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--- 
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ABSTRACT 

Bicycle level of service (BLOS) offers transportation planners a mathematical 

measurement for evaluating roadway infrastructure.  Over the last several decades, there 

have been many formulations used to calculate BLOS; this research aims to improve 

upon these models.  This necessitates the development of a useful roadway dataset, 

replication of existing models, and the scrutinization of additional model parameters, 

such as urban density and hillslope.  In past studies, it was common for the researcher to 

select roads for which data attributes were known in advance – in this work, the sample 

of roads were provided by participating bicyclists familiar with the local study area; 

participants also discussed their perception of each roads’ level of service, enabling 

validation of various BLOS models.  Finally, an improved BLOS model was fitted to a 

comprehensive regional road network dataset (including over 40,000 individual links).  

The results clarify that, while there is yet much work to do, a BLOS model can provide a 

useful tool for identifying areas of the road network needing improvement for bicyclists.  

Closer evaluation of the model results and the roads themselves, along with participant 

commentary, suggest a broader need to reevaluate the use of space along American 

roadways, the high-speed design of these roads, as well as the protections and 

consideration afforded to vulnerable road users, such as bicyclists.   
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1 INTRODUCTION 

A word in advance.  Every cycle path is a protest against bad roads, 

a sort of public notice that the public wagonways are unfit for public travel, 

a wit-sharpener to every highway officer who has seven holes in his head, 

and a splendid example of the charming relations which the wheel and the 

roadway may be made to sustain to each other.  It is a declaration of 

independence which, for the time being, lifts the bicycle out of the mud and 

puts the wheelman on a firmer ground of argument for good roads, takes 

from his critics the charge that the cyclist's warfare is a selfish one, and 

supplies to every traveler an impressive exhibition of the value of a good 

wheelway. – I.B. Potter 

In the United States, bicyclists were among the first to advocate for improved 

roadways both in and between major cities (McCullough 2015); for the League of 

American Wheelmen, the matter was simple: “good roads for all” (Potter 1898).  A 

century gone by, however, and the public roadway has become an exclusive environment 

– a public space fully dedicated to the personal automobile (Kay 1998; Ladd 2008).  It is 

within this environment – the public roadway – in which 4 billion metric tons of carbon 

dioxide are emitted annually (Schipper et al. 2011) and nearly 40,000 Americans are 

killed each year (NHTSA 2021).  Of course, bicyclists are (at least legally) welcome to 

“share the road”. 

Some roads are better than others.  In transportation planning, such a statement is 

typically qualified by assigning each road an estimated level of service.  Methods for 

estimating level of service for automotive traffic are well defined, and in principle, these 
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measures are useful for a variety of transportation services (Stopher and Stanley 2014).  

In reality, the level of service models for alternative modes of transportation – such as 

walking, bicycling, and transit – are all underdeveloped (Devasurendra et al. 2020; 

Kazemzadeh et al. 2020; Raad and Burke 2018; Zuniga-Garcia et al. 2018).  Adequately 

mapping safe bicycle routes and planning future infrastructure improvements for 

bicyclists must be supported by robust models such as bicycle level of service (BLOS). 

In efforts to stave off climate change, to reduce obesity, to prevent unnecessary 

roadway fatalities, to limit noise pollution, and to minimize natural resource extraction, 

the bicycle has regularly been suggested as a sustainable alternative to motorization 

(Gorobets 2016; Katteler and Roosen 1989; Lowe 1990; Parkin 2012; Tomlinson 2003).  

Some argue that encouraging bicycle use will depend on improving built infrastructure, 

such as by constructing dedicated bicycle lanes (DiGioia et al. 2017; Hull and O’Holleran 

2014); these approaches, while valuable to future bicyclists, overlook the millions of 

people that ride their bicycles on existing roadway infrastructure, just as it is.  

Reconsidering the value of a BLOS rating – as well as how such ratings can be estimated 

and applied – offers another tool for improving the bicycling experience, and hopefully, 

for drawing new bicyclists to the road.   

1.1 Problem Statement 

The key problem with convincing more people to bicycle instead of driving is 

road safety.  Globally, over 1.35 million lives are lost annually, with over half of those 

deaths being pedestrians, bicyclists, and motorcyclists; roadway collisions are the leading 

cause of death for those between 5 and 29 years of age (WHO 2018). 



 

3 

In the United States, the roadway fatality rate hovers around 12.4 deaths per 

million residents.  By comparison, Vietnam, South Africa, and Saudi Arabia hold traffic 

fatality rates of 26.4, 25.9, and 28.8 deaths per million residents, respectively; on the 

other hand, Canada, Australia, and the United Kingdom boast low traffic fatality rates of 

5.8, 5.6, and 3.1 deaths per million residents, respectively (WHO 2018, 302-313).  

Overall, the United States (US) could be considered a relatively safe place to drive, if 

also factoring the increased crash risk created by the disproportionately high number of 

miles driven by US drivers (Ecola et al. 2014, 8). 

The US traffic fatality rate also includes pedestrians and bicyclists – together, 

non-drivers account for over 20% of all traffic deaths, and that proportion is trending 

upwards (Bogel-Burroughs 2019).  While driver-deaths are declining, pedestrians’ and 

bicyclists’ deaths are on the rise; bicyclist fatalities rose starkly by 6.3% from 2017 to 

2018 (NHSTA 2019).  This is particularly startling because bicycling is not as popular in 

the US as in other countries: when adjusting for bicycle miles traveled per capita, the US’ 

bicycling fatality rate is exceedingly high (see Figure 1; OECD 2013).  Despite this risk, 

over 22 million Americans still ride their bicycle weekly (FHWA 2017).  

Bicyclists are among the most vulnerable road users; their speeds and distances 

almost guarantee interaction with motor vehicle traffic, even on short trips.  Current 

research and advocacy have identified physical separation between bicycles and motor 

traffic as the best solution to the problem at hand (Wegman et al. 2012); unfortunately, 

such large-scale infrastructural projects are overly idealistic for many American settings.  

A more immediate solution should be considered for the near term. 
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 One suggestion for improving bicycle safety – both real and perceived – has been 

to develop and share evaluations of regional road-networks’ BLOS (Huff and Ligget 

2014; Klobucar and Fricker 2007; Landis et al. 1997).  While level-of-service is a routine 

metricization for motorized planning, a strong consensus about the model specification 

for BLOS has been more elusive (Kazemzadeh et al. 2020; Veillette et al. 2019).  

Continued research is needed to clarify the variables supporting a network-scale BLOS 

model, both for bicyclists and planners alike (Ridgway et al. 2013). 

1.2 Purpose  

This research aims to develop a BLOS model suitable for use by both bicyclists 

and professional planners.  The development of this model necessarily requires 

clarification of the model specification, including the selection of significant variables, 

their appropriate weights, and an accounting of potential interactions.  In many previous 

studies, researchers have selected network segments for analysis based on the availability 

of high-fidelity network attribute data.  In the proposed study, the aim is to improve upon 

10.7
14.6 15.2

18.4 20
27 28.1

32.5

44

Cyclist Fatalities per 1-billion Kilometers

Figure 1: Bicyclist fatalities per 1-billion kilometers (OECD, 2013). 
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existing BLOS models by acknowledging a wider range of segments within a regional 

road network; this new model will be more closely tied to the expertise of active 

bicyclists to select and rank road segments.  These participant-driven ratings can then be 

utilized to evaluate existing BLOS models and to propose the most suitable BLOS model 

for the regional study area.   

1.3 Study Questions 

1. Which variables (describing the road network) are most essential for 

representing bicyclists’ assessments of roadways, and how should those 

variables be mathematically arranged? 

2. Which BLOS modeling strategy produces the most representative map of 

bicyclists’ reported experiences in the local study area? 

3. How do local bicyclists’ experience and perceive their regional road networks 

level of service, beyond those attributes reflected in the BLOS model?  

4. Does current regional transportation planning address infrastructural 

inadequacies highlighted by the proposed BLOS model? 

1.4 Significance 

Bicycling is the most efficient mode of overland travel; the bicycle increases 

human speed potential over threefold while simultaneously reducing the total energy 

expended (Wilson 1973).  Bicycling also generates few negative externalities, with no air 

pollution, minimal noise pollution, and minimal risk of injury (Hurst 2009; Litman 2013, 
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59).  Bicycling also benefits individual riders by constraining obesity (Xu 2019) and 

stimulating cardio-vascular health (Thorin 2017).   

Though the relative modal share of the bicycle in the United States remains 

marginal (at around 0.5 to 1% of all trips), the absolute number of daily commuter 

bicyclists has risen dramatically: from about 488,000 in 2000 up to 786,000 as of the 

2010 Census (McKenzie 2014).  Not only has the number of bicyclists in the US risen, 

but so has the federal governments’ investment in bicycle transportation, from a low of 

$50 million in 1992, now to over $1 billion in 2020 (FHWA 2020).  These numbers 

suggest the potential for further increases in bicycle use around the country.     

It is clear that we should continue to support bicycling as one component of a 

sustainable transportation system (Geels et al. 2017).  In order to provide better guidance 

to current and new bicyclists and to better guide large-scale governmental investments in 

infrastructure, reliable metrics – and maps – about existing roadway infrastructure are 

required.  Mapping BLOS could provide this much needed guidance.  
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2 RESEARCH SETTING 

2.1 Scope of the Study 

Improving on existing BLOS models, and by extension, developing improved 

bicycle network maps is suggested as a generalized solution to aiding bicyclists and 

urban planners to more readily identify safe and comfortable bicycling routes.  To proffer 

improvements for existing BLOS models, this research will focus on a limited areal 

extent, and the participant pool will be limited to experienced bicyclists – those who 

either bicycle 500 or more miles per year, or travel locally by bicycle at least once per 

week – who are also familiar with the road network in the study area.    

2.1.1 Study Area 

The study area is intended to include any link in the road network which is within 

a day’s ride of the city of San Marcos, in Texas.  For most bicyclists, a reasonable ride is 

expected to include an area around the city roughly 50 kilometers in any given direction.  

This areal extent provides many interesting geographical variations (Figure 2).   

First and foremost, San Marcos does not have any significant length of bicycle 

lanes or pathways.  The city is, instead, a prototypical mid-urban US city, with a 

population of around 60,000.  Although additional bicycle infrastructure has been 

planned, the new facilities have received the common criticisms expected of car drivers 

(Cavagnaro 2019); it is unclear whether the city’s early forays into bicycle infrastructure 

will gain momentum or fall to the wayside.  Furthermore, it is even more uncertain how 

city infrastructure will integrate with the larger area outside of the city’s limits.   

San Marcos’ physiography is dominated by two distinctive geological regions.  

The city is centered upon the geological Balcones Escarpment: to the east lie the rolling 

Blackland Prairies and meandering perennial stream basins, while to the west rises 
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Figure 2: San Marcos and outlying areas with 10, 30, 

and 50km buffers. 
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the Edwards Plateau, more commonly known as the Texas Hill Country.  Though the 

effect on the road network is self-evident, whether the differences in topographic 

roughness are meaningful to bicyclists is a matter of inquiry. 

Within this areal extent, the present study aims to focus exclusively on the 

bicycling route network.  Although this network is similar to existing road networks, it is 

expected to include many more connections, links, and routes than found in traditional 

road network datasets.  Whereas automobiles have strict legal and physical limitations as 

to their operation, bicyclists are much more capable of going beyond curbs and 

pavements.  Therefore, existing route network data may need to be reevaluated to account 

for the potential extent of the bicycle route network.      

2.1.2 Limitations 

There are several limitations in the development of a BLOS model.  First, is that 

the universality of the model cannot be guaranteed.  Roadway infrastructure in the United 

States is often more comprehensive, extensive, and of a higher quality than in many 

developing countries, which may limit the applicability of any US-developed model for 

other areas.  Secondly, the expertise of active bicyclists may not be representative of the 

perspectives of infrequent or non-cyclists.  Thirdly, the collected participant responses 

may not fully appreciate the demand or preference for dedicated, physically separated 

bicycle facilities: the local study area does not enjoy significant mileage of dedicated 

facilities.  Nonetheless, the present work is expected to produce a usable BLOS model for 

mid-density urban areas, suitable for use by bicyclists and planners, and especially for 

United States cities and regions presently lacking in dedicated bicycling facilities. 
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3 LITERATURE REVIEW 

3.1 Planning for Bicycles 

The call for including bicycles in transportation planning began in the ‘70s but 

failed to gain significant traction for many decades thereafter; one of the key difficulties 

(and limitations) then, as it remains today, was forecasting demand to aid in planning: 

… there are no recognized methods and little experience in forecasting such 

a demand and almost no experience in forecasting latent demand… 

Experience in cities that have provided new bikeway facilities suggests that 

substantial latent demand may exist (Germano et al. 1973, 17).  

It was around this time that planners began to recognize the four distinct steps of 

the travel demand model, including “decisions to make a trip, choice of destination, 

choice of travel mode, and choice of route” (Stopher 1977, 70; see also Turner et al. 

1997a).  There was also growing recognition that early models – derived from aggregated 

zonal data – were overgeneralized and underspecified; in reality, our travel decisions are 

highly individualized spatial behaviors (Ben-Akiva 1973; Golledge and Garling 2002).     

One of the earliest bicycle demand models was developed in Davis, California; a 

stated preference survey was used to determine individual, disaggregated estimates of the 

choice to bicycle (over other modes) for a trip (Lott et al. 1977).  Attempts to understand 

individual’s bicycling route choices were not far behind, but the environmental variables 

describing the underlying transportation network in these early works were limited to 

simplified and subjective categorical classifications (Axhausen and Smith 1986).  

By the early 1990’s there were a handful of bicycle-specific route choice demand 

models, each more clearly defined than those that had come before.  Although modal 
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choice modeling was (and is) still popular, research interests began examining one of the 

more difficult steps of the demand model: assigning a chosen trip and mode to any one of 

several potential routes.  Whereas automotive traffic can typically be assumed to follow 

the least-time routing, bicyclists are shown to be more responsive to hazards – real and 

perceived – and less sensitive to time impedance (Hunt and Abraham 2007).  Operating 

under this theory, modelers in the ‘90s began developing safety and hazard models 

describing individual links of the transportation network (Landis 1994).  These models 

would become the foundations of the various BLOS models in use today.  

3.1.1 Level of Service 

Level of Service (LOS) is a traditional transportation planning metric.  It is a 

qualitative, categorical measure including designations that range from “A” to “F”.  

Although LOS can be affected by factors such as lane width, gradient, and roadside 

hazards, the primary consideration for vehicular models is traffic density.  An “A” rating 

indicates low traffic density and free-flow conditions meeting (or exceeding) the 

roadway’s designed speeds.  A “C” rating, by contrast, suggests that free-flow speeds are 

maintained, but that traffic density may limit safe spacing and maneuvering.  Grades of 

“E” suggest near-peak capacities, where minor incidents might degrade service to an “F”: 

extreme congestion or absolute gridlock (see Stopher and Stanley 2014).  Aside from 

high traffic roadways, typical roads maintain a high level of service. 

3.1.2 Bicycle Level of Service 

The development of a BLOS measurement is ongoing, few of which include 

concern about bicyclists’ traffic density.  The majority of BLOS models center around 

bicycling suitability criterion, as characterized by the road and environment.  Variables 
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such as average vehicular traffic count are almost universally used in these BLOS 

models, but there is also a range of other variables included.  The majority of these 

models are limited in scale – they are typically constrained to a small selection of linear 

segments, or links, for analysis.   Fewer studies have addressed BLOS at a network scale, 

and participants have been primarily used for validation of existing models (using links 

chosen by the researcher) rather than using participants’ input for model development. 

3.2 Road Link BLOS variables 

BLOS modeling relies on, at the very least, details about the physical roadway 

and the anticipated traffic; many models incorporate additional variables, including 

details about local area’s socio-demographics, topography, and dedicated bicycle 

facilities.  There has been little consistency in the formatting of these variables. 

3.2.1 Motor Vehicle Traffic 

Traffic counts are ubiquitous in bicycle demand and level of service models, 

though no clear standards have emerged (Kazemzadeh et al. 2020; Majumdar and Mitra 

2018).  In the United States, the Federal Highway Administration provides one method 

for the estimation of motorized average annual daily traffic (AADT), which is then 

measured by various state-level offices of the Department of Transportation; in some 

cases, regional and metropolitan planning agencies may also provide local traffic counts.   

In addition to motor vehicle traffic counts, the roadway speed is very commonly 

used for modeling.  In some instances, this might be approximated by designed roadway 

speed limits (Griswold et al. 2018; Landis 1994; Lowry et al. 2012).  However, where 

data are available, the 85th percentile of observed traffic speed is recommended for 

modeling (Lefeve 1954; Majumdar and Mitra 2018).  It is noteworthy to highlight that 
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while the designated speed limit is an objective measure, there may be variance in 

statistical estimates of the 85th percentile of observed speeds (Abbas et al. 2011).  

