data instances being used in each forward and backward pass cycle to optimize the deep 

model. Batch size is the term that is usually used to describe the minibatch size. Batch size 

is important because it could limit the model capabilities of learning. Larger batches 

provide a more accurate estimate of the gradient. On the other hand, training with a batch 

size of one is not recommended because small batches could add noise to the learning 

process and may also cause generalization and sampling error. However, for some models 

where they have to use batch size equal to one or batch size less than 128 they might require 

using small learning rate to maintain stability. Using a very small learning rate will cause 

the deep learning model to take longer time to converge and more time to examine the 

whole training set.  It is also crucial that the minibatches are selected randomly form the 

training data where the same batch could contain data from different subjects or data with 

different pattern to allow the model to generalize. Another crucial parameter is the number 

of Epochs because the number of Epochs multiplied by the batch size determine the number 
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of the forward and backward pass cycles. In each cycle, the optimization function will try 

to optimize the weight vector at each layer to reduce the loss, i.e. cost [32]. 

3.3.6 Optimization Algorithm (Adam optimization) 

The main purpose of the optimization function is to find the parameters θ of a neural 

network that reduces the cost function J(θ) by significantly amount. J(θ) in our research is 

the SoftMax cross entropy cost function. This process includes an intensive performance 

measure to evaluate the entire training set. In the case of deep learning, we optimize 

functions that may have many local minima that are not optimal, and many saddle points 

surrounded by very flat regions.  The optimization function in the deep neural network is 

considered as non-convex optimization function where there is only one global optimum 

for the optimization problem that optimization function trying to solve which is minimizing 

the average training loss. All of this makes optimization difficult, especially when the input 

to the function is multidimensional because of this increase the number of local minimums. 

We therefore usually settle for finding a value of that is very low but not necessarily the 

minimal. However, a problem may occur if all the local minimums have a high cost 

compared to the global minimum cost. Using gradient descent to optimize the neural 

network is not efficient because gradient descent can easily be stuck in the local minimum 

or due to having plateaus gradient descent may not converge. Stochastic gradient descent 

will converge if the learning rate is not constant throughout the optimization process which 

means to effectively use the stochastic gradient decent we need to apply the learning rate 

decay to guarantee convergence. Also, to improve the stochastic gradient descent 

optimization mini-batch is being used in the deep neural network where instead of using 

the gradient over single example the deep neural network will take the gradient of the 
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average regularized loss for all the mini-batch examples. This help in generalizing the deep 

net during the training process and because we are taking the gradient over multiple data 

example the gradient risk will be more accurate. Another technique called momentum 

which has been introduced by Polyak in 1964, help in improving the optimization results. 

Momentum computes the gradient by taking the exponential average of the previously 

computed gradient average. In this research we used the Adam optimization function, 

Adam is one of the adaptive learning rate optimization algorithm that updates the learning 

rate for different parameters from estimates of the first and second gradients moments. 

Adam optimizer is a combination of RMSProp [33] and momentum optimization but with 

a few important improvements that make Adam stand out. First, Adam adapt the 

parameters learning rats based on the average of the first and second moment. While in 

RMSProp the parameters learning rates are adopted based on the gradient first moment 

only, i.e. the average of the recent magnitudes of the gradient.  Second, Adam includes bias 

corrections to for both the first-order moments and second-order moments. While 

RMSProp incorporates bias corrections for the first-order moment initialization only. For 

this reason, RMSProp may have a high bias in the second-order moment estimates. 

Specifically, Adam optimizer have additional parameters beta1 and beta2 to control the 

decay rates of the calculated exponential average move and the squared move of the 

gradient [34] [35]. These improvements give significant advantages to Adam over the other 

optimizer. On the original paper it has been proved that in CNNs Adam make a rapid 

progress lowering the cost of the training process and it converge faster than other functions 

[34]. 
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3. 4 Convolutional Neural Network Representation Learning 

We fully train CNNs with early stopping using different filter sizes to extract 

features from raw signals. In our model, we apply CNNs where each layer consists of max 

pooling and we apply dropout layers and batch normalization through the training process 

only. In the feature extraction phase and the testing process, we don’t apply dropout layers.  

Each convolutional layer performs four operations sequentially: 1D-convolution with its 

filters, Max-Pooling, batch normalization, and applying the rectified linear unit (ReLU) 

activation (i.e., ReLU(x) = MAX (0, x)). Each pooling layer down samples inputs using a 

max operation. The model specification, such as the filter sizes, the number of filters, stride 

sizes and pooling sizes may vary depending on the characteristics of the dataset. However, 

the main idea is to extract features from these datasets using the best model specification. 

In each experiment that we run, we build a CNN with multiple convolutional layers with a 

small filter size. The use of multiple convolutional layers with a small filter size instead of 

a single convolutional layer with a large filter can reduce the number of parameters and the 

computational cost, and can still achieve the similar level of model expressiveness. 

