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GLOBAL SOLUTIONS WITH INFINITE ENERGY FOR THE
ONE-DIMENSIONAL ZAKHAROV SYSTEM

HARTMUT PECHER

ABSTRACT. The one-dimensional Zakharov system is shown to have a unique
global solution for data without finite energy. The proof uses the “I-method”
introduced by Colliander, Keel, Staffilani, Takaoka, and Tao in connection
with a refined bilinear Strichartz estimate.

1. INTRODUCTION

Consider the (141)-dimensional Cauchy problem for the Zakharov system

Uy + Upy = NU (1.1)
Ntt — Ngg = (‘U|2)xac (12)
u(0) = ug, n(0)=ng, n(0)=mn1 (1.3)

where u is a complex-valued and n a real-valued function defined for (z,t) € RxR™.
This Zakharov system was introduced in [19] to describe Langmuir turbulence in a
plasma.

Our main result is the existence of a unique global solution for data without finite
energy, more precisely we assume ug € H*(R), ng € H*"'(R), A~Y/?n; € H*"(R),
where 1 > s > 5/6, A := —dd—;.

This result can be proven by using the conservation laws, namely conservation
of |Ju(t)|| and

1 o0
E(u,n) = Jluz () + 5 (In(®)1” + 1A= 20, (8))1%) +/ n(t)|u(t)|? da
— 00
although under our assumptions these quantities are not finite, in general.

Results of this type were given in various situations in the previous years in
the framework of the Fourier restriction norm method in most of the applications.
One approach is to use Bourgain’s trick to split the data into high and low fre-
quency parts. He used it to prove global well-posedness for the (241)-and (3+1)-
dimensional Schrodinger equations with rough data without finite energy [Il [2]
and for the wave equation [3]. Later it was also used for other model equations
[10, 1T, 14, [15] [I8]. Concerning the problem at hand the author had been able to
show global well-posedness for data (ug,ng,n1) € H® x L? x H'forl>s> 9/10

2000 Mathematics Subject Classification. 35Q55, 35L05.

Key words and phrases. Zakharov system; global solutions; Fourier restriction norm method.
(©2005 Texas State University - San Marcos.

Submitted January 11, 2005. Published April 5, 2005.

1



2 H. PECHER EJDE-2005/41

[17]. Remark here that no data ng ¢ L? were admissible because in such a case
the nonlinear part of n(t) could not be shown to belong to L? which is necessary
for this method. In contrast, the approach here allows data ng ¢ L? and also less
regular data wug.

Another approach was initiated by Colliander, Keel, Staffilani, Takaoka and Tao
in [6], called the I-method. The main idea is to use a modified energy functional
which is also defined for less regular functions and not strictly conserved. When
one is able to control its growth in time explicitly this allows to iterate a modified
local existence theorem to continue the solution to any time 7" and moreover to
estimate its growth in time. This method was successfully applied by these authors
to several equations which have a scaling invariance with sometimes even optimal
global well-posedness results. It was used in [6] to improve Bourgain’s global well-
posedness results [II, 2] for the (2+1)- and (3+1)-dimensional Schrédinger equation
with a further improvement in [9]. Later it was applied to the (1+1)-dimensional
derivative Schrodinger equation [4] with an (almost) optimal result in [5] and to
the KdV and modified KdV equation with also optimal results in some cases [7}, [§].

Although in our situation such a scaling argument does not work we are able to
suitably modify the method to prove the above mentioned global existence result
for the Zakharov system.

The paper is organized as follows. We transform the system in the usual way
into a first order system. Then we apply the multiplier Iy for given s < 1 and
N >> 1 to it, where I/N\f(f) = mN(f)f(f). Here my(§) is a smooth, radially
symmetric, and nonincreasing function of ||, defined by my(§) = 1 for |{| < N

and my (&) = (%)1_5 for |£] > 2N. We drop N from the notation for short and

remark that I : H* — H' is a smoothing operator in the following sense:

1—s
lull o < ell Full e < eN'*lJu] o

Here we used the X$7b—spaces which are defined as follows: For an equation of
the form iuy — o(—id;)u = 0, where ¢ is a measurable function, let X" be the
completion of S(R x R) with respect to

1 llyms =™ ()P F (922 f (2, 0)) 2,
=I1(&)™ ¢ + (&) F(E Tz,

For ¢(¢) = +|¢| we use the notation Xg’b and for (&) = [¢]? simply X™P.
For a given time interval I we define | f||xm.) = inff“:f I f|lxm.» and similarly

1 llxmery-

For the modified (by I multiplied) Zakharov system we then prove a local exis-
tence theorem by using the precise estimates given by [12] for the standard Zakharov
system in connection with an interpolation type lemma in [§]. Our aim is to ex-
tract a factor T with maximal § from the nonlinear estimates in order to give an
optimal lower bound for the local existence time T in terms of the norms of the
data. Because the difference of the differentiability classes of the data is maximal
(=1), one is forced also to use here the auxiliary spaces Y (cf. [12]), defined by

