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ABSTRACT

The use of the hierarchical linear model is increasingly common in the

medical and educational research. In education, the data structure requires more

than an ordinary linear model in order to obtain a precise outcome. A leading

example is the student’s achievements in math while in elementary school. In this

example, the test score is nested within both the teacher’s and student’s

characteristics and the student and the teacher are nested within the school’s

characteristics. Additionally, the student and the teacher are cross-classified. The

three-level-cross-classified model explains the student’s achievement based on the

teacher’s effect on a student’s characteristics and the school’s characteristics. The

research investigates the capability of the R package lme4 to fit the

three-level-cross-classified model.
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I. INTRODUCTION

Introduction to Hierarchical Data

Many studies in the social sciences involve nested (hierarchical) data. One

typical example from education is students nested in classes. Variables are measured

in two levels with the student’s characteristics in level one and the teacher’s variables

in level two. In another example from management, researchers are interested in the

characterizations of both workers and firms and how these characteristics affect how

business decisions are made (Raundenbush and Bryk, 2002) where the workers’

variables are measured in level one and vary within the firms.

The data may be structured in more than two levels. For example,

educational studies contain three levels in which the students are nested in classes

and the classes are nested in schools. The predictors, in this example, are measured

in three levels where the variables for students, teachers and schools are measured in

levels one, two and three, respectively. The data structure may be more complicated

if two sets of characteristics are included within a single level. For example, if

student A lives in neighborhood 20 and attends school 1 which is located in

neighborhood 10. Meanwhile, student 2 goes to the same school 1, but lives in

neighborhood 20 and student 3 attends school 2 and lives in neighborhood 10. We

say that level three of the data are cross-classified where the students vary within

both schools and neighborhoods (Raundenbush and Bryk, 2002).

Prior to advent of more powerful computing tools in the 1990s, researchers

often ignored the true multilevel structure of the data and used standard multiple

regression techniques when analyzing the data. Raundenbush and Bryk (2002)

described the two common approaches. The first one is to assign all higher level

variables (teacher and school characteristics) to the individual level and run the
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model at the individual level (student). Note an observed teacher or school

characteristic is repeated for all students in a single class. Since it is not reasonable

to assume that student performance in a class is independent from that of other

students in the class, these data violate the assumptions of tradition multiple linear

regression. This approach ignores the fact that though we have a large sample of

students, we have a relatively smaller sample of teachers and even smaller sample of

schools. The other strategy is to aggregate the individual level variables to the

higher level and do the analysis at the higher level. We use class averages of the

student variables in a model run at the class level. The problem here is we lose the

within-group information and about 80 - 90 % of the variation before running the

model. As a result, the model variables will be strongly correlated yields to

inaccurate interpretation.

Using a traditional multivariate linear model requires the four assumptions:

linearity, normality, homoscedasticity and independence (Raundenbush and Bryk,

2002). Except in rare cases, hierarchical data do not satisfy the independence

assumption. For example, the characteristics of students in the same class are

similar unlike in different classes where the students may have different

characteristics. Therefore, there is a need for a suitable model that solves the

independence issue. One approach to resolving this issue is variance component

models (Raundenbush and Bryk, 2002). That is, the individual components are all

independent and the group components are independent between groups but

strongly correlated within groups.

The Impact of Nesting on Estimation

In order to demonstrate the importance of taking nesting into account, we

consider the sample (grand) mean from a simple case of nested data (students within

schools) and investigate the impact of the correlation within the group on variance.
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Effective Sample Size

Suppose we have J schools each with n students for a total of N = nJ

where yij is the test score for student i in school j for i = 1, . . . , n and j = 1, . . . , J .

Furthermore, let yij have mean µ and variance σ2 for i = 1, . . . , n, with

cor(yij, yi′,j′) = ρ when j = j′ and 0 otherwise. Then the typical estimate of the

population mean is:

µ̂ =
1

N

J∑
j=1

n∑
i=1

yij, (1.1)

and

Var(µ̂) =
1

N2
Var(

J∑
j=1

n∑
i=1

yij)

=
1

N2

(
J∑
j=1

n∑
i=1

σ2 +
J∑
j=1

n(n− 1)σ2ρ

) (1.2)

since

Cov(yij, yij′) = 0 j 6= j′

Cov(yij, yi′j) = σ2ρ i 6= i′

Thus,

Var(µ̂) =

∑n
i=1

∑J
j=1 σ

2 +
∑J

j=1 n(n− 1)σ2ρ

(N)2

=
σ2 + (n− 1)σ2ρ

N

=
σ2(1 + (n− 1)ρ)

N

(1.3)

If ρ = 1; the students in a school may have the same test score, then the variance

3



increases as shown in Equation 1.4

Var(µ̂) =
σ2(1 + (n− 1)ρ)

nJ

=
σ2(1 + (n− 1))

nJ

=
nσ2

nJ

=
σ2

J
.

(1.4)

Intuitively, since ρ = 1, each additional individual observation in a school

provides no new information about µ, so though there are nJ students, effectively it

is as if the sample is J , the number of schools.

On the other hand, if ρ = 0 as assumed in traditional models, Equation 1.4

becomes

Var(µ̂) =
σ2(1 + (n− 1)ρ)

nJ

=
σ2

nJ
.

(1.5)

To capture the effect of ρ on the variance, we define the effective sample size

(neff ):

neff =
nJ

1 + (n− 1)ρ
(1.6)

Thus, when ρ = 0,

neff = Jn. (1.7)

The effective sample size increases as the number of students per class increases. On
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the other hand if ρ = 1,

neff =
Jn

n
= J, (1.8)

meaning that the effective sample size is the same no matter the number of student

per class. Figure 1 shows how the effective sample decreases as ρ increases when

there are n = 100 students in J = 16 schools.

Figure 1: The relationship between Effective Sample Size and Correlation

Individual level model vs. Aggregate Model

To see the role of effective sample size, we consider two common traditional

approaches described by Raundenbush and Bryk (2002):

• Individual Level Mode: The first technique is to ignore the group structure

and treat all variables as level one variables. In the simple example described

above, this implies using one-sample t-methods. Hence, the (incorrect)

estimated standard error of the sample mean will be

̂s.e.(µ̂) =
S√
N

(1.9)

5



where S is the sample standard deviation. However, in the case where ρ > 0,

this provides biased estimate of the true variance derived in Equation 1.2.

E

[
S2

N

]
=

N
N−1

neff−1
neff

σ2

N
<

σ2

neff
(1.10)

Aggregate Model: The other technique is to aggregate the individual level

variables to the higher level and do the analysis at the higher level. In this

case, we use one-sample t-methods with the J group means. Since the data are

assumed be independent between groups, the group means, Y .j, are

independent with mean µ and variance σ2 1+(n−1)ρ
n

. The estimated standard

error will be

̂s.e.(µ̂) =
Sg√
N

(1.11)

where Sg is the standard deviation of the J group means. In this simple case,

the estimate of the true variance is unbiased,

E

[
S2
g

N

]
=

σ2

neff
. (1.12)

However, if the group sizes are not equal, weights should be used when

computing Sg. Furthermore, we lose the within-group information and (often

about 80 - 90 % of the variation before running the model). For more

complicated linear models with predictors at level one, the loss of variation

produces strong correlation between variables and leads to inaccurate

interpretations.
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Motivating Example

Data Description

We now present the particular motivating example for the assessment of the

implementation of the Three-level Cross-classified Hierarchical Linear Model

(HLM) in lme4. Guyot et al. (2017) and Galindo and Newton (2017) investigated

the effect of professional development on the growth in mathematics achievement

for children enrolled in elementary schools. For that purpose, the researchers

selected 14,750 pupils nested in 499 classes where the classes are nested within 35

elementary schools. Figure 2 shows the data design.

Figure 2: The Data Structure in Three Levels

The test score in Figure 2 is nested within the teacher and student

7



characteristics where teacher and student are cross classified in level two and both

teacher and student are nested within schools in level three. The test score was

observed through three academic years. The variable ytijk represents the test score

in year t for student i in class j and school k where, t = 1, 2, 3, i = 1, . . . , n,

j = 1, . . . , J and k = 1, . . . , 35. Level one of the data describe the test score in term

of time. On the other hand, level two explains the (teacher and student)

characteristics.

Data Structure

The researchers described the data in three levels to indicate effects of

students, teachers and schools on the test score. The structure of the data were as

follows

• Level 1 - Test is the mathematical achievement of each student for each

academic year of the study.

• Level 2 - Student is the individual characteristics of each student (e.g.,

bilingual, special education, diversity).

• Level 2 - Teacher describes the instruction mathematical knowledge for

teaching at the baseline and each of the subsequent years.

• Level 3 - School indicates the characteristics of each school during this study.

Analyzing the Data

Since our data are educational, we do not expect the data to satisfy the

assumptions of classical multivariate regression which presents several challenges to

the data analyst.
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• The data are nested: since it has a hierarchical structure contained in three

levels creating several types of correlation within the response observations.

First, achievement is measured repeatedly over time for a single student.

Secondly, the teacher and the fellow students in a class have a large impact on

student learning. Finally, students are nested in schools and school culture

may impact the learning of all students in a school.

• The nesting structure is complicated: since the teacher and students are

cross-classified in level-two. This complexity adds challenges to the numerical

techniques used in estimating hierarchical models.

• The change of the test-score: In this particular study, the standardized

test used by the school district was changed during the study. This

complicates year to year comparisons needed to assess growth.

• Measuring teacher quality is notoriously difficult: In this study, the

quality of teaching was assessed via periodic classroom observations which

were video taped and scored according a rubric. Due to several factors,

including that the observed lessons occurred at different times of the year and

over different topics, the measure may not be reliable.

• Data are missing: We do not have complete data for each student nor each

teacher. The lme4 package used to analyze the data require complete data.

Hence the sample used in a particular analysis depends upon: (1) which

variables are included, (2) complicated comparison between possible models

and (3) leading to potential bias in the estimates.

In this study we will focus on the first two of these challenges: the nested and

cross-classified structure of the data.
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Statistical Software

Specialized software packages are required in order to estimate the HLM

parameters. In this research, I will analyze the data (by using R and HLM7

software).

R Implementation

R is an environment for statistical computing and graphics which is similar

to the S language environment developed by Bell Laboratories. In R, I mainly will

use the lme4 package to fit HLM and analyze the fixed and random effects. In lme4,

users can do any data processing in R environment (McCoach et al., 2018).

HLM7 Implementation

In addition to R, I will use HLM7 package which was developed by Stephen

Raudenbush, Cheong Congdon, Du Toit and produced by Scientific Software

International (SSI) (McCoach et al., 2018). The main reason of using the HLM7

package is because of its ease of use, allowing use the data and is able to specify the

models. Moreover, it is important in cross-classified hierarchical linear model.

Lme4 vs HLM7

• The package lme4: LME4 is an R package created by Douglas Bates who

shared in creating the package NLME. In this project, I will use lme4 version

1.1-21 which was released on March 5th, 2019. The package lme4 requires that

the user is knowledgeable with R code. In term of Estimation, the lme4

function (lmer) uses both Full Maximum Likelihood (FML) and

Restricted Maximum Likelihood (MLR) (default) for estimation with

Powel’s (2009) BOBYQA ( as the default algorithm to estimate the variance

10



components matrix. Due to the sensitivity of the computational algorithm

(BOBYQA), the package lme4 shows convergence warning messages. I have

experienced convergence issues with the package lme4 that may annoy the

user. I will talk in details about these messages.

• The package HLM7: The other package I will use is HLM7 which is released

by Scientific Software International by (Raudenbush, Bryk,Cheong, Congdon,

& Du Toit, 2011 ). HLM7 allows users to specify models, within a user

graphical user interface (GUI). For level -one, the users must select level-one

predictors and specify all the ID variables that related to the higher levels.

(e.g., student, school, etc). If level-two is a cross-classified level, the user has to

choose the Id variables for the row and the column (e.g., student and teacher)

where student and teacher are cross-classified.

In term of estimation, HLM7 has several techniques such as MLR and

FML. In terms of estimation methods, and uses both of the EM algorithm and

Fisher scoring to compute the estimates (McCoach et al., 2018) HLM7 does

not experience convergence issues as in lme4 since HLM7 has as "automatic

fix-up" method (McCoach et al., 2018).
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Statement of Purpose

A matter of concern is the growth of child academic achievement in math in

elementary schools. The data observed contain three levels: level-one includes the

students’ test scores across three years while level-two contains the characteristics of

the teachers and students involved. Additionally, level-three describes the schools

where teachers and students are nested within. Based on the data structure, the

data are hierarchically designed and the teacher and the student are cross-classified.

As a result, the research will shed the light onto the cross-classified-three-level

models. That will include the nature of the hierarchical data structure and how to

fit hierarchical linear model to the data. Additionally, the research will discuss the

estimation theory in term of fixed and random effects of the hierarchical linear

models. In this thesis, I will do the following:

• Simulate a three-level-cross-classified data by R. I will test the accuracy of the

package lme4 in estimating the model’s parameters. I will also consider having

a balanced, complete and large data in order to facilitate the model

estimation. This data include the test score in level one, the teacher and the

student predictors in level-two and school predictor in level-three.

Additionally, the teacher and the student are cross-classified in level-two.

• Fit the cross-classified model that match the simulated data by using the

function lmer in the package lme4.

• Study the correlation between the cross-classified errors of level-two (the

variation of the teacher characteristics and the effect of the teaching quality on

the student’ test score).

• Assess the relationship between the cross-classified random coefficients in
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level-two with the one in level-three.

• Study the convergence and singularity warning messages given by the package

lme4 and examine these messages in term of fixed and random effect

estimation.

• Compare the results of the models with issues (convergence or singularity)

with their estimates in HLM7

• Examine the effect of removing the level-three random effect of the student

predictor.
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II. REVIEW OF LITERATURE

Hierarchical Linear Models

History and motivation

Many studies in the social sciences require a hierarchical data structure (e.g.,

educational and medical research). In order to analyze this kind of data, a special

kind of model must be considered. One level linear model would not be enough to

estimate the effects of the individuals’ characterizations. The early generation of

hierarchical applications involved three objectives: (1) enhanced estimation of effects

within individuals’ units, (2) the formulation and testing of hypothesis about

cross-level effects, (3) partitioning variance-covariance components.

Hierarchical Data Design

In social science and education, the data are hierarchically designed. A

leading example is that the students are in classes. There are variables describing

students and variables describing the classes. The class variables could also be

collected with the students’ variables such as the number of students in a class or a

student’s test score in a class. The class variable could describe the teacher, if the

class has only one teacher. Further, the hierarchical design could include the classes

in schools, schools in districts and so on (Raundenbush and Bryk, 2002).

Why Multilevel Model?

