
SOLVING CYBER ALERT ALLOCATION MARKOV GAMES WITH DEEP

REINFORCEMENT LEARNING

by

Noah Dunstatter, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Computer Science
May 2019

Committee Members:

Mina Guirguis, Chair

Jelena Tešić

Qijun Gu



COPYRIGHT

by

Noah Dunstatter

2019



FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgement.
Use of this material for financial gain without the author’s express written
permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Noah Dunstatter, authorize duplication of
this work, in whole or in part, for educational or scholarly purposes only.



DEDICATION

In dedication to my wonderful Mother, whose unending love and support has

allowed me to achieve more than I could ever imagine.



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my amazing advisor Dr. Mina Guirguis

whose limitless generosity has provided me with so many opportunities to learn

and grow as a researcher. Without your encouragement I never would have

embarked on this wonderful journey in the first place. Your diligent council and

unending faith in my ability has left me with a profound sense of gratitude.

Many thanks to my loving friends Ders, Berry, Phu, Spanky, Randy, Frinkle, and

Hibah who have been so patient throughout this arduous journey, with many

late nights and missed occasions to make up for.

A special thanks to my Mother Juliane, who instilled in me the sense of wonder

and curiosity for the world that fuels my ambitions to this day. To my Father

Frank and Stepmother Donna, whose love and support kept me strong when

spirits were low.

And lastly, an enormous thanks to my dear friend and colleague Alireza Tahsini.

You pushed me to strive for the best in all things and I can’t thank you enough

for the stimulating discussions, the sleepless nights spent working together before

deadlines, and for all the fun we have had in the last two years. I was so

fortunate to have you at my side on this journey and I look forward to seeing

your bright future begin to shine in the coming years.

v



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Scope . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cyber Emergency Response Teams . . . . . . . . . . . . . . . . 1

1.3 The Need for Game Theory . . . . . . . . . . . . . . . . . . . . 2

1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . 5

2.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Markov Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . 11

3. MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Cyber-Alert Assignment Markov Game . . . . . . . . . . . . . . 15

3.2 Action Space Compression . . . . . . . . . . . . . . . . . . . . . 19

3.3 Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. SOLUTION METHODS . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



4.1 Q-minimax Value Iteration . . . . . . . . . . . . . . . . . . . . . 23

4.2 Deep Nash Q-Network . . . . . . . . . . . . . . . . . . . . . . . 25

5. PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . 29

5.1 Dynamic Programming Tractable Model . . . . . . . . . . . . . 29

5.2 Dynamic Programming Intractable Model . . . . . . . . . . . . 34

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



LIST OF TABLES

Table Page

2.1 Utility matrix for a game of rock-paper-scissors . . . . . . . . . . . . 7

5.1 Parameters used when constructing the DP tractable model. . . . . . 29

5.2 Parameters used when constructing the DP intractable environment. 34

viii



LIST OF FIGURES

Figure Page

4.1 Diagram of the DNQN learning process . . . . . . . . . . . . . . . . . 28

5.1 Convergence of the value function for the dynamic programming ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Loss values obtained while training the DNQN on the DP tractable

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 DNQN agents’ utility against a DP opponent at various stages of

learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Average cumulative utility obtained by the various attacker policies

in the DP tractable model . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Average cumulative utility obtained by the various defender policies

in the DP tractable model . . . . . . . . . . . . . . . . . . . . . . . . 33

5.6 Loss values obtained while training the DNQN on the DP intractable

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Average cumulative utility obtained by the various attacker polices

in the DP intractable model . . . . . . . . . . . . . . . . . . . . . . . 35

5.8 Average cumulative utility obtained by the various defender polices

in the DP intractable model . . . . . . . . . . . . . . . . . . . . . . . 36

ix



ABSTRACT

Most large scale networks employ some kind of intrusion detection software on

their computer systems (e.g., servers, routers, etc.) that monitor and flag

suspicious or abnormal activity. When possibly malicious activity is detected,

one or more cyber-alerts may be generated with varying levels of significance

(e.g., high, medium, or low). Some subset of these alerts may then be assigned to

cyber-security analysts on staff for further investigation. Due to the wide range

of potential attacks and the high degrees of attack sophistication, identifying

what constitutes a true attack is a challenging problem – especially for

organizations performing critical operations, like military bases or financial

institutions, that are constantly subjected to high volumes of cyber-attacks every

day. In this thesis, we develop a framework that allows us to study what

game-theoretic behavior looks like from both the attacker and defender’s

perspective. Our approach considers a series of sub-games between the attacker

and defender in which a state is maintained between each sub-game. We first

derive optimal allocation strategies via the use of dynamic programming and

Q-maximin value iteration based algorithms. We then move into approximation

techniques, using deep neural networks and Q-learning to derive near-optimal

strategies that allow us to explore much larger models. We assess the

effectiveness of our allocation strategies by comparing them to other sensible

heuristics (e.g., random and myopic) with our results showing that we

consistently outperform these other strategies at minimizing risk.

x



1. INTRODUCTION

1.1 Motivation and Scope

The current state of cyber-defense is dire. On one hand, new trends of more

sophisticated, economically-driven, state-sponsored cyber attacks are on the rise;

evidenced by the recent security breaches at both public and private institutions

(e.g., the Pentagon [1], Sony [2], Target [3]). On the other hand, the emergence

(and deployment) of Cyber-Physical Systems have enabled cyber attacks to cross

from the cyber realm into our physical infrastructure, making them appealing

vehicles for terrorism and terrorism-related activities [4]. Various organizations,

in both the public and private sectors, are constantly being subjected to attacks

that seek to disable, disrupt, and/or breach their cyber infrastructure - especially

during times of critical operations (e.g., before missions, political statements,

software releases, etc.). The authors in [5] report an average of 17,000 alerts

every week at surveyed organizations. Of these, roughly 19% (3,218) are

estimated to be legitimate alerts, with only 4% (705) eventually being

investigated. This relatively low proportion of assignment makes the defender’s

allocation strategy that much more critical when it comes to minimizing risk.

1.2 Cyber Emergency Response Teams

One critical component of any institution’s cyber-defense infrastructure is

maintaining the appropriate workforce of cyber-security analysts who handle the

investigations of incoming alerts. When an attack is launched against an

organization, sensors (e.g., Intrusion Detection Systems, Anti-malware tools,

etc.) deployed on various systems or machines (e.g., computers, servers, routers,

etc.) typically generate cyber-alerts with varying levels of severity. At the same

time legitimate network activity can generate false positive alerts. This typically

high volume of false positives can drown out relevant alerts, as seen in the Target

1



attack wherein malware alerts were repeatedly generated but not addressed [3].

To determine if an alert is a false positive it must first be assigned to a security

analyst for investigation. Some of these alerts (e.g., those in a high risk category)

have a higher probability of representing an ongoing attack and hence must be

prioritized when being assigned for investigation. As such, an allocation of

cyber-security analysts to cyber-alerts may depend on various factors, namely:

(1) the expertise of the analysts, (2) the current availability of analysts, (3) the

value of the machine from which the alerts originate, and (4) the associated

threat level of the alerts.

1.3 The Need for Game Theory

It is common practice amongst cyber-security practitioners to operate under an

assumption of the worst-case scenario. For example, the Pentagon is much more

concerned with the threat of a high-profile zero-day attack from state sponsored

professional hackers than they are with lone-wolf black-hat hobbyists using

re-purposed code they found online. This general heuristic of "assuming the

worst" motivates the use of game-theoretical defense policies where both agents

(in our case, the defender and the attacker) are assumed to be rational and in

possession of symmetric game information. Indeed, it could be possible for

sophisticated adversaries to gain critical knowledge through probing attacks that

observe the response time of the analysts in handling the attacks, and thus could

choose the best attack method along with the correct time to strike (e.g., when

all the analysts are busy investigating other alerts). Furthermore, the

game-theoretic property of Nash equilibrium provides us with a useful notion of

optimal play wherein the agents’ strategies are robust against any non-Nash

opponent (i.e., even if an attacker is not acting rational we achieve a reasonable

utility). However, unlike previous works that considered a one-shot game with

deterministic alert arrivals [6; 7], we consider a Markov game model in which the

defender and the attacker play a series of games with a state maintained between

2



games. The stochastic nature of the Markov game is manifested in not knowing

the exact numbers/levels of alerts that will arrive in the future, which can

impact how allocations are made at the current time as well as the mixed

strategy nature of the agents’ policies. This novel application of a Markov game

to the alert allocation problem allows us to achieve a finer grained view of play

with more dynamic strategies that change with the state of the system.