1f Iy s=1G)™ )~ F (e 0% f(,0)) | 2
=I4O™(r + () F (& DIz
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As is typical for the I-method one then has to consider in detail the modified energy
functional E(Iu,In) and to control its growth in time in dependence of the time
interval and the parameter N (cf. the definition of I above). The increment of the
energy has to be small for small time intervals and large N. Because the modified
energy functional is somehow close to the original one here some sort of cancellation
helps. An important tool is also a refined Strichartz estimate for the product of
a wave and a Schrodinger part along the lines of Bourgain’s improvements for the
simpler pure Schrodinger case (cf. Lemma [3.2]). This estimate for the modified
energy functional can also control the growth of the corresponding norms of the
solution of the problem during its time evolution. One iterates the local existence
theorem with time steps of equal length in order to reach any given fixed time 7.
To achieve this one has to make the process uniform which can be done if s is close
enough to 1 (namely s > 5/6).

We collect some elementary facts about the spaces X g“b and Y". The following
interpolation property is well-known:
X OmorOmu (=Nt Oh _ (ymobo xmibi) g for © € [0,1].

If w is a solution of iu; + ¢(—i0,)u = 0 with «(0) = f and ¥ is a cutoff function
in C§°(R) with suppy C (—=2,2), ¢» = 1 on [-1,1] , ¥(t) = ¥(—t), ¥(t) > 0,
Ys(t) :== (%), 0 < 6 <1, we have for b > 0:

Il o < clflam

If v is a solution of the problem v, + p(—id;)v = F, v(0) = 0, we have for
P4+1>b>0>0 >—1/2

v —b
[950] e < ot [P
and, if ' +1>b> 0> b, we have

/_ 1_
150l < (@ PPN g + 67| Fllyye)

(for a proof cf. [12], Lemma 2.1). Moreover, if w(t) = fot e/ (t=9)¢(=192) P(5) ds we
have by [12] Lemma 2.2], especially (2.35), for § <1

[wlleoo,6,2) < cllFllyz0,6 (1.4)

Finally, if 1/2 > b > b >0, m € R, we have the embedding

11l 0.5 < 0" 1 fllx 0.9 (1.5)

For the convenience of the reader we repeat the proof of [13], Lemma 1.10. The
claimed estimate is an immediate consequence of the following

Lemma 1.1. For 1/2>b>0 >0,0<6 <1, m € R the following estimate
holds:

1
||¢5f||x$yb, S 05b b Hf”X:On,b

Proof. The following Sobolev multiplication rule holds:

19l gy < ellfIl 1o gl ar
t H t

t
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This rule follows easily by the Leibniz rule for fractional derivatives, using J® :=
FHr)sF:

1£gll gz < eCI(I” gllez + 1T 9)llez)
< c(I7” fllepllgll o + 1F1 o 197 glle)
with % =bL=1-bL=0-V, % =1—(b—V). Sobolev’s embedding theorem
gives the claimed result. Consequently we get
b—b’
HWQHH;“ < C||¢6||Ht%—<b—b'>||9||H}7 <o HQHH}’
and thus
to(—iB,
Hw(sf”)(gl«b/ = Helt(p( ! )’l/}(;fHH;n@Hg’
< oY ||eiw(_wm)f||Hm'®H$
_sb=b
= e o

Fundamental are the following linear Strichartz type estimates for the Schrodinger
equation (cf. e.g. [12] Lemma 2.4]):

itd?

el e r, Loy < elllezm

and
lellzs gy < ellull o+

if 0 < % = % — %, especially

HUHLgt < CHUHXO‘%+

which by interpolation with the trivial case [lul[z2, = [lul|xo.0 gives:
l[ullze, < cllullyo3z-20
if 2 < p < 6. For the wave equation we only use ||n4|[per2 < c|\ni||X0%+. O
+

We use the notation (\) := (1 + A\?)/2. Let a+ denote a number slightly larger
(resp., smaller) than a.

2. LOCAL EXISTENCE

The system (|1.1)—(1.3]) has the following two quantities conserved: M := ||u(t)]|
and

+oo
Blusn) = [ A2l + 17200 + VO + [ (o)l de
where V, := —n; and A := _ddiz

7.
The system (1.1))—(1.3]) is now transformed into a first order system in ¢ as follows:
with ny := n4+iA=Y2n; Jie. n=Li(ny4+n_), 204" ?n; =n, —n_, and gy =n_

2
this gives
1
WUt + Upy = §(n+ +n_)u (2.1)
ine, T AY?ng = £AY2(Ju)?) (2.2)

w(0) =ug, n+(0) =nwo:=ne+£iA"Y%n;. (2.3)
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The energy is given by

