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SPACE DIMENSION CAN PREVENT THE BLOW-UP OF
SOLUTIONS FOR PARABOLIC PROBLEMS

ALKIS S. TERSENOV

Abstract. In the present paper, we investigate the preventive role of space

dimension for semilinear parabolic problems. Conditions guaranteeing the
absence of the blow-up of the solutions are formulated.

1. Introduction and Main Results

Consider the equation

ut − α∆u = f(u) in QT = (0, T )× {|x| < R}, x ∈ Rn (1.1)

coupled with initial condition

u(0,x) = φ(|x|), (1.2)

where φ(R) = 0, |φ′(|x|)| ≤ K−a constant, and one of the two boundary conditions:

u
∣∣
ST

= 0, or (1.3)

−α
∂u

∂ν

∣∣
ST

= κu
∣∣
ST

, ST = (0, T )× {|x| = R}. (1.4)

Here the heat conductivity coefficient α and the heat transfer coefficient κ are
strictly positive constants. Concerning the function f we assume that

|f(ξ)| ≤ f(η) for all ξ and η such that |ξ| ≤ η. (1.5)

For example, functions f(u) = |u|p−1u for arbitrary p ≥ 1 (or up if defined) as well
as f(u) = eu, f(u) = ln(|u|+ 1) or f(u) = |u|p satisfy condition (1.5).

It is well known that for the above problems the phenomenon of blowing up of
the solution may occur, i.e. there exists t∗ such that |u(t,x∗)| → +∞ when t → t∗

at least for one x∗ ∈ {|x| ≤ R} (see, [2, 3] and the references there). The goal of
the present paper is to show that the space dimension can prevent blow-up.

Introduce constants C(n) and Σ(n):

C(n) =
n + e1−n − 2

(n− 1)2
, Σ(n) =

1− e1−n

n− 1
.
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Assume that

α ≥ f(KR)R
K

C(n), (1.6)

κ ≥ αf(KR)Σ(n)
αK − f(KR)RC(n)

. (1.7)

Obviously condition (1.7) makes sense only if in (1.6) we have strict inequality. One
can easily see that

lim
n→+∞

C(n) = 0, lim
n→1

C(n) =
1
2
,

lim
n→+∞

Σ(n) = 0, lim
n→1

Σ(n) = 1,

hence when the dimension n grows the restrictions (1.6) and (1.7) on α and κ
becomes weaker.

Our results are formulated as follows.

Theorem 1.1. Suppose that f(u) is Hölder continuous function. If conditions
(1.5), (1.6) hold then for arbitrary T > 0 there exists a classical solution of problem
(1.1)–(1.3) and

max
QT

|u(t,x)| ≤ KR.

Furthermore, if f(u) is Lipschitz continuous, the solution is unique.

Theorem 1.2. Suppose that f(u) is Hölder continuous function. If conditions
(1.5)–(1.7) hold and φ′(R) = 0, then for arbitrary T > 0 there exists a classical
solution of problem (1.1), (1.2), (1.4) and

max
QT

|u(t,x)| ≤ KR.

Furthermore, if f(u) is Lipschitz continuous, the solution is unique.

Example 1.3. Consider the equation

ut −∆u = u2 in (0, T )× {|x| < 1}. (1.8)

Condition (1.6) takes the form

1 ≥ K C(n).

Obviously, for arbitrary K we can select nK such that

1 ≥ KC(nK).

Hence for any n ≥ nK the solution of problem (1.8), (1.2), (1.3) can not blow-up.

Example 1.4. Consider the equation

ut −∆u = eu in (0, T )× {|x| < 1}. (1.9)

Condition (1.6) takes the form

1 ≥ eK

K
C(n).

Here also we can easily find nK such that for any n ≥ nK the solution of problem
(1.9), (1.2), (1.3) can not blow-up.
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Example 1.5. Consider problem (1.8), (1.2), (1.4). For arbitrary K we can select
nK such that 1 > KC(nK) and for arbitrary κ > 0 we find nκ such that

κ ≥ KΣ(nκ)
1−KC(nκ)

.

Thus we conclude that for n ≥ max{nK , nκ} the solution of problem (1.8), (1.2),
(1.4) can not blow-up.

Note that if κ = 0 there is no heat flow through the boundary and the solution
blows up.