We explore two solution methods in this domain, the first uses brute force

dynamic programming and Q-maximin value iteration to find optimal solutions

in small-scale models. The second uses approximate deep Q-learning methods

which are capable of scaling to arbitrarily large model sizes while still

maintaining near-optimal performance.

1.4 Related Works

Improving the scheduling and efficiency of cyber-security analysts is a highly

studied area of research [8; 9; 10; 11]. The authors in [8] model the problem as a

two-stage stochastic shift scheduling problem in which the first stage allocates

cyber-security analysts and in the second stage additional analysts are allocated.

The problem is discretized and solved using a column generation based heuristic.

The authors in [9] study optimal alert allocation strategies with a static

workforce size and a fixed alert generation mechanism. In [10] the authors

develop a reinforcement learning-based dynamic programming model to schedule

cyber-security analyst shifts with the model based on a Markov Decision Process

framework with stochastic load demands. In [11], the author describes different

strategies for managing security incidents in a cyber-security operation center.

The authors in [12] propose a queuing model to determine the readiness of a

Cyber-Security Operations Center (CSOC). This thesis departs from this

previous research by explicitly considering the presence of a strategic and well

informed adversary.

The use of game theory has been instrumental in advancing the state-of-the-art

3



in security games and their wide range of applications [13; 14; 15; 16; 6; 7]. Some

of the most recent and relevant lines of work involving analyst alert allocation

are studied in [6] and [7]. Here the authors introduce a game-theoretic model to

determine the best allocation of incoming cyber alerts to analysts. Their model,

however, assumes a one shot-game in which both the alert resolution time and

the arriving alert distribution are deterministically known.

In contrast to the previously mentioned Stackelberg games, the authors in

[17; 18; 19] explore solution methods to stateful Markov games. Convergence

properties and Q-minimax value iteration are studied in [17; 18] providing

encouraging guarantees for optimality and convergence of value functions. The

authors in [19] use a least squares policy iteration approach to train a linear

function approximator to predict Q-values.

The use of stateful Markov game models to study security games with real-world

applications are limited. The authors in [20] used dynamic programming and

value iteration to investigate attacks on power grids. Using a similar method, the

authors in [21] investigated the use of full state space value iteration in the alert

assignment domain. The authors in [22] used Markov games to model the level of

worst-case threat faced by an institution given parameters surrounding its

network infrastructure. Due to the use of full state space value iteration many

previous works’ solutions scale poorly to large real-world sized models,

prompting the need for approximate solution methods in the security domain.

4



2. BACKGROUND

This chapter will cover background information regarding Markov decision

processes (MDPs), game theory, reinforcement learning (RL), Markov games,

and deep reinforcement learning.

2.1 Markov Decision Processes

An MDP is defined by the tuple < S,A, T,R, γ > where:

• S is a finite set of states

• A is a finite set of actions

• T is a function mapping states and actions to a probability distribution

over next states (e.g., T : S × A→ PD(S))

• R is a reward function that gives the utility returned when taking action a

in state s (e.g., R : S × A→ <)

• γ ∈ [0, 1) is a discounting factor

Generally speaking, an MDP is a discrete time stochastic control process that

provides a mathematical framework for modeling single agent decision making in

a system where outcomes are partly random and partly under the control of

some acting agent. MDPs have been used in many disciplines such as robotics,

industrial control, and economics to find a working policy for the agent that

attempts to maximize long-term expected rewards.

Given some currently inhabited state s an agent commits to some action a,

receives a reward r(s, a), and then the environment transitions to some next

state s′ wherein the process repeats. The goal of an MDP is to find some optimal

policy π that maps states to actions in a way that maximizes the long-term

expected reward, E{
∑∞

t=0 γ
t r(st, at)}, where at = π(st).

5



There are many ways to solve the MDP optimization problem, with most

methods being variants of either linear or dynamic programming (DP).

Assuming we know both the reward function and the transition function, we can

use dynamic programming via a value iteration approach to achieve an optimal

solution.

In value iteration, a lookup-table V maintains a value for every s ∈ S. This

lookup-table tells us the value of each state in our system. To learn the long-term

expected reward we must iterate over this lookup-table while bootstrapping from

previous iterations. This process begins with the initialization phase given in

equation 2.1. Once the initialization phase is complete, we can begin iterating

over equation 2.2 until our value function converges (i.e., when Vt = Vt+1). It is

at this point that we can construct our optimal policy using the converged value

function π(s) = argmaxa
[
r(s, a) + γ

∑
s′ T (s, a, s′)Vconv(s

′)
]
.

V0(s) = 0, ∀s ∈ S (2.1)

Vt(s) = max
a

[
r(s, a) + γ

∑
s′

T (s, a, s′)Vt−1(s
′)
]
, ∀s ∈ S, t > 0 (2.2)

Due to the monotonic updating and the finite number of possible policies, such

an algorithm is guaranteed to converge. A detailed proof of convergence as well

as a thorough overview of MDP theory can be found in [23].

2.2 Game Theory

Game Theory is a broad discipline with implications in economics, social

sciences, evolutionary biology, and computer science. It is primarily concerned

with the study of rational actors behaving in an adversarial environment. Actors

who are described as rational will always attempt to maximize their utility in a

given game. A game is accompanied by a utility matrix whose rows and columns

specify what actions each player can take. Each cell within the utility matrix

6



defines the utility awarded to either agent under the corresponding action-pair.

The canonical example of a utility matrix is that of the game rock-paper-scissors,

presented in Table 2.1.

Table 2.1: Utility matrix for a game of rock-paper-scissors

Player 2

Rock Paper Scissor

Rock 0,0 -1,1 1,-1
Player 1 Paper 1,-1 0,0 -1,1

Scissor -1,1 1,-1 0,0

In this example, Player 1 is the row player while Player 2 is the column player. It

is also important to note that every cell’s payoff to the players sums to zero. This

is known as a zero-sum game, meaning each outcome is equally beneficial and

detrimental to either player. Every player in a game maintains a strategy that

informs how that agent takes actions. For simplicity, we can define this strategy

as a probability distribution over their available actions (this is known as a

mixed-strategy).

It was shown by Von Neumann in [24] that there exists at least one adversarial

equilibrium point in any zero-sum game. This equilibrium point, commonly

called the Nash equilibrium, defines the optimal strategy profiles for players in a

zero-sum simultaneous-move game.

Informally, a set of player strategies is in a Nash equilibrium if neither player can

benefit from unilaterally changing their strategy. If all players look at their

opponent’s strategy and cannot benefit from modifying their own, then the game

has reached a Nash equilibrium point (i.e., either player’s strategy is a best

response to the strategy of their adversary).

Formally, a player’s Nash equilibrium mixed strategy can be found by turning a

utility matrix into a system of linear equations and maximizing for one players

utility under certain constraints. A linear program solving for player 1’s mixed

strategy can be seen in Equations 2.3 - 2.6.

7



max
π(a1)∈Π(A1)

u (2.3)

u ≤
∑
a2∈A2

π(a1)M(a1, a2) (2.4)

∑
a1∈A1

π(a1) = 1 (2.5)

0 ≤ π(a1) ≤ 1, ∀a1 ∈ A1 (2.6)

Objective 2.3 is the value of the game, constraint 2.4 guarantees the worst-case

over the actions available to the opposing player where M is an A1 ×A2 reward

matrix. While constraints 2.5 and 2.6 ensure that we have a valid probability

distribution. The solution to this linear program yields some mixed strategy π(·).

If we solve this linear program for both players’ π, then we can use the joint

probabilities of all action pairs to calculate the expected value of playing that

game under a Nash equilibrium (i.e., the value of the game).

2.3 Reinforcement Learning

Reinforcement learning (RL) is an area of unsupervised machine learning whose

goal is to understand what actions an agent should take in an environment so as

to maximize some concept of a cumulative reward. For example, one could

imagine a 2-D maze where an agent can move in any cardinal direction (except

when that direction possesses a wall) and seeks to reach the end of the maze.

Each movement to another cell would reward the agent -1 utility with the only

exception being the goal cell (the end of the maze), which would reward 0 utility.

In this environment the agent’s goal would be to reach this goal cell as quickly as

possible and to remain their indefinitely.

Many problems (i.e., environments) can be formulated as an MDP and solved

using the methods described in Section 2.1, however, what separates RL from

classical DP solutions in these environments is that classical DP methods assume

8



that the exact mathematical model of the MDP is known. For instance, in

Equations 2.1 & 2.2 both the transition and reward functions are known and we

have a complete list of every state in the environment. In RL it is common to

start with no knowledge of either the transition or reward function, and is

typically applied to environments where the state space is prohibitively vast –

meaning value iteration approaches like the one discussed in the previous section

would become intractable. For these reasons RL uses approximations and

sampling methods to learn an implicit model of the MDP, often balancing

exploration (trying new things with the hope of learning something new) with

exploitation (doing what we already know works). Due to the vast size of the

state spaces typically being solved it is common to parameterize the states using

some set of features that attempt to describe similar states in a similar way,

making function approximations easier to learn (see section 2.5).

