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UNIFORM CONVERGENCE OF THE SPECTRAL EXPANSIONS
IN TERMS OF ROOT FUNCTIONS FOR A SPECTRAL

PROBLEM

NAZIM B. KERIMOV, SERTAC GOKTAS, EMIR A. MARIS

Abstract. In this article, we consider the spectral problem

−y′′ + q(x)y = λy, 0 < x < 1,

y′(0) sinβ = y(0) cosβ, 0 ≤ β < π; y′(1) = (aλ+ b)y(1)

where λ is a spectral parameter, a and b are real constants and a < 0, q(x)
is a real-valued continuous function on the interval [0, 1]. The root function

system of this problem can also consist of associated functions. We investigate

the uniform convergence of the spectral expansions in terms of root functions.

1. Introduction

Consider the spectral problem

−y′′ + q(x)y = λy, 0 < x < 1, (1.1)

y′(0) sinβ = y(0) cosβ, 0 ≤ β < π, (1.2)

y′(1) = (aλ+ b)y(1), (1.3)

where λ is a spectral parameter, a and b are real constants and a < 0, q(x) is
real-valued continuous function on the interval [0, 1].

In this article, we study the uniform convergence of the expansions in terms of
root functions of the boundary value problem (1.1)–(1.3) for the functions which be-
long to C[0, 1]. There are many articles which investigate the uniform convergence
of the expansions for the functions in terms of root functions of some differential
operators with a spectral parameter in the boundary conditions (see, for example,
[4, 5, 7, 8, 9, 10, 11, 12, 13, 14]).

Especially, the spectral problems which investigated the uniform convergence of
the spectral expansions underlie an important class of the mathematical physics
problems. For example, the problem

u′′(x) + λu(x) = 0 (0 < x < 1),

u(1) = 0, (a− λ)u′(0) + bλu(0) = 0, a, b > 0
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appears in a model of transrelaxation heat process and in the mathematical de-
scription of vibrations of a loaded string (see [8]), and the problems on vibrations
of a homogeneous loaded string, torsional vibrations of a rod with a pulley at one
end, heat propagation in a rod with lumped heat capacity at one end, the current
in a cable ground at one end through a concentrated capacitance or inductance lead
to the spectral problem

u′′(x) + λu(x) = 0 (0 < x < 1),

u(0) = 0, u′(1) = dλu(1), d > 0

(see [8, 9]).
In [13], it has been investigated the uniform convergence of the Fourier series

expansions in terms of eigenfunctions for the spectral problem

−y′′ + q(x)y = λy, 0 < x < 1, (1.4)

b0y(0) = d0y
′(0), (a1λ+ b1)y(1) = (c1λ+ d1)y′(1), (1.5)

where λ is a spectral parameter, q(x) is a real-valued continuous function on the
interval [0, 1], and a1, b0, b1, c1, d0 and d1 are real constants that satisfy the condi-
tions

|b0|+ |d0| 6= 0, σ = a1d1 − b1c1 > 0. (1.6)

Note that all the eigenvalues of problem (1.4), (1.5) are real and simple, hence
the root functions system of this problem consists of only eigenfunctions. Problem
(1.1)–(1.3) does not satisfy the condition (1.6), because σ = a < 0.

It was proved [3] that the eigenvalues of (1.1)–(1.3) form an infinite sequence
λn, (n = 0, 1, 2, . . . ) without finite limit points and only the following cases are
possible:

(i) all the eigenvalues are real and simple.
(ii) all the eigenvalues are real and all, except one double, are simple.

(iii) all the eigenvalues are real and all, except one triple, are simple.
(iv) all the eigenvalues are simple and all, except a conjugate pair of non-real,

are real.

Note that the eigenvalues λn (n = 0, 1, 2, . . . ) were considered to be listed accord-
ing to non-decreasing real part and repeated according to algebraic multiplicity.
Therefore, the results of the article [13] cannot be applied directly to the problem
(1.1)–(1.3).

We need some properties of eigenvalues, eigenfunctions and associated functions
of problem (1.1)–(1.3), for the uniform convergence of the spectral expansions in
terms of root functions of this problem.