2. Proof of Theorems 1.1 and 1.2

It is well known (see, for example, [1]) that the solvability of the above problems
follows from the a priori estimate of the max |u|. Hence our goal is to obtain this
estimate.

Proof of Theorem 1.1. In (t, r) variables, where r = |x| =
√

x2
1 + · · ·+ x2

n, problem
(1.1) - (1.3) takes the form

ut − α
(
urr +

n− 1
r

ur

)
= f(u) in Q∗T = {(t, r) : t ∈ (0, T ), 0 < r < R}, (2.1)

u(0, r) = φ(r), where φ(R) = 0, |φ′(r)| ≤ K, (2.2)

ur(t, 0) = 0, u(t, R) = 0. (2.3)

Consider the auxiliary equation

ut − α
(
urr +

n− 1
r

ur

)
= ¯f(u) in Q∗T , (2.4)

where

¯f(u) =


f(u), for |u| ≤ KR

f(KR), for u > KR

f(−KR), for u < −KR.

(2.5)

The existence of a classical solution of problem (2.4), (2.2), (2.3) follows, for exam-
ple, from [4].

Our goal is to prove the a priori estimate |u(t, r)| ≤ KR for the solution of the
auxiliary problem and consequently to show that equations (2.1) and (2.4) coincide.
Consider the equation

h′′ +
n− 1

R
h′ = −f(KR)

α
(2.6)

coupled with the boundary condition h(0) = KR. Obviously, the function

h(r) = KR− C1 + C1e
1−n

R r − f(KR)R
α(n− 1)

r

satisfies (2.6) and the boundary condition h(0) = KR. For our purpose we need
the function h(r) to be nonnegative, nonincreasing and concave. The restrictions
h′(r) ≤ 0 or

h′(r) =
1− n

R
C1e

1−n
R r − f(KR)R

α(n− 1)
≤ 0

implies

C1 ≥ −f(KR)R2

α(n− 1)2
.
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Also restriction h(r) ≥ 0 (actually h(R) ≥ 0) implies

C1 ≤ −f(KR)R2 − α(n− 1)KR

α(n− 1)(1− e1−n)
.

Condition on α in Theorem 1.1 guarantees that

−f(KR)R2

α(n− 1)2
≤ −f(KR)R2 − α(n− 1)KR

α(n− 1)(1− e1−n)
.

To satisfy condition h′′(r) ≤ 0, we select

C1 = −f(KR)R2

α(n− 1)2
.

Thus we take

h(r) = KR +
f(KR)R
α(n− 1)2

[
R(1− e

1−n
R r)− (n− 1)r

]
.

Define the operator

L ≡ ∂

∂t
− α

( ∂2

∂r2
+

n− 1
r

∂

∂r

)
.

Denote by ΓT the parabolic boundary of Q∗T (i.e., ΓT = ∂Q∗T \{t = T, 0 < r < R}).
For v(t, r) ≡ u(t, r)− h(r) we have

Lv ≡ vt − α(vrr +
n− 1

r
vr)

= ¯f(u) + α(h′′ +
n− 1

r
h′)

< ¯f(u) + α(h′′ +
n− 1

R
h′)

= ¯f(u)− f(KR) ≤ 0 in Q̄∗T \ ΓT .

(2.7)

Here we use the fact that h′(r) is strictly negative in (0, R). Note that from (1.5)
and (2.5) follows that

−f(KR) ≤ ¯f(u) ≤ f(KR).
Obviously v(0, r) = φ(r) − h(r) ≤ 0 since h′′(r) ≤ 0, h(0) = KR and h(R) ≥ 0,
besides u(t, R)−h(R) ≤ 0. Taking into account (2.7) and the fact that vr(t, 0) = 0
we conclude that v can not attain its maximum neither in Q̄∗T \ΓT nor on {0 < t <
T, r = 0}, hence

u(t, r) ≤ h(r) ≤ KR.

Let us obtain the lower estimate. For w(t, r) ≡ u(t, r) + h(r) we have

Lw = wt − α(wrr +
n− 1

r
wr)

= ¯f(u)− α(h′′ +
n− 1

r
h′)

> ¯f(u)− α(h′′ +
n− 1

R
h′)

= ¯f(u) + f(KR) ≥ 0 in Q̄∗T \ ΓT .