Q-learning is a popular RL algorithm that provably converges to an optimal

policy for any finite MDP [25]. The algorithm uses the Q function that defines

the quality of a state-action pair in the environment, given by Q : S × A→ R.

The Q function’s iterative update is defined by the following equation:

Qnew(st, at)← (1− α)Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning

rate

learned value︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount
factor

max
a
Q(st+1, at+1)︸ ︷︷ ︸

estimate of optimal
future value

)
(2.7)

In each time step t, a state-action pair is realized within the environment and

the agent updates its Q-value according to its old value and the new experienced

value. These updates are weighted by some learning rate 0 < α ≤ 1 that controls

the rate at which new experiences replace old ones. The new experienced value

consists of a sample from the reward function rt and a 0 < γ ≤ 1 discounted

greedy step that estimates the best action to take in the next state st+1. This

greedy max step represents the exploitation step of the algorithm. To

incorporate exploration many algorithms typically employ an ε-greedy approach

9



using a value 0 < ε ≤ 1 where in each state if a random value is less than epsilon

we choose a random action for at+1, otherwise we choose our exploitative max

action. This exploration ensures that our agent will fully explore the state-action

space and helps to avoid getting trapped in sub-optimal policies. This epsilon

value typically starts close to 1 and decays over time as the agent becomes more

intelligent.

Typically an agent is placed in a random state wherein many trajectories are

rolled out so as to explore that area of the state space. Once a reasonable

number of trajectories are performed we can once again randomize to some new

starting state and repeat this process. Empirically, this style of learning works

quite well, and with some restrictions can be shown to provably converge to

optimal policies. A detailed explanation of Q-learning as well as proofs of

convergence are provided in [25].

2.4 Markov Games

An n-player Markov game is defined by the tuple

< S,A1, ..., An, T, R1, ..., Rn, γ > where:

• S is a finite set of states

• A1, ..., An are the finite sets of actions available to each agent

• T : S × A1 × ...× An → Π(S) is a function mapping every combination of

actions the agents could take in the current state to a probability

distribution over next states

• Ri : S × A1 × ...× An → < for 1 ≤ i ≤ n is the reward function for agent i

that provides the utility awarded for every state-action pair in the system

• γ ∈ [0, 1) is a discounting factor

Succinctly, a Markov game is a game-theoretic instantiation of an MDP. Rather

than having a single agent interacting with the environment, we now have any

10



number of them. In every state s each agent commits to a single action ai in

their action space Ai, each agent then received a real-valued reward ri from their

reward function Ri, and the transition function is invoked evolving the system to

some next state. Similar to MDPs, the goal of each agent is to find some optimal

policy πi that maximizes their long-term expected reward

E{
∑∞

t=0 γ
t ri(st, a1, a2, ... , an)}, where ai ∼ πi(st), from any state in the system.

The main difference herein being that agents must also consider the actions and

wishes of other (not necessarily adversarial) agents present in the system as well.

These other agents’ actions also contribute to the evolution of the system’s state

and therefore are a principal factor in understanding how to maximize one’s own

cumulative reward.

Solving Markov games has remained a difficult task as the run-time complexity

of solving games with linear programs can be extremely cumbersome when

combined with the exponential growth of the system’s state-space. While

Littman explored the use of Q-minimax reinforcement learning on Markov games

in [18] and later provided convergence guarantees in [17], the methods used

required an enumeration and storage of all state-action pairs in the Markov

game. This limited his experimentation to smaller games where such tables could

fit in memory. Approximation techniques were explored in [19] where the authors

used a least squares policy iteration algorithm in conjunction with Monte Carlo

simulations to learn approximate Nash policies with reasonable success. Overall,

while the applicability of Markov games seems to be vast the number of fast and

robust solution methods seems to be quite limited.

2.5 Deep Reinforcement Learning

Deep reinforcement learning refers to reinforcement learning that uses deep

neural networks as the function approximators that attempt to map input

features about states and actions to some real valued reward in a stationary

environment. While the use of function approximation with Q-learning is

11



basically as old as the algorithm itself, these approximations were typically linear

(and even worse, used hand-crafted features).

Take for example the chess playing algorithm Deep Blue, which utilized over

8,000 hand-crafted features for its binary-linear value function whose weights

were almost entirely hand-tuned by expert human chess players [26]. While such

an algorithm was capable of beating the world champion Gary Kasparov in 1997,

its method of doing so was arduous and largely influenced by human knowledge

and experience.

Contrast these linear function approximators with more contemporary deep

neural network approaches capable of learning both their own internal features

and weights with little to no human input. The obvious advantage of such

algorithms is that one can have little to no domain knowledge about the task at

hand and yet can still train agents to perform at an expert level.

The remainder of the section will focus on the methods presented in [27]. This

work’s authors describe an algorithm capable of learning to play a multitude of

Atari games (in many cases at a super-human level) from pixel input alone. The

algorithm was robust enough that it could be applied across many different

games with very different goals – while still yielding great policies. This

generality of deep RL, coupled with the need for little to no domain knowledge

from human practitioners, makes it a very promising area of research. Please

note that the algorithm presented in Algorithm 1 has been simplified for the

purposes of this thesis. The original algorithm and methods presented in [27]

involved an image pre-processing technique that we will not be discussing.

Most traditional reinforcement learning algorithms use value iteration to

converge to the optimal value function (see section 2.3). Such value iteration

approaches become unpractical in very large state spaces since there is no

aliasing between states or actions. In other words, while two state-action pairs

may be highly semantically similar, traditional methods will estimate their values

completely separately. Instead, we can opt to use a function approximator (e.g., a

12



linear function parameterized by some weights θ and features φ) to estimate the

action-value function. We can then train such an approximator by minimizing a

sequence of loss functions Li(θi) that change with each iteration of our algorithm.

yi = Es∼E
[
r(s, a) + γmax

a′
Q(s′, a′; θi−1)|s, a

]
(2.8)

Li(θi) = Es,a∼ρ(·)

[(
yi −Q(s, a; θi)

)2
]

(2.9)

Equation 2.8 is the target we are moving our approximator towards, with E being

the environment we sample states from. Equation 2.9 is the loss function, with

ρ(s, a) representing the behavior distribution (in many cases simply the current

ε-greedy policy) that defines a probability distribution over states and actions.

Differentiating equation 2.9 with respect to the weights gives us the following,

∇θiLi(θi) = Es,a∼ρ(·);s′∼E

[
∇θiQ(s, a; θi) ·(

r(s, a) + γmax
a′

Q(s′, a′; θi−1)−Q(s, a; θi)
)] (2.10)

To avoid computing the full expectations of equation 2.10 we can use single

samples of actions from the behavior distribution ρ and transitions from our

environment E while using stochastic gradient descent to minimize the loss. This

allows us to reduce this process to the simple Q-learning algorithm discussed in

Section 2.3.

Most supervised machine learning algorithms rely on learning a fixed

distribution given some set of samples. The difficulty in using such methods

(e.g., stochastic gradient descent) in an RL context is that the samples obtained

from an on-policy RL algorithm come from the estimator itself. Every time we

update our policy we change the agent’s behavior and thereby the distribution of

rewards we are going to see. This kind of moving target can lead to convergence

issues and is addressed in part via the use of experience replay [28]. Experience

13



Algorithm 1 Deep Q-Network with Experience Replay
Initialize replay memory Z to capacity N
Initialize action-value function Q with random weights θ0

for episode i = 1,M do
Initialize s1 randomly and extract its features φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a; θ)

Execute action at in E and observe reward rt and next state st+1

Set φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in Z
Sample random mini-batch of transitions (φj, aj, rj, φj+1) from Z
Set yj = rj + γmaxa′ Q(φj+1, a

′; θi−1)

Take gradient descent step on
(
yj −Q(φj, aj; θi)

)2 using equation 2.10
end for

end for

replay is a method where we store a 4-tuple of the agent’s experience

et = 〈st, at, rt, st+1〉 at each time step in some large data set Z = e1, ..., eN from

which we can sample from in a way analogous to traditional supervised learning.

In standard Q-learning samples are thrown away after each transition, whereas

experience replay allows us to store and replay transitions many times.

Additionally, since we sample randomly from our experience we are able to avoid

the highly correlated nature of learning from consecutive transitions in a given

area of the state space, thereby reducing the variance of our updates. Also notice

that in Equation 2.8 we are using the weights from the previous episode. This

helps keep our target stationary when performing updates. Again, it helps to

think of the algorithm from a traditional supervised learning perspective – if the

data distribution you are approximating changes every time you update your

learning architecture, learning will prove to be quite difficult.