Let ϕ(x, λ) and ψ(x, λ) denote the solutions of (1.1) which satisfy the initial
conditions

ϕ(0, λ) = 1, ϕ′(0, λ) = h, (1.7)

ψ(0, λ) = 0, ψ′(0, λ) = 1, (1.8)

where h = cotβ, (0 < β < π).
It is easy to see by the same method as in [13, theorem 2.1] that the following

asymptotic formulae are valid for sufficiently large n:
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(i) If β = 0 and λn = µ2
n, (Reµn ≥ 0), then

µn = nπ +
A1

nπ
+O

(δ(1)n

n

)
, (1.9)

yn(x) = ψ(x, λn)

=
sinnπx
nπ

+
cosnπx
(nπ)2

[
A1x−

1
2

∫ x

0

q(τ)dτ +
1
2

∫ x

0

q(τ) cos 2nπτdτ
]

+
sinnπx
2(nπ)2

∫ x

0

q(τ) sin(2nπτ)dτ +O(
δ
(1)
n

n2
),

(1.10)

where

A1 =
1
a

+
1
2

∫ 1

0

q(τ)dτ, δ(1)n = |
∫ 1

0

q(τ) cos(2nπτ)dτ |+ 1
n
.

(ii) If 0 < β < π and λn = µ2
n(Reµn ≥ 0) then

µn =
(
n− 1

2
)
π +

A2

(n− 1
2 )π

+O
(δ(2)n

n

)
, (1.11)

yn(x) = ϕ(x, λn)

= cos(n− 1
2

)πx+
sin(n− 1

2 )πx
(n− 1

2 )π

[
h−A2x+

1
2

∫ x

0

q(τ)dτ

+
1
2

∫ x

0

q(τ) cos(2n− 1)πτdτ
]

−
cos(n− 1

2 )πx
(2n− 1)π

∫ x

0

q(τ) sin(2n− 1)πτdτ +O
(δ(2)n

n

)
,

(1.12)

where

A2 = h+
1
a

+
1
2

∫ 1

0

q(τ)dτ, δ(2)n =
∣∣ ∫ 1

0

q(τ) cos(2n− 1)πτdτ
∣∣+

1
n
.

Let λk be a multiple eigenvalue (λk = λk+1). Then for the first order associated
function yk+1 corresponding to the eigenfunction yk, the following relations hold
[15, p. 28]

−y′′k+1 + q(x)yk+1 = λkyk+1 + yk,

y′k+1(0) sinβ = yk+1(0) cosβ,

y′k+1(1) = (aλk + b)yk+1(1) + ayk(1).

Let λk be a triple eigenvalue (λk = λk+1 = λk+2). Then for the first order
associated function yk+1 there exist the second order associated function yk+2 for
which the following relations hold

−y′′k+2 + q(x)yk+2 = λkyk+2 + yk+1,

y′k+2(0) sinβ = yk+2(0) cosβ,

y′k+2(1) = (aλk + b)yk+2(1) + ayk+1(1).

Note that the functions yk+1 + cyk and yk+2 + dyk, where c and d are arbitrary
constants, are also associated functions of the first and second order respectively.
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Let y(x, λ) denote the solution of the equation (1.1) which satisfy the initial
condition (1.7) if 0 < β < π or (1.8) if β = 0. Then, the eigenvalues of (1.1)–(1.3)
are the roots of the characteristic equation

ω(λ) = y′(1, λ)− (aλ+ b)y(1, λ). (1.13)

It was proven in [1] that if λk is a multiple (double or triple) eigenvalue of
(1.1)–(1.3), then

y(x, λ)→ yk(x), y′(x, λ)→ y′k(x),

yλ(x, λ)→ ỹk+1(x), y′λ(x, λ)→ ỹ′k+1(x)
(1.14)

uniformly according to x ∈ [0, 1], as λ→ λk (see also [6]), where ỹk+1 is one of the
associated functions of the first order. It is obvious that ỹk+1 = yk+1 + c̃yk.