The matter of interests is the student academic achievement in math. The

students are nested in classes where each class has one teacher and classes are

nested within schools. In order to track the students academic achievement, the
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investigators recorded the student’s test score for three consecutive years. Suitable

models must be fitted in order to evaluate the student’s achievement. Since the test

score (the response variable) is nested within the individuals’ (students and

teachers) characteristics, whereas students and teachers are nested within different

schools, simple model (one level model) is insufficient to provide the accurate

outcome,because we usually have some variables describing individuals. Yet, in real

life, these individuals could be grouped into some units (e.g., students’

characteristics) and their values go to a higher level of individuals. This is the idea

of the hierarchical model, where the structure of the data are built on multi-level

models. Similarly, in the education example, the data are hierarchically designed.

Raundenbush & Bryk (2002) looked at the hierarchical structure from three foci: (1)

The annual individual growth of students for the academic year, (2) the effects of

student’s characteristics and teacher’s experience affecting the test score, and (3)

the school where both student and teacher are nested within. The Hierarchically

Linear Model (HLM) describes the test as the response variable and both student

and teacher as the interacted individual’s characteristics. For example, Students are

described by their explanatory variables, such as diversity, English Language

Learner (ELL), Special Education (Sp.Ed), etc. Moreover, the students who are

grouped in a class are influenced by their teacher’s characteristics. That is, the

teacher’s units are fixed effects for the response variable (test score) in level one.

Both teachers and students are described by the school characteristics which are in

the third level. The school is described by some other variables such as federal lunch

reimbursement rates (Raundenbush & Bryk, 2002).

2-Level Model

In order to understand the multilevel model, we start by fitting a simple

linear regression model. The model’s dependent variable y is expressed as a function
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of an explanatory variable (predictor) X multiplied by its coefficient β1 and added

to the intercept β0 (The sample mean when the predictor X = 0) and the random

error ε as follows:

Yi = β0 + β1Xi + εi, (2.1)

where

β0 the intercept of the model

β1 the fixed effect of the predictor X

X the predictor of the model

ε the error within the observations and ε ∼ N(0, σ2)

Notice that the intercept is common for all the individuals. However, when

the individuals are grouped together with some conditions (e.g., students in a class,

players on teams, etc.), the intercepts differ from one group to another. Therefore,

The intercept vary among the difference of the clusters.

The unconditional model

A leading example of the unconditional model is the student academic

performance. The student is nested in a classroom. In this study, Finch W. Holmes

and Kelley (2014) assumed that the error of level one is normally distributed with

constant variance and level two residuals are independent across classrooms.

Additionally, level two fixed effects are independent of level one residuals with a

normally distributed multivariate with a constant covariance matrix. Finch

W. Holmes and Kelley (2014) stated the equation of level 1 would be as follows
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Yij = β0j + εij, (2.2)

where

Yij the test score of student i in a class j

β0j the average of the test score in class j

εij the error within the students in class j and εij ∼ N(0, σ2).

Because the mean of the test score β0j varies from one class to another, we should

represent the intercept of the test score in terms of the student characteristics and

represent the level 2 as follows:

β0j = γ00 + U0j, (2.3)

where

γ00 the grand mean of all students in all classrooms j

U0j the error between classes’ test score average and U0j ∼ N(0, τ 200).

By substituting Equation 2.3 in Equation 2.2, the mixed model is

Yij = γ00 + U0j + εij. (2.4)

where γ00 is the model’s fixed effect and (U0j and εij) are the random effects of the

model.

17



The unconditional growth model

In the previous model we did not represent any predictor in level one. In

growth model, we add the time as a predictor in level one. That is, time affects the

student academic performance. Magnusson (2015) explained the unconditional

equation as follows

Level 1

Yij = β0j + β1jtij + εij (2.5)

Level 2

β0j = γ00 + U0j (2.6a)

β1j = γ10 + U1j (2.6b)

where

tij the time of student ij

β1j the effect of the time for student i in class j

U0j the unique increment to the intercept associated with class j

U1j the unique increment to the slope associated with class j

where

U0j

U1j

 ∼ N

(
0, τ 2τ 2τ 2

)
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and

τ 2τ 2τ 2 =

τ 200 τ 201

τ 210 τ 211



The conditional growth model

It is possible that the individuals’ characteristics affect level one intercept

β0j. For example, the class’ predictor W may affect the initial test score (t = 0).

Magnusson (2015) stated the conditional model as follows

Level 1

Yij = β0j + β1jtij + εij (2.7)

Level 2

β0j = γ00 + γ01Wj + U0j (2.8a)

β1j = γ10 + U1j (2.8b)

where,

Wj The class characteristics j

Notice that the individual characteristics may also affect the student’s progress β1j

(the slope of time) meaning that equation 2.8b becomes

β1j = γ10 + γ11Wj + U1j (2.9)
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Thus, the model in Equation 2.7 can be written as follows

Yij = γ00 + γ01Wj + U0j + γ10tij + γ11Wjtij + U1jtij + εij (2.10)

Where γ00, γ01 and γ10 are called the fixed effects and U0j, U1j and εij are called the

random effects of the model.

3-Level Model

The previous example showed that the test is nested within the students’

characteristics. That is, the pupils have different academic performances that are

based on their characteristics (e.g., ELL, gender, etc.). That example may be

extended to three levels if the students are nested within schools. In this case, their

academic performance would vary based on the schools’ characteristics( e.g., public

school, private school, etc.). The model in this case is no longer explained in two but

three levels where the school is the third level. Magnusson (2015) extended the

second level as follows

Level 1

Yijk = β0jk + β1jktijk + εijk (2.11)

Level 2

β0jk = γ00k + γ01kWjk + U0jk (2.12a)

β1jk = γ10k + U1jk (2.12b)

Level 3
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γ00k = δ000 + δ001Zk + V00k (2.13a)

γ01k = δ010 + V01k (2.13b)

γ10k = δ100 + V10k (2.13c)

where,

i the index of the student and i = 1, . . . , n.

j the index of the class (teacher) and j = 1, . . . , J .

k the index of the school and k = 1, . . . , K

δ000 the grand mean of students’ test score over the schools

δ001 the effect of the school characteristic on the test score of studentijk

Zk the predictor of the school characteristic

δ100 the student’s improvement over the school k

V00k the random effect of the initial test score among schools

V01k the error of the class characteristic across schools

V10k the error of student improvement effect within the schools

where,


V00k

V01k

V10k

 ∼ N

(
0 , ΦΦΦ

)

where
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ΦΦΦ =


Φ2

00k 0 0

0 Φ2
11 0

0 0 Φ2
11


The mixed model is

Yijk = δ000 + δ001Zk + δ010Wjk + δ100tijk + V00k

+ U0jk + V10ktijk + U1jk + εijk,

(2.14)

where δ000, δ001, δ010 and δ100 are the fixed effects and U0jk, U1jk , V00k, V10k and εijk

are the random effects of the model.

Cross-Classified Model

I have explained some ideas about 2-level model where the individuals of

level one are nested in level two units (organizations). Additionally, I clarified the

3-level model where the organizations are nested in higher level (e.g., district).

However, sometimes level two units may cross classify (e.g., school and

neighborhood contributions to the student education). Raundenbush & Bryk (2002)

investigated a sample of 2,310 students are nested within 524 neighborhoods and 17

schools where there are six students living in neighborhood 259 attending school 10

and one student living in the same neighborhood and attending school 11, and two

other students attend school 16 (p.373). In this case, Raundenbush & Bryk (2002)

considered steps for analyzing the data:

• estimate the components of variance outcomes that are within neighborhoods,

between schools and between students within (neighborhood by school).
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• estimate the residual components between schools, between neighborhood and

within the cells after taking into account student, neighborhood and school

characteristics.

• estimate random effects associated with particular neighborhoods or schools

(p.375).

Unconditional 2-level-cross-classified model

Raundenbush & Bryk (2002) presented the unconditional cross-classified model that

represents the above mentioned study as follows

Level 1: Students are nested within cross-classified cells

Yijk = π0jk + eijk eijk ∼ N(0, σ2) (2.15)

where,

Yijk the attainment of student i in neighborhood j and school k

π0jk the mean of the test score of students who live in neighborhood j

and attend school k

eijk the random effect of students’ test scores that varies around the test

score mean π0jk.
where the indices i, j, and k represents the students, neighborhood and schools as

follow

i = 1, . . . , nj;

j = 1, . . . , J ; and

k = 1, . . . K.
Level 2: Between cross-classified cells
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π0jk = θ0 + b00j + c00k + d0jk (2.16)

where



b00j ∼ N(0, τb00),

c00k ∼ N(0, τc00),

d0jk ∼ N(0, τd00),

and

θ0 the grand mean of all the students test score;

b00j the random effect of neighborhood j;

c00k the random effect of school k; and

d0jk the random interaction effect, that is, the deviation of the cell mean

predicted by the grand mean.

The mixed model is

Yijk = θ0 + b00j + c00k + d0jk + eijk (2.17)

where the model is called two-way analysis of variance with random row

effects b00j; column effects c00k; two-way interaction effect and within students

variation eijk (Raundenbush and Bryk, 2002). In the above mentioned model,

Raundenbush and Bryk (2002, p.378) listed three types of correlation coefficients:

• the correlation between the test score of two students who have the same

school and neighborhood:
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corr(Yijk, Yi′jk) = ρbcd =
τb00 + τc00 + τd00

τb00 + τc00 + τd00 + σ2
; (2.18)

• the correlation between two students test scores who live in the same

neighborhood but attend two different schools:

corr(Yijk, Yijk′) = ρb =
τb00

τb00 + τc00 + τd00 + σ2
; (2.19)

• the correlation between two students’ test scores that attend the same school

but live in two different neighborhood:

corr(Yijk, Yij′k) = ρc =
τ00c

τb00 + τc00 + τd00 + σ2
. (2.20)

It is also useful considering the reliability with which the neighborhood

affects the students who attend a specific school:

reliability[b̂00j + d̂0jk|c00k] =
τb00 + τd00

τb00 + τd00 + σ2/njk
(2.21)

and the reliability with which the school affects the students who lives in a specific

neighborhood:

reliability[ĉ00k + d̂0jk|b00j] =
τb00 + τc00

τc00 + τd00 + σ2/njk
(2.22)

A leading example of the reliability is a student taking the Graduate Record

Examinations (GRE) test. The test score does not state the test’s difficulty nor the

student’s percentile among the other students if the student takes the test alone.

However, if the student is tested with students in the same class, the reliability ratio
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explains the percentile of the student’s test score within the class. Further if the

student takes the test with students in different classes that are nested in a school,

the reliability ratio represents the student’s performance among all schools’ students.

Conditional 3-level-cross-classified model

The idea of the unconditional 2-level-cross-classified model may be

developed to conditional three-level-cross-classified model by adding predictors in

level 1, 2, and 3 respectively.

To make the presentation simpler, I use simulated data, (I have created and

explained in Chapter 3). Consider a study of the student achievement in elementary

school where the test score (level 1) is nested within the teacher and student

characteristics ( level 2) in which teacher and student are nested within schools

characteristics (level 3). In this simulation, I represent four predictors: X that is a

level-1 categorical variable that represents the time of the test, W1 is a level-2

categorical variable that explains the student’s ELL, W2 is a continuous variable

that represents the teacher’s MQI score, and Z is a level-3 categorical variable that

explains the school’s treatment.

Level 1 or "within cells" (Raundenbush and Bryk, 2002, p.377)

Yt(ij)k = β0(ij)k + β1(ij)kXt(ij)k + et(ij)k, where et(ij)k ∼ N(0, σ2), (2.23)

Level 2 or "between cells" (Raundenbush and Bryk, 2002, p.377)

β0(ij)k = γ00k + (γ01ik + c1jk)W1ik + γ02jkW2jk + b0ik + c0jk (2.24a)

β1(ij)k = γ10k (2.24b)
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where,

b0ik ∼ N(0, τ 2st)

,

c0jk
c1jk

 ∼ N

(
0, τ 2tchτ 2tchτ 2tch

)

and

τ 2tchτ 2tchτ 2tch =

τ 2tch00 τ 2tch01

τ 2tch10 τ 2tch11



and level 3 is

γ00k = δ000 + δ001Zk (2.25a)

γ01ik = δ010 + d01ik (2.25b)

γ02jk = δ020 (2.25c)

γ10jk = δ100 + d10jk (2.25d)

where,

d01ik
d10jk

 ∼ N

(
0,Φ2Φ2Φ2

)
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and

Φ2Φ2Φ2 =

Φ2
00 0

0 Φ2
11



The combined model is

yt(ij)k = δ000 + δ001Zk + (δ010 + c1jk + d01ik)W1ik

+ δ020W2jk + (δ100 + d10jk)Xt(ij)k

+ b0ik + c0jk + εt(ij)k

(2.26)

Notice that the coefficients of level 2 (δ010, c1jk and d01) are the effects on

the student ELL where,

δ010 is the average difference between the ELL= 1 vs ELL =0 in test score

after accounting for other variables in the model.

cijk is the teacher’s effect on the test score of students with ELL in class jk

d01 is the teacher’s effect on the test score of students with ELL in school k.

Notice, when the student has different teacher every year, the teacher’s

effect on the test score of students with ELL would vary. That is, the cross-classified

data provide us more information to understand the effect of the teacher on the

student’s characteristics.

Estimation Theory

One-way ANOVA with fixed effects

Consider the following equation:
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Yij = µ+ αj + eij for

J∑
j=1

αj = 0 (2.27)

where

µ is the overall mean,

αj is a parameter unique to the ith treatment,

eij is a random error component.

For the fixed effect hypothesis test, we assume

αj is not random

Yij are all independent

eij is the error and eij ∼ N(0, σ2)

Montgomery (2012) stated the one-way ANOVA hypothesis test of the

experiment:

H0 : α1 = α2 = · · · = αJ = 0 Ha : αj 6= 0 for at least one j

We also can write µ+ αj as

µ+ αj = µj (2.28)

where the number of the parameters is j + 2. Then, the one-way ANOVA hypothesis

test becomes

H0 : µ1 = µ2 = · · · = µJ Ha : µi 6= µj for at least one pair(i, j)

Where the variance and covariance components are knowm (Montgomery, 2012).
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If we have the same sample size for all j , then,

µ̂ = Y..

=
1

IJ

J∑
j=1

I∑
i=1

yij

(2.29)

and if we have a different sample size, then

µ̂ = Y..

=
J∑
j=1

IjY.j/
J∑
j=1

Ij

(2.30)

One-Way ANOVA with random effects

Consider the unconditional 2-level hierarchical linear model:

Yij = β0j + rij (2.31)

and assume that rij is normally distributed with a mean zero and a constant

variance σ2. In this level the intercept β0j is the mean outcome of the jth unit

(Raundenbush and Bryk, 2002). That is, β0j = µYj .The level 2 model for the

one-way is

β0j = γ00 + u0j, (2.32)

where γ00 is the overall mean and u0j is the random effect that is associated with

the unit j where u0j ∼ N(0, τ00).

