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AN ORLICZ-SOBOLEV SPACE SETTING FOR QUASILINEAR
ELLIPTIC PROBLEMS

NIKOLAOS HALIDIAS

ABSTRACT. In this paper we give two existence theorems for a class of elliptic
problems in an Orlicz-Sobolev space setting concerning both the sublinear and
the superlinear case with Neumann boundary conditions. We use the classical
critical point theory with the Cerami (PS)-condition.

1. INTRODUCTION

In this paper we consider the following elliptic problem with Neumann boundary
conditions,
—div(a(|Vu(z)|)Vu(z)) = g(x,u) a.e. on

1.1
a—u =0, a.e. on 0f). 1)
v

We assume that € is a bounded domain with smooth boundary 0€2. By % we
denote the outward normal derivative. As in [2] we assume that the function « is
such that ¢ : R — R defined by ¢(s) = «(|s|)s if s # 0 and 0 otherwise, is an
increasing homeomorphism from R to R.

In [2], the authors study a Dirichlet problem when the right-hand side is su-
perlinear. They show the existence of a nontrivial solution and show that it is
important to use an Orlicz-Sobolev space setting. Here, we consider a Neumann
problem when the right-hand side is sublinear. Also we consider the superlinear
case using the ideas in [4]. Assuming Landesman-Laser conditions for the sublinear
case and using the interpolation inequality for the superlinear case, we prove the
existence of a nontrivial solution.

Let us recall the Cerami (PS) condition [I]. Let X be a Banach space. We say
that a functional I : X — R satisfies the (PS). condition if for any sequence such
that [I(u,)| < M and (1 + |Jug|){I'(us),¢) — 0 for all ¢ € X we can show that
there exists a convergent subsequence.

Let

@(s):/osqb(t)dt, <I>*(s):/os¢_1(t)dt, s €R,
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it is well-known that ® and ®* are complementary N functions which define the
Orlicz spaces Lg, Ly~ respectively. We use the well-known Luxenburg norm,

lullo = inf{k > 0 : A@(M]f)')dx <1}

As in [2] we denote by W' Lg the corresponding Orlicz-Sobolev space with the norm
lullie = llulle + [[[Vullle.
Now we introduce the Orlicz-Sobolev conjugate ®, of @, defined as

L [P
(I)*l(t) :/ @adTv
0O T N

and as in [2], we suppose that

1 —1 t —1
. O~ (1 . O (1
lim NJEI ) ,dT < 400, lim %, dr = +00.
t=0Jy 77N t—o J1 1N

To state our hypotheses on ¢, g, we need the following three numbers,

_to(t) o to(t) to(t)
U —inf 2 =1 f 0= —_— .
P TS r P T e

(H1) The function ¢ is such that

(i) For every € > 0, there is k. > 1 such that ®'((1 + ¢)z) > k.D'(z),

x > x,(g) > 0 and that ® is strictly convex.

(ii) Both ®, ®* satisfy a A condition, namely

s¢(s) s5¢(s)

1< hf_l,g}f (s) < liiris;ipw < +o0.

Remark 1.1. Under hypotheses (H1), Lg is uniformly convex [8, p.288].

We assume the following conditions on g.

(H2) The function g : @ x R — R is a continuous and satisfies the following
hypotheses:
(i) There exists nonnegative constants aj,as such that [g(x,s)| < a1 +
as|s|™1, for all (x,5) € Q x R, with p° < a < ]\],V_p;l
(ii) For all z € Q,

) G(z,u) . G(z,u)
lims <—pu<0, 1 =
meup S € <0, i S
(iii) There is a function h : RT™ — R with the property lim inf h;:z;;:;) > 0,

h(b,) — oo when a,, — a > 0 and b,, — 400 such that

1
.. D'G(zyu) — gz, u)u
lim inf > k(x) >0,

with k € L'(€2),
with G(z,u) = [ g(z,r)dr.

Remark 1.2. Using the definition of p! we can prove that ®(t) > ct? for ¢ > 1.

1

N
From this we obtain that W'Le — Lo (see [2)).
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Our energy functional I : W!Lg — R is defined as
I(u) = / (| Vu(z)|)dz — / Gl u(x))de.
Q Q

From the arguments of [2, [5] we know that this functional is well defined and C?.

Lemma 1.3. If (H1), (H2) hold, then the energy functional satisfies the (PS).
condition.