1 1 __
E(u,ny) = A ul® + §||”+H2 T3 /(”+ + 1) [ul da

By Gagliardo-Nirenberg,

1
/n\u|2dw§ Z/n2dm+c/\u|4dm

1
< S Inll® + ellue [ lul?

i(llnll2 + [luz ) + collull®
This implies
IAY2u)]? + [ + [VII? < e(B + [|ul®) = co(E + M) (2.4)
and
E < co([|AY2ul? + |In]|* + |V[|* + M°) (2.5)

We want to apply the I-method (for the definition of I see the introduction). A
crucial role is played by the modified energy E(Iu,Iny) for the system

1
iTup + Tug, = 5][(n+ +n_)ul (2.6)
iIng, T AY2Ing = £TAY?(|ul?) (2.7)
Tu(0) = Tug, Ini(0) = Inso=I(ng+iA"?ny), (2.8)

namely

1
E(Iu, Iny) = [[Tug | + §HM+||2 5

which is not conserved but its growth is controllable. An elementary but lengthy
calculation shows

1
45 [ 10+ ) T de

7 E(ITu,Iny)

—Re{I(ny +75) 1w — I((ns + 775 )u), Tug) + Re(In, iAY2(|Tul? — I(u[2)))
(2.9)
If I = id this again shows the conservation of E(u,n,).
Before considering this modified energy in detail we give a local existence result
for the system 77 which essentially uses the bilinear estimates given by
[12] for their local existence result of the Zakharov system.

Proposition 2.1. Assume s > 1/2. Let (ug,n40,n—0) € HS x H571 x H*™1 be
given. Then there exists a positive number § ~ e 1+||In+o|\ ST ol 2) such
H L

that the system . has a unique local solution in the time interval [0, 0]
with the property (droppmg from now on [0,0] from the notation):

Hull gy + R4l oy s + 1=l oy < ellTuollan + [[Involl 2 + [[{n—ol£2)
; -

This solution also belongs to C°([0,6], HL(R)) and

[ Tullco(o,5), 212 )y < e([Luollmr + [[Inyollpe + [[In—ollL2)
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Proof. We use the corresponding integral equations to define a mapping S =
(S0, 51) by

So(Tu(t)) = Te%2yy + % /0 ei(t_s)aif(u(s)((mr(s) +n_(s)))ds

t
Sy(Ing(t)) = IetA *nyg +i / T4 A2 (|u(5)|?) ds
0

We use [12] Lemma 4.3] to conclude for s > 1/2,

sl -y < clinall oo ol g

Similarly [12] Lemma 4.5] shows

Ineullys < elimell oo g llull o g

Finally, [I2] Lemma 4.4 ] shows that for s > 0,

1A ()] oo < ellul g
+

These estimates imply similar estimates including the I-operator by the interpola-
tion lemma of [8], namely

[HGESD)

lr—g + M ewllys < elnall o g llTull g4

and

LAY (ul*) | oy < cllul}

i’*% xLitt
where c is independent of N.
The same estimates also hold true for functions defined on [0,d] only, and for

such functions we can also use the embedding (5). This gives
1_
(el -y + [L(nxw)llys < Cllfni\\xi,%+IIIUI|X1,%54

and
1_
A2 ([ul?) | oy < cllul%, 0%

+

Using these estimates the integral equations lead to (remark here that one needs
the space Y1, cf. [12, Lemma 2.1]):

1010l g5 < ellFwollrs + el o g+ 10l o)l e 355
1

1S1Tne)ll o+ < cllInzollze +el Lull?, 4 0%

0.3
+
The standard contraction argument gives the existence of a unique solution on [0, d]
with

Il oy + s |

1 H Il oy < 2¢([Tuollar + [HrgollL2 + [ Tn—oll2)

X7 X
provided

1_
cd1™ ([ Tuo| g + [ Ingoll2 + [[In_olz2) < 1
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Concerning the property ITu € C°([0, 6], H.) we refer to [12, Lemma 2.2], (use the
first integral equation and I(un+) € Y''). Moreover (1.4) gives

[ullco .0,y < [Huollar + e[ (nyw)llyr + ([T (n—w)lyr)

1_
< ol + 0t (Hn |l oy v + In-ll oy ) Tull 41y
: 2

(I uollgrr + [Inollz2 + [ In—ol|r2)?
[ Luol[ e + [[IntollL2 + [ {n—oll L2
< c(|[Tuollgr + [[InollLz + [[In—ol|L2)

< [Huollar +¢

3. A BILINEAR STRICHARTZ ESTIMATE

Lemma 3.1.
(D32 u)n |2, < C||ni||Xi,%+||U||Xo,%+
Proof. We split the domain of integration into two parts (a) suppu C {|¢| > 2} (b)
suppu C {[¢| < 2}
(a) We assume suppmt C {€ > 0} (the other part suppmy C {£ < 0} can be
treated similarly) and suppv C {|¢| > 2}. In this region we have