Substituting Equation 2.32 into Equation 2.31, Raundenbush and Bryk
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(2002) provided the mixed model equation

Yij = γ00 + u0j + rij (2.33)

which is the one-way ANOVA.

Therefore, the hypothesis test for the random effects is:

H0: τ00 = 0

Ha: τ00 6= 0

Notice the number of parameters in Equation 2.27 is J + 1 while, the number

of parameters in Equation 2.33 is 1. It is clear that testing and estimating one

parameter is easier than J + 1.

Based on Equation 2.33, the variance of the outcome is

Var(Yij) = Var(γ00 + u0j + rij)

= τ00 + σ2

(2.34)

Using One-way ANOVA is recommended, because it is a simple method to

analyze the data specially the hierarchically designed. Furthermore, it provides more

information about the variability of each level of the model. Raundenbush and Bryk

(2002) suggested "the correlation as a useful parameter for one-way ANOVA ,

because it measures the proportion of the variance in the outcome that is between

level-2 units"(p.24).

ρ =
τ 200

τ 200 + σ2
(2.35)
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In order to estimate the fixed effects of a model, there are two cases: The

variance-covariance are known, and the other case the variances are assumed

unknown.

One-Way ANOVA in HLM

Fixed effect: Point Estimation

A matter of interest is investigating the student’s math performance among

J schools. Raundenbush and Bryk (2002) studied three "types of estimation: (1)

One-way random effect ANOVA model, (2) examining the means as outcomes of the

model and (3) considering the random coefficient regression model (pp.39-40)".

In order to compare with other models, consider the study of student math

performance in several schools as follows

Level 1

yij = β0j + εij (2.36)

where yij is the test score for student i in school j. i = 1, . . . , nj and j = 1, . . . , J

and εij ∼ N(0, σ2).

Raundenbush and Bryk (2002) averaged about the nj observations as follows

Ȳ.j = β0j + ε̄ij (2.37)

where

ε̄ij = Σ
nj

i=1εij/nj

Var(ε̄ij) = σ2/nj = Vj
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where Ȳ.j is an estimator for β0j.

The level two model is

β0j = γ00 + u0j (2.38)

where u0j ∼ N(0, τ00)

Substituting Equation 2.38 in Equation 2.37, the combined model yields

Ȳ.j = γ00 + u0j + ε̄ij (2.39)

and the variance of Ȳ.j is

Var(Ȳ.j) = Var(u0j) + Var(ε̄ij)

= τ00 + Vj

= ∆j

If the sample sizes are equaled for all level two units, then the variance

component will be ∆ and the estimate of the grand mean γ̂00 is

γ̂00 =
∑

Ȳ.j/J ; (2.40)

while, if the sample sizes are not equaled, then the variance components will remain

∆j and γ̂00 is

γ̂00 =
∑

∆−1j Ȳ.j/
∑

∆−1j (2.41)
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which is the estimator of the fixed coefficient γ00 and this estimator is called the

maximum likelihood estimator and the confidence interval of γ̂00 is

95%CI(γ00) = γ̂00 ± 1.96
√∑

∆−1j . (2.42)

If we look at the estimate of µ̂ in Equation 2.30 and the estimate of γ̂00 in

Equation 2.41, we see that we replace Ij in the first equation with ∆−1j in the second

equation. where

∆j = τ00 +
σ2

Ij
(2.43)

Since the ordinary estimation µ̂ is only one level (not hierarchical), then τ00 = 0.

Additionally, all the observations in the samples have the same measure. That is,

σ2 = 1. Therefore, Equation 2.43 becomes,

∆−1j =
1

τ00 +
σ2

Ij

=
1

0 +
1

Ij

= Ij

(2.44)

and that explains the comparison between the estimate of µ̂ and γ̂00.

Random Effect Estimation

In the above mentioned lines, I assumed that the variance and covariances

components are known. However, in HLM, it is rare to find balanced and known

variances. In order to estimate the variance components, a numerical method must

be used. One of these methods is the maximum likelihood estimator. There are
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three different types of estimation to solve this problem: Full Maximum

Likelihood (MLF), Restricted Maximum Likelihood (MLR) and Bayes

estimation. In this research, I focused on maximum likelihood and restricted

maximum likelihood (Raundenbush and Bryk, 2002, P.52).

Full maximum likelihood(MLF)

Consider the parameters (γ, σ2 and τ), where γ represents the fixed effect

coefficients, σ2 and τ represent random effect coefficients of level 1 and 2

respectively. The basic idea of Maximum likelihood is to select estimates of γ, σ2

and τ for which the likelihood of the observed Y is a maximum (Raundenbush and

Bryk, 2002). These estimates are consistent and asymptotically efficient.

Raundenbush and Bryk (2002) stated that "for a large sample , the MLF estimators

are approximately unbiased with minimum variance"(p.52).

Maximum likelihood is useful when the sample size is large and there are

many groups in the second level (Boedeker, 2017). Additionally, if it is desired to

estimate a function of parameters, we simply plug in maximum likelihood estimator

as shown in the example

γ̂00 = Σ∆−1j Ȳ.j/Σ∆−1j

where ∆j is known. If each ∆j is unknown, the result of γ̂00 is an estimator of ∆j.

One other benefit is that as long the sample size increases, the sampling distribution

becomes normal and with a variance can be readily estimated (Raundenbush and

Bryk, 2002).
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Restricted maximum likelihood(MLR)

Restricted maximum likelihood differs from the full maximum likelihood

because, MLR’s variance and covariance are conditional. Raundenbush and Bryk

(2002) showed that the estimator σ̂2 is bias downwards as compared with σ2.

Consider the multiple regression model

yi = β0 + β1X1i + β2X2i + · · ·+ βJXJi + ri (2.45)

where i = 1, 2, . . . , n and ri ∼ N(0, σ2).If β0, β1, . . . , βJ are known, then the maximal

likelihood of σ2 is

σ̂2 =
∑

r̂2i /n. (2.46)

If the model parameters are unknown, which is true in most real case studies, then

r̂i = Yi − β̂0 − β̂1X1i − β̂2X2i − · · · − β̂JXJi (2.47)

and the usual unbiased estimator is

σ̂2 =
∑

r̂2i /(n− J − 1) (2.48)

Raundenbush and Bryk (2002) noticed that "If the number of parameters is

small, then the correction will have a little effect as J increases the estimator σ̂2

becomes negatively biased (p.53)".

The parameter estimation in MLR is performed in three steps: (1) find the

transformation of the data which is invariant to the fixed effects, (2) use the

maximum likelihood of the transformed data to find unbiased estimate of the

variance components and (3) use the variance components to find the generalized

36



least square δ̂.

Consider the linear model

Y = Xδ + Zb+ ε where Y ∼ N(Xδ,H) (2.49)

and

Y is the (N × 1) response vector,

X is the designed matrix (N ×K) that includes the fixed effects,

Z includes the random effects, and

H is the variance components matrix including σ2, τ 2, and φ2

Consider the density likelihood function

L(Y |δ, σ, τ) =
1

(2π)−
n
2 det−

1
2 [H]

e
1
2
(Y−δ001)TH−1(Y−δ001) (2.50)

• Step 1: We try to find a vector a is orthogonal to all the columns of X and

define A =
[
a1a2 . . . aN−P

]
, then ATX = 0 and E(ATY ) =0. Zhang (2015)

stated the transformed data formula

ATY = AT (Xδ + Zb+ ε) = AT ε ∼ N(0, ATHA) (2.51)

• Step 2: We estimate θ by maximizing the log likelihood function L(θ|ATY )

where θ contains the variance components σ2, τ 2 and Φ2.

• Step 3: We use the variance components to find the generalized least square

δ̂ = (XTHX)−1XTHY (2.52)
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where H is the covariance matrix including σ2, τ 2 and Φ2.

Likelihood Ratio Test (LRT)

A likelihood ratio test (deviance test) is a statistical hypothesis that is used

to compare the full model with the null or reduced model in order to test the

significance of the model parameters (Montgomery and Geoffrey, 2012). This

comparison computed by subtracting the model with smaller deviance out of the

model of a larger deviance (Newsom, 2017). The model with a smaller deviance has

more parameters than the model with a larger deviance. Bolin (2017) stated the

ratio test formula as follows

L = arg maxθL(θ|y) (2.53a)

D(p) = −2(log(Lp)− log(L)) (2.53b)

Where Lp is the Likelihood of the parameter p. The difference (the ratio value is the

χ2
0.05,1, because there only one parameter is different in the two models (Newsom,

2017). In order to check the parameter effect significance, we check the χ2 value of

the difference with χ2
0.05,1.

Alternatively, the variance components does not have an asymptotic normal

distribution. The difference again is χ2
0.05,1, because only one parameter changes. The

test is one-tailed test (Newsom, 2017), because the variance can not be negative.

Motivating Example

As I mentioned the motivated example in Chapter 1, that the data have

several challenges. In this research I will focus on the following:

• The data is nested: The test score in Figure 2 is nested within the

individuals level (the teacher and student) and the individuals are nested
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within schools. That is, the initial test score’s average variates from class to

another. Moreover, the school test score average variates from school to

another. As I explained in Chapter 1, neither the individual nor the aggregate

model properly explains the data results. Thus, an ordinary multiple variables

linear regression does not explain the data structure. In order to solve this

problem, we need to consider the hierarchical linear model

• Cross-Classified data: In this chapter, I focused on the problem of

cross-classified data. The student may have three different teachers in the three

academic years. For example, student 1, student 2, and student 3 may have

one teacher in year 1 and three teachers in year 2. While three students may

have three teachers in year 1 and one teacher in year 2. Therefore, students

and teachers are relatively cross-classified. For illustration, Table 1 shows how

nine students are Cross-Classified with nine teachers during three years.

Table 1: Teacher and Student are Cross-Classified

Year1 Year2 Year3
tch1 tch2 tch3 tch4 tch5 tch6 tch7 tch8 tch9

std1 x x x
std2 x x x
std3 x x x
std4 x x x
std5 x x x
std6 x x x
std7 x x x
std8 x x x
std9 x x x

• Not all the students attended the three years: As I mentioned before,

understanding the teacher’s effect of the test score for a student with a specific
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characteristic is challenging. The reason of that is the nature of the data

where not all the students experienced the cross classification. For example,

some students were in the fifth grade in the first year of the experiment, while

others were in the third grade in the last year of the experiment. So, the

number of the students who have a perfect cross-classification with their

teachers is small compared to total number of the observations. For that

purpose, I simulated data that were similar to our motivated example in order

to understand that problem.

Fitting Hierarchical Linear model in R

The next step after understanding HLM models is to fit these models by

using a software package. In this research, I focused on R as it is an open resource

and sufficient for the data analysis.

Fitting an Ordinary linear model

In order to fit an ordinary linear model in R, we use the function lm with

the response and explanatory variables as follows

model1 = lm(y∼x, data = data1)

Fitting a HLM in R

Fitting a HLM is different from the OLM as we need to install a specific

package to fit the multilevel model. There are two different packages that are able to

perform a multilevel model: nlme, and lme4. They are both can fit a basic and

advanced multilevel models. The package lme4 may be slightly newer and may

provide more flexibility with the models than the nlme package.

40



• The package nlme: The package nlme is one of the packages that fit and

compare Gaussian linear and nonlinear mixed-effects models. The current

version 3.1-140 was created by Jose Pinheiro and Douglas Bates and released

on 05-01-2019. The package nlme uses the function lme in order to fit

multilevel model. The nlme package has a good variety of variance and

correlation structure and access several distributions. However, the package

speed is slow with large data and random effects, and it has a poor

performance with estimating cross-classified random effects, and does not deal

with multivariate data.

• The package lme4: The lme4 package is a project created by Douglas Bates

(one of the co-authors of nlme). Firstly, the package seems to be faster than

nlme. In addition, it works with cross-classified random effects better than the

nlme package. One the other hand, the package does not work with covariance

and correlation structures yet.

Since the lme4 package works better in cross-classified model (the

research topic), I chose the lme4 for this project. I used the motivating

example to explain fitting multilevel models in R.

Fitting two-level model in lme4

The matter of interest is the test score of students that are nested in classes

(teachers) and the teachers and students are contained in schools. In order to use

lme4 in multilevel models, we must know the fixed and random effects with their

relevant levels. Consider the unconditional two-level model where level-1 describes

the test score of student ij and level-2 explains the variation of the students among

classes (teachers), then mixed model is
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yij = γ00 + εij + u0j (2.54)

The R command in lme4 is

lmer(y ∼ 1+(1|tch), data = data1)

Suppose that the test score has predictor X and level level-2 is effected by

the predictor W , then level 1 of the conditional mixed model is

yij = γ00 + γ01Xij + γ10

+ u0j + uijW0j + εij

(2.55)

Notice that the first line of Equation 2.55 is the fixed effects, while the

second line includes the random effects. The R command in lme4 is

lmer(y ∼ X +W + (X|tch), data=data1)

Notice that the predictors X and W have fixed coefficients γ01 and γ10

respectively, while the predictor X has a random coefficient 1j at the teacher level.

Fitting three-level model in lme4

Suppose we extend the classes to be in schools where the schools variate

based on their characteristics (e.g., public, private and so on) and include the school

categorical variable Z. Then, mixed model is

yijk = δ000 + δ001Zk + δ01kW0jk + δ100Xijk

+ d00k + u0jk + εijk + d01kW0jk + d10kXijk + u1jkXijk

(2.56)

The R command in lme4 is
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lmer(y ∼ X +W + Z +(X|tch)+ (X +W |sch), data=data1)

Fitting cross-classified model in lme4

Consider the three-level-cross-classified model where X is a categorical

variable explaining the time of the test, W1 is a categorical variable describing the

student’s ELL, W2 is a continuous variable that explain the teacher’s MQI test score

and Z is a categorical variable explains whether the school has treatment or not.

Recall the mixed model in Equation 2.26

yt(ij)k = δ000 + δ001Zk + δ010W1ik + δ020W2jk + δ100Xt(ij)k

+ d00k + b0ik + c0jk + εt(ij)k

+ d01ikW1ikd10jkXt(ij)k

+ c1jkW1ijk.

(2.57)

Notice that the cross-classified random effect is c1jk that affects the student’s

predictor W1ik. Then the model in Equation 2.57 can be fitted in lme4 as folows

lmer(y ∼ X +W1 +W2 + Z+ (1|std)+(W1|tch)+(X+W1|sch), data=data1)

Estimation theory in package lme4

The most common estimation methods for estimate the variance

components are FML and MLR. In general the maximum likelihood (ML) technique

is to find the coefficients’ values that maximize the likelihood of the data. The full

maximum likelihood (FML) selects the estimates of G, T and S2 in order to

estimate γ,τ and σ2. On the other hand, "The restricted maximum likelihood

(MLR) maximize the joint likelihood of these parameters for a fixed value of the

sample data" (Raundenbush and Bryk, 2002, p.52).
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• BOBYQA algorithm: The Bound Optimization BY Quadratic

Approximation (BOBYQA) (Powell, 2009) algorithm "is a Quasi-Newton

approach to estimation that is implemented in the lme4 package"(McCoach

et al., 2018, p.8).