3. 5 Fine-Tuning 

The second step after choosing the model specification is to perform a supervised 

fine-tuning on the whole model with a sequential training set. Then the model is trained 

with the sequence training set using a mini-batch and Adam optimizer with different 

learning rates. Fine tuning with different learning rates helps to prevent the model from 

overfitting. Also, we use different number of training epochs and we use the result to decide 

which parameter values are the best for the used dataset. Moreover, for each dataset we 

experiment with different convolutional neural network specifications, i.e. convolutional 

layer filter size, depth and width of the convolutional neural network, and the number of 
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hidden units in the fully connected layer. Surprisingly, the number of hidden units in the 

fully connected layer affect the performance of the CNNs as shown in figure 1, where 

different number of hidden layers where used to decide the most suitable number to be 

used in each experiment. 

 

Figure 5. The effect of the Number of Hidden Layer (x axis) in the FLC on the CNNs 

accuracy. 

 

3.6 Feature Extraction Process 

After optimizing and training the CNNs, deep net features are extracted from 

different convolutional layers and from the fully connected layer. The features from a 

single layer are fed to the classic supervised machine learning algorithms.  
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Figure 6. An overview of the hybrid model consisting of two main phases, fully trained 

CNNs and extracting and passing features to classical supervised machine learning 

algorithms. 

 

3.6.1 Machine Learning Classifiers 

We used five well-known machine learning classifiers to train and test with the 

features extracted from the CNN. Following we give brief definition of each classification 

method that we used: 
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Random Forest (RF) 

Large numbers of decision trees are generated by using a random sampling of the data. 

These trees then vote for the most popular class. 

K-Nearest Neighbor (KNN) 

An object is classified by a majority vote of its neighbors, with the object being assigned 

to the class most common among its k nearest neighbors. 

Support Vector Machines (SVM) 

The space is separated by hyperplanes. The location of this hyperplanes depends on the 

training data. The algorithm outputs an optimal hyperplane which categorizes the new 

examples. 

Decision tree (DT) 

It is rule based classification method that generates a tree with the leaves representing the 

labels and the branches representing the conjunction of the features that can lead to 

different class labels. 

Logistic Regression (LR) 

It is a regression-based method of classifying data into discrete outcomes. It is usually used 

where the classification task is binary. In this work, we used multinomial logistic regression 

which generalizes the linear logistic regression and allows multiple discrete outcomes. 
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4.  IMPLEMENTATION 

We implemented our model using Google TensorFlow which is a deep learning 

library and we run the model using NVIDIA GeForce GT 740M. 

4.1 TensorFlow  

TensorFlow is the successor to DistBelief, which is the distributed system for training 

neural networks that Google has used since 2011. One of DistBelief limitations is the fact 

that DistBelief all deep net layers are implemented as C++ classes where most machine 

learning researchers familiar with python and R which limit the DistBelief range of 

researchers. Another limitation that google team was able to overcome in TensorFlow is 

having different optimization functions where DistBelief was only using stochastic 

gradient descent. Also, even after adding GPU support, DistBelief remains a heavyweight 

system for training deep neural networks on huge datasets, and is difficult to scale down to 

other environments. However, TensorFlow was designed to be much more flexible and not 

heavyweight while still meeting the demand of Google’s production machine learning 

workloads. TensorFlow allows the user to implement applications on distributed clusters, 

local workstations, mobile devices, and custom-designed accelerators provides by using a 

simple dataflow-based programming abstraction. TensorFlow warp the construction of 

dataflow graphs by using high level scripting interface which allow the users to experiment 

with different model architectures and optimization algorithms without modifying the core 

system. A typical TensorFlow deep learning model goes through two distinct phases. The 

first phase is to define the dataflow graph with placeholders for input data and variables 

that represent the state like the weights and biases variables for each layer, while in the 

second phase the TensorFlow deep learning model will execute the optimized version of 
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the program. Moreover, Tensors in TensorFlow enable several optimizations for memory 

management and communication, such as RDMA and direct GPU-to-GPU transfer. 

TensorFlow use computational graphs because it enables auto-differentiation, i.e. it enables 

the forward pass computation to be extended automatically for computing the back-

propagation using the chain rule. Using computational graphs can sometimes be inefficient 

and slow because it requires it to allocate memory and keep the graph during the training 

process. However, most deep learning models are complex and writing the backward pass 

manually is so complicated and fault prone. Also, TensorFlow has the benefit of being able 

to utilize multicore CPU and GPU setups, which improves the performance and saves 

power [36] [37]. 
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5. EXPERIMENTS AND RESULTS 

5.1 Applying Regularization 

We employed two regularization techniques to help prevent overfitting problems.  