Several studies also find significant effects on BLOS resulting from the 

composition of motor vehicle traffic.  In addition to a measure of AADT, traffic 

composition is typically generalized by the inclusion of either an absolute count of heavy 

vehicles (Jones and Carlson 2003; Petritsch et al. 2007) or as the percentage of heavy 

vehicles expected in daily traffic (Lowry et al. 2012; SFDPH 2010).  In all models, heavy 

vehicle traffic negatively influences the measure of BLOS.     

Motor vehicle traffic is highly dynamic, year to year, day to day, and hour to 

hour.  While average daily traffic, 85th percentile travel speeds, and heavy vehicle counts 

are suggestive of actual road conditions, these measurements typically fail to differentiate 

traffic conditions between rush and non-rush hours, or between weekdays and weekends 

(Sorton and Walsh 1994).  More importantly, for longer terms, these variables are not 

able to anticipate major adjustments in vehicle traffic – this may include reductions in 

miles-traveled when oil prices spike (Gillingham 2014), or from emerging modal 

alternatives such as motorized electric-bicycles and scooters (Plazier et al. 2017).  

3.2.2 Roadway Characteristics 

Variables describing the roadway are more static than motor vehicle traffic.  

Measurable characteristics typically include road widths, lane counts, shoulder widths, 

and in more extensive datasets, may also include variables such as sight distance, access-

drive counts, curb-cut frequencies, and reported pavement conditions.  There is limited 

consensus about which of these variables are most important, or how these variables are 

included in models. 
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Lane width and number of lanes are two of the most commonly used attributes of 

the roadway included in BLOS models.  Early models evaluated just the width of the 

outside travel lane (the lane where bicyclists are presumed to be riding) and the number 

of lanes (Landis 1994).  This approach was quickly modified to effective width, a measure 

that considers the width of the outside lane along with the width of the shoulder, and then 

adjusted for possible encroachments in the outside lane (Landis et al. 1997; Petritsch et 

al. 2007).  Others have imputed only the highway shoulder width or potential buffer area 

(outside of the primary travel lanes) to estimate BLOS (Jones and Carlson 2003). 

The provision of on-street parking is generally shown to reduce the bicycling 

suitability of a network link.  Though bicyclists appear to prefer routes without on-street 

parking, where necessary, angled parking is preferred to parallel parking (Sener et al. 

2009a); nonetheless, no precise estimate of this effect has been determined.  Epperson 

(1994) and Landis (1994) assign a penalty to network links that have parking, using a 

penalty similar to that of links with moderate grades.  Lowry and others (2012) utilize the 

proportion of occupied on-street parking within a regression model; Majumdar and Mitra 

(2018) also use the proportion of occupied on-street parking, but in an ordered probit 

model; their findings suggest that on-street parking occupancy has the strongest effect on 

bicyclists’ perceived BLOS.  This is a critical consideration in highly urbanized 

environments with dense on-street parking; it is important to keep in mind, however, that 

for many links in the transportation network, on-street parking is not permitted. 

Road grade continues to be a matter of contention among BLOS modelers.  

Common wisdom suggests that hills – requiring more effort to bicycle – should be 

penalized in both the initial BLOS and derived demand models.  This, at least, was the 
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approach taken by early BLOS modelers (Epperson 1994; Landis 1994); the grade in 

these models is classified as either flat, moderate, or severe – it is a subjective measure 

when applied in these examples (Emery et al. 2003).  Against the common wisdom, some 

research suggests that bicyclists prefer moderate hills, and only modestly discount steep 

hills (Kaplan 1975; Sener et al. 2009a).  There has been limited use of grade estimates or 

terrain roughness indices (Lindsay et al. 2019), despite the more precise nature of these 

data compared to the subjective classifications often substituted for gradient.  

Additional model variables describing the roadway – such as pavement conditions 

or qualities, roadway sight distances, access densities, and traffic-stop frequencies – are 

generally not available in statewide road inventories (Lowry et al. 2012; Turner et al. 

1997b).  Where available, the collection and coding of these data are generally limited to 

a single metropolitan planning region, or coded by the BLOS modeler themselves.  High 

access densities and frequent traffic control devices reduce free-flow speeds and decrease 

BLOS; this term can be included in a model either as an absolute count, relative density, 

or factored with other attributes to form a measure of link impedance.  Short sight 

distances are presumed to create hazardous situations, thereby reducing BLOS; sight 

distance determinations are from a single point, and therefore most practical in nodal 

analyses and often excluded from link and network analyses.  Lastly, good pavement 

conditions may not bolster BLOS ratings, however poor pavement conditions can 

significantly degrade expected BLOS (Landis et al. 1997).  There have been significant 

efforts to better understand the effects of pavement quality on BLOS (Bíl et al. 2015; Li 

et al. 2015; Thigpen et al. 2015), but much like sight distance, true estimates of pavement 
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quality are highly variable within networks and within links – pavement quality 

potentially varies even within the area of a single node in the network. 

3.2.3 Dedicated Bicycle Facilities 

The presence or absence of a dedicated bicycle facility is also commonly included 

as a parameter in BLOS models.  The definition of a bicycle facility includes a wide 

range of amenities, from a minimum of roadside signage, to bicycle sharrows, painted 

lanes, protected lanes, and at best, out-of-the-roadway dedicated paths.  As Kazemzadeh 

and others (2020) suggest, “there is a limited body of research addressing the 

heterogeneity of these facilities” (see also Veillette et al. 2019).  Despite a popular 

conclusion that dedicated facilities are worth the investment (Dill and Carr 2003), several 

studies have found that experienced bicyclists prefer lane-sharing to dedicated facilities 

(Hunt and Abraham 2007; see also Broach et al. 2012, 1738; Forester 1993).  This may 

be, in part, attributable to the reduced passing distances afforded by drivers when 

bicyclists make use of on-road bicycle lanes (Beck et al. 2019; Parkin and Meyers 2010).   

Although we should expect bicyclists to prefer paths without motor vehicle 

traffic, this would not always be true if the traffic-less facility required more stopping and 

starting, lengthy detouring, or an increased risk of pedestrian conflicts.  Furthermore, 

analysis of dedicated facilities is typically limited to selected nodes and links in the 

transportation network – the results thus imply an idealistic view of bicyclists’ stated 

preferences.  Contemporary transportation planners should immediately recognize that a 

comprehensive network of dedicated facilities is rare in most metropolitan areas; 

although such facilities may represent the highest levels of service, an up-to-date BLOS 

network model cannot be limited to an evaluation of dedicated bicycle facilities.  
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3.2.4 Land Use 

Land use attributes are included in many BLOS models as a proxy for local traffic 

demand and density.  The earliest models applied simple penalties to BLOS for both 

industrial and commercial land uses; commercial areas were penalized similarly to 

moderate grades, while industrial areas were rated similar to severe grades (Landis 1994; 

Epperson 1994).  These simple estimates were later substituted with more precise 

rankings of trip demand and cross traffic associated with different land use classes 

(Landis et al. 1997).  Rather than penalize commercial land areas, Harkey and others 

(1998) produced a model which boosts BLOS for residentially zoned areas, leaving other 

land use classes unaffected.  The binary differentiation of residential and non-residential 

areas has remained a popular modeling strategy (Majumdar and Mitra 2018), though 

more extensive classification systems have also been used (Jensen 2007).   

Many BLOS models make do without land use parameters (Griswold et al. 2018; 

Lowry et al. 2012).  In fact, this may be preferable – in effect, land use classes are 

intended as a proxy for traffic, however, the most basic BLOS models already include a 

direct estimate of traffic volume.  Likewise, where the land use class is considered as a 

proxy for cross-traffic generation, access density and curb cut frequency would provide a 

more empirical measure.  In 1997, Landis and others retain the land use factor “for 

institutional reasons” (p. 123).  Jensen (2007) finds a statistically significant interaction 

between land use and BLOS, but ultimately concludes that the magnitude of the effect is 

relatively small when compared with the effects of traffic and road width on BLOS.  

Nonetheless, the potential significance of land use and cross-traffic should not be ignored 

in future BLOS model development. 
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3.2.5 Urban Density and Sociodemographic Factors 

Urban density has not been fully examined in the context of BLOS; this may be 

partly because, where BLOS models are typically constructed at micro scales (of 

individuated links and nodes), density measures are typically aggregated to larger areal 

zones (Asadi-Shekari et al. 2013).  These areal density estimates are used to predict the 

macro-demand model, both in terms of real demand and potential latent demand.  Dill 

and Carr (2003) begin with a population density variable, though their regressions do not 

find the variable to be significant.  On the other hand, Dadashova and Griffin (2020) find 

that areas with higher population densities exhibit higher rates of resident bicyclists; 

Griffin and Jiao (2015) also find significant interactions between bicycling traffic and the 

variables of activity density and regional diversity, which are independent variables 

reported in the Environmental Protection Agency’s Smart Location database (see also 

Ramsey and Bell 2014).  Turner and others (1997a) also found various density measures 

significant, including population density, employment density, and the percentage of land 

area devoted to employment use.  Wang and others (2016) reaffirm the significant effects 

of population and employment densities on bicycle demand and use, whereas they find a 

suite of other sociodemographic variables to be insignificant.   

The role of urban density in the BLOS model (and in the macro-demand model) 

deserves more attention.  Although higher density suggests increased demand, results are 

somewhat inconclusive as to whether the increased demand is more or less than expected 

(given an underlying absolute increase in population).  Furthermore, most models do not 

address variations in population density associated with changes in scale (also known as 

the modifiable areal unit problem); models which summarize and compare population 
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densities of whole cities cannot be directly compared to models which estimate the 

population density of census block groups (see Buzzelli 2020).  Furthermore, the use of 

density in zonal demand models is problematic because most bicycle trips are not work 

trips, hence marginalizing the traditional assumption that traffic flows from high 

residential density to high employment density in the morning and contra in the evening.  

Finally, there is a certain circularity in the models here: population density and residential 

density may be used to estimate total bicycling demand at the macro scale, and then 

BLOS models are used to assign predicted bicycle traffic to a modeled network of routes 

– but oftentimes, as discussed, the BLOS model also uses a proxy of density (land use or 

access frequency) to adjust the level-of-service.  The risk here is that if the BLOS 

equation is later incorporated within a more complete demand and traffic assignment 

model, that a resulting unobservable and unreportable multicollinearity will exist. 

3.3 Bicycle Level of Service Modeling Equations 

The various BLOS models used in research and planning typically include a 

similar suite of data variables, however, the interaction between variables is often 

modeled in widely divergent forms.  In most instances, the variable coefficients and 

factorizations are predetermined and remain static, though more recent modeling and 

validation efforts utilize statistical estimation of the model parameters (such as through 

regressions or machine learning algorithms) yielding dynamic equations.  

3.3.1 Static Parameterization 

By predetermining the configuration of the model, the minima and maxima of the 

model outputs can be defined by the analyst, and coefficients can be readily modified.  

Six variations of a static parameter BLOS model were considered for investigation.   
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Among the most streamlined of the equations (1) is given by Sorton and Walsh 

(1994) and restated by Turner and others (1997b).  The equation utilizes a rank-

classification of three key variables – traffic volume, lane width, and the speed limit.  A 

more thorough evaluation was developed earlier, by Davis in 1987.  The original 

equation was reproduced by both Epperson (1994, Eq. 2) and Landis (1994, Eq. 3), 

though adapted for metric and standard units, respectively.   

Epperson (1994) and Landis (1994) both offered their own revisions to Davis’ 

original road link evaluation.  In Epperson’s revised equations (2,4), the units of measure 

remain in the metric system (i.e., 56kph, 4.25m); meanwhile, in Landis’ equations (3,5) 

the parameters are given in standard units.  Application of either formula requires 

consideration of the input units and whether transformations are needed.   

There are several noteworthy observations in the given equations.  In Epperson’s 

revision of Davis’ equation (4), the speed factor is reapplied in the width factor, 

penalizing narrow and high-speed roads, while lessening the penalty for narrow roads 

having low speeds.  Landis’ first interpretation of Davis’ equation (3) has a requirement 

that for roads over 14 feet wide the entire width factor is treated as 0, nullifying any 

benefit from wider roads.  Epperson’s interpretation (4) of the width factor avoids this 

concern entirely, but at the expense of two added static parameters.  Landis’ proposed 

solution (5) is rather elegant: lane-widths of roughly 14 feet do not influence the BLOS, 

but significantly narrower or wider lane-widths are given substantive effects by squaring. 

The most recent development among static parameter BLOS models is published 

in the Highway Capacity Manual (HCM) (Transportation Research Record, 2010).  This 

BLOS equation begins with 10 data variables which are then combined and transformed 
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algebraically into 4 summative factors – width, traffic, speed, and pavements (Huff and 

Liggett 2014, 47).  An approximation of this equation is given in equation 6 (lacking only 

preprocessing variables which subtly modify lane width and average daily traffic). 

 

Where,  

  

sl() is a function indicating rank-classification of each variable from 1 to 5, so 

that 1 indicates the highest suitability and 5 the least 

    

AADT = Average Annual Daily Traffic PF = Sum of Pavement Factors 

L = Number of Traffic Lanes LF = Sum of Location Factors 

S = Speed Limit %HV = Percent heavy vehicles 

W = Curb Lane Width CCF = Curb cut frequency 

 𝐵𝐿𝑂𝑆 =  𝑠𝑙(𝐴𝐴𝐷𝑇) +  𝑠𝑙(𝑊) +  𝑠𝑙(𝑆) 

 
(1) 

  

 

 
 

 
𝐵𝐿𝑂𝑆 =

𝐴𝐴𝐷𝑇

𝐿 ∗ 2500
+  

𝑆

56
+ [(4.25 − 𝑊) ∗ 1.635]  + ∑ 𝑃𝐹 + ∑ 𝐿𝐹 (2) 

  

 

 
 

 
𝐵𝐿𝑂𝑆 =

𝐴𝐴𝐷𝑇

𝐿 ∗ 2500
+  

𝑆

35
+  

14 − 𝑊

2
 + ∑ 𝑃𝐹 + ∑ 𝐿𝐹 (3) 

  

 

 
 

 
𝐵𝐿𝑂𝑆 =

𝐴𝐴𝐷𝑇

𝐿 ∗ 3100
+  

𝑆

48
+ {𝑆/48 ∗ (4.25 − 𝑊) ∗ 1.635} + ∑ 𝑃𝐹 + ∑ 𝐿𝐹 (4) 
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The complexity of the HCM model makes its sensitivities more difficult to 

interpret.  Lowry and others (2012) were among the first to test the sensitivity of the 

HCM BLOS, evaluating how hypothetical road improvements might improve BLOS 

ratings in an urban area.  Huff and Liggett (2014) performed a more comprehensive 

assessment of the HCM BLOS, even uncovering an error in the published equations (p. 

56); their results suggest the HCM model is sensitive to traffic volume, though this effect 

is countered by increasing road widths (the width term includes exponentiation, whilst 

traffic volume factors require a floor because of logarithmic transformations).  However, 

the HCM model does not evaluate grade, is insensitive to emerging multi-modal roadway 

designs, and was derived from a visual preference survey of 120 participants – the 

Transportation Research Record deemed that improvement of the current HCM BLOS 

model was a key research need as early as 2013 (Ridgway et al. 2013).  Performance of 

the HCM BLOS has not yet been tested against the established models described. 

The static parameter models, as described, are advantageous in several regards.  

The weighting of individual factors is open to adjustment, and calibration results are 

readily shared among analysts.  In recent decades however, these rigid models have been 

less frequently examined in academic literature, replaced instead with dynamic model 

parameterizations derived from statistical methods. 

3.3.2 Model Validation and Dynamic Parameterization 

What initially began as attempts to validate the early static models have evolved 

into an intricate formulation of contemporary models; these new-era models estimate 

BLOS parameters from an input dataset – typically a survey or questionnaire – to define 

coefficients for the available or included BLOS variables.  
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In 1994, Epperson proposed the videotaping of roadway segments for evaluation 

by participant bicyclists, a procedure which Sorton and Walsh (1994) utilized to provide 

confidence in the streamlined ‘ranked stress-levels’ index (BLOS equation 1). Thirty-two 

participants were divided into four categories according to their responses to questions 

about their bicycling experience and were then asked to rank video recordings of road 

segments from least to highest stress in terms of traffic, width, and speed.  Traffic volume 

appeared to have the strongest effect on participants’ responses; no significant differences 

were detected between the participants of differing bicycling experience, in part because 

of the small groupwise samples (Sorton and Walsh 1994, 23).   