”eitaiDglC/Qveiitlaumi HQLit

. . 2
~ [ acar| [ S ) T ()61 /2y
§=€1+£2,62>0,|£1|>2

:/dgdt/ efit(E?i\EzIfnfﬂFlnzl)g(gl)@(m) (3.1)
§=&1+&2=n1+n2,m2,622>0,|&1],|n1|>2

x i (&)mx (n2)|én V2 m [/ 2dérdm

- / dt / ey (P (1) Yo T (&) s () a2 /2

with

P(m) =& £|&|—nf F1&—m| =& £&|—ni Fnel
=G+L-nFp=+E-8&)—-nFE—m)
=G -mF (& —m)=(&—m)(&+m)F1]

This function has the simple zeroes n; = & and 1, = +£1 — &;. Moreover P’(n;) =
—2m £1, thus |P’(m1)] ~ |m1]| in our region |n;| > 2. Using the well-known identity

/5(P(171))f(771)d771 = %

where x; denotes the simple zeroes of P, we remark that in our case for the zeroes
we have || ~ |£1], and therefore the factor [&|Y/2|n:|'/? cancels with |P'(xy)].
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Thus we can estimate using Schwarz’ inequality by

c [ d¢ [ depe i@ € - )i - Gl

ve [ de [ deifole)TE - m - e~ (F- )

< cllZzmzlze = cllvllZz mall7

and the claimed estimate follows directly in the region suppu C {|¢| > 2} (cf. e.g.
[18, Lemma 1.4], [I3] Lemma 2.1], [16], Section 3]).
(b) In the region suppu C {|¢| < 2} we have
||(D91;/2U)ni||Lgt < ||Dglg/2u||L§L;°||ni||L§°Lg < C||D;/2UHL2H%+||ni||Xo,%+
titz +
< cllull g2z Hni”Xi’%+ < cllull o1+ ||niHXi%+

Lemma 3.2.

1D 2u)nele, < el oy lull ory -
+

For the proof of the above lemma, we interpolate the estimate of the previous
lemma with

(D w2, < llnelpe 2 |1 D3 %ull 200 < cllnell oy llll gz s

0,
+

< cllnell oy lullxo

0.3
+
Lemma 3.3.
DY u)ns 301 < clmal oy o -
Proof. By Sobolev’s embedding theorem and Strichartz’ estimate we have
||(D;:/2U)”i||Lf—Lg < C”ni”L?—Lg HD;/%”L}L;O

1/2

<l o 1DY 0l
< C”n:i:”Xi,%— H“”X%+%+

Interpolation with Lemma [3.1] gives the claimed result. (]

A variant of this lemma is given next.

Lemma 3.4.

pi/z,
I(Da""u) * gl a2 < ellnell oy llul
+

X0+ %
Proof. On the one hand, Lemma [3.1] gives
T2~
103" )+ iz, < elinall oyl oy (32)
On the other hand Young’s inequality shows
/2N~ _ 12
DY) #2l, 5 < clEles IDH 0, (3.3)
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Now by Schwarz’ inequality
~ —~ 1 _1_
I ezes = I [ ) ir = I H £ €l) - drly

—~ 1
< cllnz (€, ) (r £ 180> Nz, = cllnell ox+

and by Holder’s inequality in 7 and Schwarz’ inequality in &:
12 12 1 1
ID"2ull | 4 = ID*u(€7)(r + ) T+ )75 4
tL?
12 1
< | DY (e, 7)ir + € s

—

= || Da/?ul€, T)(r + E2)H(E)IT(E) T3 I L

12 1 1
< | D2 u(g, T) (T + €)1
< c||u||X1+%+
Interpolating (3.3)) and (3.2]) we get the result. O

We also need a bilinear Strichartz’ refinement for the pure Schrédinger problem.
We have the well-known

Lemma 3.5. Ifuy,us fulfill |£1] > |§2| > 1 for & € supp@; (i = 1,2), the following
estimate holds:
IOV 2w gz, < ellul oy Nzl o g

The proof the lemma above can be found in [4, Lemma 7.1].
We also have the following variant.

Lemma 3.6. Under the assumptions of Lemma[3.5 we have:

|(DY2uryuall 2oz < cllun | ooy 2]

1 1
X0+ X0 3

The proof is similar to that of Lemma |3.3

Remark: All the estimates in this section remain true, if any of the functions on
the left-hand sides of the estimates are replaced by their complex conjugates.

4. ESTIMATES FOR THE MODIFIED ENERGY

The main step towards global existence is an exact control of the increment of
the modified energy.