Proof. Let X = W1Lg(Q). Suppose that there exists a sequence {u,} C X such
that |I(un)| < M and

l9ll1,0

I'(uy), d)| < ey —1PILE 1.2
Suppose that |lu,|[1.6 — co. Let y,(z) = |‘Z"ﬁf)®. It is easy to see that y, — ¥

weakly in X and y,, — y strongly in Le(€2). From the first inequality we have

’/Q(I>(|Vun(x)\)d:cf/QG(x,un(x))dﬂ <M. (1.3)

We can prove that ®(t) > pp1<I>(%). Indeed, we have that ®(t)p! < té(t) for t > 0.
t 1 ¢
/ p—ds < ¢(s) ds,
t/p S t/p ©(s)
for all £ > 0 and for p > 1. Calculating the above integrals we arrive at the fact that
o(t) > ppl@(%) for all t > 0 and all p > 1. When we divide the above inequality
by ||un||f’l’l<I> > 1, we obtain

G(z,up(z)) .
/Q B(|Vyn(2)|dr < / Glo,unlz))

1
||un||117,<1>

Then we obtain

Next, we prove that [, %dm — 0. Indeed, from (H2)(i7) we have that for
unllf
G(z,u)

= < ¢ for
lul?

every € > 0 there exists some M > 0 such that for |u| > M we have
all x € Q. Thus,

[ Gt
Q

1
[unll¥ o

G(z,up(z)) i

1
T elyn ()" dz.
/{£EQ=|un(r)SM} [unll} & /{renz|un<z)zM}

<

Note that p! < p° < a so we have that W'Lg < LP'. From that we obtain

/Md$< Gz, un(z))
Q

o < | ) g 4 cellyall? -
[unllT e {oelun(@)<M}  |[unll] g

Finally, note that ||y,|l1,6 = 1 so we have proved our claim.
Now [, @(|Vyn(z)|dz — 0 thus, [|[Vy,|le — 0. Since

IVylle <liminf [Vy,|e — 0,
n—oo

s0 ||Vynlle — [[Vylle and moreover y,, — y weakly in X, thus from the uniform
convexity of X we deduce that y,, — y strongly in X. Note that ||y,|1,8 = 1 so,
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y # 0 and from the fact that [|[Vy|le = 0 we have that y = ¢ € R with ¢ # 0. From
this we obtain that |u,(z)| — oco.
Choosing now ¢ = u, in (1.2 and substituting with (1.3), we arrive at

l/sz@zmA@)fgtuquDUMxMx+¥/¢MVUMNVUMgﬂf¢OVUMﬁM
Q Q

l[unll1,0
1+ ”un”L‘D '

From the definition of p! we have p!®(t) < t¢(t). Using this fact and dividing the
last inequality with h(||un||1,6) we obtain

/ PG, un (@) = g(@, tn(@))tn (@) P(|yn (@) unllre) |
) h(lun (@)[) h([lunllr.@)
M _’_EanunHl,@

+unl1,e
S i)
h([unll1,e)
From this we can see that

/ P G, un(2)) = 9@, tn (%)) un () P(lyn (@)|]|tnl1.0)
Q h(|un (2)]) h(llunllr.e)

Using Fatou’s lemma and (H2)(ii¢) we obtain the contradiction. That is w, is
bounded. So, we can say, at least for a subsequence, that u,, — u weakly in X and
U, — u strongly in L, ().

To show the strong convergence we going back to and choose ¢ = u, — u.
Thus, we obtain

| /Q (@(|Vun|)Vun - a(|Vu|)Vu> (Vun - Vu)dx|

<M+e,

lim inf dz < 0.

< / gz, up)(Un — w)dz + e ||un — ull1,0 — / a(|Vu|)Vu(Vu, — Vu)dz.
Q Q

Using the compact imbedding X «— L*(Q2) and the fact that uw, — u weakly in
X we arrive at [, (a(|Vun|)Vu, — a(|Vu|)Vu) (Vu, — Vu)dz — 0 and using [6]
Theorem 4] we obtain the strong convergence of w,,. O

Lemma 1.4. If hypotheses (H1)(i3), (H2) holds, then there exists some e € X with
I(e) <0.

Proof. We will show that there exists some a € R such that I(a) < 0. Suppose
that this is not the case. Then there exists a sequence a,, € R with a,, — oo and
I(a,) > ¢ > 0. We can easily see that

_G(z,u),, plG(x,u) — g(z,u)u
(- Gy _ peEu
_ p'G(z,u) — g(z, wu h(|ul)
h(lul) up'
> (h(e) — &)y = SO (),

for a large enough v € R. We can say then

J S [

U P uP
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Take now s — oo and using (H2)(iii), we obtain

k()
G(z,t) > P

for large enough ¢t € R. From this we obtain

limsup I(ay) > liminf I(a,) >0

Qp—00 n—00
implies

limsup/ —G(z,a,)dz >0
Q

Ay —00

which implies [, 1;5:,:) dx > 0. Then using (H2)(iii) we obtain the contradiction. O

Lemma 1.5. If (H1)(ii) and (H2) hold, then there exists some p > 0 such that for
all u € X with |ju|le = p we have that I(u) >n > 0.