Landis and others (1997) set out to determine potential coefficients for factors 

outlined in equation 5: 150 bicyclists provided 4300 observations of an urban route 

featuring variable road and traffic characteristics.  The best fitting model included 6 

regression coefficients adjusting for factors of AADT, speed, traffic composition, land 

use, road width, and pavement conditions; unfortunately, the best-fit model also relied on 

natural logarithmic transformations of input variables, such that direct interpretation of 

the coefficients was impossible.  To understand the model requires experimenting with 

various input scenarios and examining the resulting change (i.e., sensitivity analysis). 

Despite the commonality of using standardized regression models, several other 

dynamic modeling approaches have been examined.  BLOS, despite its calculation as a 

real number, is typically reported as ordinal ranks (where level of service can vary from 

A through F, or 1 through 5); this suggests a reasonable case for an ordinal regression 

model.  Such models cannot fully define the linear relationships between the dependent 

and independent variables (as a coefficient describing the absolute magnitude of change 
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in y given x), but rather, the ordinal model produces maximum-likelihood estimates – the 

relative odds that a change in the dependent variable (BLOS) can be expected from a 

measurable change in the independent variable under scrutiny (Becker and Kennedy 

1992); this may still provide useful information for the development of a generalized 

static model.  For instance, Majumdar and Mitra (2018) utilized an in-situ intercept 

survey to assess bicyclists’ perceptions of road conditions; their results suggested that, at 

least in small Indian cities, vehicular speeds have a less significant effect than earlier 

presumed, and that the presence of on-street parking is more significant for BLOS than 

has been weighted in traditional models.  Griswold and others (2018) also used an ordinal 

model and found that speed limits are less influential than either traffic volumes or 

roadway width, despite the high weighting of speed factors in earlier static models.   

There does appear to be an emerging consensus as to which variables are most 

significant on the overall BLOS (as modeled, and as validated by bicycling participants).  

However, there is little consensus on how these variables should be incorporated in the 

model, or if all variables are even necessary: the earliest three-variable index performed 

relatively well in participant validation (Sorton and Walsh 1994).  Although most BLOS 

models up to this point have undergone some participant validation (and with relative 

consistency), the validation methods have varied dramatically, ranging from stated 

preference questionnaires to video-lab evaluations, and have gone as far as on-road 

bicycling evaluations and in situ intercept surveys.  While the models and variables 

become more consistent, there appears to be an increasing recognition in the 

heterogeneity of bicyclists and their preferences – these findings impose a significant 

challenge to calibrating BLOS models.  
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3.4 Challenging Models 

The cross-examination of various BLOS models – including their variables and 

mathematical composition – reveals a series of unresolved challenges.  These challenges 

provide the impetus for further research.  A more thorough understanding of these 

challenges is hoped to improve BLOS estimation, and ultimately, to support a more 

widespread incorporation of the bicycle in the field of transportation planning – 

furthermore, these results may also support the production of end-user bicycle road maps 

and route-planning utilities, tools which may foster a modal shift towards bicycling. 

3.4.1 Traffic, Speed, and Separation 

Drivers and bicyclists can agree that any traffic is less than ideal, therefore, traffic 

is presumed to degrade BLOS.  However, the effect of traffic on BLOS must also be 

considered in relation to the width of the roadway and the potential separation between 

motorized and non-motorized users.  This relation is obvious in discussion; however, it is 

difficult to incorporate within the multi-factor models typically used (wherein traffic, 

road-width, and separation are often assigned independent coefficients).  Some models do 

provide for interactions between these terms, such as multiplying the speed factorization 

by one plus the percentage of heavy vehicles (see equation 5), but these rarely extend to a 

full consideration of the extrema of interactions (Cox 1984).  

The effect of these interactions in the BLOS model is best illustrated using a 

simple example (Box 1990).  Imagine a road link within a network dataset which 

represents the supremum width and the supremum of separation – traffic factors, 

including the absolute volume and relative vehicle compositions, as well as the speed 

factors will both approach factor-coefficients of infima; there are no models in which this 

interaction is fully realized (and such realization may be impossible).  
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The above example is further compounded when considering the potential 

interaction between speed and traffic.  When roadway speeds approach infimum, then 

traffic becomes significantly less concerning for BLOS: the traffic coefficient should also 

approach infimum.  This exemplifies another interaction missing from most models: 

BLOS potentially increases dramatically as traffic approaches gridlock.  This reiterates 

another concern with these parameters: the temporal heterogeneity of traffic volume and 

traffic speed conditions, in contrast with the presupposition and utilization of fixed 

estimates of peak-hour or average-daily traffic volumes.  

Examination of roadway width, traffic volume, and speeds using a functional-

network algorithm perfectly captures not only the missing interactions, but also the 

resulting conflict in parameter results.  As the model complexity is allowed to increase, 

the algorithm produces both negative and positive coefficients for both road width, 

traffic, and speed (Beura and Bhuyan 2017); sensitivity analysis of a composite model 

(including all terms and coefficients from each of their four models) suggests that road 

width is the most significant variable, nearly double that of the effect of peak hour traffic 

volumes (these estimates are, yet again, presented without any interaction).  Conversely, 

using the same dataset with a random-forest algorithm finds traffic to be the most 

significant model variable, with road-width a far second – the potential for interaction 

remains underappreciated in the final composite model (Beura et al. 2017, 92). 

3.4.2 Hillslope and Grade 

Few models incorporate measures of hillslope.  Early models used simple 

classification systems, assigning penalties to hilly routes (Epperson 1994; Landis 1994).  

Planners in San Francisco specify little difference between grades less than 9%, but 
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strongly penalize BLOS for segments with slopes exceeding 15%; nonetheless, their 

modeling still idealizes that “the lowest possible grade is always a priority” (SFDPH 

2009, 9).  Considering the preferences of surveyed bicyclists, conflicting results suggest 

that: hills impede bicyclists (Rietveld and Daniel 2004), hills have no effect on bicyclists 

(Moudon et al. 2005), and that some bicyclists seek out moderately hilly terrain (Kaplan 

1975; Sener et al. 2009a).  At the least, cartographers of bicycling maps must recognize 

the importance of informing map users – bicyclists – of significant grades.   

Estimates of hillslope are not straightforward, immediately raising another 

challenge for BLOS modelers.  Simply changing the scale and recording interval of the 

slope analysis is expected to significantly alter the resulting slope estimates (Gerrard and 

Robinson 1971).  Even given an equal scale and interval, however, many other 

computational considerations remain (Jones 1998; Warren et al. 2004).  Furthermore, 

common nomenclature varies dramatically; although slope and gradient are often used 

interchangeably, in mathematical convention, slope is typically an angular measure 

handled as a scalar variable, while gradient is expressed as the simplification of rise over 

run – therefore, in its fullest, gradient is understood as a vector which depends upon the 

direction of travel.  For bicyclists, the most commonly used slope referents include the 

maximum gradient obtained (sustained over a short distance, such as 30 meters) or as the 

elevation gained per mile across an entire segment or route; still, several other 

trigonometric referents are conceivable.  The various referents are not easily transformed 

(very few grade measures maintain a linear relationship).  Which slope measure is best 

understood by map users and which measure is most appropriate for BLOS modeling has 

not been widely discussed.   
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3.4.3 Heterogeneity in Route Preferences 

The majority of BLOS models are universalizing in regards to the bicycling 

experience – the parameters are fixed, and each potential user is assumed to agree with 

the output.  Human spatial behaviors – including route-choices and wayfinding heuristics 

– are much more complex (Golledge and Garling 2002; see also Bovy and Stern 1990; 

Golledge 1999).  Bicyclists are no different (Lawrence and Oxley 2019). 

The response to the heterogeneity in route preferences has largely been to adopt a 

typology of bicyclists, for which the BLOS model could then be adapted to suit each type 

of bicyclist.  Among the earliest of typologies was developed using in-depth interviews of 

30 road-users (drivers and bicyclists), then validated with 788 survey respondents (Jensen 

1999).  The resulting typology derived three types of bicyclists: the passionate, the 

everyday, and the leisure bicyclists.  Although the study did not interrogate factors 

underlying bicyclists’ route-preferences or perceptions, the most important aspect of this 

typology is the clear lack of ordinality: there was no presumption of bicycling frequency 

or of habit, only clear evidence of oft-unaccounted heterogeneity among bicyclists. 

Unsupervised statistical methods have gained significant popularity for the 

typologizing of bicyclists.  Clustering algorithms, such as latent class choice modeling, 

reaffirm significant heterogeneity in bicyclists’ route preferences.  The latent class 

method simultaneously estimates respondents’ most likely class membership and the 

parameter estimates for BLOS factor-preferences of each class; findings from this 

typology suggest differences between classes, but again, with no clear ordinality between 

class and comfort (Griswold et al. 2018).  Stepwise statistical procedures have also been 

shown to provide robust typologies.  As a first step, principal component analysis is 



 

29 

commonly used to identify related question-blocks to represent groupwise factors; the 

derived factors are then used to power k-means clustering of participants (Chaloux and 

El-Geneidy 2019; Damant-Sirois et al. 2014; Gatersleben and Haddad 2010; Veillette et 

al. 2019).  Although principal component analysis is, in theory, a useful preprocessing 

step for k-means (Ding and He 2004), the difficulty of selecting the appropriate number 

of principal components (Rao 1964) and the appropriate number of k-clusters is often 

overlooked (Bradley and Fayyad 1998); many typologies use subjective calibrations.  

Among the most widely cited (and under-scrutinized) of typologies is the “Four 

Types of Cyclists” (Figure 3).  The typology emerged from the Portland Office of 

Transportation, authored by Roger Geller in 2005 (and later revised to its current form in 

2009); the typology is intended to characterize an entire population (of bicyclists, and 

non-cyclists as well).  Attempts to reproduce the typology in participant surveys have 

been modestly successful, but with the looming caveat that the classification of survey 

respondents is itself a supervised and subjective procedure.  In 2013, Dill and McNeil 

developed a questionnaire to classify respondents into the four types, with resulting class 

memberships approximating Geller’s four types.  In 2016, Dill and McNeil expanded 

their work to a national survey, and discovering that their method had wrongly classified 

Figure 3: Four types of transportation cyclist (adapted from Geller 2009). 
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80 respondents (2.6% of their sample) as “No Way, No How” (non-cyclists), despite 

those respondents being active transportation bicyclists.  The discrepancy resulted from 

the fact that experienced bicyclists had expressed both discomfort and concerns about 

bicycling safety in the questionnaire.  Furthermore, a key limitation in Geller’s typology 

is the stated intention that the typology only be applied for utilitarian bicyclists, and not 

for recreational bicyclists: in validation, active recreational bicyclists were present in 

each of the four types, including the “No Way, No How” type (Dill and McNeil 2013; 

Dill and McNeil 2016).  Similarly, in a crosstabulation including bicycling frequency and 

bicycling comfort set against the “Four Types” typology, only 121 of 435 respondents 

classified as “No Way, No How” were fully uninterested in bicycling (Cabral 2019, 56; 

Cabral and Kim 2020).  Regardless of these potential issues (Damant-Sirois et al. 2014, 

1155-1156), the four types typology has largely been interpreted as the ‘untapped 

potential market demand for bicycling’, leading to some interesting conclusions: 

The goal of future policy and research would be to find the optimal ways to 

improve the safety perceptions of non-bicyclists when they are riding 

through intersections. Non-bicyclists are the largest segment of the total 

population. Designing and providing adequate bicycle infrastructure for 

non-bicyclists may eventually encourage them to bicycle for transportation 

(Wang and Akar 2018, 79). 

The obvious risk of advocating for expensive infrastructural improvements for 

users who may never use them is rarely discussed in such conclusions.  This reifies a key 

aspect of this research: which roadways already represent high levels of service and what 

improvements might raise roadway level of service for bicyclists?  
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4 RESEARCH METHODS 

Comprehensive network datasets describing BLOS are uncommon.  Where it has 

been investigated in the past, BLOS is traditionally derived from pre-existing network 

attributes, such as those provided by state level transportation planning agencies; the 

exact model specifications have varied widely over the last several decades.  This 

research aimed to examine the underlying model variables when applied to a mid-size 

United States metropolitan city, blending fieldwork with computer models (Appendix A).  

Alongside road network data from the Department of Transportation, experienced local 

bicyclists provided input and validation measures to aid in the development of a BLOS 

model.  Model results were compared with bicyclists’ assessments using pairwise 

differences and best fit (through least squares regression).  This approach was intended to 

provide new insight into various model specifications and to provide future guidance for 

urban planners seeking to incorporate bicycling within existing road infrastructures.  

4.1 Data Acquisition 

BLOS is a data-driven analytical model. The most minimalist of approaches 

include traffic volume, road width, and motor-vehicle speeds.  Additional variables may 

improve the BLOS model, including hillslope and urban density (proxied with measures 

of network density, population density, or residential and employment densities).  Many 

of these variables are obtainable as secondary data (Table 1).  Primary data was 

ascertained from participant interviews; this included, first, a list of road links guiding the 

analysis, and second, ratings of each selected link according to bicyclists’ perception of 

traffic, road width, and speeds.  The objective was to replicate and improve upon existing 

BLOS models while validating each model using primary participant ratings. 
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Table 1: Key Data Variables from Secondary Sources 

Name Source Source Column Description 

Link_ID Primary  Internal ID for selected links 

Overall Rating Primary  Perceived bicycling suitability 

Traffic Rating Primary  Perceived volume of traffic 

Speed Rating Primary  Perceived speed of traffic 

Width Rating Primary  Perceived width of bicycle-space 

Hill Rating Primary  Perceived hillslope impediment  

Bike Lane Primary  Painted or delineated Lane 

Lane Width TxDOT LANE_WIDTH Design width in feet 

Shoulder Width TxDOT S_WID_O Width of outside shoulder, feet 

Shoulder Type TxDOT S_TYPE_O Surfacing of outside shoulder 

Shoulder Use TxDOT S_USE_O 
Design use of outside shoulder 

(parking, bike, emergency) 

Traffic Volume TxDOT ADT_CUR Average daily traffic 

Truck Traffic TxDOT TRK_AADT_P % of heavy trucks in ADT 

Number of Lanes TxDOT NUM_LANES # of continuous travel lanes 

Residential 

Density 
EPA/Census D1a 

# of housing units per 

unprotected acre 

Population 

Density 
EPA/Census D1b # of people per unprotected acre 

Employment 

Density 
EPA/Census D1c # of jobs per unprotected acre 

Road Network 

Density 
EPA/HERE  D3a Facility miles per square mile 

Intersection 

Density 
EPA/HERE D3b 

Intersections per square mile 

(auto-centric crossings omitted) 

Gradient USGS NED Raster Average gradient along link 

Max. Grade 30m USGS NED Raster 
Maximum grade sustained over 

30 meters 

Max. Grade 50m USGS NED Raster 
Maximum grade sustained over 

50 meters 

Feet per mile USGS NED Raster 
Elevation gain per mile, 

cumulative in both directions 
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4.1.1 Primary Data 

In the past, research about bicycling infrastructure has typically begun with a 

researcher-selected list of roadway sites and links for analysis.  A pivotal component of 

the current research was to challenge this approach by allowing experienced bicyclists to 

guide the research project by selecting the local road links worthy of analysis.  In addition 

to the participants’ road-links sample, they also provided perceived estimates (Likert 

ratings) of traffic, road width, and traffic speed, as well as some qualitative commentary; 

these ratings were used as validation for a suite of potential BLOS models – both those 

described in the literature and for those models revised during this research.  

4.1.1.1 Participant Interviews 

The interviewer guided the interviewee throughout the discussion, making regular 

reference to the survey instrument (Appendix B). The interviews were organized into 

three primary sections and completed within one hour.  The first section addressed basic 

participant qualifications and demographic details – these details were critical for 

understanding the current demographic of bicyclists in the local area at the time of the 

study and for assessing the representativeness of this study for other geographic locales.   

The second section constituted the majority of the interview, in which participants 

provided discussion and analysis of roads of their choosing and presumably, were most 

familiar.  The interviewer began this discussion with a set of pre-selected sites frequented 

by many local bicyclists – these sites also provided for cross-validation of results 

amongst participants and served as a priming exercise for participant-selected roadways.  

Rather than determine a set number of roads set for each interview, each participant was 

encouraged to discuss as few or as many links as they were comfortable, as time allowed.  
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The only limitation asked of participants was to focus on road links within San Marcos 

and the surrounding region, or a radius of about 50 kilometers.  

The third section allowed for participants to make more direct comments 

regarding the variables under discussion (road width, traffic, speed limits, and hillslopes).  