Proposition 4.1. Let (u,n1) be a solution of (2.1)—(2.3) on [0,6] in the sense of
Proposition , Then the following estimate holds (for N > 1, s > 3/4):

|E(Tu(6), Ins (8)) — E(Tu(0), In4 (0))]
Sltghe o N-ieg0t | Tl
<N+ NI | oy el

+ (N7 4 N7 g |2
X

0,
+

Proof. Using (2.9) and replacing Tu; by (2.6), we have to show

)
C 1_
[ [ A ra - 1uasa < s el g g0y ()

N1- xb3
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and
5
‘/ /(Iu)wa;(l(n+u) - In+lu)dwdt‘
0 1 1 3 (4.2)
<c(N"zt5r 4 N—§+50+)||[n+\|xi%+||Iu||ilé
as well as
5
‘/ /I(n+u)(l(n+u) —In+1u)dxdt‘
0 (4.3)
< C<N5 + NTHoE Mnel® oy I7ull g

+

Here and in the sequel we assume, without loss of generality, that the Fourier trans-
forms of all these functions to be nonnegative, ignore the appearance of complex
conjugates, use dyadic decompositions with respect to the frequencies |§;| ~ N; =
k (k=0,1,2,...). To sum over the dyadic pieces at the end, we need to have
extra factors NV JQ ~ everywhere.
We start with which follows from

y 12| M€ + &) — m(&)m(&s) | ~ ~
// ny (&1, 1)[62 + &) ’ m(E)m(Es) > (&2, t)uz (&3, t)dedt w

1
< =0t el o sl sl g

Here and in the sequel, * denotes integration over the set 2?21 & =0 (or Z?Zl & =
0). The symmetry in £, 3 allows to assume Ny > N3, and moreover we can assume
Ny > N, because otherwise the symbol is = 0. The condition 2?21 & = 0 implies
Ny < ¢Ny. Thus Ny ~ N0z, Where Nm,m := max(Ny, N3, N3).

m(&2+8s)—m(£2)m(€s) N.
We have | (&2 m?fg)m(fi)) 2) | < & mE] < ¢ {(%2)1/?) and thus the bound
5
. _ Ny
o [ [m e il T e ndgd(52) )
0 *
Ny 1
< cllny Dy %un 2, llusllz2, ()%
<l |l izl gor y lusllxoo ((22)172) 4.5
= + i,%+ U2|| o+, L [[U3]] X 0.0 N (4.5)
1 1 Ny
< clntll oge Nl_ luall 1.3 7 02 [lusl| 1y L

+

= NGap0? ’IImIIXi%AIWIIXl,%IIU3IIX1%

by the bilinear Strichartz estimate. This implies (4.4)). Next we prove (4.2)) which
is implied by

m(&2 + &3) — m(&2)m(€s) "\ 1, t)uz (&2, t)ny (€3, t) ddt
m(&2) (fd

SC(N 20T 4 N7 ur oy lluz oy I

(4.6)

1
3+

0
X4
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Case 1: Ns ~ N3 > ¢N. Then N; < ¢Ns as above. The multiplier is estimated by
ﬁ < 0(&)%*6, so that we get the bound
2) N

1 No . 1
1/2 - Y2y3-
cllny D, U2||L§t N21/2||U1||L§t( N )2

1_ Ny 1_,
SCI|H+\|X3,%+IIU2IIX0+, N21/262 sl -3 ()%
N1 1 Ny 1_
SCI|H+HX3,%+IIU2||X1% 52 lull -3 ()7

2

which implies (4.6).

Case 2: Ny ~ Ny > ¢N, thus N3 < ¢N;. The symbol is majorized by

(B )2 =), which can be handled as in Case 1.
Case 3: N; ~ N3 > cN , Ny << N7 ~ N3.
Subcase a: Ny < N. By the mean value theorem we have

e mE) =

m(&s + &§s) — m(&)m(&s) ’_ ’m§2+§3) m(&s) ’ ‘ )(53)52 <N
m(&2)m(&s) (&) -1 om(&) - N
and we get the bound
i DY 22, Ny sl 2, 32

1 N,

< elimll oyl gor.3 Ny uzlLxoo 32
+

Ny

—5 Ar—1cl—
NITN; 2Ny 152 ||U2||X1,%F3

S cllnll oy lunlly -y
+

—14+1
SeNp 2 0 Il o g lluall oy llue
+

which implies .
Subcase b: |&1] ~ [€3] >> |&2] > N. This is the technically most complicated
region where we want to use algebraic manipulations on the Fourier side with
respect to 7 and £ and have also to take into account the characteristic function
(t) of the time interval [0,4]. The problem is that 772(7) = \/% ”:_1 ¢ L1, but
fortunately € L. We perform no dyadic decompositions at all here.

