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Hill’s equation for a homogeneous tree ∗

Robert Carlson

Abstract

The analysis of Hill’s operator −D2 + q(x) for q even and periodic is
extended from the real line to homogeneous trees T . Generalizing the
classical problem, a detailed analysis of Hill’s equation and its related
operator theory on L2(T ) is provided. The multipliers for this new version
of Hill’s equation are identified and analyzed. An explicit description of
the resolvent is given. The spectrum is exactly described when the degree
of the tree is greater than two, in which case there are both spectral
bands and eigenvalues. Spectral projections are computed by means of
an eigenfunction expansion. Long time asymptotic expansions for the
associated semigroup kernel are also described. A summation formula
expresses the resolvent for a regular graph as a function of the resolvent
of its covering homogeneous tree and the covering map. In the case of
a finite regular graph, a trace formula relates the spectrum of the Hill’s
operator to the lengths of closed paths in the graph.

1 Introduction

There is a large literature on the spectral theory of linear difference operators
associated with a combinatorial graph [6, 12, 15]. Despite almost immediate
physical applications the study of differential operators on a topological graph
has received very little attention. However there is a history of related work in
physical chemistry and mathematical physics [25, 27, 8, 18, 19, 20], and some
work for parabolic equations [22, 26, 31].
There are several reasons to study differential operators, rather than differ-

ence operators, on graphs. First, there are problems of physical interest, partic-
ularly inspired by advances in micro-electronic fabrication, which are modeled
using differential operators on graphs [4, 8, 17, 18, 30]. Second, it may be easier
to analyze the differential equations rather than the corresponding difference
equations. Third, one may expect that the metaphor of differential operators
on a graph as operators on a one-dimensional space with nontrivial topology can
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be developed to explore a class of problems which are intermediate in complex-
ity between traditional ordinary differential operators and partial differential
operators on manifolds.
The main aim of this work is to extend the theory of Hill’s equation [23]

−y′′ + qy = λy, q(x+ 1) = q(x), λ ∈ C (1.1)

with a real-valued and even potential q(1 − x) = q(x), 0 ≤ x ≤ 1, to graphs.
This equation will be interpreted as a system of equations on [0, 1], with certain
transition conditions satisfied at the vertices. The most direct extension will
be carried out when the graph is a homogeneous tree whose vertices have a
common number of incident edges.

In preparation for the analysis of Hill’s equation on homogeneous trees, and
its relatives on regular graphs, the second section establishes some basic results
for Schrödinger operators on a weighted graph. These operators are actually a
(possibly infinite) system of ordinary differential operators on intervals whose
lengths are given by the edge weights of the graph. The domains of these
operators will be determined by a set of boundary conditions at each set of
interval endpoints which are identified with a graph vertex. Under suitable
conditions these operators are essentially self-adjoint when given a domain of
compactly supported functions satisfying the vertex conditions.
The third section considers solutions of Hill’s equation (1.1) on homogeneous

trees which are continuous across each vertex, and which satisfy an additional
condition on the sum of the derivatives at each vertex. A central role is played
by solutions which are functions of a signed distance x(g) from a vertex and
are square integrable for x(g) > 0, respectively x(g) < 1. These decaying
solutions may be analyzed using transition matrices whose eigenvalues µ±(λ)
are a generalization of the classical Hill’s equation multipliers.
In the fourth section, the decaying solutions and multipliers are used to give

quite explicit formulae for several functions of the Hill’s operator. The resol-
vent is considered first. The analysis of the resolvent subsequently leads to
a description of the spectral projections by means of an eigenfunction expan-
sion. In addition, the large time behaviour of the associated semigroup kernel
is described.

In the final section, we consider the implications of the Hill’s equation anal-
ysis for regular graphs, which have a homogeneous tree as a universal covering
space. A summation formula relates the resolvent for a regular graph to combi-
natorial features of the graph and the resolvent of its covering tree. When the
regular graph is finite the trace of the resolvent can be expressed in terms of the
integral of the diagonal of the resolvent on the tree and a generating function
for numbers of closed paths of length l in the graph. When the potential q is
zero, the resolvent trace has a very simple form; this in turn gives a detailed de-
scription of the generating function. These last results for differential operators
are strongly analogous to results of Brooks [6] for the difference Laplacian.
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2 Schrödinger operators on graphs

Before treating the special structure of Hill’s equation on homogeneous trees and
related graphs, we consider basic questions about Schrödinger operators−D2+q
on graphs. Some of this material extends to more general differential operators
[11]. Operators with a different class of self adjoint domains are treated in [9].
In this work a graph G will be connected, with a countable vertex set and

a countable set of edges en. The edges are initially assumed to be directed,
although this is for notational convenience and plays no essential role. Each
edge has a positive weight (length) wn, and each vertex appears in at least one,
but only finitely many edges. Loops and multiple edges with the same vertices
are allowed.
A topological graph, also denoted G, may be constructed from the graph

data [24, p. 190]. For each directed edge en let [an, bn], with an < bn, be a real
interval of length wn, and let αj ∈ {an, bn}. Identify those interval endpoints
αj whose corresponding edge endpoints are the same vertex v. The Euclidean
metric on the intervals may be extended to a metric on G by taking the distance
between two points to be the length of the shortest (undirected) path joining
them. Since every point in G may be covered by an open set having nonempty
intersection with only finitely many edges, every compact set is contained in a
finite union of closed edges en.
Let L2(G) denote the Hilbert space ⊕nL2(en) with the inner product

〈f, g〉 =

∫
G
fg =

∑
n

∫ bn
an

fn(x)gn(x) dx, f = (f1, f2, . . .).

In this work q denotes a bounded real valued function on G, measurable on each
edge. An operator L = −D2+ q acts component-wise on functions f ∈ L2(G) in
its domain. In order to obtain a self adjoint operator, the domain of L will be
specified by certain vertex (boundary) conditions. Suppose that deg (v) interval
endpoints αj are identified with a vertex v, which we write αj ∼ v. At each
vertex v we will require that a function in the domain of L satisfy the continuity
conditions

f(αj) = f(αj+1), j = 1, . . . ,deg (v)− 1, αj ∼ v. (2.1)

An additional condition of the form

deg (v)∑
j=1

(−1)κ(αj)f ′(αj) = γvf(v), κ(αj) =
{
0, αj = an,
1, αj = bn,

}
γv ∈ R. (2.2)

will be satisfied. For operators on the real axis, these vertex conditions with
γ 6= 0 are known as δ (function) interactions. An extensive treatment of such
operators is in [3].
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Let Dcom be the set of compactly supported continuous functions f in L2(G)
such that f ′n is absolutely continuous on each en, and f

′′
n ∈ L

2(en). Initially L
will be defined on the domain D consisting of those functions in Dcom which
satisfy the vertex conditions (2.1) and (2.2). By working on one interval [an, bn]
at a time the classical treatment of differential operators [16, p. 1294], [21, pp.
169–171] shows that the adjoint of L is a differential operator acting by −D2+q.
In addition we obtain the following lemma.

Lemma 2.1 If f is in the domain of L∗, then f ′n is absolutely continuous on
each en, and f

′′
n ∈ L

2(en).

Theorem 2.2 If the weights wn satisfy wn ≥ w > 0, and γv ≥ γ > −∞ then
−D2 + q is essentially self adjoint and bounded below on the domain D.

Proof: Since multiplication by q is a bounded self adjoint operator, only the
case −D2 needs to be considered [21, p. 287].
The next step is to show that L = −D2 is a symmetric operator which is

bounded below on ⊕e∈GL2(e). Suppose that f, g ∈ D, and f is supported in an
open set containing a single vertex v. Let fj be the component of f for an edge
ej incident on v, and let αj be an endpoint of ej identified with v. Integration
by parts gives

〈Lf, g〉 =
∑
j

∫ bj
aj

−f ′′g =
∑
j

(−1)κ(αj)f ′j(αj)gj(αj) +
∑
j

∫ bj
aj

f ′g′ .