Furthermore, if λk is a triple eigenvalue of (1.1)–(1.3), then

yλλ(x, λ)→ 2ỹk+2(x), y′λλ(x, λ)→ 2ỹ′k+2(x) (1.15)

uniformly according to x ∈ [0, 1], as λ → λk, where ỹk+2 is one of the associated
functions of the second order corresponding to the first associated function ỹk+1.
It is obvious that ỹk+2 = yk+2 + c̃yk+1 + d̃yk [1, 6].

It is easily seen from (1.14) and (1.15) that

c̃ =

{
−y′k+1(0), if β = 0,
−yk+1(0), if 0 < β < π,

(1.16)

d̃ =

{
(y′k+1(0))2 − y′k+2(0), if β = 0,
y2
k+1(0)− yk+2(0), if 0 < β < π.

(1.17)

The following systems were investigated in [1]:
(a) yn(x) (n = 0, 1, . . . ;n 6= l), if all of eigenvalues of (1.1)–(1.3) are real and

simple, where l is an arbitrary non-negative integer.
(b) yn(x) (n = 0, 1, . . . ;n 6= k + 1), if λk is double eigenvalue (λk = λk+1) of

the problem (1.1)–(1.3).
(c) yn(x) (n = 0, 1, . . . ;n 6= k), if λk is double eigenvalue (λk = λk+1) of

(1.1)–(1.3) and
ω′′′(λk) 6= 3c̃ω′′(λk). (1.18)

(d) yn(x) (n = 0, 1, . . . ;n 6= l), if λk is double eigenvalue (λk = λk+1) of (1.1)–
(1.3), where l 6= k, k + 1 is an arbitrary non-negative integer.

(e) yn(x) (n = 0, 1, . . . ;n 6= k + 2), if λk is triple eigenvalues (λk = λk+1 =
λk+2) of (1.1)–(1.3).

(f) yn(x) (n = 0, 1, . . . ;n 6= k + 1), if λk is triple eigenvalues (λk = λk+1 =
λk+2) of (1.1)–(1.3) and

ωIV (λk) 6= 4c̃ω′′′(λk). (1.19)

(h) yn(x) (n = 0, 1, . . . ;n 6= k), if λk is triple eigenvalues (λk = λk+1 = λk+2)
of (1.1)–(1.3) and

ωIV (λk)
4!

(ωIV (λk)
4!

− c̃ω
′′′(λk)

3!

)
6= ω′′′(λk)

3!
(ωV (λk)

5!
− d̃ω

′′′(λk)
3!

)
. (1.20)

(h) yn(x) (n = 0, 1, . . . ;n 6= l), if λk is triple eigenvalues (λk = λk+1 = λk+2)
of (1.1)–(1.3), where l 6= k, k+ 1, k+ 2 is an arbitrary non-negative integer.
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(i) yn(x) (n = 0, 1, . . . ;n 6= r), if λr and λs are conjugate of non-real eigenval-
ues (λs = λr) of (1.1)–(1.3).

(j) yn(x) (n = 0, 1, . . . ;n 6= l), if λr and λs are conjugate of non-real eigenvalues
(λs = λr) of (1.1)–(1.3), where l 6= r, s is an arbitrary non-negative integer.

It was proven in [1] that each of the systems (a)-(j) is a basis of Lp(0, 1), 1 < p <∞;
moreover, if p = 2, then this basis is unconditional.

We denote by {un(x)} corresponding biorhogonally conjugate to each of the sys-
tems (a)-(j). For example, the system un(x) (n = 0, 1, . . . ;n 6= k) is biorhogonally
conjugate to system (c).

The following auxiliary associated functions were considered in [1]:

y∗k+1 = yk+1 + c1yk, (1.21)

y∗∗k+1 = yk+1 + c2yk, (1.22)

y##
k+2 = yk+2 + c2yk+1 + d2yk (1.23)

where

c1 = − ω
′′′(λk)

3ω′′(λk)
− yk+1(1)

yk(1)
+ c̃, (1.24)

c2 = − ω
IV (λk)

4ω′′′(λk)
− yk+1(1)

yk(1)
+ c̃, (1.25)

d2 = − ωV (λk)
20ω′′′(λk)

+
( ωIV (λk)

4ω′′′(λk)

)2

+
( ωIV (λk)

4ω′′′(λk)
+
yk+1(1)
yk(1)

)(yk+1(1)
yk(1)

− c̃
)
− yk+2(1)

yk(1)
+ d̃.