The function lmer in lme4 package uses "Both FML and MLR (the

default) in terms of the computational algorithms, lmer utilizes Powell’s

(2009) BOBYQA by default, while offering other optimizers to estimate T"

(McCoach et al., 2018, p.11).
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III. METHODOLOGY

The Statement of The Research

The matter of concern is assessing the three-level-cross-classified model in

lme4. In order to accomplish that goal, three steps must be performed: (1) ensure

that the package lme4 can perform that model, (2) simulate cross-classified

structured data to determine the accuracy of the package’s estimation, and (3)

understand the relationship between the model’s parameters.

Since the study focuses on the cross-classified models, the research covered

the behavior of fixed and random coefficients of the cross-classified predictors. In

order to check the accuracy, true fixed and random values must be proposed.

Simulation Model

The matter of interest is a three-level-cross-classified model where the

intercept and slope are randomly variates though level-two and level-three

explanatory variables. In addition, level-two predictors are cross-classified. For that

purpose, I used the package lme4 to obtain the estimate of the parameters (fixed

and random).

In order to check the accuracy of lme4 in estimating the model parameters, I

simulated a data set that is designed to fit a three-level-cross-classified model and

compared lme4 output with the assigned parameters’ true values.

Simulation Data Structure

I simulated three-level-cross-classified data that explains the student

achievement in elementary school in three consecutive years. The data consist of 30
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schools. Each school includes 500 students that are nested within 15 classes

(teachers). I assume that each classroom has only one teacher. The test score was

recorded for three years. The data were designed to be in three levels:

• Level 1 : explains the time of the test score and includes the predictor X (the

year of the test) that takes the values 1,2 and 3

• Level 2: describes the effects of the teachers and students characteristics on

the test score. It includes two predictors: (1) A student’s categorical variable

W1 that explains the student characteristics (e.g., ELL) and takes the values 0

and 1, and (2) A teacher’s continuous variable W2 that represents a teacher

test (e.g., MQI). The reason of choosing two different types of variables is to

match the real-life data.

• Level 3: shows the effect of the school on the test score. It contains one

categorical variable (Z) that takes the values 0 and 1. I choose it to be

categorical, because the the variable Z represents the treatment.

In order to get the best results, I simulated large data containing 27,000

observations, balanced and complete.

In order to match the real-life data, I created five groups of students that

are distributed on three grades such that each group contains 100 students. Table 2

shows the groups distribution of the three years.

Table 2: 500 Students are Distributed in Five Groups

Year Third grade Fourth grade Fifth grade
Year 1 001:100 101:200 201:300
Year 2 301:400 001:100 101:200
Year 3 401:500 301:400 001:100

The table shows 300 students in year 1 that are distributed on the three

grades. By following the students in the second year, we see that the student 201 :
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student 300 are out of the experiment, because they only attended one year.

similarly student 401:500 they attended only one year (year 3). Thus, the table

contains the five groups: Group 1 contains 100 students attended the three years,

group 2 and group 4 contains 200 students that attended two years and group 3 and

group 5 contains 200 students attaining only one year. Therefore, the total

observations of each school is 900 and the total observation of the data are 27,000.

I also distributed the fifteen teachers of each school on the three groups such

that each grade has five teachers. For the purpose of cross-classification, I

randomized the teachers on the students. That is, five students may have the same

teacher in the first year and five different teachers in the second year or vice versa. I

also randomized the teacher’s pattern to be different across the 30 schools.

The simulation model structure

As I mentioned above, I designed the model to have three levels including

cross-classification between the student and the teacher in level two. Equation 3.1

describes level-1 of the model.

Level-1:

Yt(ij)k = β0(ij)k + β1(ij)kXt(ij)k + et(ij)k, (3.1)

where,
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t is the index of the time where t = 1, 2, 3,

i is the index of student and i = 1, . . . , 500,

j is the index of the teacher and j = 1, . . . , 15,

k is the index of the school and k = 1, . . . 30,

yt(ij)k is the test score,

β0(ij)k is the initial test score of student ij of level-1,

β1(ij)k is the student ij improvement though the time,

Xt(ij)k is the time predictor and

εt(ij)k is the random effect of level-1 and ε ∼ N(0, σ2).

Level 2 contains the students and teachers characteristics and explains the

cross-classification between them.

β0(ij)k = γ00k + (γ01ik + c1jk)W1ik + γ02jkW2jk + b0ik + c0jk (3.2a)

β1(ij)k = γ10k (3.2b)

where,
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γ00k is the group mean,

γ02ik is the fixed effect coefficient of W1ik,

W1ik is the student categorical variable,

γ02jk is the fixed effect coefficient of W2jk,

W2jk is a continuous predictor

γ10k is the improvement of student ijk,

b0ik is the student’s random effect,

c0jk is the teacher’s random effect ,

c1jk is the random effect of the teacher on the student achievement.

where

b0ik ∼ N(0, τb)

and

c0jk
c1jk

 ∼ N(0, τ 2cτ
2
cτ
2
c )

and

τ 2cτ
2
cτ
2
c =

τ 2c00 τ 2c01

τ 2c10 τ 2c11


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and Level-3:

γ000k = δ000 + δ0001Zk, (3.3a)

γ01ik = δ010 + d01jk, (3.3b)

γ02jk = δ020, (3.3c)

γ100k = δ100 + d100k. (3.3d)

where

δ000 is the grand mean,

δ001 is the fixed slope of the predictor Z,

Z is the school variable ,

δ010 is the fixed effect of the W1,

δ020 is the fixed effect of W2,

γ100 is the fixed effect of X

d01jk is the random effect of the student at the school level,

d100k is the random effect of the X at the school level,

where

d01jk
d10jk

 ∼ N(0,Φ2)Φ2)Φ2)

and

Φ2Φ2Φ2 =

Φ2
00 0

0 Φ2
11


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Thus, the mixed model becomes:

Yt(ij)k = δ000 + et(ij)k + b0ik + c0jk + δ001Zk

+ (δ010 + c1jk + d01k)W1ik + δ020W2ik

+ (δ100 + d10k)Xt(ij)k + εt(ij)k

(3.4)

For refining the results, I simulated the data fifty times such that the

response variable Yt(ij)k variates based on the variances of (ε, b0, c0, c1, d01 and d10). I

used the R software package to simulate the data.

The choices of fixed and random effects

In order to create the fifty simulations in R, I chose simple values for the

fixed and random effects after several trials to have a simple

three-level-cross-classified model so that lme4 can perform the model and has

accurate estimates for the model’s coefficients. Table 3 shows the selected values for

the simulation.

Table 3: The True Fixed and Random Coefficients

Fixed Effects Random Effects
Parameter value Parameter value

δ000 3.0 σ 0.03
δ001 8.0 τst 0.05
δ010 3.5 τtch00 0.1
δ020 0.9 τtch11 0.17
δ100 2.0 φ00 0.05

φ11 0.02
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Therefore, Equation 3.4 becomes

Yt(ij)k = 3 + et(ij)k + b0ik + c0jk + 8Zk

+ (3.5 + c1jk + d01k)W1ik + 0.9W2ik

+ (2 + d10k)Xt(ij)k

(3.5)

where,

εtijk ∼ (0, (0.03)2),

b0ik ∼ N(0, (0.05)2),c0jk
c1jk

 ∼ N(0, τ 2c ),

and

τ 2c =

(0.1)2 0

0 (0.17)2

 ,

d01jk
d10jk

 ∼ N(0,Φ2)

and

Φ2 =

(0.05)2 0

0 (0.02)2


In order to check the model’s coefficient estimates accuracy, I computed the

mean square error and the relative bias as shown in Equations 3.6, 3.7

MSE(θ) =
1

n

N∑
i=1

(θ̂i − θ)2 (3.6)
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Relative bias(θ) =
(θ̂i − θ)

θ
(3.7)

where

θ is the model coefficient

θ̂ is the model coefficient estimate

N is the number of the simulations

Based on the data design and the coefficients choices, several questions must

be answers such as

• the effect of the teacher variances on the model’s estimates.

• The correlation between the teacher’s variances c0 and c1 and its effect on the

model’s estimates.

The Effects of Teacher’s Variances on The Model’s Estimates

Different teacher’s variations

In order to investigate the above studies, I have simulated eight different

types of simulations such that each type contains 50 simulations. Since my goal is to

study the effect of the random effects specially the cross-classified random

variations, I kept the fixed coefficient, level-1 error and student error and level-3

variation values as the same in the first 50 simulations. For the purpose of

understanding the effect of the correlation between teacher’s variances. I split the

eight simulation-types into two groups: one is with a small correlation value and the

other group is with a large value. For each group, I selected two values for each

variance (τ00 and τ11) one is small and the other is large. Table 4 shows the selected

values of τtch00, τtch11 and their correlation for each simulation-type.
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Table 4: The Teacher’s Variance in Eight Simulation-Types

Type τtch00 τtch11 Correlation
Type 1 0.10 0.17 -0.03
Type 2 0.10 0.87 -0.03
Type 3 0.92 0.17 -0.03
Type 4 0.92 0.87 -0.03
Type 5 0.10 0.17 -0.75
Type 6 0.10 0.87 -0.75
Type 7 0.92 0.17 -0.75
Type 8 0.92 0.87 -0.75

• Why negative correlation: Notice that the teacher’s variations (c0, c1) are

no longer independent but correlated. That is, if c1 is small, then the test

score of students with ELL is closer to the test score of students without ELL.

As a results there will be a gap in test score between classes meaning that the

variation between classes are larger and c0 is large. On the other hand, if the

c1 is large, then the diffidence in the test score between the students with ELL

and the students without ELL is large meaning that the gap between the

classes is smaller. That is, c0 is small. Based on this concept, I chose the

correlation to be negative.

I assigned ρ = −0.03 for the first four simulation-types and ρ = −0.75 to the

second four simulation-types. Based on the following correlation formula in

Equation 3.8 (Wackerly et al., 2008)

ρ(c0, c1) =
cov(c0, c1)√
var(c0)var(c1)

, (3.8)

The variance-covariance matrix τ 2c of the eight types as follows,
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Type 1

τ 2c =

 (0.1)2 −0.00051

−0.00051 (0.17)2

 ,

Type 2

τ 2c =

 (0.1)2 −0.00261

−0.00261 (0.87)2

 ,

Type 3

τ 2c =

 (0.92)2 −0.004692

−0.004692 (0.17)2

 ,

Type 4

τ 2c =

 (0.93)2 −0.024012

−0.024012 (0.87)2

 ,

Type 5

τ 2c =

 (0.1)2 −0.01275

−0.01275 (0.17)2

 ,

Type 6

τ 2c =

 (0.1)2 −0.06525

−0.06525 (0.87)2

 ,
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Type 7

τ 2c =

 (0.92)2 −0.1173

−0.1173 (0.17)2

 ,

Type 8

τ 2c =

 (0.92)2 −0.6003

−0.6003 (0.87)2

 .

The eight simulation-types give a greater chance to check many aspects in

cross-classified model such as the accuracy of fixed and random effect estimates, the

correlation between c0 and c1, the effects of level one and level two variations on

level-3 random effect estimate. The matter of interest is particularly the relationship

between the cross classified random effect in level-two with the corresponding one in

level-three.

The Package LME4 Efficiency

The first step I have done is to check the efficiency of lme4. McCoach et al.

(2018) examined the ability of lme4 in fitting two-level hierarchical linear model. In

this step I extended the capability test to include the change of c0 and c1. Based on

the previous results given by the first 50 simulations, I expect that lmer is capable

to perform the model with the random effect changes.

Coefficient Estimates Accuracy

The advantage of simulating the data are having a measure of coefficient

estimate. By simulating the data, I provide the true coefficient values that assists

determining how close the model’s coefficients from their true values. In our desired
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model, there are eleven parameters (five fixed and six random). There is a great

chance to get clear results, because we have large, balanced and complete data.

Additionally. In order to understand the estimate accuracy in term of c0 and c1

change, I performed the following tasks:

• In each simulation-type, I computed the average and the standard deviation of

each parameter’s estimate,

• per each parameter, I compared the MSE and the relative bias through the

eight simulation types by plotting the histogram of each parameter,

• I performed the previous task based on the correlation in order to determine

the effect of the correlation between c0 and c1 on the model’s coefficient

estimates.

The Effect of Teacher Variances on Level-Three Variances

Based on the results of the eight simulation-types, I found that the shape of

level three random effect estimate φ̂00 is right skewed in a way that does not follow

neither normal nor chi square distributions. As a result, there was a need to

investigate this problem and understand whether there is a relationship between the

level-two variance τtch11 and level-three random effect estimate φ̂00 since both c1 and

d01 are coefficients of the cross-classified predictor W1 in level two. In order to find

out that effect, I simulated more models.

Firstly, I found a gap between the two different values for τ11 in the first

eight simulation-types (0.17, 0.87) so, I added a third value of c1 where τ11 = 0.63,

because I needed to understand the behavior of φ̂00 in term of the change of τ00.

Since the focus in on the behavior of φ̂00, I had to chose many values for φ00 (six

different values of φ00 per each one value of τtch00) and remained the rest of the

model’s parameters as shown in Table 5:
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Table 5: The Unchanged Parameters Values

Parameter δ000 δ001 δ010 δ020 δ100 σ τst τtch00 φ11

Value 3.0 8.0 3.5 0.9 2.0 0.03 0.05 0.1 0.02

Notice that the that φ00 = 0.05 was used already selected twice with

τtch11 = 0.17 and τtch11 = 0.87 in the first eight simulation-types, so I just needed to

simulate sixteen more simulation-types. Table 6 shows each of the sixteen

simulation-types with their τtch11 and φ00 values.

Table 6: The New φ00 Values Corresponding to τtch11 Values

Type τtch11 φ00 Type τtch11 φ00

Type 9 0.17 0.000 Type 17 0.63 0.400
Type 10 0.17 0.010 Type 18 0.63 0.640
Type 11 0.17 0.014 Type 19 0.63 0.860
Type 12 0.17 0.025 Type 20 0.87 0.073
Type 13 0.17 0.150 Type 21 0.87 0.150
Type 14 0.63 0.000 Type 22 0.87 0.300
Type 15 0.63 0.053 Type 23 0.87 0.500
Type 16 0.63 0.200 Type 24 0.87 0.750

The main goal of simulating more data are to understand the relationship

between c1 and d01. In order to accomplish that goal, I ran the total of 1,200 models

and performed the following:

• for each value of τtch11, I plot six histograms in one shape to shows the change

of the φ̂00 shape with the increase of φ00,

• test the shape normality by using Shapiro-Wilk test (Shapiro and Wilk, 1965)

by using the test formula:

W =
( n∑
i=1

aiyi
)2
/

n∑
i=1

(
yi − ȳ

)2 (3.9)

where
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yi is the ith order statistics

ȳ is the sample mean

ai = (a1, . . . , an) =
mTV −1

(mTV −1V −1m)1/2

m = (m1, . . . ,mn) are the expected value of the order statistics of

independent and identically distributed random variables

V is the covariance matrix of these order statistics (Razali et al., 2011).