By virtue of the vertex conditions∑
j

(−1)κ(αj)f ′j(αj)gj(αj) = g(v)
∑
j

(−1)κ(αj)f ′j(αj) = γvg(v)f(v),

where f(v) is the common value for fj(αj).
By a partition of unity argument every function in D can be written as a sum

of functions either supported in a small open neighborhood of a single vertex v,
or supported in an open subinterval of a single edge e. Thus the computation
above implies 〈Lf, g〉 = 〈f,Lg〉. Also [21, p. 193], for each fj and any ε > 0

|f(αj)| ≤ ε‖f
′
j‖+ C(ε)‖fj‖,

so that the quadratic form

〈Lf, f〉 =
∑
n

‖f ′n‖
2 +
∑
v

γv|f(v)|
2 ≥ C1‖f‖

2

is bounded below by a multiple of ‖f‖2.
The remainder of the proof that L = −D2 is essentially self adjoint, is

adopted from [21, p. 274]. For some positive constant β the symmetric operator



EJDE–1997/23 Robert Carlson 5

β +L is bounded below by 1, so it will be essentially self adjoint if the range is
dense. Assume that the range is not dense. Since the orthogonal complement
of the range of β + L is the null space of β + L∗, this null space must contain
a nonzero element ψ. By virtue of Lemma 2.1 and integration by parts ψ must
satisfy the vertex conditions (2.1) and (2.2).
Pick a C∞ function η(x) on (0, w) which is 1 in a neighborhood of 0 and

vanishes identically for x > w/4. Pick any edge e0, and for K = 1, 2, 3, . . .
construct a C∞ cutoff function φK on G as follows. On the set E0 of (closed)
edges containing some point whose distance from a vertex of e0 is less than
or equal to K, let φK = 1. On edges e = [an, bn] not in E0 which share a
vertex v ∼ an (resp. v ∼ bn) with an edge in E0, let φK = η(x − an) (resp.
φK = η(bn − x)) where η is defined. Otherwise let φK = 0.
The function φKψ is in the domain of L. We have

(β+L)φKψ = (β−D
2)φKψ = φK(β−D

2)ψ−2φ′Kψ
′−φ′′Kψ = 0−2φ

′
Kψ

′−φ′′Kψ.

Since φ′′K is uniformly bounded, the term φ′′Kψ goes to zero in L
2 as K →∞.

Let E(K) denote those edges where φ′K is not identically zero. There is no
loss of generality assuming that φK and ψ are real. Then integration by parts
gives∫

G
(φ′Kψ

′)2 =

∫
E(K)

(φ′K)
2ψ′ψ′ = −

∫
E(K)

ψ[2φ′Kφ
′′
Kψ

′ + (φ′K)
2ψ′′]

= −β

∫
E(K)

ψ2(φ′K)
2 −
1

2

∫
E(K)

(ψ2)′([φ′K ]
2)′

=

∫
E(K)

ψ2[
1

2
([φ′K ]

2)′′ − β(φ′K)
2] .

Since 12 ([φ
′
K ]
2)′′ − (φ′K)

2 is uniformly bounded, the integral goes to zero as
K →∞.
If ψ existed it would follow that φKψ is in the domain of β + L, and (β +

L)φKψ → 0 in L2. But this contradicts the fact that β+L is bounded below by
1. Consequently, the range of β+L is dense, and so it is essentially self adjoint.
2

The operators considered in this work will satisfy the hypotheses of The-
orem 2.2, and henceforth the domain of L will be extended so that L is self
adjoint. Results similar to Theorem 2.2 for more general differential operators
on graphs, and the problem of characterizing self adjoint operators by means of
vertex conditions are treated in [11].
Notice that the second derivative and multiplication by a function are defined

independently of the choice of edge direction. The ‘outward pointing’ derivatives
at a vertex,

(−1)κ(αj)f ′(αj), αj ∼ v, κ(αj) =

{
0, αj = an,
1, αj = bn.
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are also orientation independent. Thus Schrödinger operators may be defined
on undirected graphs.

3 Multipliers for homogeneous trees

In this section the graph G is assumed to be a homogeneous tree T whose edge
weights are all 1, and whose vertices have degree δ + 1. A particular edge
e = [0, 1] is selected. For g ∈ T , the function x(g) will be the signed distance
from 0 ∈ e. The sign is taken to be nonnegative if g ∈ e, or if the shortest path
from 0 to g includes e, and negative otherwise. The vertex conditions (2.1) and
(2.2) are specialized by requiring γv to have the same value γ at all vertices v,

δ+1∑
j=1

(−1)κ(αj)f ′(αj) = γf(v), f(αj) = f(αj+1), j = 1, . . . , δ, αj ∼ v. (3.1)

In a homogeneous tree there is an obvious way to extend solutions of −y′′+
qy = λy beyond e so as to satisfy the vertex conditions (3.1) as x(g) increases
(resp. decreases), which we will call moving to the right (left). At each vertex
v encountered as we move right (resp. left), impose the condition

y′(v+) = [y
′(v−) + γy(v)]/δ,

(
resp. y′(v−) = [y

′(v+)− γy(v)]/δ
)
, (3.2)

in addition to the continuity condition. This extension of solutions of (1.1) to
adjacent edges e± provides a linear map from from the solutions on e to those
on e±. Two transition matrices will describe the propagation of initial data
for solutions of (1.1) as we move from edge to edge. These transition matrices
will generally have a pair of eigenvalues, and the propagation of the initial data
can be described by decomposing the data into eigenvectors of the transition
matrix, and then using the eigenvalues as multipliers.
Having selected e, identify other edges en = [v0(n), v1(n)] with the interval

[0, 1] so that v0 → 0 when x(v0) < x(v1). In these local coordinates there is a
basis C(t, λ), S(t, λ) of solutions for (1.1) satisfying(

C(0, λ) S(0, λ)
C ′(0, λ) S′(0, λ)

)
=

(
1 0
0 1

)
.

We will use the abbreviations c(λ) = C(1, λ), c′(λ) = C′(1, λ) and s(λ) =
S(1, λ), s′(λ) = S′(1, λ).
A solution y of (1.1) satisfying y(0, λ) = a and y′(0, λ) = b will have values

at 1 given by(
y(1, λ)
y′(1, λ)

)
=M1(λ)

(
a
b

)
, M1(λ) =

(
c(λ) s(λ)
c′(λ) s′(λ)

)
.
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The matrix taking initial data from the right endpoint of an edge to the left
endpoint is

M0(λ) =M
−1
1 (λ) =

(
s′(λ) −s(λ)
−c′(λ) c(λ)

)
.

The transition conditions (3.2) at a vertex also have a matrix form on the initial
data. The leftward transition v+ → v− and rightward transition v− → v+
respectively have matrices

J0 =

(
1 0
−γ/δ 1/δ

)
, J1 =

(
1 0
γ/δ 1/δ

)
.

If we start at the left (respectively right) endpoint, we can propagate ini-
tial conditions across the vertex and then across the adjacent edge simply by
multiplying the initial data respectively by the matrices T0(λ) = M0(λ)J0,
T1(λ) =M1(λ)J1, where

T0(λ) =

(
s′(λ) + γs(λ)/δ −s(λ)/δ
−c′(λ)− γc(λ)/δ c(λ)/δ

)
,

T1(λ) =

(
c(λ) + γs(λ)/δ s(λ)/δ
c′(λ) + γs′(λ)/δ s′(λ)/δ

)
.

In both cases det(Mj(λ)) = 1 so that detTj(λ) = 1/δ, for j = 0, 1, while

tr T0(λ) = s
′(λ) +

c(λ) + γs(λ)

δ
, tr T1(λ) = c(λ) +

s′(λ) + γs(λ)

δ
.

The eigenvalues are

µ±j (λ) = tr(Tj)/2±
√
tr(Tj)2/4− det(Tj),

and the corresponding eigenvectors for Tj are multiples of

E±0 =

(
−s(λ)

δµ±0 − δs
′(λ)− γs(λ)

)
=

(
−s(λ)

c(λ) − δµ∓0

)
, (3.3)

E±1 =

(
s(λ)

δµ±1 − δc(λ)− γs(λ)

)
=

(
s(λ)

s′(λ) − δµ∓1

)
.

The alternate forms come from the formulas for tr(Tj).
Suppose that λ is real, so that the matrices Tj(λ) are real. When the term

tr(Tj)
2/4− det(Tj) is nonpositive we have

|µ±j | = 1/
√
δ, −2/δ ≤ tr(Tj) ≤ 2/δ,

and the eigenvalues are conjugate pairs. On the other hand, when tr(Tj)
2/4−

det(Tj) is nonnegative, the eigenvalues are real, and µ
+
j µ
−
j = 1/δ implies they

have the same sign.
Most of the following lemma is well known [23, p. 8].

Lemma 3.1 Since q(x) is even, c(λ) = s′(λ). It follows that µ±0 (λ) = µ±1 (λ).
In addition if s(λ) = 0, then c2(λ) = 1.
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Proof: Since q(x) = q(1− x), the identity

C(1− x, λ) = s′(λ)C(x, λ) − c′(λ)S(x, λ).

holds because both sides are solutions of (1.1) with the same initial data at
x = 1. Evaluation at x = 0 gives c(λ) = s′(λ). We also have the Wronskian
identity

1 = c(λ)s′(λ)− s(λ)c′(λ).