(1.26)

These auxiliary associated functions were studied for the basis properties of systems
(c), (f) and (g) respectively. We will use them for the uniform convergence of the
spectral expansions in systems (c), (f) and (g).

It is verified in [1] that if λk is double eigenvalue of the problem (1.1)–(1.3), the
condition (1.18) is equivalent to the condition y∗k+1(1) 6= 0; if λk is triple eigenvalue
of (1.1)–(1.3), the conditions (1.19) and (1.20) are equivalent to the conditions
y∗∗k+1(1) 6= 0 and y##

k+2(1) 6= 0 respectively.

2. Uniform convergence of the spectral expansions for the
boundary value problem (1.1)–(1.3)

In this section, we give uniformly convergent spectral expansions in terms of
root functions of the problem (1.1)–(1.3). We define the trigonometric system
{θn(x)}∞n=1 as follows:

θn(x) =

{√
2 sinnπx, if β = 0,√
2 cos(n− 1

2 )πx, if 0 < β < π.

Theorem 2.1. Suppose that f ∈ C[0, 1] and f(x) has a uniformly convergent
Fourier expansions in the system {θn(x)}∞n=1 on the interval [0, 1]. Then, the func-
tion f(x) can be expanded in Fourier series in each of the systems (a)-(j) and these
expansions are uniformly convergent on every interval [0, b], 0 < b < 1. Moreover,
the Fourier series of f(x) in systems (a)-(j) are uniformly convergent on [0, 1] if
and only if (f, yl) = 0 for systems (a), (d), (h) and (j); (f, yk) = 0 for the systems
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(b) and (e); (f, y∗k+1) = 0 for system (c); (f, y∗∗k+1) = 0 for system (f); (f, y##
k+2) = 0

for system (g) and (f, ys) = 0 for system (i).

Proof. We only prove theorem 2.1 for system (c). The proof of the theorem for
other systems is similar.

Let β = 0. Consider the Fourier series f(x) on the interval [0, 1] in system (c):

F (x) =
∞∑

n=0,n6=k

(f, un)yn(x), (2.1)

where the system un(x) (n = 0, 1, . . . ;n 6= k) is defined by (see [1])

un(x) =
yn(x)− yn(1)

y∗k+1(1)
y∗k+1(x)

‖yn‖2 + ay2
n(1)

, uk+1(x) =
yk(x)− yk(1)

y∗k+1(1)
y∗k+1(x)

−yk(1)ω
′′(λk)

2

(2.2)

where y∗k+1 is defined by (1.21). Let

gn =
(
‖yn‖2 + ay2

n(1)
)−1

. (2.3)

Then according to (2.2), we obtain

un(x) = gn

(
yn(x)− yn(1)

y∗k+1(1)
y∗k+1(x)

)
. (2.4)

By (1.10), we have the estimates

yn(1) =
(−1)n

a(nπ)2
+O

(δ(1)n

n2

)
, (2.5)

‖yn‖2 =
1

2(nπ)2
+O(n−3) . (2.6)

By (2.5) and (2.6), equality (2.3) can be written as

gn = 2(nπ)2 +O(n). (2.7)

Note that the series (2.1) is uniformly convergent on [0, 1] if and only if the series

F1(x) =
∞∑

n=k+2

(f, un)yn(x) (2.8)

is uniformly convergent on [0, 1]. Suppose that the sequence {Sm(x)}∞m=k+2 is the
partial sum of the series (2.8). By using (2.4), the equality

Sm(x) = Sm,1(x) + Sm,2(x)

holds, where

Sm,1(x) =
m∑

n=k+2

gn(f, yn)yn(x),

Sm,2(x) = −
(f, y∗k+1)
y∗k+1(1)

m∑
n=k+2

gnyn(1)yn(x).