Proof. ;From (H2)(ii) we have that for every € > 0 there exists some u* < 1 such
that for every |u] < u* we have G(z,u) < (—p +€)®(|u]) < k(—p + &)|ulP’ with
1

N
k > 0. On the other hand there exists ¢, ca > 0 such that |G(x, u)| < ¢1]u| NPT ey
1
for every u € R. Recall that p° < ]\],vfpl so we can find some v > 0 such that

Npl
Gz, u) < k(—p + &)|ul?” +~u| Nt Indeed, we can choose

Ju* |
v=>c+ T E(n—e¢) o
|u* | N=rT || N=rT

Take now a sequence {u,} € X such that ||u,||1,6 — 0. Thus, we can see that

Npl

0
I(uy) > / (V) + k(g1 — &) nll7h — Ylin %o

N—pl

implies
o o _Np'
I{un) 2 cll[Vun|lg + k(p —)llunlle — Vllunlllfv;;’{
N-—p
which implies
0 Npl
I(up) > C||un||11),<1> - 'Vllunllll\,]q:p1 :

Here we have used the fact that L?’ (©) imbeds continuously in L¢(€2) and the fact
that LN?P"/(N=") imbeds continuously in W' Le. Finally we have C' = min{c, k(pu—
g)}. Thus, for big enough n € N and noting that p® < A],V _p;l we deduce that there
exists some p > 0 such that for all u € X with ||u|l¢ = p we have that I(u) > n > 0.
The Lemma is proved. g

The existence theorem follows from the Mountain-Pass theorem. Note that we
also extend the recently results of Tang [I0] for Neumann problems because the
author there needs h(u) = u.
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2. SUPERLINEAR CASE

In this section we consider problem with a superlinear right hand side. We
assume the following conditions on g,
(H3) The funciton g : @ xR — R is a continuous function satisfying the following
hypotheses:
(i) There exists nonnegative constants aj,as such that [g(x,s)| < a1 +
as|s|™1, for all (x,5) € Q x R, with p° <a < %, )
(ii) There exists some g > 0 such that for all z € Q,

. Gz, u) Gz, u) G(z,s)
lim sup <—-k<0 lim =0, 0<f<liminf
u—0 P(Jul) u—oo  |uf? sl o0 ®(s)

(iii) There exists u > N/p'(q — p*) such that

1
i g 9@ 00 = PGl )

> > 0.
|u|—o00 "LL|V’ =m

with G(z,u) fo (x,r)dr.

Theorem 2.1. If hypotheses (H1)(ii) and (HS3) hold, then problem has a
nontrivial solution u € X.

Proof. Let us denote first by N(u) = fQ x,u)dz. Suppose that there exists a
sequence {u,} C X such that I(un) —cand | < I'(uy),y > | < 5,1% for all

y € X. We are going to show that [u,|[1,¢ is bounded in X. Suppose not. Then
there exists a subsequence such that |juy, 1,6 — 0.
Using the definition of p* it is easy to see that |(I'(u),u) —p*I(u)| > [(N'(u),u) —
'N(u)| and using (H3)(iii), we arrive at [u, |4 < C.
Next, we use the interpolation inequality, namely

lully < Ml el ypn s
N-pl

Where O<p<qg<s « N b€ [0,1]. Using the fact that X imbeds continuously in
Lprl we have
/ B(|Vatn ) = I(1n) + N(uy)
Q

< erllunll? + e

— t
< Nl unl| %y 0
N —pl

< cilun||{ly + c2,

here we have used the second assertion of (H3)(ii). From the relation |I(u,)| < M
we obtain

/G(x,un)dmg/q)ﬂVunDdx—i—M
Q Q
and

5/Q<I>(un)dw§/9<1>(|Vun|)dx+M.
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We have used here the third assertion of (H3)(ii). Adding 3 [, ®(|Vun|)dz to the
last inequality, we obtain

g(/Q @(un)dz+/gtl>(wun|)d:z:) gC’/ﬂ@(WunDd:H—M. (2.2)

We can prove that ®(¢) > p”1<I>(t/p) for p > 1 and combining (2.1) and (2.2)), we

arrive at
1
erllun 'y — 2 < / (V) < e lunl| iy + 2.
Q

for some ¢y, ca > 0. Choosing qt < p* (or equivalently p > N/p!(q—p')) we obtain
a contradiction. Thus, {u,} C X is bounded and using the same arguments as in
Lemma we can prove that in fact {u,} has a strongly convergent subsequence
in X.

Next we prove that there exists some e € X such that I(e) < 0. Indeed, take a
sequence t,, — 0o, then

I(t,) = —/QG(x,tn)dx < —ﬁ/ﬂfb(tn)dx +C.

It is clear now that for big enough n € N we have I(t,) < 0. Using Lemma|[L.5|and
the Mountain-Pass theorem, we obtain a nontrivial solution. (I

As an example of functions that satisfy the above hypotheses, we have ®(u) =
log(1 + |u|)|ul* and G(u) = log(1 + |u|)®(u).
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