This enabled the direct comparison of participants’ stated preferences regarding these 

variables with their revealed preferences (as determined from their roadway evaluations).  

Furthermore, their commentary highlighted insufficiencies in traditional metrics and 

offered enlightening discussion about, and solutions for, mapping BLOS in the future. 

4.1.2 Secondary Data 

Many of the necessary datasets utilized were not natively congruent.  For 

instance, the Texas Department of Transportation (TxDOT) had maintained road line and 

attribute data (Appendix C), though links often differed from those defined by 

participants.  Therefore, in some cases, secondary datasets required manual intervention 

and adjustment for their practical use in BLOS models. 

4.1.2.1 Road Network Data 

The TxDOT road network dataset offers the primary base map for a regional 

BLOS model; however, the road data in a 50-kilometer buffer around San Marcos 

required significant modification for modeling and analysis (Appendix D).  Although the 

TxDOT data included traffic volume estimates (as of 2019) and road widths, maximum 

speed limits were absent for many roads outside of the department’s jurisdiction 

(primarily, these were local and county roads); topological errors also prevented 

estimation of conventional network metrics, such as the count of intersections along links 

– this reinforced the importance of considering alternative sources of model variables.   
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Missing speed limit attributes were corrected for participants’ links.  The HCM 

institutes a minimum speed limit of 21 mph for all links, which includes missing values 

(Huff and Liggett 2014); this approach almost certainly underestimates the travel speeds 

of unsigned county and rural links, but was needed for operating the regional model. 

Topological errors in road network data prevented some network-wide attribute 

estimates.  Beyond common disjunctions and dangles, errors included disjunctions within 

single links.  This latter issue created problems for hillslope estimation, which requires an 

input of continuous, single-part lines.  Manual digital editing of the road network was 

necessary, and this editing required familiarity with advanced digitizing tools. 

Other attributes utilized from the Texas roadway inventory data included the 

number of travel lanes, the shoulder width, use and type, as well as the surface type.  

Fortuitously, these variables included near complete coverage across the road network. 

4.1.2.2 EPA Smart Growth Data 

Previous research has relied on manual inventories of curb-cut frequency, land 

use classification, and similar attributes to specify the BLOS model.  This research 

considered the use of more readily available data attributes from the EPA’s SmartGrowth 

Database (compiled in 2014, using the 2010 decennial census).  This research focused on 

the use of three measures of land-use density and two measures of road-network density, 

each describing conditions within a US Census block-group. 

Although some road links are contained entirely within a block-group, many links 

intersect several block-groups, and in other cases, parallel the dividing line within block-

groups.  While more advanced dasymetric mapping techniques might be useful in future 

research, a more replicable procedure was employed.  Road lines were spatially joined to 
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block-group polygon features using a geometric “intersects” predicate, creating a many-

to-one condition.  The attributes of the many intersecting block-groups joined to each link 

were then summarized by arithmetic mean.   

4.1.2.3 Hillslope Data 

Slope and grade estimates were derived from the United States Geological 

Survey’s National Elevation Dataset (NED).  The topology of the road network dataset 

required careful examination, and in some cases required manual digitization – hillslope 

estimation required continuous, single-part line features.  Once each included link’s 

topology was validated, the processing method points along geometry was used to create 

a single point feature every ten meters along the link.  Next, these points were input to the 

v.sample tool from the Geographic Resources Analysis Support System (or GRASS); this 

tool appended attributes from the underlying raster cell (such as the NED) to the input 

points.  Lastly, algebraic calculations derived distances, elevations, and estimates of 

gradient along links, as well as colloquial referents, such as vertical feet gained per mile. 

4.1.3 Data Summary 

The data were contingent upon participants’ selection of sample road sites.  Aside 

from this sampling strategy, however, a similar workflow would be necessary for any 

future BLOS modeling.  Generally, the TxDOT’s roadway inventory was used as a base 

map, pending small topological and attribute corrections.  From there, EPA SmartGrowth 

attributes were joined to the road lines, and hillslopes were derived from the USGS NED.  

Once all data were joined to the roadway features, a variety of BLOS models were 

developed, and finally, model results were compared against participant evaluations of 

road links to determine the best performing model (Figure 4). 
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Figure 4: An overview of the data and project workflow.  
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4.2 Analysis and Improvement 

4.2.1 Participant Analysis 

The participant data were examined in several ways.  First, demographic data 

regarding age, gender, and bicycling experience were evaluated with regard to existing 

surveys of experienced bicyclists; the aim was to assure a representative sample of 

bicyclists from the San Marcos area.  Next, their individual ratings of road segments were 

summarized to assess potential bias and skew.  Then, correlation tests were drawn 

between participants’ ratings of width, traffic, and speed and the host of secondary data 

attributes that might best represent these ratings (such as average daily traffic, speed 

limits, and the various expressions of lane width); these correlations are presumed to 

assure the validity of participant responses.  Cronbach’s alpha and inter-item correlations 

were used to assure reasonable reliability of responses across participants and their 

sample of road sites.  Finally, a series of regression models were developed to consider 

how each participant’s ratings of width, traffic, and speed might predict a participant’s 

overall rating of a link’s bicycling suitability; this series of regression models represented 

each participants’ revealed preference for weighting the three key factors and can be 

directly compared with their stated preferences during the third section of the interview. 

4.2.2 Initial Modeling 

Using the available data, each of the six BLOS models described in previous 

literature were replicated.  Since each model outputs results using different numerical 

scales, the results from each model were rescaled to values of 1 through 5 (the underlying 

distribution of values remained unchanged).  The rescaling procedure provided for direct 

comparison of model results with participants’ Likert ratings and pseudo-standardized all 

regression coefficients (residual deviations, RMSE, are referential to the 1 to 5 scale).    
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To assess the performance of each model output, three statistical tests were 

considered.  First, the pairwise differences were estimated, followed by a correlation and 

a regression analysis.  The regression analyses were limited to an easily understood linear 

bivariate regression: model results were tested against the participants’ overall averaged 

rating of road links to determine which model provided the best fit. 

In addition to the six static BLOS models considered, a stepwise regression model 

was also considered.  This regression utilized participants’ overall ratings as a dependent 

variable while employing roadway attributes as independent predictors.  Results from this 

model established the best possible fitting model (using dynamic coefficients) with which 

the general performance of the static parameter models could be compared. 

4.2.3 Modeling Improvements 

Having established the baseline performance, and selecting the ideal BLOS 

models, the next steps were to examine the potential improvement offered by the 

inclusion of additional parameters.  Primarily, this effort centered around the inclusion of 

density measures to replace existing subjective land use classifications and the utilization 

of more precise referents for hillslope and gradient.   

The first part of these procedures was to document the possible models and their 

associated fit resulting from the myriad variables and alternatives offered by measures of 

urban density, road network density, and hillslope.  The second part of these procedures 

was to incorporate the most influential of these variables into the existing BLOS 

equations with the aim of improving the models’ fit in regards to participants’ ratings.  

Ultimately, these results provided a functional BLOS model that could, theoretically, be 

applied to a comprehensive regional road network. 
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4.2.4 Road Link Case Studies 

With participant assessments and a finalized BLOS model in hand, thick 

descriptions were developed for a selection of key road links; these case studies were 

intended to provide additional insight into BLOS model results, and to highlight 

shortcomings in the present BLOS models by examining road-links for which the models 

produced large discrepancies from bicyclists’ evaluations.  The case studies presented 

were selected for a variety of reasons: because of the number of independent participants 

who gave mention to a particular link, because of the departure of the BLOS estimate 

from participant ratings, or because of other incongruous behavior by the model results. 

4.2.5 Regional Model 

To adhere to the overarching goals of this research, it was necessary to not only 

develop the idealized BLOS model, but to apply that model to the regional road network 

in the greater San Marcos region.  This section of analysis included the careful 

documentation of challenges incurred and solutions implemented when applying a BLOS 

model to a large dataset of multiple thousand individual road links.  The resulting product 

was a usable map of the estimated bicycling level of service in the region – a map that 

could provide planners with the foundations to develop a public-facing bicycle map, or to 

identify shortcomings in their regional bicycling network for future project development.  

This final model also sets the stage for a discussion about current transportation plans in 

the San Marcos region, as well as local bicyclists’ experiences beyond the attributes of 

the model.  
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5 RESULTS 

A regional model of BLOS was developed for the San Marcos region; the project 

was largely guided by experienced local bicyclists who provided a random sample of 

roads for evaluation as well as various assessments of serviceability for each road; 

participants’ assessments were used to validate various arrangements and improvements 

to BLOS model equations.  This chapter aims to describe the results of this process.   

In addition to the final comprehensive regional BLOS model, there were several 

other useful results.  Participant demographics and their roadway assessments are 

summarized, as are participants stated and revealed preferences towards road width, 

traffic volume, and speed limits.  Six initial BLOS models are evaluated, along with a 

best-fit regression model; further, the use of urban density and hillslope are considered as 

potential avenues for model improvement.  Finally, a single model is selected and applied 

to over 40,000 road links in the San Marcos’ region; the results of this final model are 

further contextualized by a closer examination of several individual links. 

5.1 Participant Demographics 

The demographics of the bicycling community are not frequently evaluated.  

Generally, reports suggest that most US bicyclists are male, that the community 

encompasses all ages, and that most bicycling is for recreation (Kaplan 1975; Sener et al. 

2009b); studies that emphasize commuting behaviors find significant differences from 

these general trends (Stinson and Bhat 2004; Winters et al. 2007).  The interest in 

demographics for this research was primarily to assure a reasonable representation of the 

local bicycling community in San Marcos.   
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Descriptive demographic statistics resemble those from previous research.  There 

were 16 participants in total.  The participants ranged in age from 19 to 72 years of age; 

the median age was 44 and the average was 45.  There were 12 males and 4 females; 

given the margin of error from the small sample size, the proportion of male cyclists in 

San Marcos could be as low as 58% (assuming 90% confidence) but is more likely 

between 70 and 80%.  No respondents reported bicycling less than 1,000 miles per year.  

On average, San Marcos bicyclists rode 3,236 miles per year; this result mirrors a survey 

of the League of American Bicyclists: while the national average was just 2,332 miles, 

Texan bicyclists reported riding between 2,750 and 3,250 miles per year (Kaplan 1975).  

5.2 Participant Ratings of Road Links 

Participants were first asked to identify a road link with which they were familiar, 

then they were asked to provide ratings of that road link’s overall bicycling suitability, 

the width of the roadway, its typical traffic volume, traffic speed, and finally, to assess 

each link’s hilliness.  Ratings were recorded on a Likert scale ranging from 1 to 5, where 

a 1 would represent the least suitable conditions for bicycling and a 5 would be the most 

suitable (Figure 5).  In total, 260 individual link assessments were recorded, describing 

133 unique links (54 links were selected by multiple participants).   

Generally, participants selected both suitable and unsuitable road links for their 

assessments, with a very slight preference for higher rated roadways.  This should be 

expected – we can assume bicyclists have more familiarity with roads they prefer riding 

and can recall those roads more readily, and this subsequently skews the sample of links 

towards those with higher ratings (Figure 6). 
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Figure 5: Map of participants’ selected links and overall ratings. (Author’s illustration.) 
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5.2.1 Validity of Participant Ratings 

Participant evaluations of road links were used to assess the performance of 

various BLOS models, therefore it was imperative to thoroughly examine the participant 

evaluations, as correlations, with empirical road attribute data.  These results assure us 

that participants are indeed sensitive to differences in roadway conditions and highlight 

potential weaknesses in chosen model attributes (Table 2).   

Traditional models have relied on various assemblies of width, speed, and traffic 

attributes.  Of these three variables, participants’ ratings were most strongly correlated in 

regards to traffic; the inclusion of heavy truck traffic counts slightly improved the 

correlation.  The correlation between participant ratings and posted speed limits were also 

reasonably well correlated; the use of the HCM’s 21 mph floor for all links offered 

significant improvement to the correlation.  The width attribute returned a weak, but 

significant, correlation with participant ratings.  The various assemblies of the width term  

confirm the importance of both lane and shoulder widths, but do not clarify whether it 

would be best to use the two attributes in sum, or to consider them as distinct, 

independent model factors. 

Rating Med. Mean Sigma Skew 

Overall 3 3.225 1.227 0.183 

Width 3 3.043 1.350 0.032 

Traffic 3 3.031 1.275 0.024 

Speed 3 3.143 1.108 0.129 

Hills 4 3.744 1.169 -0.219 

Figure 6: Summary statistics for 16 participants’ ratings of 260 road-links. 
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Table 2: Correlations between participant ratings and road attributes 

 

Prior to this research, most BLOS models relied on simple (and often subjective) 

classifications of hill slope.  The ability to derive precise hill slope estimates for road 

links could be highly beneficial to future research, as the correlations between participant 

ratings and empirical measures of hill slope demonstrate.   The two most highly 

correlated hillslope referents are first, the elevation gained per mile (as feet per mile) 

along the road link in both directions and second, the maximum sustained gradient over 

50 meters.  While maximum gradient expresses the worst possible hillslope a bicyclist 

 Participant Ratings 

Secondary Data Width Speed Traffic Hills 

LANE & SHOULDER WIDTH 0.191 -- -- -- 

LANE WIDTH 0.075 -- -- -- 

ROAD WIDTH 0.029 -- -- -- 

SHOULDER WIDTH 0.295 -- -- -- 

MAX SPEED -- -0.330 -- -- 

MAX SPEED (Floor 21mph) -- -0.387 -- -- 

CURRENT AADT -- -- -0.594 -- 

AADT * (1 + %Heavy) -- -- -0.595 -- 

AADT * (1 + %Heavy)^2 -- -- -0.596 -- 

Feet per Mile (2-ways) -- -- -- -0.635 

Sum Elevation Gain (2-ways) -- -- -- -0.228 

Max Elevation Gain (1-way) -- -- -- -0.265 

Max. Gradient (1-way, 30m) -- -- -- -0.459 

Max. Gradient (1-way, 50m) -- -- -- -0.519 
 

Modeled Terms     

HCM OUTSIDE LANE -0.199 -- -- -- 

HCM SPEED TERM -- -0.280 -- -- 

HCM TRAFFIC TERM -- -- -0.620 -- 

BLOS 1: Width Classes 0.212 -- -- -- 

BLOS 1: Speed Classes -- 0.331 -- -- 

BLOS 1: Traffic Classes -- -- 0.442 -- 
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may encounter, this is often true only for one direction (uphill).  Feet per mile may 

provide a more useful metric, both for modeling purposes and public communication. 

In addition to correlations with secondary data attributes, the participant ratings 

are directly relatable to both the BLOS model proposed by Sorton and Walsh (1994) and 

with the HCM BLOS model – both model equations are broken down as factors of width, 

speed, and traffic.  The former model relies on reclassification of interval data into 

ordinal values, while the latter includes more complex transformations and interactions of 

attribute values.  The HCM traffic term outperforms all other traffic metrics, while the 

ordinal classification of width performs similar to empirical measures of lane width.  

 

5.2.2 Reliability of Participant Ratings 

In the previous section, correlation results established that participant ratings are 

reasonably valid in relation to empirical roadway attribute data; however, this does not 

address the reliability of participant’s ratings.  To evaluate the reliability of participant’s 

Likert scale ratings, two measures of internal reliability – or consistency – were 

considered: Cronbach’s alpha and the mean of inter-item correlations (Table 3).  

Reliability was assessed primarily across four key survey items: participants’ rating of 

road links’ overall bicycling suitability, as well as link width, traffic, and speed.  

Reliability was also reexamined with the inclusion of participants’ hill slope ratings.     

Cronbach’s alpha was greater than the commonly cited threshold value of 0.7; this 

indicates reasonable reliability across the measures and is especially strong considering 

the limited number of items included in the assessment (p = 4).  Mean inter-item 

correlations were also satisfactory, indicating reasonable cross-item reliability without the 

risk of overly high correlations (and the potential for multicollinearity).   
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The inclusion of hillslope decreased both alpha and the mean correlations.  

Although the values were still within generally accepted ranges, the decrease could 

indicate high variability and low reliability of participants’ hill slope ratings.  

 

Table 3: Cronbach's alpha and inter-item correlation for participants' ratings 

 

Reliability Measure Result Items 

  Cronbach's alpha 0.785 4 

   --- w/ Hill Rating 0.721 5 

  Mean Inter-item Correlation 0.489 4 

   --- w/ Hill Rating 0.343 5 

 

5.3 Participants’ Overall and Factor Ratings in Regression 

Although the survey instrument concludes by asking participants to rank the 

importance of width, traffic, and speed factors, it is also possible to estimate not just 

ranks, but precise factor weights using linear regression.  The equation is described as: 

Overall Rating = b0 + b1(Speed) + b2(Traffic) + b3(Width) + b4(Hills) 

 

The resulting coefficients, b0-4, can be considered as factor-weights for adjusting BLOS 

models; furthermore, the regression is also useful for highlighting roadways where 

predicted overall ratings diverge from participant ratings through a residuals analysis. 