(2.8)

Obviously w ≥ 0 for t = 0 and for r = R. Taking into account (2.8) and the
fact that wr(t, 0) = 0 we conclude that w can not attain its minimum neither in
Q̄∗T \ ΓT nor on {0 < t < T, r = 0}, hence

u(t, r) ≥ −h(r) ≥ −KR.



EJDE-2007/165 BLOW-UP OF SOLUTIONS 5

Thus
|u(t, r)| ≤ KR.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. In (t, r) variables condition (1.4) takes the form

ur(t, 0) = 0, −αur(t, R) = κu(t, R). (2.9)

Consider the auxiliary problem (2.4), (2.2), (2.9). The existence of a classical
solution of this problem follows, for example, from [4]. Our goal is to prove the a
priori estimate |u(t, r)| ≤ KR for the solution of problem (2.4), (2.2), (2.9).

As it follows from the proof of Theorem 1.1 the function v ≡ u(t, r) − h(r) can
not attain its positive maximum in Q̄∗T \ ΓT . Suppose that function u(t, r) − h(r)
attains its positive maximum on the right boundary of the domain, in this case
we have u(t, R) > h(R) > 0, besides, from the boundary condition (2.9) and from
condition (1.7) we conclude that

vr(t, r)
∣∣
r=R

= ur(t, r)− h′(r)
∣∣
r=R

= −κ

α
u(t, R)− h′(R) < −κ

α
h(R)− h′(R) ≤ 0,

which is impossible. Taking into account that v(0, r) = φ(r) − h(r) ≤ 0 and the
fact that due to the condition vr(t, 0) = 0 positive maximum cannot be obtained
on {0 < t < T, r = 0} we conclude that

u(t, r) ≤ h(r) ≤ KR.

Let us obtain the lower estimate. We have that function w ≡ u(t, r) + h(r) can
not attain its negative minimum in Q̄∗T \ΓT . Suppose that the function u(t, r)+h(r)
attains its negative minimum on the right boundary of the domain, in this case we
have u(t, R) < −h(R), besides, from boundary condition (2.9) and from condition
(1.7) we conclude that

wr(t, r)
∣∣
r=R

= ur(t, r) + h′(r)
∣∣
r=R

= −κ

α
u(t, R) + h′(R) >

κ

α
h(R) + h′(R) ≥ 0,

which is impossible. Taking into account that w(0, r) = φ(r) + h(r) ≥ 0 and the
fact that due to the condition wr(t, 0) = 0 negative minimum cannot be obtained
on {0 < t < T, r = 0} we conclude that

u(t, r) ≥ h(r) ≥ −KR.

Thus |u(t, r)| ≤ KR. This completes the proof of Theorem 1.2. �

The uniqueness in Theorems 1.1 and 1.2 can be proved by standard arguments
based on maximum principle.

Remark 2.1. Consider the linear case f(u) = λu with λ positive. For the solution
of equation

ut = α∆u + λu (2.10)
coupled with conditions (1.2), (1.3) we have the standard estimate

|u(t,x)| ≤ eλt max |φ(x)|.

Let us apply Theorem 1.1 to this case. Inequality (1.6) takes the form

α ≥ λR2C(n). (2.11)
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Thus if (2.11) is fulfilled then for the solution of problem (2.10), (1.2), (1.3) the
estimate, independent of t,

|u(t,x)| ≤ KR

holds.

Remark 2.2. Consider the sublinear case, q ∈ (0, 1). As mentioned above the
function f(u) = |u|q (as well as f(u) = uq if defined) satisfies condition (1.5).
Consider the equation

ut − α∆u = |u|q (or uq) in QT (2.12)

coupled with conditions (1.2), (1.3). Inequality (1.6) takes the form

α ≥ R1+qC(n)
K1−q

. (2.13)

Obviously for any α > 0 we can always select K ≥ max |φ′(|x|)| big enough such
that (2.13) is fulfilled. Thus from Theorem 1.1 it follows that the classical solution
u(t,x) of problem (2.12), (1.2), (1.3) exists and |u(t,x)| ≤ KR where K is selected
so that (2.13) is fulfilled.

Similarly, we can consider the equation

ut − α∆u = ln(|u|+ 1) in QT

and obtain the existence of a classical solution of problem (1.2), (1.3) satisfying the
inequality |u(t,x)| ≤ KR where K ≥ max |φ′(|x|)| is such that

α ≥ ln(KR + 1)R
K

C(n).
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