(2.9)

Firstly, we analyze the uniform convergence of the first sequence in (2.9). Using
(2.7), we obtain

gn(f, yn)yn(x) = 2(f, nπyn)nπyn(x) + (f, nπyn)yn(x)O(1). (2.10)
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By (1.10), the estimate

nπyn(x) = sinnπx+
α(x) cosnπx

nπ
+
αn(x) cosnπx

2nπ

+
βn(x) sinnπx

2nπ
+O

(δ(1)n

n

) (2.11)

holds, where

α(x) = A1x−
1
2

∫ x

0

q(τ)dτ, (2.12)

αn(x) =
∫ x

0

q(τ) cos 2nπτdτ, (2.13)

βn(x) =
∫ x

0

q(τ) sinnπτdτ. (2.14)

Note that α(x) ∈ C[0, 1] and the functional sequences {αn(x)}∞n=k+2, {βn(x)}∞n=k+2

are uniformly bounded. Hence, by (2.11), the equality (2.10) can be written as

gn(f, yn)yn(x) = 2(f, sinnπx) sinnπx+Bn(x),

where

Bn(x) = (f, sinnπx)O(
1
n

) + (α(x)f(x), cosnπx)O(
1
n

)

+ (f, αn(x) cosnπx)O(
1
n

) + (f, βn(x) sinnπx)O(
1
n

) +O
(δ(1)n

n

)
.

(2.15)

Therefore

Sm,1(x) =
m∑

n=k+2

(f,
√

2 sinnπx)
√

2 sinnπx+
m∑

n=k+2

Bn(x) .

The series
∞∑

n=k+2

Bn(x) (2.16)

is absolutely and uniformly convergent on [0, 1]. Indeed, by (2.15) we have

|Bn(x)| ≤ C1

n

{
|(f, sinnπx)|+ |(α(x)f(x), cosnπx)|

+ |(f, αn(x) cosnπx)|+ |(f, βn(x) sinnπx)|+ δ(1)n

}
≤ C2

{
|(f, sinnπx)|2 + |(α(x)f(x), cosnπx)|2

+
(∫ 1

0

|f(x)αn(x)|dx
)2

+
(∫ 1

0

|f(x)βn(x)|dx
)2

+
δ
(1)
n

n

}
,

where C1 and C2 are certain positive constants. By the Bessel inequality for the
Fourier coefficients, the numerical series

∞∑
n=k+2

|(f, sinnπx)|2,
∞∑

n=k+2

|(α(x)f(x), cosnπx)|2,
∞∑

n=k+2

δ
(1)
n

n



8 N. B. KERIMOV, S. GOKTAS, E. A. MARIS EJDE-2016/80

are convergent. By using Bessel inequality again and by (2.13), we obtain

∞∑
n=k+2

(
∫ 1

0

|f(x)αn(x)|dx)
2

≤ ‖f‖2
∞∑

n=k+2

∫ 1

0

|αn(x)|2dx

≤ ‖f‖2
∫ 1

0

[ ∞∑
n=k+2

∣∣ ∫ x

0

q(τ) cos 2nπτdτ
∣∣2]dx

≤ C3‖f‖2
∫ 1

0

∫ x

0

|q(τ)|2dτdx ≤ C3‖f‖2‖q‖2,

where C3 is a certain positive constant. Similarly, by (2.14) we obtain the estimate

∞∑
n=k+2

(∫ 1

0

|f(x)βn(x)|dx
)2

≤ C4‖f‖2‖q‖2,

where C4 is a certain positive constant. Thus, the functional series (2.16) is abso-
lutely and uniformly convergent. Since the series

∞∑
n=k+2

(f,
√

2 sinnπx)
√

2 sinnπx

is uniformly convergent on the interval [0, 1]. The sequence {Sm,1(x)}∞m=k+2 is also
uniformly convergent on this interval.

If (f, y∗k+1) = 0, then the equality Sm(x) = Sm,1(x) holds. Hence, the func-
tional sequence {Sm(x)}∞m=k+2 is uniformly convergent on the interval [0, 1]. Con-
sequently, in the case β = 0, the second part of the Theorem 2.1 is proven.

Suppose that (f, y∗k+1) 6= 0. We now analyze the uniform convergence of the
second functional sequence in (2.9). By using (1.10), (2.5) and (2.7), we obtain

m∑
n=k+2

gnyn(1)yn(x) =
2
aπ

m∑
n=k+2

sinnπ(1 + x)
n

+
m∑

n=k+2

O(n−2).