14



3. MODEL

This chapter will begin by formally describing the Markov game formulation of

the cyber-alert assignment problem being addressed. We will then describe two

optimizations used to reduce the run-time of our algorithms.

3.1 Cyber-Alert Assignment Markov Game

We consider a two-player zero-sum Markov game in which the Defender (D) and

the Attacker (A) play a series of sub-games over an infinite time horizon. At

each time step t, a new batch of alerts ω ∈ Ω arrives in which A chooses some

alert level(s) to attack in and D attempts to detect and thwart the incoming

attack(s) by assigning available analysts to the incoming alerts. Without loss of

generality a time step may represent any period of elapsed time, however for the

remainder of this thesis we will assume a time step of one hour. We let s ∈ S

denote the current state of the player resources (e.g., availability of analysts as

well as the budget available to the attacker). We also let Da and Aa denote the

set of actions available to D and A, respectively. We define a transition function

T : S × Da ×Aa → Π(S) which maps each state and player action pair to a

probability distribution over possible next states. We let T (s, a, d, s′) denote the

probability that, after taking actions a ∈ Aa and d ∈ Da in state s, the system

will make a transition into s′. In general, the system can be described as follows:

• Alerts: Our transition function T is manifested in the uncertainty of

which batch of alerts will arrive in each state. At every time step t, some

batch of alerts ω ∈ Ω arrives according to a probability distribution Π(Ω),

where Ω = {ω1, ω2, . . . , ω|Ω|}. Each alert σ ∈ ω belongs to one of three

categories: High (h), Medium (m), or Low (l). Resolving an alert requires a

certain number of time steps based on its category. The set holding each

category’s work-time (i.e., the number of time steps needed by an analyst

15



to investigate and resolve an alert) is defined as W = {wh, wm, wl} where

wh > wm > wl and wh, wm, wl ∈ N. A similar reward structure

U = {uh, um, ul}, where uh > um > ul and uh, um, ul ∈ N, is defined for

each category as well. If the alert σh is legitimate and is assigned to an

analyst, D will receive a positive utility uh. Whereas not assigning the

legitimate alert results in a negative utility −uh for D. If an alert is

illegitimate (i.e., a false positive) then it awards no utility to either the

attacker or defender, regardless of whether or not it is assigned. Since our

model is zero-sum, the corresponding utilities for A are simply the additive

inverse of those awarded to D. We assume that both agents are aware of

the set of possible alert batches Ω, as well as the respective arrival

probabilities of each batch. For example, a possible arrival set may be as

follows: Ω = {ω1, ω2} where Pr(ω1) = 0.4 with ω1 = {σh1 , σm2 , σm3 }, and

Pr(ω2) = 0.6 with ω2 = {σm1 , σl2}. At the beginning of a particular game,

both agents are aware of the exact alert batch that has arrived (with future

alert arrivals remaining probabilistic, thereby impacting the current

resource allocations made by the agents). It is important to note that not

every alert may be assigned to an analyst, and not every alert may

represent a legitimate attack (i.e., alerts can be false positives).

• The Defender: D has n homogeneous cyber-security analysts available to

handle incoming alerts. We define Rs as a vector of length n that describes

the load of each analyst in state s. For example, Rs = [0 2 1] means that D

has 3 analysts on their team in which analyst 1 is free (has load 0), analyst

2 will be free after two time steps, and analyst 3 will be available after one

time step. We also define the function F(Rs) as the number of analysts

currently available for allocation in state s. In every time step t, D receives

a batch of alerts ω and determines their allocation strategy based upon the

current availability of analysts and the varying severity and volume of alerts

in ω. Once the set of possible alert batches Ω and each alert category’s

16



respective work-times W are known, we can construct the set of all

possible analyst states. In general, |R| is bounded above by the following:

|R| ≤ (wh + 1)n (3.1)

• The Attacker: A has an attack budget B ∈ N and decides when to attack

and in what category. We assume A knows the alert level that would be

generated due to their attack. The set C = {ch, cm, cl} defines the

respective cost to the attacker given the alert level their attack generates,

where ch > cm > cl and ch, cm, cl ∈ N. A can attack with as many alerts as

they wish as long as the sum of their costs is affordable given their current

budget. The attacker’s budget enables us to model the amount of risk they

are willing to undertake. Attacking more frequently with attacks that

generate high level alerts would likely expose A. To capture this behavior,

if A chooses to abstain from attacking in a state s with budget Bs they will

be credited with 1 unit of budget in the subsequent state. However, their

budget is capped to some value Bmax representing the maximum amount of

risk they are willing to undertake.

• State Representation: At the beginning of a time step, we assume that

the system state is known to both agents. A state is thus defined as follows:

s = [Rs|Bs] (3.2)

Given the state s and alert arrival ω, both the action space of the defender

Da(s, ω) and the action space of the attacker Aa(s, ω) can be generated. The size

of the defender’s action space, given in Equation 3.3, describes all possible

combinations of assigning/not assigning the incoming alerts σ ∈ ω to the

available analysts. Since we consider all analysts to be homogeneous we do not

need to consider which particular analyst an alert is assigned to, but only

17



whether or not the alert is assigned. Equation 3.4 enumerates all the ways A

could attack in the alerts in ω based on the current budget in s as captured by

the indicator function 1{·} (while also allowing them to abstain from attacking

altogether)

|Da(s, ω)| =
F(Rs)∑
i=0

(
|ω|
i

)
(3.3)

|Aa(s, ω)| =
2|ω|∑
i=1

1{Bs ≥ Bin(i−1) · Cω} (3.4)

where Bin(i) is the binary representation of i and Cω is the cost vector for the

alerts in ω according to W . For example, an alert arrival ω = {σm1 , σl2, σl3}

yields a cost vector Cω = [3 1 1]. Thus, given an attacker budget Bs = 2 for this

state and arrival Aa = {[0 0 0], [0 1 0], [0 0 1], [0 1 1]}.

Based on the alert arrival and system state we can formulate a zero-sum game.

Every one of these state-arrival pairs constitutes a sub-game where the defender

attempts to detect an attack through an assignment of alerts to analysts and the

attacker attempts to avoid detection when launching an attack that would result

in some alert combination of the chosen categories. This game can be

represented as a matrix Rs of instantaneous rewards with RDs (a, d) denoting the

utility awarded to the defender and RAs (a, d) denoting the utility awarded to the

attacker when D chooses action d ∈ Da(s, ω) and A chooses action a ∈ Aa(s, ω).

Recall that since we are playing a zero-sum game RDs (a, d) = −RAs (a, d).

Both defender and attacker follow policies πD and πA, respectively (e.g., πD(s, d)

is the probability D takes action d ∈ Da(s, ω)). Given the current state s and

alert arrival batch ω, we can formulate a zero-sum game over the payoff matrix

Rs and solve it with the linear program presented in equations 2.3-2.6 of section

2.2 to derive these policies.

Once derived, both agents will then sample from their Nash equilibrium mixed

strategy and commit to their respective actions. They are then awarded their

18



respective utility and the state evolves from s to s′ according to the transition

function T .

3.2 Action Space Compression

We can represent our agents’ actions as a binary vector where a 1 represents that

a given alert is either assigned to an analyst for the defender, or attacked in by

the attacker. For example, if we are in a state s =
[
R = [0, 0, 0] | B = 10

]
and a

batch of alerts ω = {σh1 , σh2 , σm3 } arrives, where ch = 5 and cm = 3, our defender

and attacker action spaces would be formulated as follows:

Da(s, ω) = {[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]}

Aa(s, ω) = {[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1]}

Where d6 = [1, 0, 1] means that the defender assigns alerts σh1 and σl3 and ignores

alert σh2 . Similarly a4 = [0, 1, 1] means that the attacker attacks in alerts σh2 and

σl3 and ignores alert σh1 .

However, consider the fact that alerts of the same severity level are homogeneous

(i.e., their utility, work-time, and cost are equal). This means that our agents

need not worry about which specific alerts are being assigned/attacked, only the

number of alerts from each severity level being assigned/attacked. Thus we can

represent actions as a 3-tuple 〈h,m, l〉 representing how many alerts from each

severity level are being assigned/attacked:

D̂a(s, ω) = {〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉, 〈1, 1, 0〉, 〈2, 0, 0〉, 〈2, 1, 0〉}

Âa(s, ω) = {〈0, 0, 0〉, 〈0, 1, 0〉, 〈1, 0, 0〉, 〈1, 1, 0〉}

where d3 = 〈1, 1, 0〉 means that the defender assigns one of the two high alerts

and the one medium alert. Similarly a3 = 〈1, 0, 0〉 means that the attacker

attacks in one of the high alerts and ignores the other high and medium alert.