The first technique is dropout that randomly sets the input values to 0 (i.e., dropping units 

along with their connections) with the specified probability during training. Dropout layers 

with a probability of 0.5 were used throughout the model after convolutional layer and 0.7 

after the fully connected layer. It is important to note that these dropout layers were used 

for training only, and were removed from the model during testing to provide deterministic 

outputs. The second technique is L2 weight decay, which adds a penalty term into a loss 

function to prevent large values of the parameters in the model. We apply this because 

without the weight decay, the filters in the CNNs overfitted to noise or artifacts, especially 

if the dataset is small. This weight decay helped the model learn more smoothly, which 

resulted in better performance gains. In our experiments, the value of the weight decay 

parameter that defines the degree of penalty, lambda, varies depending on the characteristic 

of the dataset. 

5.2 Model Evaluation 

To evaluate the effectiveness of our proposed hybrid model, we use sensor data 

coming from human physiological biosignal measurements and motion tracking data 

coming from accelerometers. The evaluation process consists of different phases. The first 

phase is to optimize the deep CNNs based on the dataset characteristic. The second phase 

is to fully train the deep CNNs. The third phase, that comes after training the CNNs with 

the best hyperparameters, is to extract features from the fully trained model and then feed 

these features to traditional machine learning classifiers. To accurately evaluate the deep 
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hybrid model’s performance, we evaluate classification metrics on four raw datasets and 

we compare the results to the previous state-of-art approaches where feature extraction and 

selection methods were applied along with traditional machine learning classifiers. 

Moreover, in all the dataset we used a leave-one-subject-out cross validation to ensure that 

the hybrid model generalizes well in larger populations despite the diversity between 

subjects and recording environments. 

5.3 Performance Metrics 

We evaluated the performance using macro-averaging precision (PR), macro-

averaging recall (RE), macro-averaging F1-score (F1), overall accuracy (ACC). Moreover, 

to overcome the class imbalance problem in the second experiment, we used two 

assessment metrics: the standard accuracy (SA) and the macro average accuracy (MAA). 
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5.4 The Model Architecture  

  

Figure 7. The deep CNNs Architecture for the first experiment. Summary of the selected 

hyperparameters for each layer are provided in table 3. 
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Figure 8. The deep CNNs Architecture for the second, third and fourth experiment. 

Summary of the selected hyperparameters for each experiment are provided in tables 

7,11, 12, and 18. 
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5.5 Experiment one (Small Human activity dataset) 

This dataset was collected at the IMICS Lab at Texas State University. This dataset 

consists of 3­axis Accelerometer, 3­axis Gyroscope, ECG and EMG signals. The data was 

collected using a Bio-Radio physiological monitoring device at a sampling rate of 250Hz 

and there was a total of approximately 40,000 data samples. The dataset consists of three 

subjects and each did five activities over a period of approximately 2 minutes and 40 

seconds. The five activities that were performed by each subject are walking, sitting, 

standing, walking upstairs and downstairs. The signals were segmented using a fixed-width 

sliding window of 2 seconds with 50% overlap (500 samples/window). 

5.5.1 Training Parameters 

The model was trained with a batch of size of 194. The Adam optimizer’s 

parameters lr, beta1, and beta2 were set to 0. 00001, 0.9 and 0.999 respectively. Then the 

whole model was fine-tuned using the sequential training set. Specifically, we equally split 

the sequences of 2-s epochs from each subject data into 194 sub-sequences (i.e., batch size). 

Then we fed 10 epochs from each sub-sequence yielding 1940 epochs per one step of 

training. With this setting, we found that the pre-training and fine-tuning steps started to 

converge eventually. It should be noted we used the default value for most optimizer 

parameters such as beta1, beta2. We experimented with the batch size (from 10 to 200) 

during the training, the epochs (from 5 to 100), the learning rates (from 10-1 to 10-6), and l2 

weight decay (from 10-1 to 10-6). In this dataset, I did not use batch normalization and 

dropout layers because after using them the performance dropout. 
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5.5.2 Experiment one model specification 

Table 3: The CNNs model specification for the small human activity dataset. 

Conv layer 1 Filter: 6*6, Number of channels: 10, Number of filters: 30, Stride (1,1) 

Max Pool 1 Kernel size (2, 2), Stride (2,2) 

Conv layer 2 Filter: 5 * 5, Number of channels: 30, Number of filters: 50, Stride (2,2) 

Max pool 2 Kernel size (2, 2), Stride (2,2) 

Conv layer 3 Filter: 5 * 5, Number of channels: 50, Number of filters: 50, Stride (2,2) 

Max pool 3 Kernel size (2, 2), Stride (2,2) 

FLC  600 

 

The approximate training time of CNNs with this dataset is 1 hours 29 seconds. 

5.5.3 Experiment 1 Results 

Table 4: The result from extracting features from the second convolutional layer. 