5.3.1 Regression Results 

The initial regression specification returned significant results for all coefficients, 

including participants’ hill ratings.  However, since hillslope ratings exhibited significant 

skew and reduced inter-item reliability, the regression was also respecified without the 

hillslope parameter to emphasize the determination of coefficients for the remaining three 

factors: speed, traffic, and width (Table 4); both regressions have been standardized so 

that the coefficients can be interpreted as factor weights. 
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The most significant factors to predict participants’ overall ratings were, in order, 

traffic volume, then roadway width, followed by roadway speeds.  If hillslopes are 

considered, they would marginally out-rank speed as a factor in ratings.  Although the 

regression models leave unaccounted variability in participants’ overall ratings, the 

models do fit reasonably well. 

 

Table 4: Two regression models using only participant response data 

 

Factor Coef p-val   Factor Coef p-val 

(Intercept) -0.208 0.30   (Intercept) 0.238 0.14 

Rated Speed 0.121 0.03   Rated Speed 0.137 0.02 

Rated Traffic 0.536 0.00   Rated Traffic 0.530 0.00 

Rated Width 0.300 0.00   Rated Width 0.312 0.00 

Rated Hills 0.138 0.00      
r-sq. = .6500; p-val = .0000   r-sq. = .6330; p-val = .0000 

 

5.3.2 Residual Analysis of Participant Factor Regression 

The residuals represent the divergence between participants’ overall road ratings 

and the fitted regression estimate as determined by participants’ evaluations of width, 

traffic, and speed.  The residuals were normally distributed around a mean of 

approximately zero and were consistent even at the extrema of the model (Figure 7).  

This result provides additional confidence in participants’ assessments of each individual 

factor, and in their assessment of each link’s overall level of service. 

For roadways where the participants’ overall rating exceeded the regression 

model result, the disparity was typically caused by participants assigning a low rating to 

either width or traffic.  This suggests that participants’ overall ratings are dependent upon 

a complex interaction of width and traffic which cannot be adequately modeled by the 

linear regression.   
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  Roadways where the fitted rating exceeded the participants’ overall ratings were 

often accompanied by unprovoked commentary.  Largely, participants downgraded their 

overall ratings intentionally while considering unmeasured roadway attributes.  Among 

the most popular of these comments included references to poor roadway surfaces, but 

participants also mentioned limited sight distances, distracted driving, and low water 

crossings as reasons for penalizing a roadway’s overall score.    

5.3.3 Stated vs Revealed Preferences for Factor Prioritization 

Near the end of the survey, participants were asked to rank the three key factors – 

width, traffic, and speed – from most concerning to least concerning.  The responses 

varied dramatically.  A majority of respondents stated width was their first concern, 

however for others, width was the least concerning factor; the second most important 

factor by statement was traffic; if traffic was not the most concerning factor, then it was 

often second.  Speed was generally a participants’ second or third priority.   

Figure 7: Normal Q-Q plot of predicted user ratings and residuals. 
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Linear regression coefficients of the three factors’ contribution to overall ratings 

were determined for each participant, revealing everyone’s personal weighting of speed, 

traffic, and width; the average r-squared value across participants was approximately .75, 

but ranged from as low as .21 to as high as .95 (Table 11, Appendix D).  The regression 

coefficients were transformed into ranks (for each individual participant) for direct 

comparison with participants’ stated preferences (Table 5).   

The result of this analysis suggests that bicyclists’ stated preferences for the 

prioritization of width, traffic, and speed are comparable to their revealed preferences.  In 

both stated and revealed preferences, vehicle speed was the least concerning factor.  The 

importance of width, however, might have been overstated, as revealed preferences 

suggest traffic volume is generally the most important factor, with width a close second.  

  

Table 5: Participants' factor priorities, mean of rankings (1st priority to 3rd) 

 

Factor Stated Revealed 

Speed 2.25 2.44 

Traffic 2.13 1.69 

Width 1.63 1.88 

 

5.4 Initial Bicycling Level-of-Service Models and Model Fit 

Existing literature included many algebraic equations for deriving BLOS from 

empirical roadway attribute data.  These equations were adapted to data available in the 

TxDOT roadway inventory, then processed to derive level-of-service estimates for each 

road-link assessed by participants (Appendix D).  The estimates from each model were 

compared with participants’ overall ratings using three statistical tests: pairwise 

differences, correlation, and bivariate regression (the sample had 131 links, as 2 links – 

interstate frontages – were withheld as outliers; results tables are shown in Appendix E).   
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5.4.1 BLOS from Model Equation #1 

The first model considered relies on a rank-order classification of a road link’s 

average daily traffic, posted speed limit, and effective curb lane width.  Although some 

coding is required to provide the rankings, the equation is rather elegant in its simplicity. 

Although this model exhibited only small pairwise differences from participants’ 

overall ratings, neither the correlation nor regression were particularly strong.  Attempts 

to weight the three factors – including using regression coefficients obtained from 

participant ratings – failed to encourage significant improvements in the model results.  

Ultimately, this model cannot compete with the more rigorous BLOS equations. 

5.4.2 BLOS from Model Equations #2 and #3 

Model equations 2 and 3 are relatively similar in form; the major distinction is 

that equation 2 anticipates metric inputs while equation 3 utilizes standard inputs.  

Another major difference was that in equation 2, the factors were additive, while in 

equation 3, the factors were originally published with division symbols – experimentation 

suggests this was only a misprint; when using addition of the factors, the two models 

perform nearly identically (see Landis 1994 and see also Epperson 1994).  

In addition to the traffic, speed, and width, BLOS equations 2 and 3 require the 

number of traffic lanes, as well as a list of subjective modifiers (as a list of pavement and 

locational factors).  First, both the standard and metric equations were processed without 

these extraneous locational factors.  Second, 6 factors were modeled programmatically 

from roadway and density attributes (Table 6); though these additions reduced pairwise 

differences between the BLOS model estimates and participants’ ratings, their inclusion 

only moderately improved the correlation and regression results.   
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Table 6: Programmatic application of locational factors. 

 

5.4.3 BLOS from Model Equation #4 

Equation number 4 represents a transformation of Davis’ original model, with the 

addition of interactions between speed and width, as well as a minor revision to the 

modifiers associated with the roadway’s location.  Despite the theoretical improvements 

offered by this equation, this model performed among the worst.  Pairwise differences 

were greater than 1 and the predictive power of the regression was completely 

marginalized.  The revised modifiers for locational factors had little effect – the revised 

list of BLOS modifiers increased pairwise differences and failed to improve either the 

correlation or regression results for equation 4.  

5.4.4 BLOS from Model Equation #5 

Model equation 5 requires more data than previous models, but also improved 

upon their results significantly.  The fundamental basis of the equation remains width, 

traffic, and speed with added sensitivity for heavy truck traffic and pavement condition 

(although pavement condition is unreported in TxDOT roadway data and unused here).  

The equation includes just 2 additional modifiers, though they must be assigned non-zero 

values: land use intensity must be rated using values of 1 (non-commercial) to 15 

 Logic Modifier 

Intense Land Use if D1a > median(D1a) + .50 

Freq. Curb Cuts if D3b > median(D3b) + .50 

Moderate Grade if ft_mile > median(ft_mile) + .25 

Severe Grade if ft_mile > 3rd.Quartile(ft_mile) + .50 

Angled Parking if S_USE_O == 1 + .75 

Parallel Parking if S_USE_O == 2 + .50 

Shoulder/Bike Lane if LANE_WIDTH_O - LANE_WIDTH > 0 - .75 
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(commercial), and curb cut frequency must be rated from 1 to 200 (as an approximation 

for number of curb cuts per mile).  It is possible to operate the equation by setting 

placeholder constants (such as fixing land use at 15 and curb cuts frequency at 42); the 

use of constants establishes the model’s basic performance.   

Even when utilizing fixed values for land use intensity and curb cut frequency, 

BLOS equation 5 outperforms each of its predecessors in terms of regression fit and 

correlation.  Unfortunately, it was the only model to exhibit significant positive pairwise 

differences, suggesting that the model tends to overestimate bicycling serviceability.  

There remains some potential for improvement by specifying dynamic values for land use 

and curb cuts, such as by using transformations of density to fit the expected input values. 

5.4.5 BLOS from Model Equation #6 

Equation 6, from the Highway Capacity Manual, requires careful attention to the 

preprocessing of variables because of its inclusion of logarithmic transformations.  Some 

of these steps were simplified and still yielded satisfactory results; ultimately, the model 

is no more complex than equation 5 and appeared to perform about as well.  The equation 

benefits from its inclusion of the percentage of heavy truck traffic, but it does not provide 

any account for locational factors, which might offer one path to improving the model.  

Though the regression result was slightly weaker than equation 5, the pairwise 

differences were reduced and negative – indicating mostly conservative model estimates; 

overall, this model was modestly successful, but nonetheless, may yet benefit from 

further revision – either through calibration of existing parameters or by inclusion of new 

parameters.  Calibration of existing parameter coefficients may be difficult, as the 

coefficients already have precision to the ten-thousandths decimal place.    
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5.4.6 Dynamic Parameters: BLOS from Regression 

Most recent research has eschewed the fixed parameter models documented thus 

far in favor of dynamic parameterizations, most commonly utilizing multivariate linear 

regression.  Although this procedure makes experimental replication more difficult (as 

the parameter coefficients change with each new replication), it does provide strong 

evidence for determining the most influential roadway attributes for any possible BLOS 

model.  Here, a stepwise regression procedure was used to determine the most likely 

predictors (from roadway attributes) for the current participants’ overall link ratings.   

In general, various combinations of predictors yielded models with r-squared 

values between .25 and .35, consistent with the fixed-parameter models outlined above.  

The most useful regression model consisted of five variables (Table 7); the inclusion of 

additional variables, such as heavy truck traffic, could increase the model’s fit but 

produced poor overall performance and statistical artifacts (such as a negative coefficient 

for increasing lane width).  The two most influential roadway attributes were average 

daily traffic and effective curb lane width, followed closely by population density, and 

finally, the maximum posted speed limit.  The coefficients for width, traffic, and speed 

closely resemble participants’ stated and revealed preferences, thus reiterating these 

factors’ importance.  Although perceptions of density were not measured during the 

participant survey, the usefulness of density for improving the fitted level-of-service 

estimates should not be overlooked.  Finally, the inclusion of a binary flag representing 

the presence of a bike lane is crucial to the regression model – although this variable is 

not readily available in current roadway inventories, the role of dedicated facilities cannot 

be ignored in future modeling efforts (nor in future roadway redevelopment projects).  
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Table 7: Best fit BLOS regression model. 

 

5.4.7 Summary of Modeling Results 

Of the six models assessed, only two are recommended for ongoing investigation: 

model equation 5 as revised by Landis (1994) and model equation 6 as presented in the 

Highway Capacity Manual (Huff and Ligget 2014).  The correlation between participant 

ratings and the Landis model was an r of .48, while the HCM exhibited an r of .38.  The 

regression results were closer to an r-squared of .2; this result suggests there are still 

unaccounted variations between bicyclist’s overall ratings and the model results.   

Finally, although both equation 5 and 6 produced similarly strong correlations and 

modest regression results, equation 6 minimized pairwise differences (𝑑̅ = -0.4), and 

remains conservative in doing so (often underestimating roadway ratings).  Equation 5 

unfortunately exhibited significant pairwise differences, of which most were positive: 

equation 5 overestimated the bicycling level of service from roadway attributes as 

Variable Coefficient p-val 

   (Intercept) 5.81 0.0000 

   Max Speed -.011 0.3077 

A 10 mph increase in speed reduces effective BLOS by .11 

   log(Lane AADT) -.374 0.0000 

A 10% increase in traffic volume reduces BLOS by .03 

   Effective Lane Width .079 0.0193 

A 1-foot increase in outside lane width increases BLOS by .08 

   Population Density -.096 0.0000 

A 1 person per acre increase in density decreases BLOS by .10 

   Bike Lane 1.21 0.0000 

The inclusion of a dedicated bike lane raises BLOS by 1.2 

 

Model Summary:  Regression Model r-squared = .357 

Residual Standard Error = .964 
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compared with participants’ ratings.  The stepwise regression procedure suggests that 

there is yet room for improvement in each model: density and locational factors are 

important predictors that are absent from equation 6 and were subjectively inventoried for 

inclusion in previous applications of equation 5.   

5.5 Improving the Best Fit Models 

Initial experimentation with six published BLOS models suggested that there are 

several approaches with performance rivaling a best-fit regression (and utilizing static, 

replicable parameterizations).  As presented, however, those models were often reliant on 

data attributes that are unavailable in many roadway inventories or alternatively, the 

models discounted factors which have strong theoretical basis for inclusion.  The results 

thus far suggest adequate space for significant improvements to these existing models.  

While recalibrating the factors of width, traffic, and speed offers one avenue for 

improvement, the inclusion of additional parameters may yield more substantial success.  

For instance, the inclusion of density is suggested based upon theoretical grounds: more 

densified locations amplify cross-traffic generation and aggravate bicycle-vehicle 

interactions.  Though empirical estimates (such as curb-cut frequency and access density) 

may be preferred here, density estimates from the US Census offer more complete data 

coverage with significantly less labor (an undeniable benefit for many planning 

organizations).  The inclusion of a hillslope parameter represents another potential 

improvement, though obtaining this data is not as straightforward, nor is selecting the 

appropriate metric from the available referents (such as grade, elevation gained, or 

elevation gain per mile).  Other possible improvements include the revision and 

calibration of additive location factors, an opportunity that is overlooked in equation six.  
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5.5.1 Density 

Areal density is one possible attribute that might improve existing BLOS models.  

One challenge, however, is the selection of which densities offer the best improvement.  

BLOS equation 5, which includes both land-use intensity and curb-cut frequency as 

variables, provided an ideal framework to examine the inclusion of density through 

variable substitution.  Density values were first transformed to match the expected input 

for equation 5 (using 1 to 15 for land use, and 1 through 200 for curb cut frequency).  

Land use intensity was replaced with the use of population density, employment 

density, and residential density; meanwhile, curb cut frequency was substituted with both 

intersection density (intersections per lane-mile) and road-network density (lane-miles 

per square mile).  These potential inputs provided 12 distinct models.  There were 

significant and meaningful improvements to both pairwise differences and the correlation 

results.  The addition of density values reduced pairwise differences by as much as 40% 

(from .77 down to .46) and strengthened the regression results by as much as 30% (from 

an initial r-squared of .23 up to an improved r-squared of .30). 

Potential similarities in areal density raised the concern of multicollinearity.  To 

that end, a correlation matrix of the various densities was produced; while some densities 

were highly correlated (residential density and road network density exhibited an r of 

.91), employment density was only moderately correlated with roadway densities (with 

road network density, r = .54, and with intersection density, r = .52).  Nonetheless, the 

inclusion of road density (while retaining a fixed value for land use intensity) alleviated 

any concern of multicollinearity, significantly reduced pairwise differences, and 

strengthened the regression’s fit (𝑑̅ = .46, r-squared = .30; see Appendix E).  
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5.5.2 Hillslope 

Five possible ways to report hillslope were initially considered: maximum 

gradient sustained over 50 meters, maximum gradient over 30 meters, maximum 

elevation gained in one direction, the sum of elevation gained traveling a link in both 

directions, and finally, the elevation gained per mile traveling both directions along a 

link.  Correlations with participant responses, presented earlier, suggested that either feet 

per mile or the maximum gradient over 50 meters provided the best representation of 

participant’s responses.   

BLOS equation 5 was used to examine the potential for including hillslope: the 

pavement condition parameter remained in the equation but had held a fixed value (since 

the attribute was unavailable in the roadway inventory).  Possible values for pavement 

conditions ranged from 1 to 5, with 5 representing better conditions; therefore, the 

hillslope referents were rescaled and inverted to match this range (the flattest route was 

given a five, while steeper hills received progressively lower ranks).  A simpler method 

of applying penalties for hills with excessive maximum gradients was also considered: 

routes with gradients over 13% were assigned a 2, while all other routes received a 5.  