While this allows us to reduce the sizes of both player’s action spaces, the

defender receives the majority of the compression since their action space grows

19



combinatorially with respect to the number of alerts present in the arrival batch

ω. This combinatorial growth severely increases the run-time of solving our

sub-games which thereby increases the run-time of solving the Markov game as a

whole.

To illustrate just how advantageous this compression is, consider an arrival

ωs = {σh1 , σh2 , σm3 , σm4 , σl5, σl6} in a state where the number of available analysts

F(Rs) = 5. Under the combinatorial action space |Da(s, ω)| = 63 whereas the

compressed action space |D̂a(s, ω)| = 26 (a 58% reduction). The compression is

even more substantial when arrival batches posses more redundancy. For

instance, if our ωs = {σh1 , σh2 , σh3 , σh4 , σh5 , σh6} then |D̂a(s, ω)| = 6 while our

combinatorial action space remains unchanged at |Da(s, ω)| = 63 (while this

small example is given for illustration purposes, in our larger models the

compression can routinely get as high as 96%).

Under the compressed action space formulation joint action rewards are

calculated in expectation since we no longer specify exactly which alerts are

being assigned/attacked. The simplified equation for deriving the compressed

payoff matrix rewards R̂(·) is presented below:

zmax = min(ak, σk)

zmin =


0, if dk − (σk − ak) < 0;

dk − (σk − ak), otherwise.

R̂(a, d) =
∑

k∈{h,m,l}

zmax∑
z=zmin

(
ak
z

)(
σk−ak
dk−z

)(
σk
dk

) uk(2z − ak)

where σk is the number of alerts in severity level k, dk and ak are the number of

alerts assigned/attacked from severity level k, and z represents the number of

alerts caught by the defender in the current severity level.

Most advantageous of all is that this compression is completely loss-less with

respect to finding the value of a Nash equilibrium in our sub-games (i.e., whether

20



using R or R̂ our linear program will find the same expected values). The

mixed-strategies will necessarily be different (since the action spaces are

different), however the mixed strategies derived from R̂ will be more meaningful

as they they contain much less redundancy.

3.3 Fictitious Play

The biggest bottleneck for both of the algorithms developed in this thesis is the

game solving mechanism. Solving the game via a linear programming approach,

while accurate, incurs a a large cost in terms of run-time. In both of our

solutions we are solving millions of games – often containing hundreds of

potential action pairs. Thus while solving one of these games is more or less

instantaneous, solving our Markov game can take many hours.

This motivated us to explore potential alternatives to using linear programming

to solve our games. Ultimately we settled on the use of fictitious play, an

iterative algorithm first introduced by G.W. Brown in 1951 [29]. In fictitious play

each player tracks the empirical frequency of actions chosen by their opponent

and best responds to this strategy. The other player, having also tracked the

empirical frequency of their opponent, also plays their best response. By

iterating this process many times we are able to derive close approximations of

both the game’s value and the Nash equilibrium policies of the agents. A proof of

convergence for this iterative approach is given in [30].

The algorithm we use for our fictitious play was first introduced by J.D.

Williams in [31] and is described in Algorithm 2. (please note that element-wise

vector operations are implied here, with scalar values being broadcast to all

elements of the vector in question).

After generating and solving 10,000 random games with iterations = 500 we

found that on average the iterative fictitious play solver was around 20 times

faster than the linear programming approach while the Nash game value it

provided exhibited only a 6% error compared to the exact value obtained via

21



linear programming. Furthermore, in both of our solution methods we care more

about the Nash value of a game than the Nash strategies. Since fictitious play is

better at approximating Nash values rather than the strategies it makes it a

perfect fit for our purposes.

Algorithm 2 Iterative Fictitious Play
R is an m× n matrix of rewards
rowReward and rowCnt are m-length arrays of zeros
colReward and colCnt are n-length arrays of zeros
Initialize bestResponse to any random row action
for iterations do
colReward = colReward + R[bestResponse, · ]
bestResponse = argmin(colReward)
colCnt = colCnt + 1
rowReward = rowReward + R[ · , bestResponse]
bestResponse = argmax(rowReward)
rowCnt = rowCnt + 1

end for
gameV alue =

((
max(rowReward) + min(colReward)

)
/ 2
)
/ iterations

rowMixedStrat = rowCnt / iterations
colMixedStrat = colCnt / iterations

22



4. SOLUTION METHODS

This chapter will formally describe the two approaches we used to solve the

cyber-alert assignment Markov game. The first uses a Q-minimax value iteration

approach that enumerates all states’ Nash values explicitly. The second employs

deep reinforcement learning to approximate Nash Q-values given features about

a given state-action pair.

4.1 Q-minimax Value Iteration

The dynamic programming approach we use was first studied in [21] where

Q-minimax values were learned via the use of value iteration. The authors

explored both infinite and finite horizon domains whereas we restrict our

experimentation to only the infinite domain.

To solve a Markov game we want to modify the value iteration approach

described in 2.1 using the game-theoretic principles of optimal play discussed in

2.2, allowing our agents to maximize their worst-case expected utility. To do this

we must first notice that every state’s payoff matrix is incomplete in that it only

reflects the immediate rewards each action pair may lead to. If we wish to find

an optimal policy, we need every state’s expected value to consider the future

rewards available from that state. This is accomplished by replacing each action

pair utility in the state’s payoff matrix Rs with the value of the minimax quality

function Q(s, a, d), yielding the Q-matrix Qs. This new reward matrix includes

the immediate reward Rs(a, d) as well as the expected discounted rewards

provided by Q(s, a, d). Furthermore, since we are operating in a zero-sum

Markov game we need only store the value function of the defender as the

attacker’s value function is simply the additive inverse of the defender’s.

It is important to note that while we do use the quality function Q to denote an

action’s long-term expected reward, the algorithm presented here is not a

23



Q-learning algorithm. Q-learning is model-free – meaning it has no explicit

representation of environment dynamics, whereas our algorithm is given the

transition function when calculating the quality function.

The value function is updated according to the following equations:

V0(s) = 0, t = 0 (4.1)

Vt(s) = max
πD∈ΠD

min
a∈Âa

∑
d∈D̂a

πD(s, d)Qt(s, a, d), t > 0 (4.2)

Qt(s, a, d) = RDs (a, d) + γ
∑
s′∈S

T (s, a, d, s′)Vt−1(s′), t > 0 (4.3)

Notice that in the first update (t = 1), equation 4.2 reduces to simply solving for

the value of the game in each state under a Nash equilibrium because equation

4.3 has its second term reduced to zero. Each successive update then uses the

previous iteration’s values under a Nash equilibrium to find its own. This

iterated nesting of the Nash equilibrium value allows us to build a sub-game

Nash equilibrium that reflects the future rewards available from any state when

all agents are playing game-theoretically. In short, We have simply replaced

expected reward gained from a state with the expected reward of playing a game

in that state under a Nash equilibrium. The pseudo-code is provided in

Algorithm 3.

Algorithm 3 Maximin Value Iteration
Initialize:
γ = 0.95
for all s do
V0(s) = GameSolver(Rs)

end for
Learn:
for t = 1 to iterations do

for all s in S do
for all a in Âa(s, ω) and d in D̂a(s, ω) do
Qs(a, d) = Rs(a, d) + γ

∑
s′ T (s, a, d, s′)Vt−1(s′)

end for
Vt(s) = GameSolver(Qs)

end for
end for

24



where GameSolver can be either the linear program provided in 2.2 or the

iterative fictitious play approach given in Algorithm 3.3.

4.2 Deep Nash Q-Network

Initial attempts at approximation for us were largely unsuccessful. Naturally we

began the process with linear models using Q-learning or SARSA algorithms in

conjunction with Monte Carlo rollouts, but these models were able to learn little

to nothing – even in the presence of hand crafted features. This lead us to believe

that estimating the sub-game Nash equilibrium values in our Markov game was

just too complex for a linear function to successfully approximate. This is a

reasonable assumption given the complex nature of the nested game playing.

Motivated by the success in [27] we wanted to explore the possibility of applying

Deep Q-Networks in the Markov game domain. After all, even complex systems

like those of Atari games can be formulated as MDP’s. And the transformation

from the single agent MDP to the multi-agent Markov game is straightforward

enough that the approximation power achieved in [27] would hopefully carry

over.