When s(λ) = 0 the equation c2(λ) = 1 is satisfied. To establish the equality of
the eigenvalues for T0 and T1, it is sufficient to observe that their determinants
and traces are the same. 2

In light of the previous lemma the transition matrix eigenvalues will be
denoted µ±.

Lemma 3.2 If |µ±(λ)| = 1/
√
δ then λ is in the spectrum of L, and so is real.

Proof: The various cases being similar, suppose that y is a nontrivial solution
of (1.1) on e whose initial data at the right endpoint x(g) = 1 is an eigenvector
for T1(λ) with eigenvalue µ

+. Extend y to x(g) > 0 using y(x(g) + 1) =
µ+y(x(g)). The self adjoint conditions (3.1) hold for y.
Now for 0 < x < 1 fix a C2 function η(x) such that η(x) = 0 for 0 < x < 1/4

and η(x) = 1 for 3/4 < x < 1. For g ∈ T and r = 2, 3, 4, . . . let

φr(g) =




η(x), 0 < x(g) < 1,
η(r + 1− x), r < x(g) < r + 1,
1, 1 ≤ x(g) ≤ r,
0, otherwise.

Then

∫
T
|φry|

2 ≥
r−1∑
k=1

δk
∫
0≤x(g)≤1

|(µ+)ky|2 = (r − 1)

∫
0≤x(g)≤1

|y|2

while for some constants C1, C2,∫
T
|[−D2 + q − λ]φry|

2 ≤ C1[1 + δ
r|µ+|2r]

∫
0≤x(g)≤1

[|y|+ |y′|]2 ≤ C2 .

Letting ψr = φry/‖φry‖, it follows that ‖(−D2 + q − λ)ψr‖ → 0 as r →∞,
so λ is in the spectrum of the self adjoint operator −D2 + q. 2

When q = 0 the transition matrices may be expressed in terms of elementary
functions, since in that case

c(x, λ) = cos(
√
λx), s(x, λ) = sin(

√
λx)/

√
λ .
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The transition matrix eigenvalues are

µ±(λ) =
(δ + 1) cos(

√
λ) + γ sin(

√
λ)/
√
λ

2δ
(3.4)

±
( [(δ + 1) cos(√λ) + γ sin(√λ)/√λ]2

4δ2
−
1

δ

)1/2
,

and the corresponding eigenvectors E0, E1 for T0, T1 are multiples of

E0 =

(
− sin(

√
λ)/
√
λ

cos(
√
λ)− δµ∓

)
, E1 =

(
sin(
√
λ)/
√
λ

cos(
√
λ)− δµ∓

)
.

The gross behaviour of the matrices Tj(λ), and their eigenvalues and eigen-
vectors, may be determined from the well known estimates for C(x, λ) and
S(x, λ). In particular [28, p. 13]

|C(x, λ) − cos(
√
λx)| ≤ K exp(| Im (

√
λ)|x)/|

√
λ|, (3.5)

|C ′(x, λ) +
√
λ sin(

√
λx)| ≤ K exp(| Im (

√
λ)|x),

|S(x, λ)− sin(
√
λx)/

√
λ| ≤ K exp(| Im (

√
λ)|x)/|λ|,

|S′(x, λ) − cos(
√
λx)| ≤ K exp(| Im (

√
λ)|x)/|

√
λ| .

These estimates imply that tr (Tj)
2−det(Tj)→ +∞ as λ→ −∞ along the real

axis. Taking the positive branch of the square root as λ→ −∞ gives

µ+(λ) '
δ + 1

2δ
e| Im (

√
λ)|, µ−(λ) '

2

δ + 1
e−| Im (

√
λ)|, λ→ −∞ . (3.6)

By Theorem 2.2 and Lemma 3.2 the set

σ1 = {λ ∈ C
∣∣∣ |µ±(λ)| = |δ|−1/2},

is contained in a half line (a,∞). The next result describes the extension of
µ±(λ) to the complement of σ1.

Theorem 3.3 The eigenvalues µ±(λ) may be chosen to be single valued analytic
functions in the complement of σ1 with the asymptotic behaviour (3.6). On this
domain |µ+(λ)| > 1/

√
δ and |µ−(λ)| < 1/

√
δ. These functions have continuous

extensions to the real axis which are analytic except on the discrete set where
tr(Tj)

2 = 4det(Tj). If ν ∈ σ1 then

lim
ε→0+

µ±(ν + iε)− µ±(ν − iε) = 2i Im (µ±(ν)) . (3.7)
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Proof: Since tr(Tj) and det(Tj) are entire functions of λ, the eigenvalues µ
±

and eigenvectors will be analytic in any simply connected domain with tr(Tj)
2−

4 det(Tj) 6= 0. The condition tr(Tj)2 − 4 det(Tj) = 0 is equivalent to requiring
µ+ = µ−, in which case (µ±)2 = 1/δ. The fact that the functions µ+(λ)
and µ−(λ) extend as single valued analytic functions on the complement of σ1
satisfying |µ+(λ)| > 1/

√
δ and |µ−(λ)| < 1/

√
δ is simply a consequence of the

identity µ+µ− = 1/δ.
To obtain the continuous extension to the real axis, note that the set of

points where the eigenvalues coalesce, or tr(Tj)
2 − 4 det(Tj) = 0, is the zero set

of an entire function, which has isolated (real) zeroes ri. The analytic functions
µ± thus have an analytic continuation from either half plane to the real axis
with these points ri omitted. At these points

lim
λ→ri

µ±(λ) = tr (Tj)/2

independent of the branch of the square root.
We have observed in Lemma 3.2 that if |µ±(ν)| = 1/

√
δ, then ν ∈ R. If

tr (Tj)
2/4 = det(Tj) = 1/δ, then both sides of (3.7) are 0. Suppose instead that

tr (Tj)
2/4− det(Tj) < 0, so that the eigenvalues µ±(ν) are a nonreal conjugate

pair. Since the eigenvalues are distinct, they extend analytically across the
real axis. There are two possibilities: either (i) (3.7) holds, in which case the
extension of µ±(ν + iε) is µ∓(ν − iε), or (ii) µ±(ν + iε) extends to µ±(ν − iε).
The second case will be excluded because |µ+| > 1/

√
δ in the complement of

σ1. If (ii) held, then µ
+ would be an analytic function of λ in a neighborhood

of ν satisfying |µ+(ν)| = 1/
√
δ, and |µ+(λ)| ≥ 1/

√
δ. But this violates the open

mapping theorem [1, p. 132], so (i) must hold. The treatment of µ− is the same.
2

Let ρ denote the resolvent set of L.

Theorem 3.4 If λ ∈ C \ σ1 then there is a nontrivial solution y1 of (1.1) on
T which satisfies the vertex conditions (3.1), is square integrable on x(g) > 0,
and whose initial data at 1 is an eigenvector of the transition matrix T1(λ) with
eigenvalue µ−(λ). If λ ∈ ρ the space of solutions of (1.1) which satisfy the vertex
conditions (3.1) and are square integrable on x(g) > 0, is one dimensional. The
analogous statements hold for solutions y0 on x(g) < 1 and the transition matrix
T0(λ).

Proof: If λ ∈ C \σ1 then by Theorem 3.3 the eigenvalue µ−(λ) is well defined.
Use a corresponding eigenvector as the initial data at 1 for a solution y1 of (1.1)
on e. The solution on x(g) > 0 obtained by propagating with the transition
matrix T1, i.e. with the eigenvalue µ

−(λ), will satisfy the vertex conditions
(3.1). The square integrability is checked by the computation∫

x(g)>0

|y1|
2 =

∞∑
k=0

δk
∫ 1
0

|µ−(λ)ky1|
2 =

∞∑
k=0

δk|µ−(λ)|2k
∫ 1
0

|y1|
2 .
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Since |µ−(λ)| < 1/
√
δ, the solution y1 is square integrable.

Suppose that λ ∈ ρ and that the sum of the dimensions of the two spaces
of solutions of (1.1) satisfying the vertex conditions (3.1), and square integrable
on x(g) > 0 and x(g) < 1 respectively, exceeds 2. Since the space of solutions to
−y′′ + qy = λy is two dimensional on e, there would be at least one nontrivial
solution of the equation which satisfied all the vertex conditions and was square
integrable on T . This function would be an eigenfunction for L − λI, which is
impossible. 2

4 Functions of L for homogeneous trees

The resolvent and spectrum of L

The solutions y0 and y1 of Theorem 3.4 can be used to construct the resolvent
of L on T . The explicit description of the eigenvectors for µ−(λ) shows that
they satisfy the boundary conditions

[c(λ) − δµ+(λ)]y(0) + s(λ)y′(0) = 0, (4.1)

[s′(λ) − δµ+(λ)]y(1)− s(λ)y′(1) = 0.