Note that the series
∞∑

n=k+2

sinnt
n

is uniformly convergent on every closed interval [δ, 2π − δ], where 0 < δ < π [2,
Chapter I, §30, Theorem I]. So, the series

∞∑
n=k+2

sinnπ(1 + x)
n

is uniformly convergent on the interval [0, b], 0 < b < 1. Hence, the functional
sequence {Sm,2(x)}∞m=r+1 is uniformly convergent on [0, b], 0 < b < 1.

Let 0 < β < π. Consider the Fourier series f(x) on the interval [0, 1] in system
(c):

G(x) =
∞∑

n=0,n6=k

(f, un)yn(x), (2.17)

where the system un(x) (n = 0, 1, . . . ;n 6= k) is defined by (2.2).
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Note that the series (2.17) is uniformly convergent on [0, 1] if and only if the
series

G1(x) =
∞∑

n=k+2

(f, un)yn(x), (2.18)

is uniformly convergent on [0, 1].
Suppose that the sequence {Gm(x)}∞m=k+2 is the partial sum of the series (2.18).

By using (2.2), the equality

Gm(x) = Gm,1(x) +Gm,2(x)

holds, where

Gm,1(x) =
m∑

n=k+2

hn(f, yn)yn(x),

Gm,2(x) = −
(f, y∗k+1)
y∗k+1(1)

m∑
n=k+2

hnyn(1)yn(x),

hn = (‖yn‖2 + ay2
n(1))

−1
.

By using (1.12), we obtain the estimates

yn(1) =
2(−1)n

a(2n− 1)π
+O

(δ(2)n

n

)
, (2.19)

hn = 2 +O(n−1). (2.20)

From (1.12), (2.19) and (2.20),

hnyn(1)yn(x) = − 4
aπ

sin(n− 1
2 )π(1 + x)

2n− 1
+O

(δ(2)n

n

)
Since ∣∣ m∑

n=k+2

sin(n− 1
2

)π(1 + x)
∣∣ =
| cos(k + 1)π(1 + x)− cosmπ(1 + x)|

2 sin π(1+x)
2

≤ 1

sin π(1+x)
2

≤ 1

sin π(1+b)
2

,

for 0 ≤ x ≤ b < 1 and the numerical series
∑∞
n=k+2 δ

(2)
n /n is convergent, then the

sequence {Gm,2(x)}∞m=k+2 is absolutely and uniformly convergent on the interval
[0, b], 0 < b < 1 [2, Introductory material, §1 , Abel’s Lemma].

Note that the sequence {Gm,1(x)}∞m=k+2 is uniformly convergent on the interval
[0, 1]. This can be seen by the method of the case β = 0. The proof of the theorem
2.1 is complete. �

Theorem 2.2. Suppose that f ∈ C[0, 1] and f(x) has a uniformly convergent
Fourier expansions in the system {θn(x)}∞n=1 on the interval [0, 1], then this func-
tion can be expanded in Fourier series in each of the systems {un(x)} which are
biorthogonally conjugates to systems (a)-(j) and these expansions are uniformly
convergent on the interval [0, 1].
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Proof. We only prove theorem 2.2 for system (2.2) which is biorthogonally conjugate
to system (c). The proof of the theorem for other systems is similar.

Let β = 0. Consider the Fourier series f(x) on the interval [0, 1] in (2.2):

T (x) =
∞∑

n=0,n6=k

(f, yn)un(x). (2.21)

Note that the series (2.21) is uniformly convergent on [0, 1] if and only if the series

T1(x) =
∞∑

n=k+2

(f, yn)un(x) (2.22)

is uniformly convergent on [0, 1].
Suppose that the sequence {Tm(x)}∞m=k+2 is the partial sum of the series (2.22).

By using (2.2), the equality

Tm(x) = Tm,1(x) + Tm,2(x)

holds, where

Tm,1(x) =
m∑

n=k+2

gn(f, yn)yn(x),

Tm,2(x) = −
y∗k+1(x)
y∗k+1(1)

m∑
n=k+2

gnyn(1)(f, yn).