We estimate the multiplier by m < c|«£2|1/2N_%. Thus our aim is to give

the following bound

/ /“1 &1, 1) |6 ? U3 (&, )T (&3, t)dEdt

<cN~ 1+5°+IIU1||X_1,%IIMzIIXL%||n+||X+%+

(4.7)

which would imply (4.6). Abusing notation we denote the Fourier transform with
respect to x and ¢ also by The left-hand side is bounded by

/UAl(flle)MZ(TO)||§2\1/ (&2, T2) 70y (§3, 73) dédr (4.8)
Here ** denotes integration over 25’21 & = Z?:o 7; = 0. Remark again that

without loss of generality uy,uz, 7. > 0. The crucial algebraic inequality in our
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region is the following:
(ST C(<71 G+ (o 162+ (rs + (&) + |To|1/2)

We consider 4 cases according to which of the terms on the right-hand side is
dominant.

Region 1: (11 + |¢,]2)'/? dominant. We get the following bound for (4.8)):
[ {n 1) il T G DIl Tl )T 6, ) dedr
< clull g IF (DD Puz)ny |l e,

< ellunll oy IF (DD oo (DY )| 212

< C‘SO+HU1HX—1,% ||n+HX3—,%+||u2”X0+,%

< BN g I oyl oy
+

by Lemma and by Hausdorfl-Young, which gives
IF=H DD oo < el o < 0™

as one easily calculates.
Region 2: (15 + |§2|2>1/2 dominant. As before, we estimate (4.8) by

/ 61| 7Y@ (Ex, ) [ (70) (T2 + 1€2[) V2|62V 25 (€2, o) (€3, 73) dEdT
< clluall g3 IF (DD u)n | 2,

< clluzll g3 IF 7 (0D oo 1(DF M) ng [ 2+ 12

=

< 0 uall 3.3 In ] 4

Xi,%ﬁ— ||u1||X_%+
_1 _1
< e Nl o el g oy NH

where we have used Lemma again.
Region 3: (73 + |£3]?)'/? dominant. Using Lemma we control (4.8) by:

/ €| 71T (€, ) [ (10) |62 ]V 2 (€2, 7o) (T3 + |€3|2) FH T (€3, 73) dedr

< cllngll oy IF (DD ua) (D3 *uz) |l 2,

X3
< cllmpll oo IF 70D - H(D;lul)(Dglc/2u2)||L?+L§

+

< 6" Iy |

odrlullgrglluell g g

+ e

_1 _1
< e gl oo N z+|\ulux,1,%||u2||xl,%fv ;

1
%2t
X,

Region 4: |79|'/? dominant. The upper bound for (4.8) here is

/ 1|75 (Ex, 7)ol 20 (10)||€2 |V 2n (€2, T2 )70 (€3, ) dEdT

* %
/-\

12
<Dt e, e M2 0] 5 Doy 3 | e
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by Holder. The first factor is estimated as follows by Holder with respect to 71:

—

—

— — _1
1Dz ull e pre = 1Dz wn (m + €)Y+ €8) 72 12 g
£17°71 g7

IN

—— 2\1/2
D7 ur (1 + €02z < clhurl .y

The second factor is bounded by Young’s inequality by

—

i 1/2 ~
elllr[2[4l]| 2+ | s Pz w1l 2z <O Inall ogelluall gory
+

< B N s o g el -

Here we used Lemma and the bound H|T|1/2|1Z|||L3+ < 0%, which is easily
checked. Thus we get (4.7)) in all regions.
Finally we prove (4.3). It is implied by
1+&) m(&s + &) —m(&)m(&a)

/5 / m(& ,
o J«Im(§)m(&a) m(&§3)m(&a)
x iy (&, t)uz(Ea, )0y (€3, 1) ua(Ea, t)dédt (4.9)

< ¢

1 {4 el_
o T rE )||n+||§(0_é+Hu2||X1%||u4||X1,%.
+

Case 1: N; ~ N3 > CN,Nl ~ N3 >> Ny, Ny
Subcase a: Ny < N

m(& + &) ¢ Nayie
\m(&)m(&)| < (&) < C<(N) )
s+ &) —m(EmE) | _ | m(Es + &) —miEs)) | (Im

m(&s)m(&s) m(&s) m(

by the mean value theorem. Thus we get the bound

)(€3) cNy
&) &l < N,

Ny 1 Ny 1_
cmHn+”L§°L§||u2||L§Lg°||n+Dalc/2u4||L§tW<(W)2 9

Ny 1, Noj1i_
< el loelial el ool oy <27 (G

N, 1 1 Ny
< c— J2 (==
< el il —e=0t Il ol ()

1

27

which implies (4.9).
Subcase b: [&1] ~ [§3] = eN, €] ~ |€5] >> [&2], [€a] 5 [€2], [€4] = N. In this case we
avoid any dyadic decomposition and estimate as follows:

m(& + &2) c & 1
‘m(fl)m(&)’ = Im(&2)] e N) ’
|m(§3 +&4) — m(&3)m(&y

c [€4]
m(&§3)m(&a) =

(€a)| — d N )

)’§|
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Thus we get the bound

5 i- 1
/o |fv| |fv| (€ D) (6] (6 1)