This move from single agent to multi-agent would naturally necessitate some

changes to Equations 2.8-2.10. Namely, while both algorithms employ a Q

function to estimate future rewards attainable from an action pair, Equation 2.8

need only apply a greedy max over the next action for a single player whereas

our game theoretic approach must choose actions for two players in a minimax

fashion. Given the convergence proofs for value iteration in Markov games given

in [17] and the empirical success of its use in our domain in [21], we can be quite

sure the substitution of a game theoretic maximin in place of the greedy max

will provide a stable and meaningful reward signal. Our modified equations are

as follows:

25



yi = Es∼E
[
Rs(a, d) + γ max

d′∈D̂a

min
a′∈Âa

Q(s′, a′, d′; θ̂)|s, a, d
]

(4.4)

Li(θi) = Es,a,d∼ρ(·)

[(
yi −Q(s, a, d; θi)

)2
]

(4.5)

∇θiLi(θi) = Es,a,d∼ρ(·);s′∼E

[
∇θiQ(s, a, d; θi) ·(

Rs(a, d) + γ max
d′∈D̂a

min
a′∈Âa

Q(s′, a′, d′; θ̂)−Q(s, a, d; θi)
)] (4.6)

The authors in [27] mention that small changes to network weights can lead to

large differences in derived policies. If this is true for single agent learning then

this observation is at least doubly true in the case of our two agents. When using

θi−1 as our target network we experienced poor learning rates and could not

achieve convergence of the loss function. To remedy this we employed a

hyper-parameter τ that defines an update cycle for our target network. For

instance, if τ = 100 then every 100 updates we will set our target network’s

weights θ̂ to the current learning network’s weights θi.

This essentially freezes the distribution of data we are approximating for τ

learning steps. This addition has worked quite well in providing stability during

learning. As always, this hyper-parameter required some tuning as smaller

update cycles failed to remedy the issue and large update cycles lead to big

spikes in loss when the target network was updated.

After the addition of hyper-parameter τ we experienced no issues with loss

convergence and were able to make some promising observations regarding the

approximation accuracy of the network. Upon initialization of the network and

before any learning had occurred, Q-estimates of the network were very close to

zero. This meant that the first τ steps of learning were calculating loss gradients

on immediate reward alone. Once this first cycle was complete we then compared

the predicted Q-values to the known immediate rewards and found a very high

accuracy. Our algorithm was starting out its learning in a way quite similar to

the value iteration approach in section 4.1.

26



This learning architecture, which we refer to as a Deep Nash Q-Network

(DNQN), learns off-policy and is model-free. The off-policy learning stems from

the fact that the learning gradients are calculated over samples of transitions

taken at a different time and under a different policy. Off-policy learning, as with

DQN’s, allows us to leverage all the benefits of experience replay discussed at the

end of section 2.5. The pseudo-code for DNQN learning is presented in

Algorithm 4:

Algorithm 4 Deep Nash Q-Network with Experience Replay
Initialize i = 0
Initialize learning network with random weights θi
Initialize target network weights θ̂ = θi
Initialize τ to desired update cycle
Initialize replay memory Z to capacity N
for e = 1,M do
Initialize s1 randomly
for t = 1, T do
Qs = GetQMatrix(s, θi)
〈πA, πD〉 = GameSolver(Qs)
With probability ε select a random action at
otherwise sample at ∼ πA

With probability ε select a random action dt
otherwise sample dt ∼ πD

Execute actions 〈at, dt〉 in E and observe reward rt and next state st+1

Store transition (st, at, dt, rt, st+1) in Z
Sample random mini-batch of transitions (sj, aj, dj, rj, sj+1) from Z
Qsj+1

= GetQMatrix(sj+1, θ̂)
〈vsj+1

〉 = GameSolver(Qsj+1
)

Set yj = rj + γvsj+1

Take gradient descent step on
(
yj −Q(sj, aj, dj; θi)

)2 using equation 4.4
Set i = i+ 1
if i mod τ == 0, then
θ̂ = θi

end if
end for

end for

where GetQMatrix(s, θ) is a function that re-populates the payoff matrix Rs

with Q-values predicted using network weights θ and GameSolver(Qs) is a

function that solves the matrix game Qs and returns the Nash equilibrium value

vs of the game as well as the mixed strategies for both players, πA and πD, that

27



result in that value.

While we experimented with a number of hand-crafted feature representations

our best results were obtained by simply normalizing the most basic information

about the current state and agent actions. These features were as follows:

• For each analyst we calculated the current percentage of their remaining

wait time resulting in n features

• The percent of currently available budget for the attacker

• Three features specifying the number of alerts from each severity level that

had arrived (min-max normalized)

• Three features for the number of alerts assigned from each severity level

(min-max normalized)

• Three features for the number of alerts attacked in each severity level

(min-max normalized)

Additionally, all experiments presented herein were performed using the Adam

optimizer described in [32] in favor of the simple stochastic gradient descent

approach. While both optimizers performed well in practice, Adam consistently

lead to smoother learning curves and better performing policies.

s = random state 

Trajectory
over?

s = s'

Yes No

Build Q-Matrix for
s using learning

network
Game 
Solver 

Execute Nash
strategies in s 

Query
Environment

Store transition
in replay
memory

Sample  
mini-batch of

transitions

s,a,d,r,s's,a,d

Use target
network to
calculate y

Backprop loss
through learning

network

Calculate 
average loss in  

mini-batch

Use learning
network to calculate

Q estimate

For each transition

Have  
learning steps

occurred?

Update target
network with

learning network 

START

Yes

No

Figure 4.1: Diagram of the DNQN learning process

28



5. PERFORMANCE EVALUATION

This chapter will present our experimental results. All results presented herein

were obtained on a machine with two-dozen 2.2GHz cores and 64GB of RAM.

Furthermore, the dynamic programming approach was run in a fully parallel

manner while the DNQN approach was run serially.

5.1 Dynamic Programming Tractable Model

The first set of results we will discuss were obtained within a state space small

enough to be solved in a reasonable amount of time (30 hours) via the brute

force dynamic programming approach discussed in Section 4.1. The parameters

used when constructing the state space are presented in Table 5.1 and yield an

environment with a total of 2,117,682 possible states our agents can inhabit.

Table 5.1: Parameters used when constructing the DP tractable model.

Parameter Value

Number of experts n 5
Attack budget B 20
Utilities U uh = 100, um = 20, ul = 5

Attack cost C ch = 8, cm = 4, cl = 2

Work times W wh = 6, wm = 3, wl = 1

Alert batches in Ω ω1 = 〈0, 2, 2〉, ω2 = 〈1, 2, 2〉, ω3 = 〈0, 3, 3〉
where ω = 〈h,m, l〉 ω4 = 〈1, 1, 4〉, ω5 = 〈2, 2, 3〉, ω6 = 〈3, 3, 3〉
Arrival prob. Π(Ω) ω1 = 0.15, ω2 = 0.21, ω3 = 0.21

ω4 = 0.18, ω5 = 0.20, ω6 = 0.05

The dynamic programming solution provides us with an example of what

optimal behavior looks like in the Markov game domain, allowing us to

understand how well our approximate DNQN approach compares in terms of

both long-term cumulative utility and solution time.

Figure 5.1 plots the convergence of our value function under the dynamic

programming approach. Due to the zero-sum nature of our games, we only

29



present the value function of the Defender as the Attacker’s is simply its additive

inverse. Once the average percent change between iterations approaches 1% we

consider the value function converged, and end the program (this occurred

around iteration 500).

0 50 100 150 200 250 300 350 400 450 500
Learning Iterations

-400

-350

-300

-250

-200

-150

-100

-50

A
vr

g
. S

ta
te

 V
al

u
e

Figure 5.1: Convergence of the value function for the dynamic programming approach

When training our DNQN we used a fully connected 32× 64× 128× 128× 128

architecture with ReLU activation functions and an update cycle τ = 1, 000. We

experimented with various network sizes and update cycle lengths, finding the

aforementioned values to be both the most stable and fruitful. While they did

impact the overall accuracy of the model, our solution remained quite robust

across all the network sizes we tried.

Figure 5.2 presents the mean loss of our network’s predictions after each

iteration. As discussed in Section 4.2, over the first update cycle (the first 1,000

iterations) our agent’s are primarily learning immediate rewards and our

network’s loss drops quite rapidly. However, when the second update to the

target network takes place our loss suddenly spikes by roughly 2,000%. This

initial convergence and sudden spike demonstrate two things. First, our network

can quickly learn the immediate rewards of a given action pair. Second, these

immediate rewards are a poor reflection of long term reward (Q-values). After

the first update cycle our agents understand immediate reward very well meaning

solving the Q-matrices from Algorithm 1 yield near-perfect Nash play. However,

once the normal form game becomes an extensive form game their strategies

30



must re-adjust greatly as their greedy actions now bear heavy consequences.