Since q is even the solutions C1(x, λ) and S1(x, λ) of (1.1) satisfying(
C1(1, λ) S1(1, λ)
C′1(1, λ) S′1(1, λ)

)
=

(
1 0
0 1

)

may also be written as C1(x, λ) = C(1− x, λ) and S1(x, λ) = −S(1− x, λ). To
make a specific choice of functions y0 and y1, define

U(x, λ) = −s(λ)C(x, λ) + [c(λ)− δµ+(λ)]S(x, λ),

V (x, λ) = s(λ)C1(x, λ) + [s
′(λ)− δµ+(λ)]S1(x, λ)

= s(λ)C1(x, λ) + [c(λ)− δµ
+(λ)]S1(x, λ) .

The Wronskian W (λ) = W (V, U) = V (x, λ)U ′(x, λ) − V ′(x, λ)U(x, λ) is
independent of x, and has the value

W (λ) = s(λ)
[
−s(λ)c′(λ) + (c(λ)− δµ+)c(λ)

]
−
[
c(λ)− δµ+

][
−s(λ)c(λ) + (c(λ) − δµ+)s(λ)

]
(4.2)

= s(λ)[1 − δµ+][1 + δµ+] .

For λ ∈ ρ and W (λ) 6= 0 define the kernel

Re(x, t, λ) =

{
U(x, λ)V (t, λ)/W, 0 ≤ x ≤ t ≤ 1 ,
U(t, λ)V (x, λ)/W, 0 ≤ t ≤ x ≤ 1 .

(4.3)
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If fe is supported in the interior of e the function

he(x) =

∫ 1
0

Re(x, t, λ)fe(t) dt

satisfies [−D2+ q−λ]he = fe, and in neighborhoods of 0 and 1 the function he
satisfies (1.1) and the boundary conditions (4.1) [5, p. 309].
Extending U to x(g) < 0 and V to x(g) > 1 using the multiplier µ−, The-

orem 3.4 shows that he is square integrable on T and satisfies the vertex con-
ditions (3.1). Using cutoff functions φK as in Theorem 2.2, it is easy to check
that h is in the domain of L. Let fe denote the restriction of f ∈ L2(T ) to the
edge e. Since integration of fe against the meromorphic kernel Re(x, t, λ) agrees
with R(λ)fe as long as W (λ) 6= 0, they must agree for all λ ∈ ρ. The discussion
above implies the next result.

Theorem 4.1 For λ ∈ ρ,

R(λ)f =
∑
e

∫ 1
0

Re(x, t, λ)fe(t) dt,

the sum converging in L2(T ).

Turning to the spectrum of L let σ2 = {λ ∈ R
∣∣∣ s(λ) = 0}.

Theorem 4.2 The spectrum σ of L on L2(T ) is the semibounded set σ =
σ1 ∪ σ2. If δ = 1, then σ2 ⊂ σ1. If δ > 1 then σ1 ∩ σ2 = ∅ and every point in
the infinite sequence σ2 is an eigenvalue.

Proof Lemma 3.2 has already shown that σ1 ⊂ σ. In case δ = 1 and λ ∈ σ2,
Lemma 3.1 implies tr(Tj)

2/4 = c2(λ) = 1, so µ+ = ±1 and σ2 ⊂ σ1.
Suppose δ is arbitrary and that λ1 ∈ R\σ1 ∪ σ2. Then W (λ1) 6= 0 by Theo-

rem 3.3 and (4.2). Since |µ−(λ1)| < 1/
√
δ the resolvent formula of Theorem 4.1

defines an analytic L2(T ) valued function in a neighborhood of λ1 as long as f
is supported on a finite union of edges.
Let [a, b] be a compact interval containing λ1 and contained in C \{σ1∪σ2}.

If P denotes the family of spectral projections for L, then [29, p. 237,264] for
any f ∈ L2(T )

1

2
[P[a,b] + P(a,b)]f = lim

ε↓0

1

2πi

∫ b
a

[R(λ+ iε)−R(λ− iε)]f dλ . (4.4)

By the observations above, the right hand side of (4.4) vanishes on the dense
set of f supported on finitely many edges. This means that [P[a,b]+P(a,b)]f = 0
for all f ∈ L2(T ), and [a, b] is in the resolvent set ρ. Thus C \ {σ1 ∪ σ2} ⊂ ρ.
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Finally, suppose that λ1 ∈ σ2 and δ > 1. By Lemma 3.1 c2(λ1) = 1.
In addition tr(Tj) = c(λ1)(1 + 1/δ), µ

+ = c(λ1), and µ
− = c(λ1)/δ. Since

|µ−| = 1/δ, λ1 /∈ σ1. Eigenvectors for µ− are multiples of

(
0
1

)
for both Tj.

The function S(x, λ1), which has such initial data at both 0 and 1, thus extends
to an L2 eigenfunction of −D2 + q on T . 2

As in the classical Hill’s equation, the discriminant

∆(λ) = tr(Tj(λ)) =
δ + 1

δ
c(λ) +

γ

δ
s(λ)

plays a central role in describing the spectrum of L. With the help of Lemma 3.2
one checks easily that λ ∈ σ1 if and only if −2/

√
δ ≤ ∆(λ) ≤ 2/

√
δ.

Theorem 4.3 Suppose δ ≥ 2 and µn, n = 1, 2, 3, . . . , are the naturally ordered
points in σ2. Then ∆(µn) = (−1)n(δ+1)/δ. In each of the intervals (−∞, µ1),
(µn, µn+1), and for all η satisfying −2/

√
δ ≤ η ≤ 2/

√
δ, the equation ∆(λ)−η =

0 has exactly one root, counted with multiplicity. The function ∂λ∆ has no roots
in σ1.

Proof: By Lemma 3.1 s′(λ) = c(λ) and c2(µn) = 1. Moreover s(µn) = 0
implies

∆(µn) =
δ + 1

δ
c(µn).

Counting the number of sign changes for S(x, µn) [28, p. 41] gives c(µn) =
s′(µn) = (−1)n.
Since |∆(µn)| = (δ + 1)/δ > 2/

√
δ when δ ≥ 2, the function ∆(λ) − η must

have at least one root between µn and µn+1. To show that there is exactly one
root, we begin by considering the case q(x) = 0 and γ = 0. In this case the
claim is elementary. For 0 ≤ t ≤ 1 let

∆t(λ)− η =
δ + 1

δ
ct(λ) + t

γ

δ
st(λ),

where ct and st are the functions c(λ) and s(λ) for the potential tq(x) with tγ
in the vertex condition.
For each t the function ∆t(λ)−η is entire, with real roots missing the values

µn(t). By Rouche’s theorem [1, p. 152] the number of roots of ∆t(λ) − η = 0,
counted with multiplicity, between µn(t) and µn+1(t) is locally constant in t.
Since the number of roots is 1 when t = 0, it remains 1 up to t = 1.
The case of the interval (−∞, µ1) may be handled in a similar fashion, al-

though in this case the trapping of the roots simply makes use of an uniform
estimate of the growth of ∆t(λ) as λ→ −∞ for 0 ≤ t ≤ 1, [28, p. 13].
Finally, if ∂λ∆(λ0) = 0 for λ0 ∈ σ1, then η = ∆(λ0) would satisfy −2/

√
δ ≤

η ≤ 2/
√
δ, and ∆(λ)− η would have a root of multiplicity higher than 1, which

is impossible. 2
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Spectral projections

The rather explicit formula (4.3) can be used to compute the spectral projections
for L. These computations will involve the extensions of C(x, λ) and S(x, λ) to
the left and right of e, obtained by means of the transition matrices Tj .

Write x = t+ k for integer k and 0 ≤ t < 1. It is convenient to compute the
values for C(t+ k, λ) and S(t+ k, λ) by diagonalizing the transition matrices

T0(λ) = S0

(
µ+ 0
0 µ−

)
S−10 , T1(λ) = S1

(
µ+ 0
0 µ−

)
S−11 ,

S0 =

(
−s(λ) −s(λ)

c(λ)− δµ− c(λ)− δµ+

)
,

S−10 =
1

δs(λ)[µ+ − µ−]

(
c(λ)− δµ+ s(λ)
δµ− − c(λ) −s(λ)

)
,

S1 =

(
s(λ) s(λ)

c(λ)− δµ− c(λ)− δµ+

)
,

S−11 =
1

δs(λ)[µ− − µ+]

(
c(λ)− δµ+ −s(λ)
δµ− − c(λ) s(λ)

)
.

If k < 0 and

C(t+k, λ) = c1(k)C(t, λ)+s1(k)S(t, λ), S(t+k, λ) = c2(k)C(t, λ)+s2(k)S(t, λ),

then (
c1(k) c2(k)
s1(k) s2(k)

)
= S0

(
[µ+]k 0
0 [µ−]k

)
S−10 .