1 1 1
, F 3 (6, ) — o dedt
X ——— & 15 (€3,1)(164]2 " ua(8a ))‘€4|§_ 3

1_ 1_
FHTMHL;’OLgHDf U2||L§Lg<>||"+HL;>°L§||Dac2 U4HL%L;°

IA

& 1_ 1_
< Wlln+|lxi,%+lluzllxl,%52 ||n+HXi,%+IIU4IIX1,%52

which is sufficient, because no dyadic decomposition was performed.
Subcase c: [&1] ~ [&5] = eN,[&] ~ [&] > (&, [€d], €] = N = [&2]. We again
perform no dyadic decomposition and estimate as follows:

m(fl + 52) c
ntEeme)| = ©

m(&s + &) — m(&s)m(&s) c LNV
T @mE) < @ SOV

Thus we get the bound

5
/0 |§3|11//22ﬁ(§1,t)@(ﬁz,t))ﬁ(ﬁg,t)(\ﬁd 1205 (Eyt ))‘5 7 dedt
< N1/2 ||n+||L°°L2||u2||L2Loo||’I’L+D1/2’U4HL2
< gl gl gl o gl oy
< el o0 ol g el o g =l o
< 0 el g Tl

Case 2: Ny ~ Ny > c¢N, Ny ~ Ny > N1, N3. We have

m(&1 + &a) c (Mg o Nayiye
ntemien)| < i) <<

’m(fi’: + &a) —m(&3)m (& | < < C<(&)1/2> < c(&)l/Q,
m(&s)m(&s) Tm(&) T TN - N
This gives the bound
_ - Nyy1/2 ,Nay1/2
clln s DY2us Ny 2y DY 2] 2, N7V 2 (52)

< N||n+HX3—,%+”u2”XO+,% Hn+||X:,%+”u4”X0+,%

c _ _
< <N, 1+N4 1+||”+||i

= uzll oy laall oy

1
0,5
+

which implies (4.9).
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Case 3: N; ~ Ny > cN, Ny ~ Ny > N3, Ny. USiIlg
|m(fl+§2> | < ¢ ~ Sc(&)l/z,
m(§1)m(&2)" ~ [m(&)]

N
}m(§3+§4) _m(§3)m(§4)| < ¢ §C<(&)1/2><(&)l/2>’
m(&3)m(&a) [m(&3)m(&a)] N N
we get the bound
_ N: N, N-
cllny Dy ?us| 12, Ny 1/2||n+||L;?°L§Hu4HLng°<(W3)1/2><(W4)1/2>(W1)1/2
_ N. Ny N
< C||“+HX0,%+||U2||Xo+,%N2 1/2Hn+”x°’%+HU4HL2H%+<(W3)1/2><(W)1/2>(W1)1/2
+ + v
< ellnll o gellusll gy Ny * Tl oy luall oy 83 N; *F
= cling X03* Yzl 1.3 V2 N+ X0 Uall 13 4
Ny Ny N
X <(3Q7)1/2><(3§7)1/2>(2Q7)1/2
_3 _ 1
< eN72F (N1 NaN3Ny)'~ o2 \|n+||io,%+||uz|\xl,%Hu4||X1.§
+
Case 4: Ny ~ N3 > c¢N, Ny ~ N3 > Ni, Ny. Using
m(&1 + o) c Nii1/o
S Sc AT )
ntemien)| < e <<
’m(§3 +&§4) — m(&3)m(8a) ‘ < ¢ < c((&)l/%
m(&s)m(&a) [m(&4)] N
we get the bound
_ N Ny
CH7L+17;/2U2HLgt]Vé 1/2HWA-HL$°L§|ML4HL§L53<(3Q%)1/2><(3Q7)1/2>

—34

114
S clnill oy lluallga g N 2 llnll o g lluall 1,3 627N, 2
+ +

< (B2 Ry

—34 0— ¢l 2
< eN72T(N1N2N3Ny)“~ 62 H"+||X:,%+||U2HX1,%HMHXL%

Case 5: N3~ N4y > cN, N3~ Ny >> N1, Ny. Using
m(& + &2) c & 1/2 & 12

|m(§1)m(§2)| < Im(E)m(&)] <c(( N) ){( N) )
m(&s + &) —m(&3)m(&4) c IRY
T e S e <)

we get the bound

—~1/2,, N1 No Ny
el s il e DY 2, N5 20 12y ( X2y Bz

-3+l -2+
< cllnill oy lluzll oy No 27027 lnall o, g lluall 13 Ny
+ +

FEOCNROULIRON

_3 ol
< eNTEF(N1N2 N3Ny )"~ 62 ||”+Hio,%+||u2||xlg||U4H
¢

1
Xtz
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Case 6: Ny ~ N4y > cN,Ny ~ Ny >> No, N3.

m(& +&2) c (V212
emen ! = Ty = S
m(Es + &) — m(€)m(&s) c N
e < ey SAGFT

we get the bound

—1/2 N2 N3
cllmllze oz lusll e s DY 2uall 2, No 2 (GG

1_ —34 Ny N3
62 H”+HX$%+||U4||X1,%N42 (UG

34 0— ¢l 2
< eN72T(N1N2N3Ny )62 ||n+HXi,%+||U2||X1,%||U4||X1,%

1
-1+
< C||n+||X0,%+ Hu2||X1‘%N2 :