Classifier F1 Precision Precision Precision 

CNN-RPF-SVM 74 75 74 75 

CNN-KNN, k = 5 65 76 67 79 

CNN-Logistic 

Regression  

67 70 68 78 

CNN- DT 65 66 65 73 

CNN- RF, Trees = 20 73 85 72 83 

 

Table 5: The result from extracting features from the third convolutional layer. 

Classifier F1 Precision Recall Accuracy  

RPF-SVM 89 94 87 94 

KNN, k = 5 76 90 76 85 

CNN-Logistic Regression  73 85 71 82 

CNN-DT 60 63 67 43 

CNN-RF, Trees = 20 61 80 63 76 
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Table 6: The result from extracting features from the FCL. 

Classifier F1 Precision Recall Accuracy  

CNN-RPF-SVM 80 85 80 81 

CNN-KNN, k = 5 69 80 69 80 

CNN-Logistic 

Regression  

71 81 71 82 

CNN-DT 62 65 63 69 

CNN-RF, Trees = 20 73 85 70 83 

CNN Only 84 85 84 85 

 

5.5.4 The Confusion matrix for the highest accuracy  

 

Figure 9. Confusion matrix of the classification using features map of the third 

convolutional layer with CNN-SVM. 
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 5.5.5 Comparison with the State-of-the-Art Methods 

A study was conducted using the same dataset with traditional machine learning 

approaches. The dataset processed by extracting the mean, root-mean-squared, and 

variance for all signals and the frequency domain and amplitudes for ECG and EMG. They 

examine the dataset based on the extracted features and they run the machine learning 

classifier with a combination of the features and the highest accuracy they score was 96 % 

using the data from Accelerometer and Gyroscope only. However, using data from all 

recorded signals they score 94.7 %. In our experiment we used the data from all the 

recorded signals and we score 95 % which is almost equal to the accuracy obtained with 

manual feature extraction. The highest accuracy that we score were from using the 

extracted feature from the third convolutional layer along with SVM with RPF kernel. 

Figure 10 shows a bar chart of the best accuracies obtained by the different feature selection 

and classification approaches. 

 

Figure 10. Summary of Experiment One Results. 
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5.6 Experiment two (Large human activity dataset)  

The dataset called UNIMIB-SHAR consists of 17 classes including activities of daily 

living and fall events, and it contains a total of 7,013 recorded activities performed by 30 

subjects of ages between 18 and 60 years. Activities are divided into 17 fine grained classes 

grouped in two coarse grained classes: 9 types of activities of daily living (ADL) and 8 

types of falls. The data recorded through built-in triaxial accelerometer with a sample 

frequency of 50 Hz. In addition, the application records audio signals with a sample 

frequency of 8,000 Hz. This dataset consists of 3­axis Accelerometer (x, y, z) that 

represents the accelerations along each of the 3 Cartesian axes. The dataset divided into 

four subsets in this research we are using the largest subset AF-17 that contains all the 17 

activity classes (standing up, getting up, walking, running, going up, jumping, going down, 

lying down, setting down, falling forward, falling right, falling back, falling obstacle, 

falling protection, falling chair, falling syncope, and falling left). [38].  

5.6.1 Training Parameters 

The model was trained with batches of size of 185. The Adam optimizer’s 

parameters lr, beta1, and beta2 were set to 0. 0001, 0.9 and 0.999 respectively. Then the 

whole model was fine-tuned using the sequential training set. Specifically, we equally split 

the sequences of 1-s epochs from each subject data into 185sub-sequences (i.e., batch size). 

Then we fed 30 epochs from each sub-sequence yielding 5550 epochs per one step training. 

It should be noted we used the default value for most optimizer parameters such as beta1, 

beta2. We experimented with the batch size (from 10 to 200) during the training, the epochs 

(from 5 to 100), the learning rates (from 10-1 to 10-6), and l2 weight decay (10-1 to 10-6).    
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In this dataset, we use batch normalization and dropout layers with penalty 0.5 over all 

convolutional layers and 0.7 after the fully connected layer. 

5.6.2 Experiment two model specification 

Table 7: The CNNs model specification for the large human activity dataset. 

Conv layer 1 Filter: 20*3, Number of channels: 3, Number of filters:120, Stride (1,1) 

Max Pool 1 Kernel size (2, 2), Stride (2,2) 

Conv layer 2 Filter:10*5, Number of channels: 120, Number of filters: 80, Stride (1,1) 

Max pool 2 Kernel size (2, 2), Stride (2,2) 

Conv layer 3 Filter: 10 * 5, Number of channels: 80, Number of filters: 80, Stride (2,2) 

Max pool 3 Kernel size (2, 2), Stride (2,2) 

FLC  400 

 

The approximate training time of CNNs with this dataset is 2 hours 44 seconds. 