We test the normality by setting the null hypothesis,

Ho : The sample comes from a normal population,

Ha : The sample does not come from a normal population,

If the p-value is less than 0.05, we reject the hypothesis test and conclude that the

sample does not come from a normal distribution.

Further study to understand the effect of the level-two cross-classified

random effect (c1) on the level-three cross-classified random effect (d01) is to

compute the the ratio as Raundenbush and Bryk (2002) stated

reliability(φ00) =
φ2
00

τ 2tch11 + φ2
00

(3.10)

Based on that number, I performed the following tasks

• Find the ratio number when the shape of φ̂00 begins to change from right

skewed to symmetric by testing the normality with Shapiro-Wilk test,

• check the relationship between the ratio numbers and the normality.

One of the challenges I have experienced with the study of the behavior of

φ̂00 was the model convergence and singularity warning messages.
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The Model Convergence and Singularity Effects

Although I have provided complete, balanced and large data, the package

lme4 showed convergence or singularity warning messages while fitting the 1,200

models. One of the tasks I had to do, before stating the model’s results, was to

check the effect(s) of the warning message on the estimate’s accuracy, because only

20% of the models converged, while 80% of the models I fit had convergence or

singularity warning messages.

For most of the models output, the package lme4 showed two types of

convergence model warning message:

The first warning message shows that the max of the gradient exceeded the

tolerance which is 0.002.

Warning message:

In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.00287919

(tol = 0.002, component 1)

The second message states two warnings: the first is similar to the first

warning message, while the second states that there is one negative eigenvalue in

the Hessian matrix.

Warning messages:

1: In checkConv(attr(opt, "derivs"), opt$par, ctrl =

control$checkConv,:

unable to evaluate scaled gradient

2: In checkConv(attr(opt, "derivs"), opt$par, ctrl =

control$checkConv,:

Model failed to converge: degenerate Hessian with 1 negative
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eigenvalues

These two messages refer to the complexity of the model because the model

includes six random effects. The lme4 takes long time to scale the estimated

gradient at the estimate appropriately, McCoach et al. (2018) clarified that "lme4

scales gradients by the inverse Cholesky factor of the Hessian. The disadvantage of

this approach is that it requires estimation of the Hessian" (p.12). The lme4

package’s author Bates et al. (2015) suggested using alternate estimation methods

such as the Nelder-Mead simplex algorithm (Nedler and Mead, 1965).

I have tried different methods based on the package’s community. However,

our model was more complex. The method I have used was how much these warning

messages affect the model’s estimates.

The package lme4 also showed a singularity warning message, when I chose

a small value (close to zero)for φ00. The model’s estimates always has a very small

random effect that is close to zero. Based on the results, I have two methods:

Firstly, I increased the true value of the random effect and secondly, I removed the

small random effect from the model. The following line shows the singularity

warning message

boundary (singular) fit: see ?isSingular

Although the package states a warning message for almost each model, the

model’s coefficient estimates were so close to their true values. As a results, I had to

perform more tests in order to make the right decision whether to consider these

warning messages or ignore them.

The effect of convergence and singularity messages on φ̂00

In order to monitor the effect of the warning messages on the φ̂00, I selected

simulation-type 8 where τtch11 = 0.87 and φ00 = 0.05 and simulation-type 10 where
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τtch11 = 0.17 and φ00 = 0.01 and fit the 100 models. I split each of the two

simulation-types into three groups based on the issue of each model in the group

(convergent, non convergent or singular) then I performed the following tasks:

• compute the mean and the standard deviation of φ̂00 in each convergent model

coefficient estimates,

• compute the mean and the standard deviation of φ̂00 in each non-convergent

model coefficient estimates,

• compute the mean and the standard deviation of φ̂00 in each singular model

coefficient estimates.

• compare the mean and the standard deviation of φ̂00the three cases

(convergent, non-convergent and singular model) in each simulation-type,

• plot a scatter plot containing the estimate of six groups to compare the

estimate of φ00.

Based on the results of the above tasks, I did not find any difference in φ̂00

between the convergent, non-convergent or singular model. However, that was

insufficient to ignore the warning messages. Thus, there is also a need to check the

fixed effect estimates in term of the model’s issues.

Non-convergent and singular models in HLM7

In order to ensure that the convergence and singularity issues do not affect

the model’s estimates, I decided to test these issues by utilizing another software.

Because HLM7 is one of the software packages that have "auto-fix" convergence

(McCoach et al., 2018), I selected that package to compare with the estimate of the

cross-classified predictor W1 coefficients (δ̂010, τ̂tch11). Based on the results given in

Chapter 4 Table 15, I selected eight models to compare each model’s estimates in
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the packages lme4 and HLM7 respectively. Table 7 explains the eight models

selection based on the model issue, τtch11 and φ00 values.

Table 7: Compare The Convergence and Singularity in HLM7

Model Model issue τtch11 φ00 Model Model issue τtch11 φ00

1 convergent 0.17 0.01 5 non-convergent 0.17 0.15
2 non-convergent 0.17 0.01 6 convergent 0.87 0.05
3 singular 0.17 0.01 7 non-convergent 0.87 0.05
4 convergent 0.17 0.15 8 singular 0.87 0.05

The Fixed Effects in Non-Convergent and Singular Models

Further study is to understand the effect of the model’s warning messages on

the estimate of the fixed effect coefficients. In order to perform that test, I selected

the same two simulation-types and split each simulation-type into three groups

based on the model’s issue (convergent, non-convergent or singular) as I have done

in the previous section. I performed the following tasks on each of the three groups

• compute the mean and the standard deviation of the fixed effect estimates of

the convergent models in each of the two simulation-types.,

• compute the mean and the standard deviation of the fixed effect estimates of

the non-convergent models in each of the two simulation-types,

• compute the mean and the standard deviation of the fixed effect estimates of

the singular models in each of the two simulation-types,

• plot a scatter plot for each fixed effect estimate to compare the fixed effect

estimate in term of the model’s issue.
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The Effect of φ00 on The Model Estimation

I have covered the behavior of φ̂00, the relationship between τtch11 and the

shape of φ̂00 as they are the variation of the c1 and d01 respectively. It was necessary

to understand the this relationship since both c1 and d01 are the random coefficients

of the cross-classified variable W1. Furthermore, I explained the effects of model

warning message on φ̂00 and the estimate of the fixed effects in order to confirm the

accuracy of the model results. Now, it is interesting to know the effect of the

random variable d01 on the model’s estimate. In order to check that effect, I refit the

desired model without W1 as a random effect in level-three. That is,

Level-3:

γ000k = δ000 + δ0001Zk, (3.11a)

γ01ik = δ010, (3.11b)

γ02jk = δ020, (3.11c)

γ100k = δ100 + d100k. (3.11d)

Thus, the mixed model becomes:

Yt(ij)k = δ000 + et(ij)k + b0ik + c0jk + δ001Zk

+ (δ010 + c1jk)W1ik + δ020W2ik

+ (δ100 + d10k)Xt(ij)k

(3.12)

and the model in R is

lmer(y∼ X+W1+W2+Z+(1|std)+(W1|tch)+(0+X||sch), data =data1)

Notice that the predictor W1 is no longer a school’s random effect. In order

to determine the effect of the random effect c1 with the absence of the level-three
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random effect d01, fit the model in three simulation-types such that each

simulation-type had different τtch11. I performed the following tasks:

• compute the mean and the standard deviation of each of the fixed and random

effect estimate in each of the three groups.

• compare the outcome of task one with those with the existence of d01,

• plot each model parameter’s estimate in term of d01,

• determine the effect of the random variable d01 based on the results given in

task two and three.

The above study opened the gate to investigate the effect of c01 on the

model estimate. For that purpose, I ran the previous model without c1. That is,

level 2

β0(ij)k = γ00k + γ01ikW1ik + γ02jkW2jk + b0ik + c0jk (3.13a)

β1(ij)k = γ10k (3.13b)

and level 3

γ000k = δ000 + δ0001Zk, (3.14a)

γ01ik = δ010, (3.14b)

γ02jk = δ020, (3.14c)

γ100k = δ100 + d100k. (3.14d)
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Thus, the mixed model becomes:

Yt(ij)k = δ000 + et(ij)k + b0ik + c0jk + δ001Zk

+ δ010W1ik + δ020W2ik

+ (δ100 + d10k)Xt(ij)k

(3.15)

and the model in R is

lmer(y∼ X+W1+W2+Z+(1|std)+(1|tch)+(0+X||sch), data =data1)

Based on the results given by fitting the 100 models, I compared the

estimate of δ010 in the three model types. I used this comparison to understand the

effect of the cross-classified random effects on the model’s parameters estimates.

After finishing these methods, I collected the results in tables and graphs.

Chapter 4 explains the results I have found through the methodology.
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IV. RESULTS

Simulation Results

Based on the 50 simulations I have mentioned in Chapter 3, page 52 the

package lme4 can perform a three-level-cross-classified model. The lme4 package

output shows that the package can provides a list of fixed effect estimates with their

std.error, degree of freedom and t-value and the correlation between the fixed effect

parameters. Additionally, lme4 provides an estimate of each random effect with the

correlation value if the random variable is correlated with another. In addition, the

package shows each random variable’s level. The output of the first model is listed

below to show the package lme4 results.

Linear mixed model fit by REML. t-tests use Satterthwaite’s method

[’lmerModLmerTest’]

Formula: y1 ~ X1 + W1 + W2 + Z1 + (1 | std) + (W1 | tch) +

(0 + X1 + W1 ||sch)

Data: data

REML criterion at convergence: -81612.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.00888 -0.46966 0.00088 0.47022 2.88741

Random effects:

Groups Name Variance Std.Dev. Corr
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std (Intercept) 2.501e-03 5.001e-02

tch (Intercept) 9.979e-03 9.990e-02

W1 2.845e-02 1.687e-01 -0.05

sch X1 4.323e-04 2.079e-02

sch.1 W1 2.069e-09 4.549e-05

Residual 8.959e-04 2.993e-02

Number of obs: 27000, groups: std, 15000; tch, 450; sch, 30

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 2.976e+00 2.575e-02 4.488e+02 115.58 <2e-16 ***

X1 2.006e+00 3.814e-03 2.900e+01 525.94 <2e-16 ***

W1 3.510e+00 8.003e-03 4.557e+02 438.57 <2e-16 ***

W2 9.080e-01 1.066e-02 4.470e+02 85.16 <2e-16 ***

Z1 8.010e+00 9.639e-03 4.772e+02 831.02 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:

(Intr) X1 W1 W2

X1 -0.002

W1 -0.012 0.000

W2 -0.967 0.000 0.000

Z1 -0.231 0.000 0.000 0.059

The R output shows that the package lme4 lists the random effect first

based on each level, the number of each group (e.g., std, 15000) followed by the

fixed effect including(the estimate, the standard error, the degree of freedom and
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the t-value) and finally, the correlation of the fixed effects.

The t-value does not come with the package lme4. The package "lmertest"

must be installed with the package "lme4" in order to display the t-value.

The Package Estimate Accuracy

Measuring the package’s accuracy was not difficult, because we already had

the model’s coefficient true values. The results of fitting the one of the first fifty

models are listed in Table 8.

Table 8: The Fixed and Random Effect Estimates in One Model

Fixed Effects Random Effects
Parameter true Estimate Parameter true Estimate

δ000 3.0 2.9761 σ 0.03 0.0299
δ001 8.0 8.0103 τst 0.05 0.0500
δ010 3.5 3.5099 τtch00 0.10 0.0999
δ020 0.9 0.9079 τtch11 0.17 0.1636
δ100 2.0 2.0059 φ00 0.05 0.0422

φ11 0.02 0.0208

Based on the results listed in the lme4 output and Table 8, I found the

following:

• The fixed effects estimates: The estimate of all the fixed effects are close

to the true values. For example, δ̂000 is 2.9761 in which is close to the δ000 = 3.

That is, the estimate of the grand mean of the test score is close to its true

value. Similarly the coefficients δ001,δ010, δ020 and δ100 also are close to their

true values.

• The random effects: The estimate of most of the random effect coefficients

are also close to the true values. For example, σ̂ = 0.0299 while the true value

σ = 0.03. Similarly, the estimate of level-two random effects τ̂std00, τ̂tch00 and
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level-three random effects φ̂11. However, the estimate of the cross-classified

random effects are not that close to the true values. For example, in level-two,

τ̂tch11 = 0.1636 is slightly far from the true value τtch11 = 0.17, and in

level-three φ̂00 = 0.05 is a little farther from its true value φ00 = 0.0422.

Over all, the results of one model are fine. However, they are insufficient to

determine the accuracy of the package in estimating the model parameters. As a

result, I fitted the fifty models and averaged each parameter’s estimate and each

parameter’s standard deviation. Additionally, I computed the mean square error

(MSE) for each of the model’s estimates as shown in Table 9 where,

avg((θ̂)) =
1

50

50∑
i=1

θ̂i (4.1a)

avg(sd(θ̂)) =
1

50

50∑
i=1

sd(θ̂i) (4.1b)

MSE(θ̂) =
1

50

50∑
i=1

(θ̂i − θ)2 (4.1c)

Table 9: The Average of Fixed and Random Effect Estimates

Fixed Effects Estimate Random Effects Estimate
θ avg(θ̂) avg(sd(θ̂)) MSE(θ̂) θ avg(θ̂) avg(sd(θ̂)) MSE(θ̂)

δ000 2.9972 0.0278 0.00080 σ 0.0300 0.0002 3.43e-08
δ001 8.0015 0.0094 8.86e-05 τst 0.0500 0.0003 1.09e-07
δ010 3.5000 0.0134 0.00020 τtch00 0.0997 0.0034 1.18e-05
δ020 0.9008 0.0113 0.00010 τtch11 0.1724 0.0063 4.45e-05
δ100 2.0004 0.0035 1.24e-05 φ00 0.0457 0.0143 0.0002

φ11 0.0197 0.0024 5.60e-06

The fixed effects analysis in fifty simulations

Based on the listed results in Table 9, the average of the fixed effects

estimate is close to their true values meaning that most of the estimate of fixed
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effects in the fifty models are close to their true values. on the other hand, the

standard deviation of each fixed effect parameter varies. For example, the average of

the sd(δ̂000) is 0.0278, while the average of the sd(δ̂100) is 0.0035 meaning that the

confidence interval of sd(δ̂100) is smaller than the confidence interval of sd(δ̂000). In

order to clarify that error, I computed the MSE of each parameters.

Based on the Mean square error results, we see that the MSE(δ000) is greater

than the MSE(δ100). Overall, since the MSE of all the fixed effect estimates are

almost zero, I conclude that the fixed effect estimates in this 50 simulations are

precise and accurate.