The inclusion of hillslope in equation 5 produced only modest changes in the 

results, with no noticeable differences between the use of either maximum gradient or 

elevation gained per mile.  The simplified penalty for excessively steep hills performed 

about as well.  Regardless of whether hillslope measures are retained in the BLOS model 

equations, such measures remain valuable detail for bicyclists’ route planning – hillslope 

information was among the most common requests by participants for inclusion on future 

bicycle map products.   
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5.5.3 Improvements to Equation 5 

Although the task of preparing density data is not trivial, it is more reliable than 

other ratings of land use intensity or field counts of curb cuts.  Although density’s 

contribution to the model remains small, there remains strong theoretical basis for its 

inclusion: density anticipates more intense cross-traffic generation.  Multicollinearity 

may be a concern when drawing upon census densities, as the combination of road-

network density and population density were moderately correlated (r = .77); however, 

their inclusion produced satisfactory improvements.  Three additional calibration 

coefficients (A1 through A3) remain unexplored in this research; investigating their 

sensitivity and effect on BLOS model results is a suggestion for future research. 

5.5.4 Improvements to Equation 6 

Model equation 6 relied on assumptions about the data inputs which often 

required additional data management.  First, lane-width is expressed as the total effective 

width of the outside travel lane (inclusive of the bike lane and outside paved shoulder, 

except where this additional shoulder width is designated for on-street parking).  Next, 

traffic counts should be expressed as hourly demand, and the minimum value of this 

hourly traffic count should be no less than 4 times the number of through-traffic lanes.  

Third, the speed limit attribute must be set to a minimum of 21 mph for all road links.  

Significant improvements came about from the inclusion of density and hillslope.  

Density inputs were transformed to values from 1 to 5 (5 representing higher density); 

hillslopes were treated similarly, but also inverted (so that 5 represents shallower 

gradients).  High densities and steep hillslopes penalize the BLOS result.  The resulting 

equation appears complex, but this is mostly a result of lengthy parameter coefficients.   
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The output of the revised Highway Capacity Manual BLOS model exhibited mean 

pairwise differences of just -0.19 and achieved an r-squared of .23.  The r-squared is only 

slightly less than the best achieved across all models (the best fit here would be among 

the permutations of Equation 5, although those models collectively failed to minimize 

pairwise differences).  The improvement in pairwise differences with the finalized model 

here is appreciable – the observed differences between these final model estimates and 

participant ratings were not statistically significant.   

5.5.5 Summary of Improvements and Final Equations 

The inclusion of additional parameters representing location density, hillslope, 

and the presence of a bike lane each provided subtle improvements to the overall fit of 

the BLOS models.  The results suggest that these factors are necessary for developing the 

most representative model, but also reveal that there are yet significant and unresolvable 

uncertainties in the models.   

The stepwise regression model suggested the importance of location density for 

estimating BLOS.  The inclusion of residential density proved more influential than the 

use of road network or intersection density, however, it may be appropriate to include 

both residential and road network density (as was done in the revised BLOS Equation 5).  

At the least, where density is unavailable, a proxy for cross-traffic must be considered.  

Hillslope was less effective at improving model results, but should not be 

discounted in future efforts to model BLOS.  Recall the regression of participant’s overall 

ratings as predicted by their individual factors of speed, width, traffic, and hills – the 

inclusion of hillslope was nearly as influential on the results as was participants’ rating of 

the speed of traffic.  How best to refer to hillslope, what gradients might be considered 



 

61 

excessive, and how influential hills are to bicyclists’ route choices remain questions 

largely unanswered, leaving intriguing paths for future research (see Appendix F).   

The need for identifying bike lanes when modeling BLOS might seem intuitive, 

but raises a new host of challenges.  State roadway inventories are yet to reliably include 

even basic bike lane attributes, while bike lanes themselves vary widely in design, 

separation, length, width, and continuity; in some cases, in San Marcos, a bike lane exists 

on one side of the roadway but not the other! (These are often logically placed, but 

difficult to model appropriately: bike lanes offered on uphill links with only lane 

“sharrows” for opposing downhill bicycle traffic.)  Despite concerns about the 

availability of specific detail about individual bike lanes, the simplest binary flag, as used 

here, provided significant model improvements.  

With the improvements suggested here, revised model equations 5 and 6 each 

excelled in particular ways.  The revised version of Landis’ (1994) equation (eq. 7, 

derived from previous model equation 5) exhibited the best fit in regard to participants’ 

ratings, while the revised Highway Capacity Manual model (eq. 8, derived from previous 

equation 6) continued to minimize pairwise differences.  Both equations require similar 

data inputs and similar preprocessing steps.  For planning applications, the surest 

approach would be to produce BLOS models using both equations for the desired extent, 

and then to evaluate each model’s performance with spot-checks.  If the intention is to 

use these models to produce a public-facing bicycle map, then extra diligence should be 

warranted.  Moving forward, BLOS equation 8 will be examined more thoroughly; this 

model was favored because of its minimization of pairwise differences and its relatively 

conservative estimates when compared with participant’s evaluations. 
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5.6 Comprehensive Regional Model 

A BLOS model is a planning tool; in traditional applications, deployment of the 

model would require a laborious survey of road sites and meticulous calculation of 

results.  The aim of this research has been, not only to compare and validate existing 

models, but also to consider the potential for applying such models across larger regional 

networks with geographic software.  The final step of this research was to apply the 

 𝐵𝐿𝑂𝑆 = (𝐴𝐴𝐷𝑇/𝑁𝑈𝑀_𝐿𝐴𝑁𝐸𝑆) ∗ (14/𝐿𝐴𝑁𝐸_𝑊𝐼𝐷𝑇𝐻_𝑂)^2 ∗ 
                   𝐴1 ∗ (𝑆𝑃𝐷_𝑀𝐴𝑋/30) ∗ (1 + %𝐻𝑉)^2 + 
                   𝐴2 ∗ (1/𝐹𝑇_𝑀𝐼𝐿𝐸)  + 
                   𝐴3 ∗ (𝑃𝑂𝑃_𝐷𝐸𝑁𝑆 ∗ 𝑅𝑂𝐴𝐷_𝐷𝐸𝑁𝑆) ∗  .1 

 

(7) 

 Where,    

 FT_MILE = 

 

 

POP_DENS = 

 

ROAD DENS = 

Inverted and rescaled from 1 to 5; steeper slopes get 

lower scores.  

 

Rescaled from 1 to 15; high density gets high scores. 

 

Rescaled from 1 to 200; high density gets higher scores. 

 

A1 = .01, A2 = .01, A3 = .024 

 

 

 

 𝐵𝐿𝑂𝑆 =  .760 +  (−.005 ∗ 𝐿𝐴𝑁𝐸_𝑊𝐼𝐷𝑇𝐻_𝑂^2)  +  
            .507 ∗ 𝑙𝑜𝑔(𝐴𝐷𝑇_𝐻𝑅/(4 ∗ 𝑁𝑈𝑀_𝐿𝐴𝑁𝐸𝑆))  + 
            (0.199 ∗ (1.1199 ∗ log (𝑆𝑃𝐷_𝑀𝐴𝑋_𝐹𝐿𝑅 − 20) +  .8103) ∗ 

                    (1 + .1038 ∗ 𝑇𝑅𝐾_𝐴𝐴𝐷𝑇_𝑃)^2)  + 
            −0.5 ∗ (1/𝑃𝑂𝑃_𝐷𝐸𝑁𝑆))  +  0.1 ∗ (1/𝐹𝑇_𝑀𝐼𝐿𝐸))  + 
            −1 ∗  𝐵𝐼𝐾𝐸_𝐿𝐴𝑁𝐸 

 

(8) 

 Where,    

 FT_MILE =  

 

 

POP_DENS =  

 

ROAD_DENS = 

 

BIKE_LANE =   

Inverted and rescaled from 1 to 5; steeper slopes get 

lower scores.  

 

Rescaled from 1 to 5; high density gets high scores. 

 

Rescaled from 1 to 5; high density gets higher scores. 

 

Binary, 1 indicates dedicated bicycling facility. 
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revised BLOS equation to the comprehensive regional roadway inventory for San 

Marcos.  The final product is a useful map of the region which highlights weaknesses in 

current roadway infrastructure, and by extension, the bicycling network (Figure 8). 

The roadway inventory included over 40,000 links; although applying the BLOS 

model equation to the attribute data was straightforward, there were some spurious results 

from extreme attribute values.  One initial step was to remove interstate highways (some 

with as many as 8 to 10 lanes) from the model’s consideration – this was accomplished 

by eliminating any links with a federal functional classification of 1.  Next, shoulder and 

lane widths were both limited to 16 feet; more extreme values were not observed in the 

participants’ roads sample, but several hundred links in the regional dataset included lane 

and shoulder widths as high as 40 feet.  Even with these preprocessing steps, some 

extreme BLOS values were still produced; outliers were constrained using a floor and 

ceiling on the model results using bounds of the lower and upper ventile, respectively.  

The final values were classified into five equal intervals.  The model is not a perfect 

reflection of participants’ ratings, but it is, at the least, highly conservative in its estimates 

as the model’s residuals illustrate (Figure 9). 

On one hand, the map reveals miles of highly serviceable roads for bicyclists’ use.  

The reality, however, is that the majority of these ideal roads are constrained to 

residential neighborhoods; as soon as one examines the interconnections between 

neighborhoods, serviceable links become fewer and farther between.  It is likely that 

traversals of the San Marcos region would force bicyclists into stressful situations, 

navigating narrow roadways with large volumes of high-speed traffic.   
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Figure 8: Map of the comprehensive regional BLOS model. (Author’s illustration.) 
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Figure 9: Map of comprehensive model residuals. Determined as participant’s overall 

rating minus model estimates of BLOS. (Author’s illustration.) 
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5.7 Contextual Analysis 

A model’s performance cannot be evaluated without adequate context, nor can a 

model be improved without fully understanding its shortcomings.  To provide this 

context and comprehension, several roadway sites were selected for more intensive 

analysis.  The selection represents an intentional cross-section of results, to include links 

popular with participants, and to highlight both success and failure of the BLOS model. 

5.7.1 Link #16: West San Antonio Street 

Link 16 was chosen for analysis because 7 unique participants highlighted it for 

their assessments.  The consensus suggests the road is above average or even great for 

bicycling.  The BLOS models frequently report this road as the best among the entire 

survey dataset, a result of low daily traffic counts, wide lanes (16 feet), and a low speed 

limit (30 mph, which was recently further reduced to 25 mph).  It is important to 

highlight that on-street parking is permitted, but rarely occupied along the street; in terms 

of the data, TxDOT does not assign any shoulder width nor parking designation here.  

Furthermore, there are no bike lanes or shoulder striping – the entire roadway is 

understood as a shared, not separated, space.   

5.7.2 Link #105: I-35 Frontage 

Link 105 represented one of the lowest possible scores derived from the BLOS 

model (and matched by a participant rating of 1).  Such a road is notable for several 

reasons.  This type of roadway – interstate frontage – is often exempted from this kind of 

research under the wrongful assumption that bicyclists would never use such 

infrastructure.  In practice however, this roadway represents a significant connection 

between downtown San Marcos and neighborhoods to the east of the freeway; although 

there are some suggested alternatives, they each suffer their own failings too (such as the 
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unprotected left turn required to access Cape Road further south on Highway 123).  Aside 

from recognizing the utility of these roadways for bicyclists, it also provides an extreme 

data point to test the BLOS model against; an outside lane of just 10 feet on a road 

carrying 21,000 cars per day at signed speeds of 45 mph (with speeds likely higher).  

5.7.3 Link #21: Highway 80 

After the I-35 frontage, the next worst model result among surveyed links was the 

stretch of Highway 80 east of the San Marcos River.  This link connects city hall, the city 

library, the university’s athletic complex, and the city’s primary grocer, HEB.  The low 

modeled rating is a product of significant traffic volume (30,000 cars per day) and 

successfully recalls participant’s impressions (whom gave a rating between 1 and 2).  

Piecemeal multi-user sidewalks have appeared around various intersections along the 

link, providing at least some alternatives for pedestrians and cautious bicyclists – these 

efforts suggest the city is aware of the urgent need for improvements along this link.   

5.7.4 Link #74: Aquarena Springs 

The worst rated link – a 1 according to three participants – was Aquarena Springs 

between Sessom Drive and Charles Austin; this link is a key arterial for university traffic 

(pedestrians, bicyclists, and cars) as it connects major residential developments on the 

east side of town and also acts as the major highway feeder from Interstate 35 to the 

campus.  The conflict is, in part, because of a 4-lane bridge over the San Marcos River, 

where narrow sidewalks offer limited space for pedestrians and dictate that bicyclists 

should occupy the traffic lanes.  Despite being only 800 feet of roadway, participants 

commented that drivers treat the stretch “like a racetrack” and that it is a hindrance to 

bicycle commuting towards campus.  The BLOS model rating was a lowly 2.    
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5.7.5 Link #26: Hunter Road 

Another participant favorite (n = 5) was Hunter Road between “new” Ranch Road 

12 and Dixon Street – the short link was only recently reconstructed with green-painted 

bicycle lanes including vertical delineators, or bollards.  Before reconstruction, the link 

was still a two-way street with wide paved shoulders; nonetheless, in the original 

inventory data, the shoulder was marked as unpaved which reduced the derived effective 

outside lane width (expectedly diminishing the modeled BLOS estimate).  Even after 

correcting the road attributes, the modeled result was significantly less than participant 

ratings, likely resulting from moderate speeds (40 mph) with high traffic counts (16,000 

vehicles per day).  Participant comments suggested that the bike lane, with separation 

from traffic, significantly improved their ratings; still, a common critique was that dirt 

and debris are allowed to accumulate in the bicycle lane and rarely cleared. 

5.7.6 Link #17: Hutchinson Road 

The section of Hutchinson Road between Comanche Street and C.M. Allen 

Parkway represents a key crosstown connection; despite crossing downtown traffic, the 

roadway retains relatively consistent width, speed, and traffic volume.  This link is 

notable because the modeled BLOS largely exceeds participants ratings.  This could be 

because, as with other links, the roadway inventory (particularly traffic count) could be 

out of date, or alternatively, the overestimation could suggest that cross-traffic 

interactions are poorly represented (despite the inclusion of the road density term).  

Another factor that may reduce participant ratings is that on-street parking is permissible 

along certain segments along the roadway, but this parking is not recognized by the 

roadway inventory data (despite the presence of attributes and values to do so).   
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5.7.7 Link #107: Centerpoint Road 

Centerpoint Road, just south of Old Bastrop Road, reemphasizes the uncertainties 

remaining in the model.  This link held among the highest residual differences; the BLOS 

model rating was a 2 (like Aquarena Springs), but the participant rating was above 

average, at a 4.  The model results come from narrow travel lanes (9 feet) and a high 

speed limit (45 mph); though traffic volumes are moderate (1,855 cars per day), the road 

is relatively quiet many hours of the day, which may influence participants’ rating.   

5.7.8 Link #101: McCarty Road 

McCarty Road, on San Marcos’ southern margin, was modeled with a BLOS 

rating of 5, and reasonably reflects participants’ averaged rating of 4.3 (n = 3).  This 

result demonstrates that high traffic roads can also accommodate bicyclists: McCarty 

moves over 10,000 cars per day at a designated speed of 45 mph.  The road has long been 

4 travel lanes with paved shoulders; more recently, the shoulders have been designated as 

a bicycle lane (the road width is the same).  There is still room for improvement, such as 

by installing physical separators between the bike lane and traffic lanes.    

Table 8: Summary of selected links’ attributes. 

Link ID Name A
v

g
. 

R
at

in
g
 

n
 

M
o

d
el

 

B
L

O
S

 

O
u

ts
id

e 

L
an

e 
W

id
th

 

T
ra

ff
ic

 

#
 L

an
es

 

S
p

ee
d

 

(m
p

h
) 

B
ik

e 
L

an
e 

P
o

p
. 