5.6.3 Experiment two results 

Table 8: The result from extracting features from the second convolutional layer. 

Classifier F1 Precision Recall Accuracy  SA MAA 

CNN- RPF-SVM 22 31 21 49 50.0 21.0 

CNN-KNN, k = 2 45 52 44 59 60.0 44.76 

 

Table 9: The result from extracting features from the third convolutional layer. 

Classifier F1 Precision Recall Accuracy  SA MAA 

CNN- RPF-SVM 65 65 67 71.0 71.14 57.5 

CNN-KNN, k = 2 43 52 46 59 60.0 43.8 
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Table 10: The result from extracting features from the FLC layer. 

Classifier F1 Precision Recall Accuracy  SA MAA 

CNN- RPF-SVM 65 67 66 83 79.0 62.0 

CNN-KNN, k = 2 67 69 68 84 80.68 66.82 

CNN only  58 60 56 75 72.74, 56.17 

 

5.6.4 The Confusion matrix for the highest accuracy 

 

Figure 11. Confusion matrix of the classification using features of the FCL with CNN-

KNN. 
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5.6.5 Comparison with the State-of-the-Art Methods 

A study was conducted using the same dataset with traditional machine learning 

approaches. The dataset was processed by extracting the magnitude. They examine the 

dataset by basing the raw data and the magnitude feature vector to the machine learning 

classifier and they evaluate the performance using mean average accuracy (MAA) and 

standard accuracy (SA). The highest MAA and SA they score for AF-17 dataset are 58 and 

51.14 using the magnitude feature vector [38].  In our experiment, the highest accuracy 

MAA and SA are 80.68 and 66.82. These results were from using the extracted features 

from the fully connected layer along with KNN. Comparing our model performance to the 

state-of-the-are approach [38] our model SA and MAA performances are better. 

 

Figure 12. Summary of Experiment Two (UNIMIB-SHAR dataset) Results. 
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5.7 Experiment three (Small Emotion Dataset)  

The dataset consists of data collected from 5 subjects at the IMICS Lab at Texas 

State University. The subjects were involved in seven Virtual Reality (VR) sessions 

including watching movies and playing games. The subjects self-reported the arousal level 

after each session. The arousal level used is low (-1), medium (0) and high (1). The 

classification labels are based on subjects self-reported and on further signals analysis from 

each session. The data were ollected using two BioRadio physiological monitoring devices. 

The data were recorded with a sample frequency of 250 Hz rate and they consist of these 

biosignals: EEG f4, EOG – Horizontal, EOG – Vertical, EMG – Zygomaticus “smile” 

muscle, Accel XYZ (Rear of head), Gyro XYZ (Rear of head), GSR (Electrodermal 

Activity), ECG, Chest Respiration (RIP), Abdomen Respiration (RIP), Peripheral 

Temperature, Heart Rate via PulseOx, Blood Volume (PPG) via PulseOx, Blood Oxygen 

(SpO2) via PulseOx, Accel XYZ (Right waist) and Gyro XYZ (Right waist) [39]. 

5.7.1 Training Parameters 

The model was trained with batch of size of 122. The Adam optimizer’s parameters 

lr, beta1, and beta2 were set to 0. 001, 0.9 and 0.999 respectively. Then the whole model 

was fine-tuned using the sequential training set. Specifically, we equally split the sequences 

of 1-s, 2-s and 10-s epochs from each subject data into 122 sub-sequences (i.e., batch size). 

Then we fed 10 epochs from each sub-sequence yielding 1220 epochs per one step training. 

It should be noted we used the default value for most optimizer parameters such as beta1, 

beta2. We experimented with the batch size (from 10 to 200) during the training, the epochs 

(from 5 to 100), the learning rates (from 10-1 to 10-6), and l2 weight decay (10-1 to 106).  In 
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this dataset, we use batch normalization and dropout layers with penalty 0.5 after last 

convolutional layers and 0.7 after the fully connected layer. 

5.7.2 Experiment three model specification 

Table 11: The model specification for 3 arousal levels (low, medium, high). 

Conv layer 1 Filter: 6*6, Number of channels: 24, Number of filter: 120, Stride (2,2) 

Max Pool 1 Kernel size (2, 2), Stride (4,4) 

Conv layer 2 Filter: 5 * 5, Number of channels:120, Number of filter: 60, Stride (2,2) 

Max pool 2 Kernel size (2, 2), Stride (4,4) 

Conv layer 3 Filter: 5 * 5, Number of channels: 60, Number of filter: 30, Stride (2,2) 

Max pool 3 Kernel size (2, 2), Stride (4,4) 

FLC  600 

 

Table 12: The model specification for binary arousal levels (low, high). 