The random effects analysis in fifty simulations

Based on the results in Table 9, the estimate of level-one random effect

(σ̂) = 0.03 which is equaled to the σ = 0.03. By looking at mean square error of σ

(MSE(σ)= 3.43e-08), the error is almost zero. Level-two random effects also have

precise estimates, because their MSE numbers that are close to zero. On the other

hand, for level-three random effects, φ̂11 has a precise estimate, while φ̂00 is slightly

far from its true value.

Overall, the estimates are precisely good. However, the true random effect

values are very small to state the accuracy of the model in lme4 package. In order to

confirm the results, I have simulated eight simulation-types including 400

simulations as I mentioned in Chapter 3.

The Estimate Accuracy with Different Simulations Conditions

As I mentioned above, we needed to examine more model conditions in

order to test lme4 package accuracy in assessing the three-level-cross-classified

models. I have simulated eight simulation-types, as mentioned in Chapter 3 and

computed the average and the standard deviation of each parameter’s estimate.
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The fixed effect estimates in the eight simulation-types

As I computed the statistics of the first fifty simulations, I did the same for

the eight simulation-types. Notice that the first simulation-type is the first fifty

simulations that were mentioned in the previous section. Since the matter of

concern is the cross-classified model, I focused on the coefficients of the

cross-classified predictor W1 (δ010, τtch11 and φ00). Table 11 compares the three

coefficient estimates within the eight simulation-types

Based on the given results in Table 11, we see that when the correlation is

-0.03, the average of δ̂010 = 3.500 and when the correlation is -0.75, the average of of

δ̂010 = 3.5014. Similarly, the estimate of ˆτtch11 = 0.0063, 0.0065 with the correlation

values -0.03 and -0.075 respectively. Figure 8, 11 and 12 confirm the results given in

Table 11. So, we can conclude

• the correlation between τtch00 and τtch11 does not affect the estimate of model’s

parameter estimates specially the coefficients of the cross-classified predictor

W1,

• most of the estimates are satisfying except the estimate of level-three

cross-classified random effect φ̂00 that has a right skewed shape as shown in

Figure 12

The Relationship Between Level Two and Level Three Variances

Since the matter of interest is the cross-classified models, we are interested

in understanding the relationship between level-two random effect τtch11 and

level-three random effect φ00.

Based on the sixteen simulations I have created and mentioned in Chapter

3, I plot three histograms with three different choices of τtch11 0.17, 0.63 and 0.87
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respectively. For each of the three values, I chose six different values of φ00 in order

to understand the shape of φ̂00 histogram in term of change of both φ00 and τtch11.

The behavior of φ̂00 when τtch11 is small

Based on the plot in Figure 4 that explains the shape of φ̂00 with

τtch11 = 0.17, I found the following:

• the histogram shape is right skewed when φ00 = 0,

• The shape turns symmetric with normal distribution as φ00 gets larger (e.g.,

φ00 = 0.15).

On the other hand, the standard deviation behaves differently with the

change of the value of φ00:

• the standard deviation is One-Way small (the shape is right skewed) when

φ00 = 0,

• the standard deviation increases when φ00 = 0.01,

• The standard deviation gets larger, when φ00 increases.

It is bizarre that the shape does not go around zero ( the true value of φ00

when φ00 = 0 , but goes to the right side (positive side). The probability of the

shape’s normality was discussed in Chapter 3 and the results are listed at the end of

this chapter.

The behavior of φ̂00 when τtch11 is moderate

In the first experiment, I have set τtch11 = 0.17. which is a small value for

τtch11. In this experiment, I monitored the behavior of φ̂00 with a larger value

(τtch11 = 0.63).

Based on figure 5, φ̂00 shape shows similar behaviors as in case 1:
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• the shape is right skewed when φ00 = 0,

• the shape starts to be symmetric, when φ00 = 0.053,

• the shape symmetry improves when φ00 increases.

The standard deviation φ̂00 behavior is similar to case 1 meaning the shape

of φ̂00 starts with a small standard deviation that gets smaller when φ00 = 0.053

then gets larger when the value of φ00 increases.

The behavior of φ̂00 when τtch11 is large

In order to complete the behavior of φ̂00 in term of the change of φ00 true

value, I had to choose a larger value for the variance of the cross-classified random

effect in level-two (τtch11 = 0.87). Figure 6 displays six histogram of six different

values of φ00 where

• the shape is right skewed with outliers when φ00 = 0,

• the shape is normal, with the increase of the value of φ00.

On the other hand, the histogram of φ̂00 standard deviation is different:

• the standard deviation is small when φ00 = 0.05,

• the standard deviation gets larger when φ00 = 0.073 unlike the other two cases

when the standard deviation gets smaller at the shape breaking point.

Based on the ratio formula

Ratio =
φ2
00

τ 2tch11 + φ2
00

, (4.2)

when the ratio gets larger, the shape of φ̂00 becomes closer to the true value with a

small standard deviation and symmetric shape.
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Table 12: Compare φ̂00 Statistics With τtch00

τtch00 = 0.17

φ00 avg(φ̂00) avg(sd(φ̂00)) MSE(φ̂00)

0.000 0.0103 0.0127 0.00532
0.010 0.0129 0.0131 0.00042
0.014 0.0344 0.0067 0.02090
0.025 0.0209 0.0158 0.00083
0.050 0.100 0.0160 0.12600
0.150 0.151 0.0237 0.00001

τtch00 = 0.63

φ00 avg(φ̂00) avg(sd(φ̂00)) MSE(φ̂00)

0.000 0.0340 0.0453 0.057600
0.053 0.1300 0.0274 0.298000
0.200 0.2000 0.0480 0.000010
0.400 0.4040 0.0609 0.000670
0.640 0.5440 0.0851 0.462000
0.860 0.8600 0.1050 0.000008

τtch00 = 0.87

φ00 avg(φ̂00) avg(sd(φ̂00)) MSE(φ̂00)

0.050 0.0597 0.0919 0.00468
0.073 0.1800 0.0601 0.57700
0.150 0.1240 0.0849 0.03260
0.300 0.2800 0.0751 0.01940
0.500 0.4950 0.1020 0.00143
0.750 0.7200 0.0904 0.04490

Based on the results given in the Table 12, the estimate of φ00 is the best

when τtch11 value is small and φ00 value is large.

Test the normality of φ̂00 shape

In order to check the normality of the eighteen shapes, we use the Shapiro-Wilk

test. The results of the test are given in Table 13.

Notice that in Table 13, the p-values are less than 0.05 when τtch11 = 0.17
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Table 13: Test The Normality of φ̂00 By Shapiro-Wilk Test

τtch11= 0.17 τtch11= 0.63 τtch11= 0.87
φ00 W p-value φ00 W p-value φ00 W p-value
0.000 0.7836 3.7e-07 0.000 0.7570 1.0e-7 0.050 0.5161 1.3e-11
0.010 0.8402 8.4e-06 0.053 0.9913 0.9718 0.073 0.9122 0.0012
0.014 0.9921 0.98260 0.200 0.9771 0.4381 0.150 0.9392 0.01254
0.025 0.9003 0.0005 0.400 0.9790 0.5123 0.300 0.9375 0.0107
0.050 0.9730 0.3050 0.640 0.9902 0.9497 0.500 0.9767 0.4226
0.150 0.9784 0.4861 0.860 0.9807 0.5802 0.750 0.9761 0.4001

and φ00 = 0, 0.01, and 0.025 respectively. Therefore, we reject the null hypothesis

and conclude that the sample did not come from a normal population. On the other

hand, the p-values are greater than 0.05. Thus when φ00 = 0.014, 0.05 and 0.015

respectively. Thus, we fail to reject the null hypothesis test. When we fail to reject

the hypothesis test, we refer to the histogram as shown in Figure 4a, and conclude

that the shape is normally distributed.

By performing the same test with the other two values of τtch11, the given

results in Table 13, and the histogram shapes in Figure 5a and Figure 6a, we

conclude that the shape of φ̂00 becomes normal when φ00 is large.

While general behavior is as predicted, further study is necessary to fully

understand the effect of φ00 and τtch11 on the distribution of φ̂00.

Convergence and Singularity in Lme4

Although I simulated large, complete and balanced data, the package lme4

shows convergence and singularity warning messages. These messages made

concerns about the accuracy of the package model estimates. In order to decide

whether to consider or ignore these warning messages, I investigated the messages in

term of the estimate of the desired random effect φ̂00 and the fixed effect estimates.
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The effect of the model’s issues on the cross-classified predictor coefficients

In order to investigate the effect of the warning messages,I chose two values

of τtch11 (0.17, 0.87) with five τtch11 I selected two φ00 values as follows

• Group 1: τ11 = 0.17 and φ00 = 0.01

• Group 2: τ11 = 0.17 and φ00 = 0.15

• Group 3: τ11 = 0.87 and φ00 = 0.05 and

• Group 4: τ11 = 0.87 and φ00 = 0.75.

and for each group, I fit the model and recorded the convergent, non-convergent,

and singular models, the results of the experiment was as shown in Table 14

Table 14: The Convergence and Singularity Issues of 200 models

τ11 φ00 Convergent Convergence issue Singularity issue
0.17 0.01 7 35 8
0.17 0.15 10 40 0
0.87 0.05 6 41 3
0.87 0.75 5 45 0

Based on the results of Table 14, I found that when the value of φ00 is close

to zero (0.01,0.05) the model may experience singularity issues. In order to analyze

warning messages concern, I selected the first three groups to assess the estimate of

cross-classified predictor W1 coefficients (δ010, τtch11 and φ00). Table 15 shows the

results.

Compare the Estimates of Non-Convergent and Singular Models in HLM

Although we had enough to show that the convergence and singularity

issues do not affect the model’s estimates, checking another statistical package

would confirm that statement. As I mentioned in Chapter 3 p.61, I chose the HLM7
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package because it has a "auto-fix" convergence technique (McCoach et al., 2018). I

selected eight models to check the estimate of non-convergent and singular models

in HLM7. Based on the results in Table 16, I found the following:

• in Model 1, the estimate of δ̂010 = 3.4703 in HLM and 3.4700 in lme4 where,

Model 1 is convergent.

• in Model 2, the estimate of δ̂010 = 3.603 in HLM and 3.600 in lme4 where

Model 2 is a non-convergent model.

• similarly, in Model 3, the estimate of δ̂010 = 3.51 in HLM and 3.514 in lme4,

where Model 3 is singular.

Table 16 shows that the estimates for convergent, non-convergent or singular

models are almost identical in both HLM and lme4. Therefore, the convergence and

the singularity have no effect of the model’s estimates.

The Convergence and Singularity Effect on The Fixed Effect Estimates

In order to ensure that the warning messages (convergence and singularity

issues) do not effect the model’s estimates, I have checked the fixed effect estimates

in term of the convergence and singularity issues. I checked the estimate of the fixed

effects (δ̂000, δ̂001, δ̂010, δ̂020 and δ̂100) with two values of τ11 and two values of φ00.

Table 17 explains the estimate’s mean and the standard deviation’s mean of each

fixed effect coefficient.

Based on the results in the table:

• The estimates of the fixed effects are similar in all the model’s issues. That is,

the convergence and singularity issues do not affect the fixed effect estimates.

• The standard deviation of the fixed effect estimates is similar to the fixed
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Table 16: Non-Convergent and Singular models Estimates in HLM7 and lme4

τtch11 = 0.87 φ00 = 0.05

model issue convergent non-convergent singular
statistics HLM lme4 HLM lme4 HLM lme4
δ010 3.4703 3.4700 3.6030 3.6000 3.5140 3.5140
τtch11 0.8366 0.8366 0.8400 0.8420 0.8277 0.8286
φ00 0.0728 0.0752 0.0249 0.0205 8.82e-5 1.64e-5

τtch11 = 0.17 φ00 = 0.15

model issue convergent non-convergent singular
statistics HLM lme4 HLM lme4 HLM lme4
δ010 3.5316 3.5320 3.4528 3.4530 NA NA
τtch11 0.1564 0.1564 0.1634 0.1634 NA NA
φ00 0.1537 0.1565 0.1346 0.1371 NA NA

τtch11 = 0.17 φ00 = 0.01

model issue convergent non-convergent singular
statistics HLM lme4 HLM lme4 HLM lme4
δ010 3.5001 3.5000 3.5023 3.5020 3.4960 3.4960
τtch11 0.1736 0.1737 0.1622 0.1625 0.1579 0.1574
φ00 0.0190 0.0192 0.0008 0.0007 0.0103 1.18e-6

effect estimates. Again neither the convergence nor the singularity messages

affect the standard deviation of θ̂.

• If the model experiences singularity issue then φ̂00 ∼ 0. However, the opposite

is not always true. For example, In Figure 15, when φ00 = 0.05, there is a

convergent model that has φ̂00 = 0 and does not experience singularity issue.

The Effect of Removing the Cross-Classified Random Effect

One of the points that may be considered is the effect of removing W1 from

the school level as a random effect. That is, running the model as follows :

lmer(y1~X+W1+W2+Z+(1|std)+(W1|tch)+(0+X||sch), data1)

I have fitted 150 models and checked the results as showed in Table 18
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Table 17: The Average of Fixed Effect Estimates and Standard deviation of 100 Models

τ11 = 0.17 Convergent Non-Conv. Singular
φ00 = 0.01 Est. SD Est. SD Est. SD

δ000 2.9399 0.1591 3.0060 0.1621 2.8802 0.1629
δ001 8.0258 0.0597 7.9803 0.0616 7.9937 0.0588
δ010 3.5082 0.0421 3.4989 0.0446 3.5385 0.0423
δ020 0.9163 0.0645 0.9023 0.0657 0.9395 0.0660
δ100 2.0027 0.0036 1.9999 0.0036 1.9996 0.0043

τ11 = 0.87 Convergent Non-Conv. Singular
φ00 = 0.05 Est. SD Est SD Est SD

δ000 2.9970 0.0253 2.9976 0.0258 2.9962 0.0257
δ001 8.0053 0.0095 7.9998 0.0097 8.0049 0.0096
δ010 3.4992 0.0091 3.501 0.0089 3.4999 0.0080
δ020 0.8998 0.0105 0.9014 0.0107 0.8998 0.0106
δ100 1.9981 0.0036 2.0006 0.0036 2.0010 0.0037

Based on the results in Table 18 and the simulated data, we can conclude

the following:

• The level-three random effect φ00 does not have any effect on neither the

cross-classified fixed effect δ010 nor the level-two random effect τtch11,

• The cross-classified fixed effect δ010 does not change by the level-three random

effect φ00.

Conclusion

Based on the statistical analysis of the simulated data, I found that the

package lme4 can fit three-level-cross-classified models by using the function lmer.