The sequences {Sm,1(x)}∞m=k+2 and {Tm,1(x)}∞m=k+2 are the same. Therefore, the
sequence {Tm,1(x)}∞m=k+2 is uniformly convergent on the interval [0, 1].

Using (1.10), (2.5) and (2.7) we obtain

gnyn(1)(f, yn) =
2(−1)n

anπ
(f, sinnπx) +O

(δ(1)n

n

)
.

From here, the estimate

|gnyn(1)(f, yn)| ≤ C5

n

{
|(f, sinnπx)|+ δ(1)n

}
≤ C6

{
|(f, sinnπx)|2 +

δ
(1)
n

n

}
holds, where C5 and C6 are certain positive number. The numerical series

∞∑
n=k+2

|(f, sinnπx)|2,
∞∑

n=k+2

δ
(1)
n

n

are convergent. Consequently, the sequence {Tm,2(x)}∞m=k+2 is absolutely and uni-
formly convergent on [0, 1].

In the case 0 < β < π, the proof is similar. Theorem 2.2 is proven. �

3. Examples

Example 3.1. Consider the spectral problem

−y′′ = λy, 0 < x < 1, (3.1)

y(0) = 0, y′(1) = (−λ
3

+ 1)y(1) (3.2)

where λ is a spectral parameter.
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The eigenvalues of problem (3.1)–(3.2) are the root the equation ω(λ) = 0, where
ω(λ) = (λ3 − 1) sin

√
λ√

λ
+ cos

√
λ and Re

√
λ ≥ 0. It is easy to see that

ω(λ) = −λ2
∞∑
n=0

4(−1)n(n+ 1)(n+ 2)
(2n+ 5)!

λn. (3.3)

Therefore, λ = 0 is double eigenvalue of (3.1)-(3.2). Hence, all the eigenvalues
of (3.1)-(3.2) are real and all, except one double, are simple. Further, by (3.3),
if λ < 0, then w(λ) < 0. Then, λ = 0 is the first eigenvalue of (3.1)–(3.2) and
λ0 = λ1 = 0.

From (3.3), ω(0) = ω′(0) = 0, ω′′(0) = − 2
45 and ω′′′(0) = 1

105 . Eigenfunctions
corresponding to λn(0, 2, 3, . . . ) are y0(x) = x and yn(x) = sin

√
λnx√
λn

(n ≥ 2),

associated function corresponding to eigenfunction y0 is y1(x) = −x
3

6 + cx, where
c is an arbitrary constant. From (1.16), c̃ = −c. By (1.24),

c1 = − ω
′′′(0)

3ω′′(0)
− yk+1(1)

yk(1)
+ c̃ =

5
21
− 2c.

Note that y∗1 = y1 + c1y0 and y∗1(1) 6= 0(or ω′′′(λ0) 6= 3c̃ω′′(λ0)), hence c 6= 1/14.
Therefore, if c 6= 1/14, then the system yn(x) (n = 1, 2, . . . ) is a basis in Lp(0, 1), 1 <
p <∞ (see, [1]).

Let f(x) = x2 − x. Since

(f, sinnπx) =

{
0, if n is even
− 4
n3π3 , if n is odd,

the function f(x) can be expanded uniformly convergent Fourier series in the system
{
√

2 sinnπx}∞n=1. Further, (f, y1∗) = 8
315 −

c
3 . Consequently, if c = 8

105 , then the
Fourier series of f(x) in the system yn(x) (n = 1, 2, . . . ) is uniformly convergent on
[0, 1]; if c 6= 8

105 ,
1
4 , then the Fourier series of f(x) in the system yn(x) (n = 1, 2, . . . )

is uniformly convergent on [0, b], 0 < b < 1.