+

The remaining cases where at least three factors have equivalent frequencies > ¢ N
are similar or easier to handle so that (4.9)) is proved in all possible situations. The
proof of the proposition is complete. O

5. THE GLOBAL EXISTENCE RESULT

Theorem 5.1. Let 1 > s > 5/6. The Zakharov system (L.1)—(1.3)) has a unique
global solution for data ug € H*(R) , ng € H*"Y(R), A=Y2n; € H*"Y(R). More
precisely, for any T > 0 there exists a unique solution

(u,n, A=) € X53[0,T] x X530, T] x X5 5340, 7]

S

where X530, T := X_;l’%Jr[O,T] + Xiil’%wO,T]. This solution satisfies
(u,n, A2n,) € C°([0,T], H*(R) x H*"Y(R) x H*"'(R)),

2

_ (1—s)
(s + (@)l e + 1A 20 ()] ger < e(1+8) w5 F

Proof. The data satisfy the estimates
[Tuollr < eN'=2||ug] as
[ Insollze < eN'=*(llnol| ge—s + A 201 || o) -
We use our local existence theorem on [0, d], where § ~ ﬁ and conclude

||Iu||X1,%[075] + ||I?”L+||X3—,%+

< || Tuollarr + [0 ||z + [[In—||z2) < e2N'7°
From we get
E(Iug, Inyo) < co(| Tuol| 3 + [Hnoll72 + [Tugl§2) < eNZ0—)
and from
IAY2 T Fa + ([T |72 + [[n— |72 < @NZT) | Tugl| 2 < M

with ¢ = ¢(¢). Thus the constant in depends only on ¢ and M, ie. ¢y =
co(¢, M).

To reapply the local existence result with time intervals of equal length we need a
uniform bound of the solution at time ¢ = § and ¢t = 2§ etc. which follows from a

+ Hlnf”XO%Jr

[0,9] [0,9]

(5.1)
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uniform control over the energy by (2.4)). The increment of the energy is controlled
by Proposition and (5.1]) as follows:

\E(Iu(é), ITL+((§)) — E(I’LL(), I’I’LJF())‘

1 1 3
< —3+5i- -3+ 2
< AN TE N g

—34+ —14¢1- 2 2
I (N +N J2 )||In+||Xi’%+[0,6]”IUHXL%[Oa‘S]]

< c((N"2tg2 4 N-EH)N3(=8) 4 (N=3+ 4 N—1Hg37 ) N401-9))

Using the definition of § we arrive at

|E(IU((S), I?’L+(5)) — EC(I’U;()7 I'fl+0)|

< CS((N—%+N—2(1—S)+ + N_g+)N3(1_s) + (N_3+ +N—1+N—2(1—s)+)N4(1—s))

< 03(N*%+N*2(1*5)+N3(1*5) + N*HN*Q(“SHN‘*(I*S))
where ¢3 = ¢3(¢, M). This is easily seen to be bounded by ¢N2(1=%) (for large N).

The number of iteration steps to reach the given time 7' is T ~ TN*(1=*)+_ This

means that in order to give a uniform bound of the energy of the iterated solutions,

namely by 2eN2(1=%) from the last inequality the following condition has to be
fulfilled:

03(N—%+N—2(1—S)N3(1—3) + N—1+N—2(1—S)+N4(1—S))TN4(1—3)+ < 6N2(1—S)

where c3 = ¢3(2¢,2M) (recall here that the initial energy is bounded by eN2(1=9)).
This can be fulfilled for N sufficiently large provided the following conditions hold:
1
—5—2(1—S)+3(1—8)+4(1—8) <2(1-s)«<=s>5/6
—1-21—s5)+4(1—5)+4(1—s) <2(1—s) <> s> 3/4

So here is the point where the decisive bound on s appears. A uniform bound of
the energy implies by (2.4) uniform control of

IAY2 Lu(®)| + ()| + [|AT 2 Ing ()] < eN'
Moreover || Tu(t)|| < ||u(t)]] = ||uol|, thus
()= + ()l e + |AT 20 (#)]| a1 < eN'

Now, one can directly give a bound on the growth of the solution as follows. The
most restrictive condition on N comes from the inequality

csTN~3+T N—20=9) N3(1=9) N4(1=9)+ o N2(1-5) 0y N > (TE-st

This implies

2

_ (1—s)
sup ([[w(®)|ms + In(@)lae-r + A~ 20 (t) | gar) < e(1+T) o5 T
0<t<T

O
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