The expression is slightly different if k > 0 since the transition matrix T1 uses
a basis of values at x = 1, rather than x = 0. Thus for k > 0,(
c1(k) c2(k)
s1(k) s2(k)

)
=

(
s′(λ) −s(λ)
−c′(λ) c(λ)

)
S1

(
[µ+]k 0
0 [µ−]k

)
S−11

(
c(λ) s(λ)
c′(λ) s′(λ)

)
.

For f supported in e the equation −y′′ + qy − λy = f has solutions

K1f(x) =

∫ x
0

K1(x, t, λ)f(t) dt , K2f(x) =

∫ 1
x

K2(x, t, λ)f(t) dt ,

where the kernels for these formal right inverses are

K1(x, t, λ) = C(x, λ)S(t, λ) − S(x, λ)C(t, λ),

K2(x, t, λ) = C(t, λ)S(x, λ) − S(t, λ)C(x, λ).
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Notice that these functions are entire as functions of λ. Define K = [K1+K2]/2
and

G(x, t, λ)

= R(x, t, λ)−K(x, t, λ)

=

{
U(t, λ)V (x, λ)/W (λ) − C(x, λ)S(t, λ)/2 + S(x, λ)C(t, λ)/2, t ≤ x,
U(x, λ)V (t, λ)/W (λ) − C(t, λ)S(x, λ)/2 + S(t, λ)C(x, λ)/2, x ≤ t .

For each fixed t ∈ [0, 1] the function G(x, t, λ) is a solution of LG = λG, except
possibly for x = t. But since G and ∂xG are continuous at x = t, it is a solution
for all x, so that for 0 ≤ t ≤ 1,

G(x, t, λ) = U(x, λ)V (t, λ)/W (λ) − C(t, λ)S(x, λ)/2 + S(t, λ)C(x, λ)/2. (4.5)

To obtain a more explicit description of the spectral projections of L, we
restrict (4.4) to f ∈ L2(T ) supported in e, so the expression (4.3) is available.
If in addition h ∈ L2(T ) is supported in the union of finitely many edges, then
since K(x, t, λ) is entire in λ,

1

2
〈[P[a,b] + P(a,b)]f, h〉 = lim

ε↓0

1

2πi

∫ b
a

〈[G(λ + iε)−G(λ− iε)]f, h〉 dλ . (4.6)

Using the definitions of U and V and the identity(
C1(t, λ)
S1(t, λ)

)
=

(
s′(λ) −c′(λ)
−s(λ) c(λ)

)(
C(t, λ)
S(t, λ)

)
,

the expression (4.5) may be written as

G(x, t, λ) =
(
C(x, λ), S(x, λ)

)
Ψ(λ)

(
C(t, λ)
S(t, λ)

)
,

where

Ψ(λ) =

(
0 1/2
−1/2 0

)
(4.7)

+
1

W (λ)

(
−s2(λ) −s(λ)[s′(λ) − δµ+(λ)]

s(λ)[c(λ) − δµ+(λ)] [c(λ) − δµ+(λ)][s′(λ) − δµ+(λ)]

)
×(

s′(λ) −c′(λ)
−s(λ) c(λ)

)

=
s(λ)

W (λ)

(
−sδµ+ −1/2 + c(λ)δµ+ − (δµ+)2/2

−1/2 + c(λ)δµ+ − (δµ+)2/2 [c(λ)− δµ+][1− c(λ)δµ+]/s

)

These calculations essentially follow the program in [13], so we refer to this
reference for the proofs that

Ψ∗(λ) = Ψ(λ), Im (Ψ) =
Ψ−Ψ∗

2i
≥ 0,
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and a fuller discussion of the next theorem. In our context the development of
an eigenfunction expansion is simplified since Ψ has continuous extensions from
the upper and lower half planes to the real axis except possibly where s(λ) = 0
or δµ+(λ)2 = 1.

Theorem 4.4 For f supported in e the spectral projections for L may be written
as

1

2
[P[a,b] + P(a,b)]f(x) (4.8)

= lim
ε↓0

1

π

∫ b
a

∫ 1
0

(
C(x, ν), S(x, ν)

)
Im (Ψ(ν + iε))

(
C(t, ν)
S(t, ν)

)
f(t) dt dν

=

∫ b
a

(
C(x, ν), S(x, ν)

)
f̂(ν) dM(ν)

where the transform is defined by

f̂(ν) =

∫ 1
0

(
C(t, ν)
S(t, ν)

)
f(t) dt

and the spectral matrix is

M(ν) = lim
ε→0+

1

π

∫ ν
0

ImΨ(t+ iε) dt .

The explicit formula for Ψ(λ) together with Theorem 3.3 and (4.2) provide
the next result.

Corollary 4.5 On the complement of σ2 the spectral measure is absolutely con-
tinuous with respect to Lebesgue measure.

Some comments are in order regarding the transform f → f̂ . The classical
treatments [16, p. 1351] of eigenfunction expansions for ordinary differential
operators on an interval I might suggest stronger results than Theorem 4.4,
including the surjectivity of f → f̂ from L2(I) to L2(M), and the explicit

diagonalization L̂f(ν) = νf̂(ν). However we would then anticipate an infinite
spectral matrix, whose explicit determination as in (4.7) might still involve the
computations above. The approach here is instead based on the study of self
adjoint extensions of symmetric ordinary differential operators on L2[0, 1] in the
larger space L2(T ) [2, pp. 121–139], [13], [14, pp. 499–513].

Pointwise decay for the semigroup exp(−τL)

The aim of this section is to develop an asymptotic expansion and pointwise
decay estimates as τ →∞ for the kernel of the semigroup exp(−τL) generated
by L on L2(T ) when δ > 1. The analysis of the semigroup kernel is based on
a well known contour integral representation involving the resolvent. Thus we
begin with pointwise estimates for the resolvent kernel.
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Lemma 4.6 Suppose that δ > 1, ε > 0 and |λ− ν| > ε for all ν with s(ν) = 0.
If 0 ≤ x, t ≤ 1 and x+m is the signed distance from 0 ∈ e, then

|R(x+m, t, λ)| ≤ K|µ−||m| exp(−|(x − t) Im (
√
λ)|).

Proof: Using (4.3), the case 0 ≤ x ≤ t ≤ 1 is considered first. From the
estimates (3.5) and (3.6) one obtains

|U(x, λ)V (t, λ)| ≤
K1

1 + |
√
λ|
exp(3| Im (

√
λ)|) exp(−| Im (

√
λ)(x− t)|).

The estimate

|s(λ)| ≥
K2

1 + |
√
λ|
exp(| Im (

√
λ)|)

can be established using [28, p. 27]

| sin(z)| ≥ Cε exp(| Im (z)|), |z − nπ| ≥ ε/2, Cε > 0,

and (3.5). By Theorem 3.3 we have |µ+| ≥ 1/
√
δ, and δ > 1, so that

|W (λ)| ≥
K3

1 + |
√
λ|
exp(3| Im (

√
λ)|)

as long as |λ − ν| > ε for all ν with s(ν) = 0. This establishes the estimate in
case 0 ≤ x ≤ t ≤ 1, while the case 0 ≤ t ≤ x ≤ 1 is similar.
Again suppose that 0 ≤ x ≤ t ≤ 1 and m < 0. The function U(x, λ) is

extended to x < 0 using the multiplier µ−. Thus the initial data for U at m is(
U(m,λ)
U ′(m,λ)

)
= [µ−(λ)]|m|

(
U(0, λ)
U ′(0, λ)

)
.

The argument is now similar to the case m = 0, and the remaining cases are
similar. 2

We will also need estimates for derivatives of the functions C(x, λ) and
S(x, λ).

Lemma 4.7 For positive integers n, and 0 ≤ x ≤ 1, the partial derivatives of
C(x, λ) and S(x, λ) satisfy the estimates

|∂nλC(x, λ)| ≤ Kn[1 + |
√
λ|]−n exp(| Im (

√
λ)|x),

|∂nλS(x, λ)| ≤ Kn[1 + |
√
λ|]−n−1 exp(| Im (

√
λ)|x).



18 Hill’s Equation for a Homogeneous Tree EJDE–1997/23

Proof: Differentiation of the equation (1.1) for C and S leads to

−(∂nλC)
′′ + (q − λ)∂nλC = n∂

n−1
λ C, −(∂nλS)

′′ + (q − λ)∂nλS = n∂
n−1
λ S,

with the initial conditions

∂nλC(0, λ) = 0, (∂nλC)
′(0, λ) = 0, ∂nλS(0, λ) = 0, (∂nλS)

′(0, λ) = 0

for n ≥ 1. Thus

1

n
∂nλC(x, λ) =

∫ x
0

[C(x, λ)S(t, λ) − S(x, λ)C(t, λ)]∂n−1λ C(t, λ) dt

1

n
∂nλS(x, λ) =

∫ x
0

[C(x, λ)S(t, λ) − S(x, λ)C(t, λ)]∂n−1λ S(t, λ) dt .