Example 3.2. Consider the spectral problem

−y′′ = λy, 0 < x < 1, (3.4)

y′(0) = αy(0), y′(1) = (aλ+ b)y(1) (3.5)

where λ is a spectral parameter, α is unique real root of the equation

α3 + 6α2 + 15α+ 15 = 0 (3.6)

(verify that α = 3

√
2

1+
√

5
− 3
√

1+
√

5
2 − 2) and

a = −α
2 + 3α+ 3
3(α+ 1)2

, b =
α

α+ 1
. (3.7)

The eigenvalues of (3.4)–(3.5) are the roots of the function

ω(λ) = (−aλ+ α− b) cos
√
λ− ((αa+ 1)λ+ αb)

sin
√
λ√

λ
(3.8)

where Re
√
λ ≥ 0.
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Note that by (3.6) and (3.7), the equalities α − b = αb = 15a, αa + 1 = −6a
hold. Therefore, the equality (3.8) can be written as ω(λ) = (15a − aλ) cos

√
λ +

(6aλ− 15a) sin
√
λ√

λ
. Hence, the Maclaurin series of ω(λ) forms

ω(λ) = −aλ3
∞∑
n=0

2(−1)n(n+ 2)(n+ 3)(4n+ 19)
(2n+ 7)!

λn. (3.9)

Therefore, λ = 0 is triple eigenvalue of (3.4)–(3.5). Hence, all the eigenvalues of
(3.4)–(3.5) are real and all, except one triple, are simple. Further, by (3.9), if
λ < 0, then w(λ) < 0. Then, λ = 0 is the first eigenvalue of (3.4)–(3.5) and
λ0 = λ1 = λ2 = 0.

From (3.9), we obtain ω(0) = ω′(0) = ω′′(0) = 0, ω′′′(0) = − 288a
7! , ωIV (0) =

4608a
9! and ωV (0) = − 57600a

11! . Eigenfunctions corresponding to λn (n = 0, 3, 4, . . . )
are y0(x) = αx + 1 and yn(x) = cos

√
λnx + α sin

√
λnx√
λn

(n ≥ 3). The first and the

second order associated functions corresponding to y0 are y1(x) = −αx
3

3! −
x2

2! +
αAx+A and y2(x) = αx5

5! + x4

4! −
αAx3

3! −
Ax2

2! +αBx+B respectively, where A and
B are arbitrary constants.

Note that 0 < β < π for problem (3.4)–(3.5). From here, (1.16) and (1.17),
c̃ = −A and d̃ = A2−B. According to above calculations, the condition (1.20) can
be written as

B 6= A2 − A

18
+

13
7128

. (3.10)

Therefore, if condition (3.10) is satisfied, then the system yn(x) (n = 1, 2, . . . ) is a
basis in Lp(0, 1) (1 < p <∞).

Let Fs(x) = Ps(2x− 1)(x2 − x), where Ps(t)(s = 0, 1, 2, . . . ) are Legendre poly-
nomials [16, p.162]:

Ps(t) =
1

2ss!
ds

xs
[(x2 − 1)

s
].

Since Fs(0) = Fs(1) = 0 , (Fs, cos(n− 1
2 )πx) = O(n−2). It means that this function

can be expanded uniformly convergent Fourier series in the system {
√

2 cos(n −
1
2 )πx}∞n=1 on the interval [0, 1].

Note that the equalities∫ 1

−1

tkPs(t)dt = 0,
∫ 1

−1

t7P7(t)dt =
28(7!)2

15!

hold, where k = 0, 1, . . . , s − 1 [16, p.174 and 175]. From here, since the functions
(t2 − 1)yj( t+1

2 ) (j = 0, 1, 2) are polynomials of degree seven or less than seven, we
obtain ∫ 1

0

Fs(x)yj(x)dx =
∫ 1

0

Ps(2x− 1)(x2 − x)yj(x)dx

=
1
8

∫ 1

−1

Ps(t)(t2 − 1)yj(
t+ 1

2
)dt

=

{
0, if s ≥ 8 and j = 0, 1, 2,
α(7!)2

5!15! , if s = 7 and j = 2.
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Hence, the condition

(Fs, y
##
2 ) =

{
0, if s ≥ 8
α(7!)2

5!15! , if s = 7

is satisfied. Consequently, from theorem 2.1, the function Fs(x) can be expanded
uniformly convergent Fourier series in the system yn(x) (n = 1, 2, . . . ) on [0, 1] for
s ≥ 8, on [0, b] (0 < b < 1) for s = 7.
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