Conv layer 1 Filter: 6*6, Number of channels: 24, Number of filter: 70, Stride (4,4) 

Max Pool 1 Kernel size (2, 2), Stride (4,4) 

Conv layer 2 Filter: 5 * 5, Number of channels: 70, Number of filters: 60, Stride (4,4) 

Max pool 2 Kernel size (2, 2), Stride (2,2) 

Conv layer 3 Filter: 5 * 5, Number of channels:  60, Number of filters: 50, Stride (4,4) 

Max pool 3 Kernel size (2, 2), Stride (2,2) 

FLC  600 

 

The approximate training time of CNNs with this dataset is 1 hours 20 seconds. 
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5.7.3 Experiment three results 

Table 13:  The result of extracting features from the third convolutional layer for arousal 

levels (low, medium, high). 

Classifier F1 Precision Recall Accuracy  

CNN- RPF-SVM 

Gamma=0.01, C=10 

90 89 92 90 

CNN-KNN 

k = 5 

67 79 65 72 

CNN-DT  

Max Depth = 10 

50 47 59 51 

CNN-RF  

Trees = 5 

75 76 77 75 

CNN-logistic regression 

Penalty= 'l2', C= 30.5 

87 92 84 90 

CNN Only 85 86 85 82 

 

Table 14: The result of extracting features from the third convolutional layer for binary 

arousal levels (low, high). 

Classifier F1 Precision Recall Accuracy  

CNN- RPF-SVM 

Gamma=0.01, C=10 

90 89 92 89 

CNN-KNN, k = 2 78 82 78 79 

CNN-DT  70 70 70 70 

CNN-RF  

Trees = 5 

75 76 75 70 

CNN-logistic regression 

Penalty= 'l2', C= 50 

85 85 85 85 

CNN Only 87 87 87 85 
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Table 15: The result of extracting features from the second convolutional layer for 

arousal levels (low, medium, high). 

Classifier F1 Precision Recall Accuracy  

CNN- RPF-SVM 

Gamma=0.01, C=10 

67 66 70 70 

CNN-KNN, k = 2 77 80 72 79 

CNN-DT  59 64 67 60 

CNN-RF, Trees = 5 50 50 54 60 

CNN-logistic regression 

Penalty= 'l2', C= 50 

82 81 84 82 

 

Table 16: The result of extracting features from the second convolutional layer for the 

binary arousal levels (low, high). 

Classifier F1 Precision Recall Accuracy  

CNN- RPF-SVM 

Gamma=0.01, C=10 

74 74 74 74 

CNN-KNN, k = 2 76 77 76 77 

CNN-DT  54 54 55 54 

CNN-RF, Trees = 5 65 77 67 69 

CNN-logistic regression 

Penalty= 'l2', C= 50 

83 73 74 73 

 

Table 17: The result of extracting features from the FLC for arousal levels (low, 

medium, high). 

Classifier F1 Precision Recall Accuracy  

CNN- RPF-SVM 

Gamma=0.01, C=10 

77 85 79 79 

CNN-KNN, k = 2 66 65 66 62 

CNN-DT  62 64 61 61 

CNN-RF, Trees = 5 53 54 53 60 

CNN-logistic regression 

Penalty= 'l2', C= 50 

73 74 78 74 
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Table 18: The result of extracting features from the FLC for the binary arousal levels 

(low, high).  

Classifier F1 Precision Recall Accuracy  

CNN- RPF-SVM 

Gamma=0.01, C=10 

69 79 70 72 

CNN-KNN, k = 2 64 64 64 64 

CNN-DT  54 55 55 55 

CNN-RF, Trees = 5 61 61 61 62 

CNN-logistic regression 

Penalty= 'l2', C= 50 

81 85 81 81 

 

 

5.7.4 The Confusion matrices for the highest accuracy 

 

Figure 13. Confusion matrix of the three arousal levels classification using features map 

of the third convolutional layer with CNN-SVM. 
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Figure 14. Confusion matrix of the binary arousal levels classification using features map 

of the third convolutional layer with CNN-SVM. 

 

5.7.5 Comparison with the State-of-the-Art Methods 

A study was conducted using the same dataset with traditional machine learning 

approaches. The dataset was processed by extracting the mean and standard deviation along 

with temporal, frequency and domain based features. They performed several feature 

selections methods like the sparse technique. They examine the dataset based on the 

selected features and they run the machine learning classifier with a combination of the 

domain based features and select the features with the highest accuracy. The highest 

accuracy they score is 80 % using binary arousal level [39]. Using features from the third 

convolutional layer with SVM our model accuracy score is 90 % using three arousal level 

and 89 % using binary arousal level. 
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Figure 15. Summary of Experiment Three Results. 
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5.8 Dataset (DEAP Dataset) 

DEAP Dataset contains data that have been collected from 32 subjects. The data 

were recorded as each subject watched 40 one-minute long excerpts of music videos. 