Application of the estimates (3.5) gives

|C(x, λ)S(t, λ) − S(x, λ)C(t, λ)| ≤
K

1 + |
√
λ|
exp(| Im (

√
λ)|(x− t)) .

An induction argument then gives the result. 2

The semigroup exp(−τL) may be written as a contour integral involving
the resolvent R(λ) [21, pp. 489 – 493]). For r > 0 and 0 < θ < π/2, let
Γ(r, θ) = Γ1 ∪ Γ2 ∪ Γ3 where

Γ1 = seiθ, Γ3 = se
−iθ, r ≤ s <∞ ,

Γ2 = reiφ, θ ≤ φ ≤ 2π − θ .

Choosing r so large that Γ lies in the resolvent set of L,

exp(−τL)f =
1

2πi

∫
Γ

e−λτR(λ)f dλ, τ > 0. (4.9)

This contour is traversed ‘counterclockwise’, starting at s =∞, coming in along
Γ1, going counterclockwise around Γ2, and finally going out along Γ3.
For f supported in e, the resolvent may be represented as an integral oper-

ator. Interchanging orders of integration may be justified using Lemma 4.6, so
that

exp(−τL)f(x) =

∫
e

[ 1
2πi

∫
Γ

e−λτR(x, t, λ) dλ
]
f(t) dt, τ > 0.

Thus the semigroup may be represented by integration against a continuous
kernel

H(x, t, τ) =
1

2πi

∫
Γ

e−λτR(x, t, λ) dλ, τ > 0, 0 ≤ t ≤ 1.
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Theorem 4.8 Suppose δ ≥ 2, t ∈ [0, 1], and K is a positive integer. Then the
semigroup kernel H(x, t, τ) has an asymptotic expansion as τ →∞,

H(x, t, τ) = exp(−λ0τ)
K−1∑
n=0

Hn(x, t)τ
−(n+2)/2 +O(τ−(K+2)/2 exp(−λ0τ)).

The functions Hn(x, t) are uniformly bounded, and lim|x|→∞ |H(x, t)| = 0. The
error is uniform for t ∈ [0, 1] and x(g) ∈ R, g ∈ T .

Proof: Let λ0 be the smallest point in σ(L). By Theorem 4.3 λ0 ∈ σ1,
∆(λ0) = 2/

√
δ, and ∂λ∆(λ0) 6= 0. Since

∂λ[∆
2 − 4/δ](λ0) = 2∆(λ0)∂λ∆(λ0) = c1 6= 0,

the transition matrix eigenvalues µ± are analytic functions of (λ− λ0)1/2 for λ
near λ0,

µ±(λ) = ∆(λ)/2 ±
√
c1(λ− λ0) + c2(λ− λ0)2 + . . .

= ∆(λ)/2 ± c1/21 (λ− λ0)
1/2
√
1 + c2(λ− λ0)/c1 + . . . .

Since µ+(λ0) = µ−(λ0) = 1/
√
δ, and W (λ0) 6= 0, the resolvent kernel (4.3) is

an analytic function of (λ− λ0)1/2 in a neighborhood of λ0. Let λ1 > λ0 be in
this neighborhood, with |µ−(λ)| = 1/

√
δ for λ0 ≤ λ ≤ λ1.

The semigroup kernel analysis will involve a deformation Γ̃ of the contour Γ
in the complement of the spectrum of L. Slit the complex plane along the real
axis from λ0 to ∞. Follow the contour Γ in from ∞ in the upper half plane
until Re(λ) = Re(λ1). Drop down along this line to the real axis, follow the
real axis along the upper half cut to λ0, go back to λ1 along the lower half cut,
and then drop down the line Re(λ) = Re(λ1) to Γ. Finally, follow the contour
Γ out to ∞ in the lower half plane.
By Lemma 4.6 the kernel R(x, t, λ) is uniformly bounded along the contour

Γ̃. Thus

2πiH(x, t, τ) = −

∫ λ1
λ0

e−λτRu(x, t, λ) dλ+

∫ λ1
λ0

e−λτRl(x, t, λ) dλ+O(e
−λ1τ ) ,

with τ > 0. Here Ru, Rl indicates that the integrands are to be evaluated as
limits from the upper and lower half planes respectively.
Now make the change of variable s2 = λ− λ0 and let β =

√
λ1 − λ0 to get

2πiH(x, t, τ) = −

∫ β
0

e−[s
2+λ0]τ R̃(x, t, s)2s ds

+

∫ −β
0

e−[s
2+λ0]τ R̃(x, t, s)2s ds+O(e−λ1τ ), τ > 0 ,
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or

H(x, t, τ) =
i

π

∫ β
−β

e−[s
2+λ0]τ R̃(x, t, s)s ds+O(e−λ1τ ), τ > 0. (4.10)

Here R̃(x, t, s) = R(x, t,
√
λ− λ0) is just the resolvent kernel from the upper

and lower half of the slit expressed as a function of s.
We will now use a Taylor expansion for R̃(x, t, s) near s = 0,

|R̃(x, t, s)−
k−1∑
n=0

∂ns R̃(x, t, 0)
sn

n!
| ≤
|sk|

k!
max
ξ
|∂ks R̃(x, t, ξ)|,

the maximum taken over ξ between 0 and s. Since the integral in (4.10) extends
over the interval [−β, β], it will suffice to have estimates for the derivatives of
R̃(x, t, s) over this interval.
First consider the case x, t ∈ [0, 1]. Using (4.3), Lemma 4.7, and the fact

that s(λ), c(λ) and µ+(λ) are analytic functions of s on the interval [−β, β], it
follows that there is a constant Ck such that

max
|ξ|≤β

|∂ks R̃(x, t, ξ)| ≤ Ck .

If the first argument is x +m for m a negative integer (the case m > 0 being
similar), the resolvent kernel has the form

R̃(x +m, t, s) = [µ−(λ)]|m|U(x, λ)V (t, λ)/W (λ).

Since |µ−| = 1/
√
δ for s ∈ [−β, β], and the derivatives satisfy bounds

|∂ns (µ
−)|m|| ≤ Cn[m

n + 1]|µ−||m|,

we conclude that each partial derivative of R̃(x, t, s) is uniformly bounded and
∂nsR(x, t, s)→ 0 as |x| → ∞ for t ∈ [0, 1], x ∈ R, and s ∈ [−β, β]. Thus∫ β
−β

e−[s
2+λ0]τ |R̃(x, t, s)−

k−1∑
n=0

∂ns R̃(x, t, 0)
sn

n!
|s ds ≤ c1e

−λ0τ

∫ ∞
0

e−s
2τsk+1 ds .

We have the elementary calculations∫ ∞
0

(−s2)ne−s
2τ ds = ∂nτ

∫ ∞
0

e−s
2τ ds = ∂nτ

√
π

2
τ−1/2

and ∫ ∞
0

s(−s2)ne−s
2τ ds = ∂nτ

∫ ∞
0

se−s
2τ ds = ∂nτ

1

2τ
,

which give the desired error bounds.
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Finally, the Taylor series for the resolvent gives

∫ β
−β

e−[s
2+λ0]τs

k−1∑
n=0

∂ns R̃(x, t, 0)
sn

n!
ds

= e−λ0τ
k−1∑
n=0

1

n!
∂ns R̃(x, t, 0)

∫ β
−β

e−s
2τsn+1 ds

= e−λ0τ
k−1∑
n=0

1

n!
∂ns R̃(x, t, 0)

∫ ∞
−∞

e−s
2τsn+1 ds+O(exp(−λ0τ) exp(−β

2τ/2)) .

Our earlier observations about the boundedness and decay of ∂nsR(x, t, s) give
the corresponding conclusions about H(x, t). 2

In case q = 0 and γ = 0 the computations are simplified considerably. At λ0
we find

cos(
√
λ0) = 2

√
δ/[δ + 1], sin(

√
λ0) =

√
δ − 1/δ.

Some algebraic simplifications lead to

−(δ + 1)
√
λ0R(x, t, λ0)

=




(
cos(
√
λ0x)−

√
δ sin(

√
λ0x)
)
×(

cos(
√
λ0[1− t]) +

√
δ sin(

√
λ0[1− t])

)
if 0 ≤ x ≤ t ≤ 1,(

cos(
√
λ0t)−

√
δ sin(

√
λ0t)
)
×(

cos(
√
λ0[1− x]) +

√
δ sin(

√
λ0[1− x])

)
if 0 ≤ t ≤ x ≤ 1.