0 0.5 1 1.5 2 2.5 3
Learning Iterations 104

0

1000

2000

3000

4000

5000

L
o

ss

Figure 5.2: Loss values obtained while training the DNQN on the DP tractable model

While the early learning exhibits very noisy loss values this seems to stabilize

drastically after about 5,000 iterations. Initially we thought this steadiness was

implying that our network had essentially finished learning after the first 5,000

updates. To investigate this suspicion we ran simulations against an optimal

dynamic programming opponent after each update cycle and plotted the average

cumulative utility in Figure 5.3.

0 5,000 10,000 15,000 20,000 25,000 30,000
Training Iterations

0

20

40

60

80

100

120

A
vr

g
. U

ti
lit

y

DNQN Attacker

0 5,000 10,000 15,000 20,000 25,000 30,000
Training Iterations

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

A
vr

g
. U

ti
lit

y

DNQN Defender

Figure 5.3: DNQN agents’ utility against a DP opponent at various stages of learning

The results of these simulations show that both agents continue to learn well

past the point implied by the loss curve. It is interesting to note that the DNQN

Defender seems to reach convergence at around the 15,000 iteration mark while

the DNQN attacker continues to progress up until the end of its training. Taken

together, Figures 5.2 and 5.3 show that while later iterations’ exhibit rather

31



accurate Q-value predictions (i.e., low loss) the strategies derived from these

Q-values continue to evolve throughout the learning process.

After 30,000 training iterations we want to compare our solution methods’

policies against one another to understand how well they perform with respect to

cumulative utility. We also include two heuristic policies, random and myopic. A

random policy for either agent simply randomizes over their action space in each

state. A myopic policy plays as if the agent is in a normal form game, solving the

payoff matrix of immediate rewards in each state and then sampling from the

derived mixed strategy.

For each of the 16 possible policy pairs we run 1,000 independent simulations

with a time horizon of 100 rounds (starting from random states). The average

discounted cumulative utility of each round for the attacker and defender are

presented in Figures 5.4 and 5.5, respectively. The title of each sub-graph

indicates the opponent policy while the lines plotted therein show the utility

obtained by the agent in question.

0 20 40 60 80 100
Round #

0

100

200

300

400

500

A
vr

g
 U

ti
lit

y

(a) Random Defender

0 20 40 60 80 100
Round #

0

100

200

300

400

500

A
vr

g
 U

ti
lit

y

(b) Myopic Defender

0 20 40 60 80 100

Round #

0

100

200

300

400

500

A
vr

g
 U

ti
lit

y

(c) DNQN Defender

Random Attacker Myopic Attacker DNQN Attacker DP Attacker

0 20 40 60 80 100

Round #

0

100

200

300

400

500

A
vr

g
 U

ti
lit

y

(d) DP Defender

Figure 5.4: Average cumulative utility obtained by the various attacker policies in the DP tractable model

Figure 5.4 presents the utility obtained by the various attacker policies. The

DNQN attacker came very close to the optimal DP attacker against all defender

policies, and even surpassed its utility against the random and myopic defenders.

32



0 20 40 60 80 100

Round #

-120

-100

-80

-60

-40

-20

0

A
vr

g
 U

ti
lit

y

(a) Random Attacker

Random Defender Myopic Defender DNQN Defender DP Defender

0 20 40 60 80 100

Round #

-120

-100

-80

-60

A
vr

g
 U

ti
lit

y

(b) Myopic Attacker

0 20 40 60 80 100

Round #

-120

-100

-80

-60

-40

-20

A
vr

g
 U

ti
lit

y

(c) Approx Attacker

0 20 40 60 80 100

Round #

-120

-100

-80

-60

-40

-20

A
vr

g
 U

ti
lit

y

(d) Dynamic Attacker

Figure 5.5: Average cumulative utility obtained by the various defender policies in the DP tractable model

Figure 5.5 presents the utility obtained by the various defender policies. In

contrast to the DNQN attacker, our DNQN defender falls behind the DP policy

when against random and myopic opponents. The reason for this has to do with

the distribution of states our DNQN defender sees during learning. As the agents

get more intelligent the DNQN attacker begins to ignore low severity alerts and

stockpile budget until the defender inevitably has a high number of analysts

assigned. Since the DNQN defender is learning in tandem with this attacker, it

learns to be wary of over-assigning analysts and also begins to ignore low alerts.

Since there is only one action to not attack and typically many actions

representing an attack, the random attacker consistently has a low budget. This

leads to many more low attacks (20x more than a DNQN attacker in our

simulations) as they are all it can afford. This forces our DNQN defender into

areas of the state-action space it has not typically encountered during learning –

leading to poor performance. The DP defender however gives equal weight to

every state in the system giving it a better understanding of optimal play in even

the sub-optimal areas of the state space.

33



5.2 Dynamic Programming Intractable Model

The second set of results we will discuss were obtained within a state space too

large to be solved by the dynamic programming approach. The parameters used

when constructing the state space are presented in Table 5.2 and yield an

environment with a total of 2.1 billion states. Performing the 30,000 training

updates on our DNQN took little over 5.5 hours in this environment. For

comparison, a liberal estimate obtained by extrapolating the run-times in

Section 5.1 would put the DP solution time at roughly 114 years. Furthermore,

our DNQN estimates state-action pair values (i.e., Q-values) which most likely

number in the tens of billions as each state can have potentially dozens of action

pairs.

Table 5.2: Parameters used when constructing the DP intractable environment.

Parameter Value

Number of experts n 8
Attack budget B 30
Utilities U uh = 100, um = 20, ul = 5

Attack cost C ch = 8, cm = 4, cl = 2

Work times W wh = 6, wm = 3, wl = 1

Alert batches in Ω ω1 = 〈0, 2, 2〉, ω2 = 〈0, 3, 3〉, ω3 = 〈1, 2, 5〉
where ω = 〈h,m, l〉 ω4 = 〈1, 3, 6〉, ω5 = 〈1, 4, 4〉, ω6 = 〈2, 2, 2〉

ω7 = 〈2, 2, 4〉, ω8 = 〈2, 3, 4〉, ω9 = 〈2, 3, 5〉
ω10 = 〈3, 3, 3〉, ω11 = 〈3, 4, 5〉, ω12 = 〈4, 5, 6〉

Arrival prob. Π(Ω) ω1 = 0.02, ω2 = 0.03, ω3 = 0.08

ω4 = 0.08, ω5 = 0.09, ω6 = 0.10

ω7 = 0.10, ω8 = 0.10, ω9 = 0.10

ω10 = 0.13, ω11 = 0.12, ω12 = 0.05

In state spaces as large as this it can be very difficult to understand what

optimal behavior looks like. In the absence of our optimal DP solution we can

make no concrete guarantees as to the efficacy of our results. Despite this fact,

our algorithm still maintains a converging loss curve and a superior utility when

compared to our previously mentioned random and myopic policies.

34



0 0.5 1 1.5 2 2.5 3
Training Iterations 104

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

L
o

ss

Figure 5.6: Loss values obtained while training the DNQN on the DP intractable model

Figure 5.6 shows the loss curve obtained while training the DNQN on the DP

intractable model. Similar to Figure 5.2 we can see early convergence over the

first update cycle followed by a large spike in loss as future rewards begin to be

considered.

After the 30,000 training iterations we again want to compare our DNQN policy

against the random and myopic policies. Without the DP solution we now have 9

possible policy pairs, again we run 1,000 independent simulations with a time

horizon of 100 rounds to obtain the average cumulative utility in each policy

pair. These utilities are presented for the attacker and defender in Figures 5.7

and 5.8, respectively.

0 20 40 60 80 100
Round #

0

500

1000

1500

2000

2500

A
vr

g
 U

ti
lit

y

(a) Random Defender

Random Attacker Myopic Attacker DNQN Attacker

0 20 40 60 80 100
Round #

0

500

1000

1500

2000

2500

A
vr

g
 U

ti
lit

y

(b) Myopic Defender

0 20 40 60 80 100
Round #

0

500

1000

1500

2000

2500

A
vr

g
 U

ti
lit

y

(c) DNQN Defender

Figure 5.7: Average cumulative utility obtained by the various attacker polices in the DP intractable model

35



In Figure 5.7 we can see that the DNQN attacker maintains the highest utility

across all prospective policies, performing exceptionally well against the random

and myopic defenders. Further inspection of DNQN attacker strategies confirms

that the agent consistently waits until the defender’s analysts are mostly busy

before attacking. Almost all attacks occurred when the analysts were above 75%

utilization making it very difficult for the defender to stop the attack.