Subjects rated each video in terms of the levels of arousal, valence, like/dislike, dominance 

and familiarity using 1-9 scale. The data consist of 40 channels, 32 of them are EEG 

channels and the remaining 8 are EOG Horizontal and Vertical, EMG Zygomaticus and 

Trapezius, GSR, Respiration belt, Plethysmograph and Temperature. Data collected at 

512Hz and down-sampled to 128 HZ. The labels of this data are 1-9 scale for each class of 

the four valences, arousal, dominance and liking [40]. 

5.8.1 Training Parameters 

The model was trained with batch of size of 125. The Adam optimizer’s parameters 

lr, beta1, and beta2 were set to 0. 001, 0.9 and 0.999 respectively. Then the whole model 

was fine-tuned using the sequential training set. Specifically, we equally split the sequences 

of 60-s epochs from each subject data into 125 sub-sequences (i.e., batch size). Then we 

fed 20 epochs from each sub-sequence yielding 2500 epochs per one training step. It should 

be noted we used the default value for most optimizer parameters such as beta1, beta2. We 

experimented with the batch size (from 100 to 200) during the training, the epochs (from 

10 to 100), the learning rates (from 10-1 to 10-6), and l2 weight decay (from 10-1 to 10-6). In 

this dataset, we use batch normalization and dropout layers with penalty 0.5 after last 

convolutional layers and 0.7 after the fully connected layer. 
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5.8.2 Experiment four the Model Specification 

Table 19: The model specification for the DEAP dataset. 

Conv layer 1 Filter: 1*20, Number of channels: 40, Number of filters: 40, Stride (1,1) 

Max Pool 1 Kernel size (2, 2), Stride (2,2) 

Conv layer 2 Filter: 5* 60, Number of channels:40, Number of filters: 60, Stride (2,2) 

Max pool 2 Kernel size (2, 2), Stride (2,2) 

Conv layer 3 Filter: 5 * 70, Number of channels: 60, Number of filters: 80, Stride (4,4) 

Max pool 3 Kernel size (2, 2), Stride (2,2) 

FLC  1400 

 

The approximate training time of CNNs with this dataset is 3 hours 34 minutes. 

5.8.3 Experiment four Results 

Arousal Level Classification 

Table 20: The result of extracting features from the second convolutional layer for 

arousal levels. 

Classifier F1 Precision Recall Accuracy 

CNN- RPF-SVM 

C= 1.0, gamma = 0.0001 

44 48 48 49 

CNN-LG, C= 1.0 39 41 41 50 

CNN-KNN, K = 10 40 41 46 51 

CNN-DT,  

Max depth = 50 

38 34 32 50 

CNN-RF, Trees = 20 40 50 45 46 

CNN Only 51 52 51 53 
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Table 21: The result of extracting features from the third convolutional layer for arousal 

levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C=1.0,gamma= 0.0001 

57 57 58 63 

CNN-LG, C= 1.0 60 59 60 63 

CNN-KNN, K = 10 57 58 57 60 

CNN-DT 

Max depth = 50 

57 55  60 57 

CNN-RF, Trees = 20 54 54 54 62 

CNN Only 51 52 51 53 

 

Table 22: The result of extracting features from the FLC layer for arousal levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C=1.0, gamma = 

0.0001 

48 49 48 50 

CNN-LG 

C= 1.0 

40 40 44 55 

CNN-KNN 

K = 10 

46 47 50 56 

CNN-DT 

Max depth = 50 

39 40 43 55 

CNN-RF 

Trees = 20 

40 41 44 55 
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Liking Level Classification 

Table 23: The result of extracting features from the second convolutional layer for liking 

levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM, 

C=1.0, gamma = 

0.0001 

46 47 52 50 

CNN-LG, C= 1.0 49 50 52 58 

CNN-KNN, K = 10 53 55 59 60 

CNN-DT 

Max depth = 50 

40 45 54 50 

CNN-RF, Trees = 20 47 40 58 57 

 

Table 24: The result of extracting features from the third convolutional layer for liking 

levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C= 1.0, gamma = 

0.0001 

63 62 66 63 

CNN-LG, C= 1.0 65 62 69 67 

CNN-KNN, K = 10 62 61 64 65 

CNN-DT 

Max depth = 50 

50 53 49 50 

CNN-RF, Trees = 20 55 56 55 61 

CNN Only 50 52 50 50 
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Table 25: The result of extracting features from the FLC layer for liking levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C= 1.0, gamma = 

0.0001 

50 50 49 50 

CNN-LG, C= 1.0 56 51 54 57 

CNN-KNN, K = 10 55 55 61 62 

CNN-DT 

Max depth = 50 

50 44 53 57 

CNN-RF, Trees = 20 41 44 46 48 

 