Evaluation of the resolvent at values of x outside of [0, 1] may be made using
the fact that U and V of (4.3) are eigenfunctions for x → x − 1, respectively
x→ x+ 1, with multiplier µ−.

5 Covering spaces

In this section the previous analysis of the resolvent on the homogeneous tree is
extended to the case of a regular graph G whose vertices all have the same degree
δ+1, and whose edges have length 1. Each such graph has a universal covering
space (T , p), where as before T is the homogeneous tree of degree δ + 1. We
refer to [24, p. 145] for a development of covering spaces and their application
to graphs.
As in the case of the tree, a common set of vertex conditions (3.1) is selected

for the vertices. By Theorem 2.2 the self adjoint operator LG = −D2 + q may
be defined by means of these vertex conditions. Denote the resolvents on the
graph and tree by RG(λ) and RT (λ) respectively.
Suppose that ξ0 is a point in the interior of the edge e0 ∈ G, and that

ξ̃0 ∈ p−1(ξ0). Let ẽ0 be the edge of T containing ξ̃0. Then given any function
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f ∈ L2(e0), there is a corresponding function f̃ ∈ L2(ẽ0) such that

f̃(ξ̃) =

{
f(p(ξ̃)), ξ̃ ∈ ẽ0 ,
0, ξ̃ /∈ ẽ0.

Theorem 5.1 Suppose that f ∈ L2(G) is supported on an edge e0. There is a
positive C(q, γ) such that if |Im(

√
λ)| > C(q, γ) then for ξ ∈ G

[RG(λ)f ](ξ) =
∑

ξ̃∈p−1(ξ)

[RT (λ)f̃ ](ξ̃).

The sum and its first two derivatives converge uniformly for ξ ∈ G.

Proof The proof has two parts: a formal verification and a proof that the sum
converges. Consider the two sums

H(ξ, λ) =
∑

ξ̃∈p−1(ξ)

[RT (λ)f̃ ](ξ̃), h(ξ, λ) =
∑
ξ̃ /∈ẽ0

[RT (λ)f̃ ](ξ̃).

As for the formal part, note that

(−D2 − λ)H(ξ, λ) =

{
f(ξ), ξ ∈ e0,
0, ξ /∈ e0.

Moreover since the vertex conditions are satisfied in the tree, they are still
satisfied when we sum over vertices in the tree.
The remainder of the proof consists of verifying the convergence of the sums

in question for suitable λ. To check on the convergence of H(ξ, λ) it suffices to
check h(ξ, λ) and to show that the decaying solutions U and V may be summed
over arbitrary subsets of edges satisfying x < 0, respectively x > 0, implying in
particular convergence of the sums over the subsets p−1(e).
We first consider uniform convergence. The series for the k − th derivative,

k = 0, 1, 2, of h(ξ, λ) will converge absolutely if

∞∑
n=0

δn|µ−|n <∞,

or |δµ−(λ)| < 1. Since µ−µ+ = 1/δ, this is equivalent to |µ+(λ)| > 1. The
asymptotics (3.5) show that there is some value C(q, γ) such that |µ+(λ)| > 1
if | Im (

√
λ)| > C(q, γ).

If G is not a finite graph we must still check that h is square integrable. It
is enough to consider the summands of h with x(ξ̃) > 0, which contribute

∑
e∈G

∫ 1
0

|V (x, λ)|2|
∑

em∈p−1(e)

(µ−)k(m)|2.
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Here k(m) is given by the signed distance from ẽ0, x(em) = [k(m), k(m) + 1].
This sum converges with∑

e

|Se|
2, Se =

∑
em∈p−1(e)

(µ−)k(m).

If the largest magnitude of a term in Se is |µ−|n, then

|Se| ≤
∞∑
j=n

δj |µ−|j ≤
δn|µ−|n

1− δ|µ−|
.

On the other hand each edge em in the tree appears once in the sum
∑
|Se|2,

so there are at most δn sums Se with a term whose magnitude is as large as
|µ−|n. This count gives the bound∑

e

|Se|
2 ≤
∑
n

δn
( δn|µ−|n
1− δ|µ−|

)2
≤

1

[1− δ|µ−|]2

∑
n

δ3n|µ−|2n.

Thus h is square integrable if δ3|µ−|2 < 1.
After modifying C(q, γ) to ensure δ3|µ−|2 < 1, this shows that the sums

for H(ξ, λ) and its first two derivatives converge uniformly, that the resulting
function satisfies the vertex conditions, is square integrable, and satisfies the
differential equation

(−D2 − λ)H(ξ, λ) = f.

Thus H(ξ, λ) is in the domain of L∗, and so is in the domain of L, which is self
adjoint. 2

Theorem 5.1 has two related aspects which invite more consideration. On
one hand, since LG is self adjoint, the resolvent RG(λ) has an analytic extension
beyond the set of λ for which convergence was established. On the other hand,
the sums of powers of µ− appearing in the computation of RG(λ) have geometric
meaning.

Theorem 5.2 For | Im (
√
λ)| > C(q, γ) the diagonal of the resolvent may be

written as

RG(t, t, λ) = be(µ
−)
U(t, λ)V (t, λ)

W (λ)
, t ∈ e. (5.1)

The function be(z) = 1 +
∑
l>0 ηlz

l is analytic in a neighborhood of z = 0. The
coefficients ηl count homotopy classes of loops with basepoint in e represented
by a loop of least length l.
If G is a finite regular graph with Ne edges, then RG(λ) is trace class for

λ ∈ ρ, and

trRG(λ) =
b(µ−)

W (λ)

∫ 1
0

U(t, λ)V (t, λ) dt . (5.2)

The function b(z) =
∑
e be(z) = Ne +

∑
l>0Nlz

l, where Nl counts homotopy
classes of loops represented by a loop of least length l, with one of the Ne base-
points at the midpoint of an edge.
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Proof: The proof will actually provide additional information, relating the
construction of the resolvent kernel to the numbers of homotopy classes of cer-
tain types of paths in G.
Suppose first that ξ ∈ e0, where f is supported. Let us split the resolvent

sum into three parts,

[RG(λ)f ](ξ) = [R
0
T (λ)f̃ ](ξ) + [R

+
T (λ)f̃ ](ξ) + [R

−
T (λ)f̃ ](ξ), (5.3)

where the 0,+,− terms are the resolvent sums of Theorem 5.1 coming respec-
tively from ξ̃ ∈ ẽ0, x(ξ̃) > 1 and x(ξ̃) < 0. The three terms are given by
integration against kernels, where R0T (x, t, λ) is given by (4.3) for 0 ≤ x, t,≤ 1,
while

R+(x, t, λ) =
U(t, λ)V (x, λ)

W (λ)

∑
x(em)>1

[µ−(λ)]k(m), em ∈ p
−1(e), 0 ≤ x, t ≤ 1,

(5.4)
and

R−(x, t, λ) =
V (t, λ)U(x, λ)

W (λ)

∑
x(em)<0

[µ−(λ)]k(m), em ∈ p
−1(e), 0 ≤ x, t ≤ 1.

(5.5)
In case ξ /∈ e0 the term R0T will be missing, but otherwise the representation of
the resolvent will have the same form.
Introduce the functions

b+e (z) =
∑

x(em)>1

zk(m) =
∑
l>0

η+l z
l, b−e (z) =

∑
x(em)<0

zk(m) =
∑
l>0

η−l z
l.

The coefficients η+l , η
−
l , count homotopy classes of paths which, to pick one

description, start at the midpoint of e0, end at the midpoint of e, and whose lift
from the midpoint of ẽ0 to the midpoint of ẽ is homotopic to a minimal length
path of length l with x(ẽ) respectively greater than 1 or less than 0.
Setting x = t and including the three terms in (5.3) gives the description of

the diagonal of the resolvent in the statement of the theorem. When the graph
G is finite, the operator LG has discrete spectrum with trace class resolvent,
and the trace may be computed by integration over the diagonal. Perhaps the
easiest way to establish these claims is to begin with a different set of vertex
conditions, such as the Dirichlet conditions f(0) = 0 = f(1). The corresponding
operator LD is now decoupled into Ne copies of the Dirichlet operator on [0, 1],
for which the result is known. Since the domains of LG and LD differ only by
finitely many boundary conditions, their eigenvalue distribution functions have
a bounded difference [10]. This shows that RG(λ) is trace class. For a fixed λ
in the intersection of the two resolvent sets we have RG(λ) = RD(λ)+F , where
F has finite rank. Based on this observation one may establish that the trace
is given by integration over the diagonal of the resolvent kernel. 2
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The formulas (5.1,5.2) and (5.4,5.5) represent interesting relationships be-
tween generating functions for path counts and the spectral theory of differen-
tial operators. Since the resolvents extend analytically to the complement of
the spectrum, the function b(z) and its relatives will have analytic continua-
tions determined by the spectrum of L on G and the singularities of U, V,W .
The relationship between spectral theory and the analytic continuation of such
generating functions was previously explored in [6], where the spectral theory
for the discrete Laplacian on finite regular graphs was considered.
Motivated in part by this discrete analog, we next consider calculation of the

function b(z). For the next result our graph need not have vertices of a fixed
degree. Instead we require a finite graph, with edges of length 1, and self adjoint
vertex conditions. In addition to allowing vertex conditions of the form (3.1)
with γ = 0, Dirichlet conditions f(v) = 0 or Neumann conditions f ′(v) = 0 are
allowed. In the last two cases these conditions are to hold at all edges incident
to v. The vertex conditions need not be the same at each vertex.