D
en

si
ty

 

16 W San Antonio 4.29 7 5 16 374 2 30 0 4.91 

105 I-35 Frontage 1.00 1 1 10 20926 2 45 0 4.00 

21 Highway 80 1.67 3 1 12 30249 4 40 0 5.68 

74 Aquarena Springs 1.00 3 2 15 11874 4 30 0 3.34 

26 Hunter Rd 4.20 5 3 15 16468 2 40 1 0.75 

17 Hutchinson St 3.00 3 5 12 265 2 30 0 6.27 

107 Centerpoint Rd 4.00 1 2 9 1855 2 45 0 0.33 

101 McCarty Rd 4.33 3 5 18 10559 4 45 1 0.33 
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Figure 10: Map of links from contextual analysis. (Author’s illustration.) 
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5.8 Summary of Results 

The results of this research confirm and expand on the state-of-the-art in BLOS 

modeling.  Analysis of the participant survey data validates bicyclists’ sensitivity to 

factors of road width, traffic volume, and posted speed limits.  The combination of these 

and other roadway attributes are shown to be useful for approximating overall user 

evaluations.  The models do unfortunately leave significant unaccounted for variations in 

bicyclists’ evaluations.  Although these variations demand continued scrutiny, the 

modeling results are shown to be reasonably useful, both for the analysis of individual 

road links, and equally useful for the generation of a regional network model.  While this 

research suggests some potential improvements to the existing BLOS models, these 

results are far from definitive.  Rather, the results shared here offer a foundation for the 

continued exploration of BLOS modeling – first, by rethinking strategies for the 

validation of model results, and second, by considering the potential utilization of ever 

more powerful geographic information systems.    
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6 DISCUSSION 

Though it is possible to utilize a BLOS model to assess a regional road network, 

there is still room for improvements to the modeling strategy.  However, as the 

participants in this research often shared, there is also a need to improve the bicycling 

experience more generally, that is, if bicycling is to be recognized as a viable mode of 

alternative (and sustainable) transportation.  In many respects, our current roadway 

infrastructure is more than adequate, but merely predominated by automobiles which 

pose a grave threat to bicyclists, pedestrians, and other drivers alike.  Discussion of the 

study methods, objectives, and results should further clarify this point.  

6.1 Methods 

6.1.1 Participant Survey 

Road site ratings provided by local bicyclists gave undeniable weight and 

credibility to the modeling results, despite the unaccounted variations.  The chosen 

research design limited the sample pool, which may have increased the difficulty of the 

recruitment procedure.  Nonetheless, while the participant pool was small, all participants 

came to the table eager and willing to share their experiences – they cared very deeply 

about the subject matter and felt strongly about advocating for better conditions for 

alternative transportation within their community.   

The snowball sampling design did expand the reach of the survey, though most 

participants were personal connections from local bicycling groups – the San Marcos 

Cycling Friends, MoveSM, Sustainable San Marcos, and the Texas State Cycling Club.  

These personal connections were cultivated over thousands of miles ridden together; 

without these shared experiences, this research design may not have been as effective.         
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6.1.2 Modeling 

Modeling is a popular and practical application of modern GIS systems.  In many 

cases, however, a model is employed unquestioningly.  The modeling results demonstrate 

the importance of testing (and retesting) our models from time to time.  Although these 

results suggest that more recent models do outperform older and simpler models, it must 

be remembered that this success is observed only in the context of San Marcos when 

comparing the results with the perspectives of mostly experienced (not novice) bicyclists.  

How these results might transfer to larger or smaller cities, to other sample populations, 

or to other cultures should be carefully considered when choosing a BLOS model.   

6.1.2.1 Data 

Data remains the most important aspect of a model’s design.  In this research, for 

instance, percentage of peak parking demand – specified in the Highway Capacity 

Manual – was ignored because that data is not recorded by any transportation agency 

with jurisdiction over the study area.  Likewise, speed limits, road widths, and traffic 

counts were not always available or up to date.  Future efforts to recreate a regional 

model of BLOS must keep the availability of data in mind, and modelers must be 

prepared to adapt modeling equations to the data they have.   

6.1.2.2 Static versus Dynamic Models 

Recent literature has focused largely on dynamic regression models, where 

parameters are permitted to vary widely in pursuit of the best-fit model.  As the results 

show, a regression model does provide the highest r-squared value, and the least pairwise 

differences (of course, zero); however, this should not be considered the most practical 

model!  The regression model limits the ability to incorporate variable interactions as 
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well as prevents adjustment and analyses of individual parameters.  Static 

parameterization, although complex and potentially frustrating, enhances our ability to 

communicate about the modeling terms, their meanings, potential interactions, and 

ultimately, our rationalization for the inclusion or exclusion of specific terms.   

6.2 Variables     

The methods aimed to address four research questions; the first stated: which 

variables (describing the road network) are most essential for representing bicyclists’ 

assessments of roads, and how should those variables be mathematically arranged? 

6.2.1 The Big Three 

Perhaps as expected, outside lane width, traffic volume, and traffic speeds were 

among the most influential variables across all models.  Beyond these initial three factors, 

the results also suggest the inclusion of density attributes (which are presumed proxies 

for modeling cross traffic) and furthermore, the results do not suggest the exclusion of 

hillslope as a factor for bicycling serviceability.  Although these factors may seem 

obvious, they warrant scrutiny for forward-looking transportation planning efforts. 

Speed was nearly excluded from the stepwise regression BLOS model. In fact, it 

was the least important factor according to both participants’ stated and revealed 

preferences.  Considering an application of the regression coefficient, the difference 

between a 35 mph road and a 65 mph road is less than 0.5 points (using the 5 point 

classification system).  While automobiles have made great strides in protecting 

occupants from increasingly higher travel speeds, these protections rarely extend to 

vulnerable road users; in many cases, safer vehicles are heavier and taller than their 

forebears (White 2004).  It might be argued that, for bicyclists, the fear of being struck at 
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higher speeds is not so considerably different from being struck at more modest travel 

speeds (Richter et al. 2006; Tefft 2013).  In the San Marcos region, speed limits are rarely 

set below 30 mph, with little hope of those limits being reduced – furthermore, traffic 

often ignores posted limits, and traffic enforcement is lackadaisical.   

Width and traffic volume compounds an unfortunate realization – rather than any 

fanciful measure of the bicycling experience or infrastructure serviceability, the BLOS 

models merely restate a presupposition of bicycling safety.  Decreases in road width and 

increases in traffic volume both contribute significantly to the bicyclist’s risk of collision 

with fast moving automobiles.  Optimistically, it bears reiterating that the interaction 

between width and traffic is never fully realized in any model: where wide shoulders are 

provided, high traffic volumes are almost entirely inconsequential and where traffic is 

relatively light, narrower lanes without special provision are insignificant.   

The mention of lane width naturally leads to the discussion of bike lanes, which 

were more influential than initially hypothesized.  Generally speaking, the provision of a 

bike lane implies a guaranteed minimum width for bicycling; in the San Marcos region, 

these bike lanes often include vertical separators, which may enhance the perception of 

separation, and thus safety.  The results of this research, however, cannot distinguish 

between the various bike lane designs, a point which demands future investigations 

(Veillette et al. 2019).   Furthermore, while a bike lane may be generally preferable to 

none, there are still concerns that bike lanes are not adequately maintained and are often 

littered with gravel and road debris; occasionally, these obstructions are severe enough to 

force bicyclists into the vehicular travel lanes. 
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6.2.2 Hillslope and Density 

The importance of hillslope and density for bicycle service was well established 

prior to this research, but their inclusion in previous models was often treated rather 

subjectively.  The major improvements – beyond proving the validity of including these 

two factors – was in the method of their inclusion: a data-driven and empirically 

grounded approach that is readily replicated by professional GIS technicians.   

Occasionally bicyclists may seek out steep hills for training purposes, but more 

generally, such hills will always represent an impediment to easy transportation (if not in 

terms of effort expended, then in terms of travel time at the very least).  However, it 

remains difficult to specify appropriate thresholds for hillslopes; for instance, North LBJ 

(an average grade of 7% with a maximum ramp of 11% grade) was provided as an 

example of a hill that was too steep by some participants, and yet remarked as the perfect 

hill by others.  New Ranch Road 12 – a 4 lane highway – was also suggested as a perfect 

hill by multiple participants; that stretch of road maintains a much more reasonable 

grade: averaging around 3% with a maximum ramp of 8%.  If the modeling results are to 

be considered revealed preferences, a penalty for very steep hills (over 13%) provided the 

best overall BLOS estimates.  In any case, the inclusion of hillslope had a marginal effect 

on the model results, reiterating once again that bicyclists appear to relay their experience 

and ratings in terms of safety rather than alternative measures of service. 

Following this line of thinking would then rationalize the significance of density 

in the model: less densified areas decrease traffic conflicts, and therefore provide an 

increased sense of bicycling safety.  Various density measures are likely to be highly 

correlated in any context (as they were across San Marcos), thus the use of density in a 
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BLOS model must be carefully considered.  Ultimately, the performance differences 

between the different density measures were marginal, and the inclusion of any one 

density measure significantly improved model results.  On theoretical grounds, the use of 

road network density should offer the best proxy for the unmeasurable concern regarding 

cross-traffic; furthermore, this measure could be derived for any areal unit (including an 

artificial grid) overlaid upon the road network. 

The possibility of deriving hillslope and density measures is a relatively recent 

capability enabled by the widespread adoption of geographical information systems.  

There are numerous methods by which these measures may be defined and equally 

numerous data sources to explore.  Between the two, however, density is far more 

accessible to most transportation planning agencies and far more vital for accurately 

modeling BLOS.  The derivation of hillslope for linear segments needs far more 

attention, and far more simplification to encourage its widespread inclusion in modeling 

efforts – this point is applicable to more than just bicyclists, and might be useful for 

hiking trails, as well as search and rescue efforts in that domain.                

6.3 Models 

After an initial assessment of each modeling variable individually, the second 

research question asked: which BLOS modeling strategy produces the most 

representative map of bicyclists’ reported experiences in the local study area? 

The earlier models (BLOS equations 1 through 4) were useful starting points, and 

relied on seemingly useful arrangements of key variables.  Unfortunately, the results from 

these models were not nearly as robust as contemporary revisions.  Both equations 5 and 

6 performed similarly in terms of model fit, but did vary somewhat according to pairwise 
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differences.  Equation 6, adapted from the Highway Capacity Manual, provided 

reasonable correlation with participant ratings while minimizing pairwise differences. 

Equation 5 benefits from the inclusion of local land use and curb cut frequencies, 

variables which are assumed to indicate increased risk to bicyclists in the form of 

increased generation of cross-traffic.  The study results show that density measures can 

be used in place of both the subjective classification of land use and for the laborious task 

of counting curb cuts.  The inclusion of density improved the model’s correlation as 

much as 5%, and as such, inclusion of these factors should not be ignored. 

While Equation 6 performed well in initial tests, it would be logical to argue that the 

inclusion of density (or similar metrics to account for cross-traffic) could further improve 

the model.  Adding these measures to the equation significantly reduced (the already 

marginal) pairwise differences between the model results and participant ratings, and 

increased the overall strength of the correlations.  Although the revised model is not 

considered definitive, it does represent a step forward in modeling BLOS. 

6.4 The Bicycling Experience 

Reducing participant’s interviews to a mere model could be construed as overly 

reductionist; to better recognize their voice and expertise, the third research question 

posed: how do local bicyclists’ experience and perceive their regional road networks 

level of service, beyond those attributes reflected in the BLOS model?  Acknowledging 

participants’ commentary throughout the survey helped to identify key issues, including 

the definition of a link, the recognition of informal routing barriers, the importance of a 

heuristic measure of roadway quality, and the lesser role of each link when contrasted 

with the value of a safe network of routes for bicycling. 
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6.4.1 Links 

The definition of a link presented the first of challenges.  The purest definition of 

a link is a single unit between nodes; governments’ road data itself rarely reflects this 

topological ideal out of necessity (for instance, posted speed limits often vary mid-link).  

For the participants, a link neither fit the ideal definition nor the data from TxDOT.  The 

definition of a link in this research ultimately fell to an on-the-spot agreement between 

the interviewer and each participant: that there were no major changes in lane count, 

traffic volume, roadway width, or traffic speeds along rated segments.  The different 

conceptions of a link introduced a data management challenge that must be, and was, 

subjectively resolved – this is doubly true when considering that currently, dedicated 

bicycling infrastructure is often stored in database schema wholly detached from its 

counterpart roadway data.   

The definition of a link during participant interviews also reiterated the 

importance of the holistic bicycling network.  When first asked to provide their own link 

for discussion, many participants offered short routes, best represented as a collection of 

links.  In some cases, the process of subdividing short routes into agreeable links led 

participants into making clear relative comparisons of each link – if not in the overall 

rating, then at least as a nudge in either traffic, width, or speed.  The argument, then, is 

that bicyclists’ initial BLOS heuristics are more readily available as an assembly of 

potential route choices – if this is convincing, then it reaffirms that poorly serviced (and 

potentially dangerous) links work to undermine small improvements made elsewhere in 

the network. 
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6.4.2 Barriers 

This line of thinking extends itself further – that major barriers in the bicycle 

network, while often plainly obvious, are often severely underserved.  Rivers, railroads, 

and freeways each impose linear boundaries on the fabric of any city; vehicular traffic is 

often granted dedicated bridges and flyways and given first consideration at any highway 

junction.  In San Marcos, car traffic is afforded two different railyard overpasses, neither 

of which accommodates bicycles or pedestrians.  The latest trend in interstate engineering 

– the diverging diamond – keeps cars moving at 30-45 mph as they enter and exit the 

city; bicyclists are expected to either take the lane, or to act as a pedestrian (which is 

possibly worst of all: crossing 5-8 lanes of high speed, yield-only interstate traffic at a 

trot).  There is no surprise that bicyclists have been involved in collisions at every 

possible link under Interstate 35 (and along each adjacent arterial, Figure 11).     

6.4.3 Quality 

Beyond the heuristics of route-choice and the fabric of the city, bicyclists 

occasionally granted reference to pavement quality.  Rough chipseal or fractured concrete 

led to expressions of dissatisfaction with certain links.  In some cases, rough pavement 

was attributed to fresh chipseal, which according to highway standards, would represent 

Figure 11: Bicyclist involved crash reports along the I-35 corridor, 2010-2020. 

(Author’s illustration.) 
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high-quality pavement conditions (and confound BLOS models).  In any case, pavement 

condition data was not available in San Marcos, and the term was either removed or held 

constant in models.  The majority of roads deemed rough by participants were rated as 

either a BLOS of 2 or 3; in contrast, some participants assigned high ratings to unpaved 

gravel roads (their focus, of course, was the minimal traffic on these routes, rather than 

roughness of the surface).  Addressing these challenges in a future BLOS model will 

require first, better data describing surface qualities, and second, a better understanding 

of the tradeoffs in preferences regarding surface quality, road width, and traffic.    

The concerns about quality naturally prompt a discussion of bike lanes.  While the 

presence of bicycle lanes typically increased participants’ rating of a link, their 

commentary suggests there is more to learn about the different designs and maintenance 

needs of bike lanes.  Participants appreciated the dedicated width and especially the 

vertical delineators which visibly separate them from vehicular traffic; however, many 

commented that sand, glass, and debris would tend to collect in bicycle lanes – in some 

cases, forcing them to ride in vehicle lanes.  In San Marcos’ city center, some bicycle 

lanes are constructed on the lefthand side of one-way arterials; this layout frustrated some 

participants: before and after these leftward lanes, traffic expects a bicyclist to ride “as far 

right as practicable”, creating unnecessary conflicts.  These same lanes also create 

conflicts with downtown parking – the bike lanes tend to occupy the “door zone”, an 

issue that has been well documented.  Finally, although participants may perceive bicycle 

lanes to provide higher levels of service, this may be a false sense of security.  Research 

shows that unbuffered bike lanes reduce the space given by passing vehicles: white paint 

does not adequately protect a bicyclist from negligent (or malicious) driving.   
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A discussion about the quality of bicyclist infrastructure would not be complete 

without mentioning automotive drivers.  Many participants’ comments about traffic 

extended beyond simple traffic counts, towards an unquantifiable sense of drivers’ 

behavior.  Some comments were positive, such as ‘drivers are more aware of us’ along 

popular bicycling routes, but most comments were more distressed – ‘they drive too fast 

for conditions’, ‘drivers are distracted’, ‘it’s a racetrack’, ‘turning traffic rarely yields’.  

From this perspective, the solution to increasing BLOS is rather simple: slow the cars 

down and get drivers to pay more attention.  Participants mentioned two solutions, which 

are both strongly accepted in academic literature.  First, reduce the speed limit.  Second, 

enforce the laws on the books – that’s it.     

6.4.4 Network 

Multiple participants remarked upon the lack of connectivity between existing 

highly-rated bicycling infrastructures, or across the region as a whole.  In most cases, 

improvements for bicyclists are done as a matter of convenience and expediency under 

the umbrella of larger roadway (automotive) improvement projects; this has the 

predictable consequence of leaving the bicycle route network in pieces with little concern 

about missed connections, dead-end routes, or problems with the last-mile.  Within the 

city, there is the potential that connectivity in the bicycle network can be greatly 

improved with only small improvements to road widths, lane paints, and route signage.  

Improving network level of service across the region, however, will require more 

generous projects and lane allotments – this is not a call for inter-city bicycle lanes, but 

rather small reductions in rural highway travel speeds, fully paved shoulders, and 

appropriate consideration for bicyclists where guardrails and bridges are required.   