Valence Level Classification 

Table 26: The result of extracting features from the second convolutional layer for 

valence levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C= 1.0, gamma = 

0.0001 

41 59 46 48 

CNN-LG, C= 1.0 45 48 42 50 

CNN-KNN, K = 5 45 44 47 52 

CNN-DT 

Max depth = 50 

45 44 45 45 

CNN-RF, Trees = 20 45 41 49 50 
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Table 27: The result of extracting features from the third convolutional layer for valence 

levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C= 1.0, gamma = 

0.0001 

66 66 65 66 

CNN-LG, C= 1.0 70 70 70 71 

CNN-KNN, K = 5 63 64 63 63 

CNN-DT 

Max depth = 50 

55 56 55 57 

CNN-RF, Trees = 20 58 52 64 61 

CNN Only 48 48 47 50 

 

Table 28: The result of extracting features from the FLC layer for valence levels. 

Classifier F1 Precision Recall Accuracy 

CNN-RPF-SVM 

C= 1.0, gamma = 

0.0001 

41 45 47 47 

CNN-LG, C= 1.0 47 48 51 57 

CNN-KNN, K = 5 60 62 63 66 

CNN-DT 

Max depth = 50 

46 46 46 46 

CNN-RF, Trees = 20 40 45 44 48 

 

 

 

 

 

 

 



 

54 
 

5.8.4 The Confusion Matrices for the Highest Accuracy 

 

Figure 16. Confusion matrix of the arousal levels classification using features map of the 

third convolutional layer with CNN-LG. 

 

 

Figure 17. Confusion matrix of the liking levels classification using features map of the 

third convolutional layer with CNN-LG. 
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Figure 18. Confusion matrix of the valence levels classification using features map of the 

third convolutional layer with CNN-LG. 

 

5.8.5 Comparison with the State-of-the-Art Methods 

Study was conducted using the same dataset with traditional machine learning 

approaches. The dataset was processed by down sampling the signals to 256 Hz then a 

number of features were extracted including the average, standard deviation, spectral 

power and other features for each signal. Feature selection methods were also applied. They 

examine the dataset based on the features extracted and they state the accuracy they got by 

using each set of features. The highest accuracy and F1 they score for the Arousal class is 

65 % and 61% respectively. The highest accuracy and F1 they score for the Valence class 

is 63 % and 60 %. The highest accuracy and F1 they score for the Liking class is 67 % and 

63 % [40]. The highest accuracy we score using extracted features from the third 

convolutional layer. The Accuracy we scored for arousal, valence and liking are 63 %, 71% 
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and 67 % respectively. Our model performs better in both valence and liking comparing to 

the state-of-the-art approaches where they utilize hand-engineered method. However, for 

the arousal level our model accuracy is 2% less accurate.  

 

Figure 19. Summary of Experiment Four (DEAP dataset) Results. 

 

5.9 Discussion 

The results demonstrated that our model achieved a similar performance on the first 

and fourth data sets. However, the result also shows that our model outperforms the state-

of-the-art methods in second and the third experiments.  In the fourth experiment our 

method performs better in classifying the Valence and Liking emotion levels; however, we 

score less than the state-of-the-art method for classifying the Arousal levels. We observe 

that in general, our method outperforms the CNNs and the state-of-the-art performance 

when we utilize the features which come from the third convolutional layer or the FLC 

layer. We also observe that the combination of CNNs with SVM or LG score the highest 
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accuracy in average. The results imply that our model recognized some useful patterns in 

the signals and generalize well among different subjects. In general, our results showed 

that our model was able to achieve better performance compared to the state-of-the-art 

methods. 

 

Figure 20. Summary of all the experiments results using our hybrid model, CNNs only 

and the state-of-the-art machine learning approach. 
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6. CONCLUSION 

In this work we proposed a hybrid model where we combined deep CNNs with 

traditional machine learning classifiers to eliminate the need for a human expert to study 

and extract hand-engineered features from biosignals. The main goal of this research is to 

use deep learning on small datasets without overfitting the training data and we have been 

able to achieve this goal as demonstrated in our experiments on both small and large 

datasets. Our model shows promising results on raw biosignals compared to the state-of-

the-art approaches that utilize hand-engineered features. Even though our model needs to 

be fully trained and fine-tuned before applying it to new dataset to extract the best features, 

we believe that our model is a better approach because our model is able to automatically 

learn features from the raw datasets. Using a leave-one-subject-out cross validation 

guarantees that our hybrid model can generalize well on data from different subjects and 

from different sensors. In this work, the highest performances we got were from either the 

third convolutional layer or the fully connected layer, however, this may vary depending 

on the used dataset.   

Even though the results are encouraging, and we achieved better performance 

compared to using deep learning alone or a hand-engineered features approach in the 

domain of biosignals, it is difficult for humans to understand the features learned by the 

deep CNNs filters at each layer, which still remains of the disadvantages of neural network-

based classifiers.  
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