Theorem 5.3 Suppose G, not necessarily regular, has Ne edges, all of length
1. Assume self adjoint vertex conditions for the operator −D2, the vertex con-
ditions at a vertex v having one of the following forms: (3.1) with γ = 0, or
f(v) = 0, or f ′(v) = 0. Then there is polynomial

det C̃(ζ) = 0

of degree at most 2Ne, whose nonzero roots ζk satisfy |ζk| = 1, and the nonzero
eigenvalues of −D2 on G are

{[arg(ζk) + 2πm]
2}.

The eigenspaces corresponding to two nonzero eigenvalues

[arg (ζk) + 2πmj ]
2, j = 1, 2

have the same dimension.

Proof: On the n-th interval any eigenfunctions must satisfy the equation

−y′′n = λyn, (5.6)

and 2N linearly independent boundary conditions. Letting j = 0, 1, and xk =
0, 1, these each have one of the forms

y(j)n (xk) = 0, ym(xk)− yn(xl) = 0,
∑
n

(−1)xjy′n(xj) = 0. (5.7)

Each boundary condition may be written in the general form∑
b1mnyn(0) +

∑
b2mny

′
n(0) +

∑
b3mnyn(1) +

∑
b4mny

′
n(1) = 0 ,
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where m = 1, . . . 2N , and n = 1, . . . , N . If Bl = (b
l
mn) we get a 2N × 4N

boundary matrix B = (B1, B2, B3, B4), whose entries are 0,±1.
Letting En denote the n-th standard basis vector for CN , a basis for the

solutions of (5.6) can be written

Y (x, λ) = (ei
√
λxE1, . . . , e

i
√
λxEN , e

−i
√
λxE1, . . . , e

−i
√
λxEN ), λ 6= 0.

Define the 4N × 2N matrix

Ŷ (λ) =



Y (0, λ)
Y ′(0, λ)
Y (1, λ)
Y ′(1, λ)


 .

With this formulation, λ 6= 0 is an eigenvalue if and only if

det[C(λ)] = 0, C(λ) = BŶ (λ) ,

which is the condition that some linear combination of the columns of Ŷ (λ)
satisfies all the boundary conditions. The entries of the matrix C(λ) may be 0,

±1, ±i
√
λ, ±i

√
λe±i

√
λ, ±i

√
λe∓i

√
λ.

Since the conditions (5.7) involve either the evaluation of a function or the
first derivative, but not both, the nonzero entries in a row will either have no
factors i

√
λ or a common factor i

√
λ. Also, the entries in each column may

have one of the exponentials e±i
√
λ, but not both. Removing factors i

√
λ from

the rows, and e−i
√
λ from the columns will not change the nonzero roots of the

determinant. Substituting ζ = ei
√
λ, the resulting matrix C̃(ζ) will have entries,

up to sign, of 0, 1, ζ. Since −D2 with the prescribed self adjoint vertex conditions
is nonnegative, there are only nonnegative eigenvalues, and any nonzero roots
of det C̃(ζ) = 0 must have modulus 1.
Suppose we have two nonzero eigenvalues of the form [

√
λk+2πmj]

2, j = 1, 2,

for a fixed
√
λk and integers mj . Consider the linear isomorphism T mapping

solutions of −y′′ = [
√
λk + 2πmj]

2y with mj = m1 to mj = m2 defined by

exp(±i[
√
λk + 2πm1]x)En → exp(±i[

√
λk + 2πm2]x)En.

This map leaves the function values at x = 0 and x = 1 unchanged.
Suppose f is a linear combination of the functions

B±n (x) = exp(±i[
√
λk + 2πm1]x)En.

Evaluating the derivatives at x = 0 and x = 1 gives

(B±n )
′(0) = ±i[

√
λk + 2πm1]En, (B±n )

′(1) = ±i[
√
λk + 2πm1] exp(±i

√
λk)En.

Suppose the vertex v has a condition
∑
f ′e(v) = 0. In this sum, all of the

terms have a common nonzero factor [
√
λk+2πm1], the remaining factors being
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independent ofm1. Under the linear transformation T the corresponding sum is
the same except this common nonzero factor has been replaced by [

√
λk+2πm2].

Thus f satisfies the vertex conditions at v if and only if Tf does. 2

It is natural to wonder if the eigenvalue 0 really has a distinguished role.
To see that this may be the case, consider the system with edges [0, 1] and
[1, 2], with the endpoints 1, respectively 0, 2, identified as the two vertices. The
vertex conditions are (3.1) with γ = 0. This is simply the case of −D2 on
R mod 2Z, where the eigenvalue 0 has an eigenspace of dimension one while all
other eigenvalues have two dimensional eigenspaces.

To continue with the calculation of b(z), we will apply Theorem 5.3 to the
case of L = −D2 on a finite regular graph G with vertex condition of the form
(3.1) with γ = 0. Theorem 5.3 guarantees that there are at most 2Ne distinct
numbers ζk such that the spectrum of −D2 consists of 0, and the sequences
[arg (ζk) + 2πm]

2.

Theorem 5.4 If G is regular and finite, then there are integers C and Mk such
that for

cos(
√
λ) =

δ

δ + 1
[z +

1

δz
]

the function b(z) satisfies

C

λ
+
sin(
√
λ)

2
√
λ

2N∑
k=1

Mk

cos(
√
λ)− cos(arg(ζk))

(5.8)

=

√
λb(z)

2λ sin(
√
λ)[1− (1/z)2]

([
cos(
√
λ)−

sin(
√
λ)

√
λ

][
1 + (1/z)2

]

+
2

z

[sin(√λ) cos(√λ)
√
λ

− 1
])
.

Proof: There are two elementary but tedious calculations which are omitted.
The first is the evaluation of

1

W (λ)

∫ 1
0

U(t, λ)V (t, λ) dt .

In case L = −D2 and the vertex conditions have the form (3.1) with γ = 0, the
transition matrix trace and determinant are

µ+(λ) + µ−(λ) =
δ + 1

δ
cos(
√
λ), µ+µ− = 1/δ .

Using these identities, the integration produces the right hand side of (5.8),
except for the factor b(z).
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The second calculation is the sum

∞∑
n=−∞

1

[2πn+ α]2 − λ
=
sin(
√
λ)

2
√
λ

1

cos(
√
λ)− cos(α)

(5.9)

which arises in the calculation of the resolvent trace tr [−D2 − λ]−1. This sum
may be viewed as the trace of the resolvent of an operator whose eigenvalues
are [α + 2πn]2, each n contributing an eigenspace of dimension 1. Such an
operator is [iD]2 = −D2 on [0, 1] with the boundary condition f(0) = e−iαf(1)
for iD. The kernel for this auxiliary resolvent can be explicitly computed and
the diagonal integrated, yielding (5.9).
Now starting with the trace formula of Theorem 5.2, and using the form of

the eigenvalues for −D2 given by Theorem 5.3, the result is obtained. 2

We will conclude by considering the relationship between Theorem 5.2 and
the spectral theory of the combinatorial Laplacian as developed in [6]. The
generating function considered by Brooks is

fG(z) =
∑
l

lNlz
l,

so that as long as G has its edges defined by pairs of vertices (which is not
necessary for this work on topological graphs)

fG(z) = zb
′(z).

Theorem 3.3 of [6] shows that fG is determined by the eigenvalues of the com-
binatorial Laplacian, together with their multiplicities. Since b(0) = Ne, the
number of edges of G, the function b(z) is determined by fG(z) and the number
of edges. If G is regular, then Ne is [δ+1]/2 times the number of vertices, which
is the same as the number of eigenvalues, counted with multiplicity.
The preprint [7] shows that there are numerous regular combinatorial graphs

with the same spectrum, hence the same functions fG(z) and b(z). The formula
(5.2) shows that the resolvent trace of such graphs, and hence the spectrum,
must agree for every operator LG , since the only other data on the right hand
side comes from LT .
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