Furthermore, this package provides a precise results that including the random

effects estimates with their correlations. Additionally, the package provides an

estimate of fixed effects including their degree of freedom the correlation of fixed

effects.
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Table 18: Comparison between the Complete and Reduced Models

τtch11 = 0.17, φ00 = 0.01

Case δ010 δ̂010 MSE(δ̂010)
(δ010 + c1jk + d01k)W1ik 3.5 3.501 2.84e-05
(δ010 + c1jk)W1ik 3.5 3.501 2.84e-05
(δ010)W1ik 3.5 3.501 2.84e-05
Case τtch11 τ̂tch11 MSE(τ̂tch11)
(δ010 + c1jk + d01k)W1ik 0.17 0.1728 1.82e-4
(δ010 + c1jk)W1ik 0.17 0.1719 3.93e-4

Based on the simulated data and under the setting considered, the fixed

effects provide perfect estimates and the shape of the relative bias of the fixed

effects’ bias is symmetric with outlier. Similarly, the random effect coefficients

(σ̂, τ̂std00, τ̂tch00 and τ̂tch11) have closer estimates to their true values with symmetric

shapes. On the other hand, the estimate φ̂00 is far from the true value with a right

skewed shape. However, the shape begins to be symmetric when the ratio between

φ2
00 and (φ2

00 + τ 2tch11) is large. On the other hand, the change of the ratio number

does not affect the fixed effect estimates.

The estimation results also showed that the correlation between the

cross-classified random effect c1 and c0 does not affect the model’s coefficient

estimates.

The research also found that the convergence and singularity messages given

by the package lme4 do not affect the model’s estimates. Finally, the study showed

that removing level-three-cross-classified random effect does not affect the model’s

coefficient estimates.

Limitations and Future Research

I have covered the three-level-cross-classified model in the package lme4.

McCoach et al. (2018) compared a two-level model in five different packages. A
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different study may compare the three-level-cross-classified model in several

packages. Although I used R in performing the model, I did not try the package

nlme, because it is slow in performing the HLM model. Further study may compare

the two packages in term of the cross-classification.

Regarding simulated data, I chose complete, large and balanced data in

order to get precise results. However, I did not include missing or unbalanced data,

which may be included in further research.

The study covered the convergence and singularity issues by comparing the

estimates in convergent and non-convergent models that is based on the simulated

data. Further research may try different techniques such as choosing different

starting values or different computational algorithm (McCoach et al., 2018).

I studied a three-level-cross-classified model in which the teacher and

student were cross-classified in level-two. Different research may include the

cross-classification between the school and the neighborhood in level-three

(Raundenbush and Bryk, 2002). The cross-classification could also be contained in

both level-two and level-three.
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APPENDIX SECTION

The Simulated Data Code

# The used packages

library(tidyverse)

library(lme4)

library(haven)

library(lmerTest)

n.sch =30

n.std =500

n.tch = 15

#***************

# Fixed effects

#**************

delta000 = 3

delta001 = 8

delta010 = 3.5

delta020= 0.9

delta100 = 2

#===============

# Random effects

#===============

sigma = 0.03 #Std Dev

e.real <- sigma

sigma.sq = 0.0009

#******************************
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# I used two correlation values

#******************************

rho1 = -.03

rho2 = -0.75

#******************

# The random effect

#******************

tau_small_00 =0.01 #variance

tau_small_00.stdev = sqrt(tau_small_00)

tau_big_00 = 0.85 #variance

tau_big_00.stdev = sqrt(tau_big_00)

tau_small_11 = 0.03 # variance

tau_small_11.stdev = sqrt(tau_small_11)

tau_big_11 = 0.75 # variance

tau_big_11.stdev = sqrt(tau_big_11)

# student variance

tau_st_00 = 0.05 # std.Dev

real = tau_st_00

b0.real <- 0.05

tau_st.sq = 0.0025 #Variance

# School variances

phi11 =0.05 #Std. Dev

d01.real <- phi11

phi11.sq = 0.0025 # variance

phi11_2 = 0.1
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phi11_3 = 0.075

Phi11_4 = 0.2

Phi11_5 = 0.15

Phi11_6 = 0.64

Phi11_7 = 0.75

phi33 = 0.02 #Std. Dev

phi33.sq = 0.0004 #variance

# Compute th coveriance when Rho is small

R1.tau_small_small_10 = rho1 *sqrt(tau_small_00*tau_small_11)

R1.tau_small_big_10 = rho1 *sqrt(tau_small_00*tau_big_11)

R1.tau_big_small_10 = rho1*sqrt(tau_big_00*tau_small_11)

R1.tau_big_big_10 = rho1 *sqrt(tau_big_00*tau_big_11)

R9= rho1 *sqrt(tau_small_00*0.4)

# Compute th coveriance when Rho is large

R2.tau_small_small_10 = rho2 *sqrt(tau_small_00*tau_small_11)

R2.tau_small_big_10 = rho2 *sqrt(tau_small_00*tau_big_11)

R2.tau_big_small_10 = rho2*sqrt(tau_big_00*tau_small_11)

R2.tau_big_big_10 = rho2 *sqrt(tau_big_00*tau_big_11)

var.sim1 <- c(tau_small_00, R1.tau_small_small_10,tau_small_11 )

var.sim2 <- c(tau_small_00, R1.tau_small_big_10,tau_big_11 )

var.sim3 <- c(tau_big_00, R1.tau_big_small_10,tau_small_11 )

var.sim4 <- c(tau_big_00, R1.tau_big_big_10,tau_big_11 )

var.sim5 <- c(tau_small_00, R2.tau_small_small_10,tau_small_11 )

var.sim6 <- c(tau_small_00, R2.tau_small_big_10,tau_big_11 )

var.sim7 <- c(tau_big_00, R2.tau_big_small_10,tau_small_11 )

var.sim8 <- c(tau_big_00, R2.tau_big_big_10,tau_big_11 )

var.sim9 <- c(tau_small_00, R9, 0.4 )

case <- cbind(var.sim1, var.sim2, var.sim3, var.sim4, var.sim5,

var.sim6, var.sim7, var.sim8, var.sim9)
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#=======================================================

# Create a function to generate the variable of students

#=======================================================

StdInScl <- function(){

std.code <- c(seq( 1,300),seq(301,400),seq(1,100),

seq(101,200), seq(401,500),seq(301,400),

seq(1,100))

W.sample <- sample(c(0,1), replace = TRUE, size = 500)

b0 <- rnorm(500, 0, tau_st_00)

for(i in 1:49){

b0 =cbind(b0, rnorm(500, 0, tau_st_00))

}

std_chr <- c(W.sample[1:400], W.sample[1:200],

W.sample[401:500], W.sample[301:400],

W.sample[1:100])

std_b0 <- rbind(b0[1:400,], b0[1:200,],

b0[401:500,], b0[301:400,],

b0[1:100,])

group <- rep(c(1,2,3,4,1,2,5,4,1), each=100)

data.frame(group, cbind(std.code, std_chr,

std_b0))

}

l=StdInScl()

p =n.sch-1

q = n.sch*1000+100000

for(i in 1:p){

l = rbind(l,StdInScl())

}

sch.serial <- seq(101000, q, by=1000)

l$std.code <- l$std.code + rep(sch.serial, each = 900)
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std.table <- data.frame(cbind(std =l$std.code, W1=l$std_chr,

sch=rep(sch.serial,group =l$group, each =900),

l[,4:53]))

for( i in 1:50){

names(std.table)[3+i] <- paste("b0_", i, sep="")

}

write.csv(data.frame(std.table), "std.table0507.csv")

std.HLM <- data.frame(unique(std.table[,1:3]))

write_sav(std.HLM, "level2std_30_0507.sav")

#=====================================================

# A function to generate the variables of the teachers

#=====================================================

#==========================================

# A function of correlated teacher variance

#==========================================

tch.var <- function(a, b, c )

{

Sigma1t <- matrix(c(a ,b, b,c),2,2)

mvrnorm((n.tch), mu=c(0,0),Sigma = Sigma1t)

}

rm(sss, ssb, sbs, sbb, bss, bsb, bbs, bbb)

TchInSch <- function()

{

tchr <- seq(1,15)

tch.chr <- runif(15, 1.5,3)

sss <- tch.var(case[1,1], case[2,1],case[3,1] )

ssb <- tch.var(case[1,2], case[2,2],case[3,2] )

sbs <- tch.var(case[1,3], case[2,3],case[3,3] )

sbb <- tch.var(case[1,4], case[2,4],case[3,4] )
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bss <- tch.var(case[1,5], case[2,5],case[3,5] )

bsb <- tch.var(case[1,6], case[2,6],case[3,6] )

bbs <- tch.var(case[1,7], case[2,7],case[3,7] )

bbb <- tch.var(case[1,8], case[2,8],case[3,8] )

sm <- tch.var(case[1,9], case[2,9],case[3,9])

for(i in 1:49)

{

sss <- cbind(sss,tch.var(case[1,1], case[2,1],case[3,1] ))

ssb <- cbind(ssb,tch.var(case[1,2], case[2,2],case[3,2] ))

sbs <- cbind(sbs, tch.var(case[1,3], case[2,3],case[3,3] ))

sbb <- cbind(sbb, tch.var(case[1,4], case[2,4],case[3,4] ))

bss <- cbind(bss,tch.var(case[1,5], case[2,5],case[3,5] ))

bsb <- cbind(bsb,tch.var(case[1,6], case[2,6],case[3,6] ))

bbs <- cbind(bbs,tch.var(case[1,7], case[2,7],case[3,7] ))

bbb <- cbind(bbb,tch.var(case[1,8], case[2,8],case[3,8] ))

sm <- cbind(sm, tch.var(case[1,9], case[2,9],case[3,9]))

}

x=cbind(sss, ssb, sbs, sbb, bss, bsb, bbs, bbb, sm)

tchr_W <- cbind(tch=tchr, W2=tch.chr, x)

tch3 <- tchr_W[1:5,]

tch4 <- tchr_W[6:10,]

tch5 <- tchr_W[11:15,]

tch_W <- rbind(tchr_W, tch3[sample(nrow(tch3)),],

tch4[sample(nrow(tch4)),],tch5[sample(nrow(tch5)),],

tch3[sample(nrow(tch3)),], tch4[sample(nrow(tch4)),],

tch5[sample(nrow(tch5)),])

tch_W[rep(seq_len(nrow(tch_W)), each=20),]

}

rm(ll)
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ll =data.frame(TchInSch())

for(i in 1:p){

ll = rbind(ll,TchInSch())

}

sch.serial <- seq(101000,q, by=1000)

ll$tch <- ll$tch + rep(sch.serial, each = 900)

tch.table <- data.frame(cbind(tch=ll$tch, W2=ll$W2,

sch=rep(sch.serial,

each =900), ll[,3:902]))

tch.table.1 <- tch.table[,1:103]

for( i in 1:50){

names(tch.table.1)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.1)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.1, "tch.table.sim1.csv")

tch.table.2 <- cbind(tch.table[,1:3],tch.table[,104:203])

for( i in 1:50){

names(tch.table.2)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.2)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.2, "tch.table.sim2.csv")

tch.table.3 <- cbind(tch.table[,1:3],tch.table[,204:303])

for( i in 1:50){

names(tch.table.3)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.3)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.3, "tch.table.sim3.csv")

tch.table.4 <- cbind(tch.table[,1:3],tch.table[,304:403])

for( i in 1:50){
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names(tch.table.4)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.4)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.4, "tch.table.sim4.csv")

tch.table.5 <- cbind(tch.table[,1:3],tch.table[,404:503])

for( i in 1:50){

names(tch.table.5)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.5)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.5, "tch.table.sim5.csv")

tch.table.6 <- cbind(tch.table[,1:3],tch.table[,504:603])

for( i in 1:50){

names(tch.table.6)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.6)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.6, "tch.table.sim6.csv")

tch.table.7 <- cbind(tch.table[,1:3],tch.table[,604:703])

for( i in 1:50){

names(tch.table.7)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.7)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.7, "tch.table.sim7.csv")

tch.table.8 <- cbind(tch.table[,1:3],tch.table[,704:803])

for( i in 1:50){

names(tch.table.8)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.8)[3+2*i] <- paste("c1_", i, sep="")

}
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write.csv(tch.table.8, "tch.table.sim8.csv")

tch.HLM <- data.frame(unique(tch.table[,1:3]))

write_sav(tch.HLM, "level2tch_30_0507.sav")

tch.table.9 <- cbind(tch.table[,1:3],tch.table[,804:903])

for( i in 1:50){

names(tch.table.8)[2+2*i] <- paste("c0_", i, sep="")

names(tch.table.8)[3+2*i] <- paste("c1_", i, sep="")

}

write.csv(tch.table.8, "tch.table.sim9.csv")

tch.HLM <- data.frame(unique(tch.table[,1:3]))

write_sav(tch.HLM, "level2tch_30_0507.sav")

#=========================

# Create the school table

#=========================

sch.serial <- rep(seq(101000,q, by=1000), each =900)

set.seed(5)

Z_1 <- sample(c(0,1), replace = TRUE,size=n.sch)

Z1 <- rep(Z_1, each=900)

set.seed(6)

Z_2 <- sample(c(0,1), replace = TRUE,size=n.sch)

Z2 <- rep(Z_2, each=900)

d01.05 <- rep(rnorm(n.sch, 0, phi11), each= 900)

for(i in 1:49){

d01.05 <- cbind( d01.05,rep(rnorm(n.sch, 0, phi11),

each= 900))

}
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d01.1 <- rep(rnorm(n.sch, 0, phi11_2), each= 900)

for(i in 1:49){

d01.1 <- cbind( d01.1,rep(rnorm(n.sch, 0, phi11_2),

each= 900))

}

d01.075 <- rep(rnorm(n.sch, 0, phi11_3), each= 900)

for(i in 1:49){

d01.075 <- cbind( d01.075,rep(rnorm(n.sch, 0, phi11_3),

each= 900))

}

d01.2 <- rep(rnorm(n.sch, 0, Phi11_4),

each= 900)

for(i in 1:49){

d01.2 <- cbind( d01.2,rep(rnorm(n.sch, 0, Phi11_4),

each= 900))

}

d01.15 <- rep(rnorm(n.sch, 0, Phi11_5), each= 900)

for(i in 1:49){

d01.15 <- cbind( d01.15,rep(rnorm(n.sch, 0, Phi11_5),

each= 900))

}

d01.64 <- rep(rnorm(n.sch, 0, Phi11_6), each= 900)

for(i in 1:49){

d01.64 <- cbind( d01.64,rep(rnorm(n.sch, 0, Phi11_6),

each= 900))

}

d01.75 <- rep(rnorm(n.sch, 0, Phi11_7), each= 900)

for(i in 1:49){
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d01.75 <- cbind( d01.75,rep(rnorm(n.sch, 0, Phi11_7),

each= 900))

}

d01.014 <- rep(rnorm(n.sch, 0, 0.014), each= 900)

for(i in 1:49){

d01.014 <- cbind( d01.014,rep(rnorm(n.sch, 0, 0.014),

each= 900))