0 20 40 60 80 100
Round #

-2500

-2000

-1500

-1000

-500

0

A
vr

g
 U

ti
lit

y

(a) Random Attacker

0 20 40 60 80 100
Round #

-2500

-2000

-1500

-1000

-500

0

A
vr

g
 U

ti
lit

y

(b) Myopic Attacker

Random Defender Myopic Defender DNQN Defender

0 20 40 60 80 100
Round #

-2500

-2000

-1500

-1000

-500

0

A
vr

g
 U

ti
lit

y

(c) DNQN Attacker

Figure 5.8: Average cumulative utility obtained by the various defender polices in the DP intractable model

Figure 5.8 presents the cumulative utility earned by the various defender

policies. It appears that in these experiments the DNQN defender policy is only

slightly better than the myopic policy at stopping a random attacker. As

previously discussed, the problem of training these agents is that they naturally

skew the distribution of state-action pairs observed towards more intelligent

areas of the space. As with the smaller model this appears to again be the case.

When investigating further into the DNQN defender strategy we notices that it

would never fully allocate all its analysts, preferring to hover around a 75%

utilization. Essentially the defender was playing a game of chicken with the

attacker, trying to discourage attacks by always keeping some analysts ready for

assignment. While this kind of behavior is quite irrational against the random

and myopic attackers, the DNQN defender plays very well against the intelligent

36



DNQN attacker – almost more than quadrupling the utility of the other two

policies. This represents a kind of trade-off between general coverage and acute

prevention that is the core of a good defender policy.

It is important to note that, relatively speaking, an optimal attack policy is

much easier to learn than an optimal defender policy. The attacker only needs to

stockpile their budget (a single resource) until the defender allocates a high

percentage of their analysts whereupon they flood the defender with attacks.

Contrast this with the defender who must learn to balance the allocation times

of their analysts (8 resources) with the expected volume of incoming alerts. We

find it quite remarkable that we are able to derive two very different strategies

from a single network while still maintain good performance for both.

As for implementing this kind of policy in the real world defenders would

obviously always want to maintain 100% utilization of their analysts, keeping

those who were unassigned by the model on call for reassignment if the model

dictates. Furthermore, the strategies derived by our model could simply be

viewed as a kind of threshold for game-theoretically sound behavior that could

inform an organizations as to their level of security (or lack thereof). For

instance, an organization seeing a terrible utility given the known volume of

attacks they face may want to improve their coverage of lower level alerts or

increase the number of analysts on hand.

37



6. CONCLUSION

In this thesis we provided a Markov game framework for modeling the

adversarial interaction of computer network attackers and defenders in a

game-theoretic manner. By framing this interaction as a series of zero-sum games

wherein a state is maintained between each sub-game we were able to simulate

long term periods of play and apply both traditional and novel reinforcement

learning algorithms to derive intelligent policies.

An optimal minimax value iteration approach using dynamic programming was

presented that was capable of learning Nash optimal policies given a model of its

environment. Next, an approximate solution method using our deep Nash

Q-network (DNQN) algorithm was presented that allowed for the

aforementioned results to be extended to much larger state spaces where an

explicit model of the environment was not known. This DNQN approach was

capable of deriving intelligent policies on par with the optimal approach in a

much shorter time and with less information about the environment.

These results motivate the use of DNQN-like architectures when solving very

large Markov games as this approach proved to be both computationally

expedient and empirically effective.

38



REFERENCES

[1] T. Brook and M. Winter, “Hackers Penetrated Pentagon Email,” 2015.

[2] P. Elkind, “Inside the Hack of the Century.”

[3] X. Shu, K. Tian, A. Ciambrone, and D. Yao, “Breaking the target: An
analysis of target data breach and lessons learned,” CoRR, 2017.

[4] J. Finkle, “U.S. official sees more cyber attacks on industrial control
systems,” 2016.

[5] P. Institute, “The Cost of Malware Containment, 2015.”

[6] A. Schlenker, H. Xu, M. Guirguis, M. Tambe, A. Sinha, C. Kiekintveld,
S. Sonya, N. Dunstatter, and D. Balderas, “Don’t bury your head in
warnings: A game-theoretic approach for intelligent allocation of
cyber-security alerts,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17, pp. 381–387, 2017.

[7] A. Schlenker, H. Xu, M. Guirguis, M. Tambe, A. Sinha, C. Kiekintveld,
S. Sonya, N. Dunstatter, and D. Balderas, “Towards a game-theoretic
framework for intelligent cyber-security alert allocation,” in Proceedings of
the 3rd IJCAI workshop on Algorithmic Game Theory, Melbourne,
Australia, 2017.

[8] D. Altner and L. Servi, “A two-stage stochastic shift scheduling model for
cybersecurity workforce optimization with on call options,” 2016.

[9] R. Ganesan, S. Jajodia, S. A., and H. Cam, “Optimal Scheduling of
Cybersecurity Analysts for Minimizing Risk,” ACM Trans. on Intelligent
Systems and Technology, 2015.

[10] R. Ganesan, S. Jajodia, S. A., and H. Cam, “Dynamic Scheduling of
Cybersecurity Analysts for Minimizing Risk Using Reinforcement Learning,”
ACM Trans. on Intelligent Systems and Technology, 2016.

[11] C. Zimmerman, “Ten strategies of a world-class cybersecurity operations
center,” MITRE corporate communications and public affairs, 2014.

[12] A. Shah, R. Ganesan, S. Jajodia, and H. Cam, “A methodology to measure
and monitor level of operational effectiveness of a csoc,” International
Journal of Information Security, pp. 1–14, 2017.

[13] M. Brown, A. Sinha, A. Schlenker, and M. Tambe, “One Size Does Not Fit
All: A Game-Theoretic Approach for Dynamically and Effectively Screening
for Threats,” in AAAI conference on Artificial Intelligence, 2016.

[14] A. Sinha, T. Nguyen, D. Kar, M. Brown, M. Tambe, and A. Jiang, “From
Physical Security to Cybersecurity,” Journal of Cybersecurity, vol. 1, no. 1,
pp. 19–35, 2015.

39



[15] Z. Yin, A. Jiang, M. Tambe, C. Kiekintveld, K. Leyton-Brown,
T. Sandholm, and J. Sullivan, “Trusts: Scheduling randomized patrols for
fare inspection in transit systems using game theory,” in Proceedings of the
24th IAAI, (Palo Alto, CA), 2012.

[16] M. Jain, E. Kardes, C. Kiekintveld, F. Ordónez, and M. Tambe, “Security
games with arbitrary schedules: A branch and price approach.,” in
Proceedings of AAAI, 2010.

[17] M. Littman, “Value-function reinforcement learning in markov games,”
Princeton University Press, 2000.

[18] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in In Proceedings of the Eleventh International
Conference on Machine Learning, pp. 157–163, Morgan Kaufmann, 1994.

[19] M. G. Lagoudakis and R. Parr, “Value function approximation in zero-sum
markov games,” in Proceedings of the Eighteenth Conference on Uncertainty
in Artificial Intelligence, UAI’02, (San Francisco, CA, USA), pp. 283–292,
Morgan Kaufmann Publishers Inc., 2002.

[20] C. Y. T. Ma, D. K. Y. Yau, X. Lou, and N. S. V. Rao, “Markov game
analysis for attack-defense of power networks under possible
misinformation,” IEEE Transactions on Power Systems, vol. 28,
pp. 1676–1686, May 2013.

[21] N. Dunstatter, M. Guirguis, and A. Tahsini, “Allocating security analysts to
cyber alerts using markov games,” 2018 National Cyber Summit (NCS),
2018.

[22] C. Xiaolin, T. Xiaobin, Z. Yong, and X. Hongsheng, “A markov game
theory-based risk assessment model for network information system,” in
2008 International Conference on Computer Science and Software
Engineering, vol. 3, pp. 1057–1061, Dec 2008.

[23] R. A. Howard, Dynamic Programming and Markov Processes. Cambridge,
MA: MIT Press, 1960.

[24] J. Von Neumann and O. Morgenstern, “Theory of games and economic
behavior,” 1947.

[25] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1st ed., 1998.

[26] M. Campbell, A. Hoane, and F. hsiung Hsu, “Deep blue,” Artificial
Intelligence, vol. 134, no. 1, pp. 57 – 83, 2002.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,”
CoRR, vol. abs/1312.5602, 2013.

[28] L.-J. Lin, Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX93-22750.

40



[29] G. W. Brown, “Iterative solution of games by fictitious play,” in Activity
Analysis of Production and Allocation (T. C. Koopmans, ed.), New York:
Wiley, 1951.

[30] J. Robinson, “An iterative method of solving a game,” Annals of
Mathematics, vol. 54, no. 2, pp. 296–301, 1951.

[31] J. D. Williams, The Compleat Strategyst: Being a Primer on the Theory of
Games of Strategy. Dover, 1986.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

41