}

write.csv(d01.014,"d01.014.csv")

d01.073 <- rep(rnorm(n.sch, 0, 0.073), each= 900)

for(i in 1:49){

d01.073 <- cbind( d01.073,rep(rnorm(n.sch, 0, 0.073),

each= 900))

}

write.csv(d01.073,"d01.073.csv")

d01.073 <- rep(rnorm(n.sch, 0, 0.073), each= 900)

for(i in 1:49){

d01.073 <- cbind( d01.073,rep(rnorm(n.sch, 0, 0.073),

each= 900))

}

write.csv(d01.073,"d01.073.csv")

d01.053 <- rep(rnorm(n.sch, 0, 0.053), each= 900)

for(i in 1:49){

d01.053 <- cbind( d01.053,rep(rnorm(n.sch, 0, 0.053),

each= 900))

}

write.csv(d01.053,"d01.053.csv")
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d01.7 <- rep(rnorm(n.sch, 0, 0.7), each= 900)

for(i in 1:49){

d01.7 <- cbind( d01.7,rep(rnorm(n.sch, 0, 0.7),

each= 900))

}

write.csv(d01.7,"d01.7.csv")

d01.96 <- rep(rnorm(n.sch, 0, 0.957), each= 900)

for(i in 1:49){

d01.96 <- cbind( d01.96,rep(rnorm(n.sch, 0, 0.957),

each= 900))

}

write.csv(d01.96,"d01.96.csv")

d01.57 <- rep(rnorm(n.sch, 0, 0.57), each= 900)

for(i in 1:49){

d01.57 <- cbind( d01.57,rep(rnorm(n.sch, 0, 0.57),

each= 900))

}

write.csv(d01.57,"d01.57.csv")

d01.78 <- rep(rnorm(n.sch, 0, 0.783), each= 900)

for(i in 1:49){

d01.78 <- cbind( d01.78,rep(rnorm(n.sch, 0, 0.783),

each= 900))

}

write.csv(d01.78,"d01.78.csv")

d01.86 <- rep(rnorm(n.sch, 0, 0.86), each= 900)

for(i in 1:49){

d01.86 <- cbind( d01.86,rep(rnorm(n.sch, 0, 0.86), each= 900))

}

write.csv(d01.86,"d01.86.csv")

d01.5 <- rep(rnorm(n.sch, 0, 0.5), each= 900)
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for(i in 1:49){

d01.5 <- cbind( d01.5,rep(rnorm(n.sch, 0, 0.5), each= 900))

}

write.csv(d01.5,"d01.5.csv")

d01.4 <- rep(rnorm(n.sch, 0, 0.4), each= 900)

for(i in 1:49){

d01.4 <- cbind( d01.4,rep(rnorm(n.sch, 0, 0.4), each= 900))

}

write.csv(d01.4,"d01.4.csv")

d01.3 <- rep(rnorm(n.sch, 0, 0.3), each= 900)

for(i in 1:49){

d01.3 <- cbind( d01.3,rep(rnorm(n.sch, 0, 0.3), each= 900))

}

write.csv(d01.3,"d01.3.csv")

d01.025 <- rep(rnorm(n.sch, 0, 0.025), each= 900)

for(i in 1:49){

d01.025 <- cbind( d01.025,rep(rnorm(n.sch, 0, 0.025), each= 900))

}

write.csv(d01.025,"d01.025.csv")

d01.01 <- rep(rnorm(n.sch, 0, 0.01), each= 900)

for(i in 1:49){

d01.01 <- cbind( d01.01,rep(rnorm(n.sch, 0, 0.01), each= 900))

}

write.csv(d01.01,"d01.01.csv")

d01.64 <- rep(rnorm(n.sch, 0, Phi11_6), each= 900)

for(i in 1:49){

d01.64 <- cbind( d01.64,rep(rnorm(n.sch, 0, Phi11_6), each= 900))

98



}

write.csv(d01.64,"d01.64.csv")

d01 <- (cbind(d01.05,d01.1, d01.075, d01.2, d01.15,

d01.64, d01.75))

d10 <- rep(rnorm(n.sch,0, phi33), each =900)

for(i in 1:49){

d10 <- cbind( d10,rep(rnorm(n.sch, 0, phi33),

each= 900))

}

sch.table <- data.frame(sch=sch.serial, Z1, Z2, d01, d10)

names(sch.table)[4:353] <- paste("d01_", 1:350, sep="")

names(sch.table)[354:403] <- paste("d10_", 1:50, sep="")

write.csv(sch.table, "sch.table.csv")

sch.HLM <- data.frame(unique(sch.table[,1:3]))

write_sav(sch.HLM, "level3sch_30_0507.sav")

time <- rep(seq(1:3), each=300)

X1 <- rep(time,n.sch)

#=======================================

# Create a data frame without y variable

#=======================================

planedata <- data.frame(std= std.table$std, tch=tch.table$tch,

sch=sch.table$sch, X1, W1 =std.table$W1,

W2 =tch.table$W2, Z1=sch.table$Z1, Z2=sch.table$Z2)

data <- planedata
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write.csv(planedata," planedata.csv")

#===================

# Generate the data

#===================

Y1=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 + sch.table[,4]*data$W1+

sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+

tch.table.1[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 +

delta100*data$X1 + sch.table[,i+4]*data$W1+

sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.1[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y1 =cbind(Y1,y)

}

tch.table.2 <- read.csv("tch.table.sim2.csv") %>%

dplyr::select(2:104)

Y2=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+
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tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y2 =cbind(Y2,y)

}

Y3=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.3[,5]*data$W1+std.table[,4]+tch.table.3[,4]+

rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+

tch.table.3[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.3[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y3 =cbind(Y3,y)

}

Y4=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.4[,5]*data$W1+std.table[,4]+

tch.table.4[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+
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tch.table.4[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.4[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y4 =cbind(Y4,y)

}

Y5=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.5[,5]*data$W1+std.table[,4]+

tch.table.5[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+

tch.table.5[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.5[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y5 =cbind(Y5,y)

}

Y6=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.6[,5]*data$W1+std.table[,4]+

tch.table.6[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +
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sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+

tch.table.6[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.6[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y6 =cbind(Y6,y)

}

Y7=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.7[,5]*data$W1+std.table[,4]+

tch.table.7[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+

tch.table.7[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.7[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y7 =cbind(Y7,y)

}

Y8=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.8[,5]*data$W1+std.table[,4]+

tch.table.8[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+
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tch.table.8[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.8[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y8 =cbind(Y8,y)

}

Y9=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y9 =cbind(Y9,y)

}

Y10=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,54]*data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +
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sch.table[,i+54]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y10 =cbind(Y10,y)

}

Y11=delta000 + delta001*data$Z1+ delta010*data$W1+delta020*data$W2 +

delta100*data$X1 + sch.table[,104]*data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+104]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y11 =cbind(Y11,y)

}

Y12=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,154]*data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+
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delta020*data$W2 + delta100*data$X1 +

sch.table[,i+154]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y12 =cbind(Y12,y)

}

Y13=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,204]*data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+204]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y13 =cbind(Y13,y)

}

# d01=0, c1=0

Y14=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,354]*data$X1+

std.table[,4]+tch.table.1[,4]+

rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){
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y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+354]*data$X1+

std.table[,i+4]+tch.table.1[,2*i+4]+

rnorm(n.sch*900, 0, sigma)

Y14 =cbind(Y14,y)

}

# d01= 0.05 , c1=0

Y15=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,4]*data$W1+sch.table[,354]*data$X1+

std.table[,4]+tch.table.1[,4]+

rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+4]*data$W1+sch.table[,i+354]*data$X1+

std.table[,i+4]+tch.table.1[,2*i+4]+

rnorm(n.sch*900, 0, sigma)

Y15 =cbind(Y15,y)

}

Y16=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,54]*data$W1+sch.table[,354]*data$X1+

std.table[,4]+tch.table.1[,4]+

rnorm(n.sch*900, 0, sigma)
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y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+54]*data$W1+sch.table[,i+354]*data$X1+

std.table[,i+4]+tch.table.1[,2*i+4]+

rnorm(n.sch*900, 0, sigma)

Y16 =cbind(Y16,y)

}

Y17=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,204]*data$W1+sch.table[,354]*data$X1+

std.table[,4]+tch.table.1[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+204]*data$W1+sch.table[,i+354]*data$X1+

std.table[,i+4]+tch.table.1[,2*i+4]+

rnorm(n.sch*900, 0, sigma)

Y17 =cbind(Y17,y)

}

Y18=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+

tch.table.1[,4]+ rnorm(n.sch*900, 0, sigma)

y =0
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for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 +

delta100*data$X1 +sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.1[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y18 =cbind(Y18,y)

}

Y19=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+tch.table.9[,4]+

rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+354]*data$X1+tch.table.9[,2*i+5]*data$W1+

std.table[,i+4]+tch.table.9[,2*i+4]+

rnorm(n.sch*900, 0, sigma)

Y19 =cbind(Y19,y)

}

Y20=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,354]*data$X1+tch.table.4[,5]*data$W1+std.table[,4]+

tch.table.4[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){
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y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+354]*data$X1+

tch.table.4[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.4[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y20 =cbind(Y20,y)

}

Y21=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,54]*data$W1+sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+tch.table.1[,4]+

rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+54]*data$W1+sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+tch.table.1[,2*i+4]+

rnorm(n.sch*900, 0, sigma)

Y21 =cbind(Y21,y)

}

Y22=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,54]*data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)
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y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+54]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y22 =cbind(Y22,y)

}

Y23=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,204]*data$W1+sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+tch.table.1[,4]+

rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+204]*data$W1+sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.1[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y23 =cbind(Y23,y)

}

Y24=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,204]*data$W1+sch.table[,354]*data$X1+
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tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+204]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y24 =cbind(Y24,y)

}

Y25=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,154]*data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+154]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y25 =cbind(Y25,y)

}

Y26=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +
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sch.table[,254]*data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+254]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y26 =cbind(Y26,y)

}

Y27=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,304]*data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

sch.table[,i+304]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y27 =cbind(Y27,y)

}
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Y28=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 +delta100*data$X1 +

d01.7[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.7[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y28 =cbind(Y28,y)

}

Y29=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.96[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.96[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y29 =cbind(Y29,y)
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}

Y30=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.57[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.57[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y30 =cbind(Y30,y)

}

Y31=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.78[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.78[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y31 =cbind(Y31,y)
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}

Y32=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.86[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.86[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y32 =cbind(Y32,y)

}

Y33=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.96[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.96[,i+1]*data$W1+sch.table[,i+354]*data$X1+
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tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y33 =cbind(Y33,y)

}

Y34=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.783[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.783[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y34 =cbind(Y34,y)

}

Y35=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.5[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+
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delta020*data$W2 + delta100*data$X1 +

d01.5[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y35 =cbind(Y35,y)

}

Y36=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.4[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.4[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y36 =cbind(Y36,y)

}

Y37=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.3[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

118



for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.3[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y37 =cbind(Y37,y)

}

Y38=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.2[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.2[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y38 =cbind(Y38,y)

}

Y39=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.3[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)
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y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.3[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y39 =cbind(Y39,y)

}

Y40=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.4[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.4[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y40 =cbind(Y40,y)

}

Y41=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.5[,1] *data$W1+sch.table[,354]*data$X1+
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tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.5[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y41 =cbind(Y41,y)

}

Y42=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.64[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.64[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y42 =cbind(Y42,y)

}
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Y43=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.025[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+

tch.table.1[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.025[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.1[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y43 =cbind(Y43,y)

}

Y44=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.01[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+

tch.table.1[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.01[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.1[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y44 =cbind(Y44,y)
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}

Y45=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.014[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.1[,5]*data$W1+std.table[,4]+

tch.table.1[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.014[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.1[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.1[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y45 =cbind(Y45,y)

}

Y46=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.073[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.2[,5]*data$W1+std.table[,4]+

tch.table.2[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.073[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.2[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.2[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y46 =cbind(Y46,y)
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}

Y47=delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.053[,1] *data$W1+sch.table[,354]*data$X1+

tch.table.9[,5]*data$W1+std.table[,4]+

tch.table.9[,4]+ rnorm(n.sch*900, 0, sigma)

y =0

for (i in 1:49){

y = delta000 + delta001*data$Z1+ delta010*data$W1+

delta020*data$W2 + delta100*data$X1 +

d01.053[,i+1]*data$W1+sch.table[,i+354]*data$X1+

tch.table.9[,2*i+5]*data$W1+std.table[,i+4]+

tch.table.9[,2*i+4]+ rnorm(n.sch*900, 0, sigma)

Y47 =cbind(Y47,y)

}

YY <- cbind(Y1, Y2,Y3, Y4, Y5, Y6, Y7, Y8, Y9,Y10,Y11,

Y12, Y13, Y14,Y15,Y16, Y17, Y18, Y19, Y20

, Y21, Y22, Y23, Y24, Y25, Y26,Y27, Y28,

Y29, Y30, Y31, Y32, Y33, Y34, Y35, Y36,

Y37, Y38,Y39,Y40,Y41,Y42,Y43,Y44,Y45,

Y46,Y47)

data <- data.frame(planedata, YY)

names(data)[9:2358] <- paste("y", 1:2350, sep="")

#Save the data for lme4
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write.csv(data, "lme4data.csv")

# Save the data for HLM7

hlmtest <- data %>% dplyr::select(1:4, y1:y2350)

%>%arrange(std)

write_sav(hlmtest, "hlmtest.sav")

hlmstd2 <- data %>% dplyr::select(std, W1)

%>% arrange(std)

hlmstd <- unique(hlmstd2[,1:2] )

write_sav(hlmstd, "hlmstd.sav")

hlmtch2 <- data %>%

dplyr::select(tch,sch, W2)

hlmtch <- unique(hlmtch2[,1:3] )

write_sav(hlmtch, "hlmtch.sav")

hlmsch2 <- data %>%

dplyr::select(sch, Z1)

hlmsch <- unique(hlmsch2[,1:2] )

write_sav(hlmsch, "hlmsch.sav")
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(a) * The ratio (
φ2
00

τ2tch11 + φ2
00

) = 0.007

(b) The graph is symmetric when φ00 is large

Figure 4: Compare six histograms of the φ̂00 with τtch=0.17
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(a) * The ratio (
φ2
00

τ2tch11 + φ2
00

) = 0.007

(b) The graph is symmetric when φ00 is large

Figure 5: Compare six histograms of the φ̂00 with τtch=0.63
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(a) * The ratio (
φ2
00

τ2tch11 + φ2
00

) = 0.007

(b) The graph is symmetric when φ00 is large

Figure 6: Compare six histograms of the φ̂00 with τtch=0.87
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Figure 13: The Effect of the Convergence and Singularity on δ̂010

Figure 14: The Effect of the Convergence and Singularity on τ̂tch11
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Figure 15: The Effect of the Convergence and Singularity on φ̂00
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