 

83 

While intra- and inter-city bicycling improvements are feasible within the current 

transportation design paradigm, the last-mile may thwart planners’ best efforts.  At the 

moment, the convention of suburban-styled big-box grocery and retail at the heart of the 

city implies that bicyclists and pedestrians will inevitably cross paths with motor-vehicles 

in the parking lot.  The lack of conflicts – reportable crashes – at these locations is likely 

a reflection of current societal conditions: there are no conflicts because few bicyclists 

dare to go.  Among the transportation cyclists interviewed, each had strategies for 

overcoming these conflicts – getting off and walking, taking to the sidewalks, and 

ultimately, waiting for cars.  The right of the driver to cruise by the front entrance of the 

grocer is more important than either pedestrians’ or bicyclists’ accessibility.  Even as 

cities rapidly update their roadway infrastructure, the planning and zoning of private 

developments will likely lag for decades to come, preferencing customers in cars over 

any possible alternative.  The fullest understanding of urban accessibility – and its 

improvement – should carefully consider the challenges that lay beyond the road. 

6.5 Planning and Infrastructure 

The fourth and final research question sought to frame the model results within 

the local planning context by asking: does current regional transportation planning 

address infrastructural inadequacies highlighted by the proposed BLOS model? 

The comprehensive regional model highlights both roadways with high levels of 

service and those roads with subpar service for bicyclists.  In particular, roads with low 

levels of service (scores of 1 or 2) are often major arterials – in many cases, there are no 

alternatives for bicyclists to consider.  The model results suggest that these roadways 

could be improved easily by either increasing lane width or reducing travel speeds.  More 
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complex interventions could seek to reduce daily vehicle traffic, or to add dedicated 

bicycle facilities with adequate vehicular separation. 

6.5.1 Anticipating Bicyclists 

In San Marcos, there are a handful of completed and planned projects that suggest 

the city as a whole is anticipating bicyclists in future roadway designs.  The bicycle lane 

on Hunter Road (Link #26) was added in 2020 and was received favorably by local 

survey participants.  A similar project along Guadalupe Road promises enhanced BLOS 

in the city’s core: the road underwent a road diet (from 3 travel lanes to 2) and added a 

wide bike lane.  The specifics of that project expose the current challenge of qualifying 

bicycle infrastructure, as the two-way bike lane and adjacent on-street parking have both 

drawn some criticism from local bicyclists; because construction was delayed during 

2021, final opinions on the overall project design were generally reserved.  

Two other projects remain in the planning phase, but promise significant 

improvements, not just for link-wise level-of-service, but for holistic connectivity of the 

bicycle network in the city (specifically, connecting campus to popular student 

residences). Sessom Drive borders the north side of the Texas State University campus, 

and is currently a 4-lane arterial with 35 mph speed limits (limits which are frequently 

exceeded); the road is also a significant hill, meaning major speed differentials between 

car and bicycle traffic in the uphill direction.  Planning documents show the street is to be 

restriped, narrowing from its current 4 lanes down to just 2 traffic lanes, with buffered 

bicycle lanes on either side – the buffers will include vertical delineators near 

intersections and conflict points.  This project will almost certainly enhance BLOS along 

the northern perimeter of the campus. 
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The second significant restriping project promises improvements along Old 

Ranch Road 12, improving BLOS along a major connection between several large 

apartment complexes and the campus (almost reaching the Sessom Drive improvement 

project).  Old Ranch Road 12 currently varies from 35 to 50 mph with very high traffic 

volumes in just 2 travel lanes.  Although there are paved shoulders in some places, the 

pavement quality and width vary dramatically; worse, the shoulders disappear right as the 

hillslope begins.  The restriping project maintains the two travel lanes, but expands the 

shoulders and designates that space specifically for use by bicyclists.   

6.5.2 Challenges and Missed Opportunities 

The major challenge ahead is that these sorts of improvements are only passable 

when roadway reconstruction is already planned (i.e., because pavement quality is 

impeding the flow of vehicular traffic).  This means that city-wide improvements to the 

bicycle network remain a long-term concern; it also means that the success of current 

projects will be used to evaluate the viability of future projects – of course, improvements 

along individual road links should not be expected to provide dramatic shifts in modal 

choice or bicyclists’ route selections.    

Rather than focus on improvements to individual road links, planners must 

recognize the importance of improving network connectivity.  The stretch of Aquarena 

Springs between Sessom Drive and Charles Austin Drive is an exemplar: the link is less 

than two-tenths of a mile, but was rated a BLOS of 1 by three participants.  To the west 

of this link is the university campus, with its extensive pedestrian and bicycle facilities; to 

the east is Post Road with dedicated bicycle lanes.  Plenty of students brave this stretch of 
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road for their bicycle commute – but no doubt, others have put off the idea of bicycle 

commuting solely to avoid the real and perceived danger of those two-tenths of a mile.  

Aside from obvious oversights as on Aquarena Springs, bicycles are often 

overlooked in the process of making improvements.  As a minor example, consider the 

three-way intersection of Dixon Road, Hunter Road, and West San Antonio Street (all 

three routes were rated favorably by participants): the space between these three bicycle 

routes is a constricted two-lane space with moderate traffic volumes and no facilities 

indicating bicyclists may need to make a left turn (across traffic).  A more egregious 

example concerns an unmapped paved connector between Riverside Drive and River 

Road (Fairchild 2021).  This connector offered a low-traffic route under Interstate 35, but 

has been blockaded – potentially permanently – for highway improvements; bicyclists 

and pedestrians are now forced to navigate the divergent-diamond interchanges either at 

State Highway 123 or 80 (an extra mile even by the shortest route, the frontage road).  

6.5.3 Planning in San Marcos     

Overall, San Marcos is taking steps to include bicycles within its long-term 

transportation plans (and living up to the promise of providing for sustainable alternative 

transportation).  These projects, however, are limited in extent and reliant on 

justifications (such as increasing bicycle use) that may not fully materialize without better 

consideration of the complete bicycling network.  Furthermore, infrastructural 

improvements for bicycles are often contingent on improvements to the vehicular 

network – making improvements for bicycles contingent on the maintenance of vehicular 

spaces all but assures overlooked opportunities and missed connections.  Only time will 

tell if San Marcos maintains its current momentum and meaningfully improves BLOS.  
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7 CONCLUSIONS 

7.1 Narrative 

De Nobis Ipsis Silemus [we are silent concerning ourselves] – Kant 

Quantitative modeling – such as BLOS – provides an unshakeable sense of 

authority: numbers don’t lie.  Yet, as much recent literature suggests, it would be foolish 

to ignore the positionality and subjectivities of the primary investigator (Holmes 2021; 

Mruck and Breuer 2003).  This research was the product of significant personal interest 

(as well as the usual tenacity and discipline required of a dissertation).   

I am a bicyclist.  In the four years I have lived in the San Marcos region, I have 

pedaled over 30,000 miles – 10,000 miles in just the last year.   My experience, I argue, 

was essential to the development of this BLOS model, rather than biasing it.  The 

research methods – especially the reliance on participants for sampling and rating roads – 

were intentionally structured to distance my own subjectivity from the results.  More 

importantly, the scope of the research – a regional BLOS model – would not have been 

feasible without my familiarity of the roads within the study area.  Finally, the survey 

recruitment strategy and long-form interviews were likely dependent on the strong 

personal ties I have developed with local bicyclists in the study area.   

Although I forwardly advocate for bicyclists – for better infrastructure, for better 

protection under the law, and for better treatment by drivers – I fully understand the 

limitations of the bicycle as a primary means of transportation.  A common critique is 

that bicycling advocacy is ‘ableist’ (Surico 2020); often this argument arises from vocal 

able-bodied individuals and not those who are truly disabled.  Good roads and safe streets 

are important for all manner of assisted-mobility devices (Fucoloro 2011; Galatan 2019). 
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The bigger story here is not about increasing bicycle level of service, but rather 

that society is owed a reconciliation between drivers and literally everyone else.  We 

should no longer accept 35,000 deaths per year as the status quo – it is unacceptable.  

Some might point to automated and self-driving cars as one potential solution, but even if 

one such vehicle was to make it to market by the end of this decade, how long before the 

entire manually-operated fleet could feasibly be replaced?   

And if self-driving cars become more prevalent in the next decades, we must still 

grapple with the natural resource costs of such vehicles.  Electrification is happening at a 

record pace, sure; not surprisingly, we are also setting a record pace on the extraction of 

lithium and other rare earth minerals.  Will there be enough of these precious metals to 

satisfy our demand for automobility?  Even if there is, allowing the design of our cities to 

revolve centrally around such vehicles only assures that the poor, young, old, and 

disabled are left with limited accessibility. 

The bigger story is that, in order to promote bicycling – and walking, and public 

transit – we will need to take a harsh stance on the use of the personal motor car.  

Encouraging alternative, sustainable modes of transportation necessarily implies reducing 

speed limits, eliminating excess travel lanes, dedicating road space to bicycles (as well as 

assistive e-bikes and scooters), and enforcing traffic regulations.  The bigger story is that 

we need to address the normal automobile driver as a traffic problem (Forbes 1939).   

My story, like many others, is that I see dangerous driving daily.  I, like other 

bicyclists, am afraid that one day I will be struck by a vehicle and seriously injured or 

killed.  I am strong, but not fearless (Heine 2013).  I am afraid that, like cyclists before 

me, I will be in a bag and my assailant on the couch – that is motivation for this research. 
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7.2 Limitations 

In addition to the limitations foreshadowed by existing literature, the research 

process revealed some additional considerations for BLOS modeling.  The initial 

limitations remarked that the study must be considered within the context of mid-sized 

US cities (and more specifically, within the context of southern sunbelt cities which 

largely grew after the popularization of automobility).  Furthermore, the participant 

sampling design intentionally highlights the perspectives of experienced cyclists, and 

may differ from those of infrequent or non-cyclists (whom are often the target audience 

for mode-shifting advocacy).  Finally, San Marcos does not enjoy any extensive 

dedicated bicycling infrastructure, which means that the results may underappreciate the 

demand and preference for facilities such as bike lanes.   

Beyond the above, anticipated limitations, data quality was the most distressing 

factor in BLOS model experimentation.  The roadway inventory database was woefully 

out-of-date and entire attribute columns were empty – even basic attributes, such as the 

speed limit, were often missing.  One reason for the low quality of the road network data 

may have been jurisdictional: the records regarding state-managed roadways were much 

more complete and accurate than roadways within city and county jurisdictions.  In any 

case, low quality and erroneous data significantly changes the reported BLOS (and many 

other transportation models); improving road network data must be an ongoing priority 

among transportation planners at every level, from administrators to users. 

Even where perfect data may exist, the presumed relationship between database 

road links, the ideal theory of a road link, and the bicyclists’ conception of a link may not 

always be compatible.  In theory, an ideal link is a road between two nodes; in a roadway 

inventory, a link may cross nodes, or not connect to any nodes at all (usually these links 
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are divided along practical or functional geometries, such as to capture changes in road 

names, pavement width, or traffic volumes).  To the bicyclist, neither of these ‘links’ are 

relevant; bicyclists respond more readily to routes, understanding the series of links 

needed to get from one point to another in the network.  In this way, the selection of a 

route involves the selection of a collection of links, most likely with a heuristic system 

for selecting the best collection of links (and balancing the best and worst of the links in 

the set).  This implies a need to further evaluate BLOS in terms of bicyclist route choice.  

7.3 Future Research 

The BLOS model is a useful tool for assessing and visualizing large road network 

datasets (such as in the San Marcos region), but the results deserve continued attention.  

Currently, the BLOS model only accounts for a third of the variations in participants’ 

ratings, implying many unaccounted factors – these unobserved factors may be the most 

inhibiting to increasing bicycle ridership.  Participants commented about sand and glass 

debris, signage (or lack thereof), the sense of other bicyclists frequenting the route, and 

the aesthetics along certain roads.  While the variation in road debris accumulation and 

cleanup may be beyond modeling efforts, careful consideration of route signage and 

bicycle ridership are reasonable experiments in the near term; similarly, investigating 

route popularity and assessing roadway aesthetics might suggest clues for increasing 

bicycle use, and the requisite data are likely to be increasingly available with the 

popularization of social media and fitness-tracking applications. 

Among the most difficult of participants’ comments to codify was their common 

reference to a range of driver behaviors.  In some places, this reference was positive: 

“drivers are aware of us” or “drivers are cautious”; other links however, were colored 
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with anecdotes of drivers traveling too fast for conditions, bicyclists “being buzzed” (or 

passed too closely) despite empty passing lanes, or bicyclists having their right-of-way 

violated by turning traffic.  Future modeling may seek to incorporate a larger emphasis 

on daily traffic patterns or include observed vehicular travel speed to better represent 

actual driver behaviors within the road network.  In lieu of these more data intensive 

operations, continued investigation of urban density could offer a useful proxy for BLOS 

modeling and may also lead to larger questions about ideal urban densities. 

Another important avenue for future research concerns hillslope.  Measuring 

hillslope is perhaps foremost, a generalized issue for geographic information systems: 

how can the process be simplified and how can its results be standardized?  If these 

improvements are within reach, then how do we consider demarcating mild, moderate, 

and steep slopes (for bicyclists, pedestrians, and others)?  Such a question is not as simple 

as it may seem, for there are clear differences between a maximum gradient struck over a 

short length, a sustained moderate gradient over a longer length, and mild gradients that 

are sustained over many miles (such as found in many mountainous areas).   

One final suggestion for future research regards the cartography of bicycle maps.  

Unlike road maps, there is little standardization of such maps, even for fundamentals 

such as preferred roads and routes.  An ideal bike map would include the various roads 

and routes within the area, and a sort of ranking system to compare and contrast route 

options (such as BLOS), but it should also share details about particular routes’ hills and 

traffic.  Beyond such fundamentals, participants largely suggested the inclusion of water 

fountains, bicycle shops, and similar points of interest.  While these mentions may seem 

obvious, making such a detailed map both pleasant and easy to read is no easy task. 
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7.4 Final Remarks 

Bicycle level of service is an underappreciated metric – encouraging its adoption 

and use could drastically improve planning for bicycles.  At present, the model is largely 

contingent upon measures of vehicular traffic (speed and volume) and road width (as a 

measure of separation from the aforementioned traffic).  Nonetheless, the model is shown 

to be easily adapted (thanks to the use of well-defined and fixed parameter coefficients); 

this implies that as traffic and infrastructure changes in the future, the BLOS model can 

be updated to match.  In the future, BLOS could be incorporated in route choice models, 

include measures of roadway aesthetics, and ultimately, be made available to end users.  

Beyond the model, we might recognize the growing utility of geographic 

information systems.  Two decades ago, a BLOS model was constrained to a handful of 

links penciled onto a clipboard; today, the same model can be cast across an entire 

network dataset (with some limitations).  In the future, this technology may become more 

user friendly and more readily deployed; this anticipated commodification will be 

significant for organizations with tight budgets and limited technical expertise.  It is vital 

that we continue to simplify and refine our models so that they may be replicated (and 

adapted) to suit the planning needs of various regions and organizations. 

Finally – and most generally – we should recognize the importance of the bicycle 

as a mode of transportation and recreation.  The bicycle provides for personal and 

societal wellness in a way that few other industrial-era machines can match.  ‘Twould be 

foolish to ignore the bicycle while championing the electric car or the diesel bus; ‘twould 

be foolish to decry the bicycle as ableist in an era of obesity.  As attributed to H.G. Wells, 

and still ringing true for millions today, “every time I see an adult on a bicycle I no 

longer despair for the future of the human race”. 
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APPENDIX SECTION 

APPENDIX A: Tools of the Trade 

• Salsa Vaya Touring Bicycle 

o 700c wheels with 32c-45c tires 

o Downtube friction shifters 

o 3x9 drivetrain (22/36/46 x 11-36 :: 17” – 112” gear-inches)   

o Disc brakes with 160mm rotors 

 

 

• Garmin Edge 130 Consumer Bicycling GPS 

o Supports GPS, GLONASS, and Galileo constellations 

 

 

 

• Custom Built Personal Computer 

o AMD Ryzen 5 2600 Six-Core Processor (3.40 Ghz) 

o Gigabyte B450 AORUS M Motherboard 

o 32.0 GB DDR4 3200MHz RAM 

o 256 GB SDD system drive, 1 TB HDD storage drive 

o NVIDIA GeForce GT710 2GB GDRR3 Display Adapter 

o Windows 10 

▪ MS Office 2016 (Word, Excel, Powerpoint) 

▪ QGIS 3.17, with GRASS 

▪ R processing language with R-Studio GUI 

  

Figure 12: Salsa Vaya 

Figure 13: Edge 130 
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APPENDIX B: Survey Instrument 

Part 1: Demographics (maximum 10 minutes) 

Name: 

Survey Consent:  

Age: 

Gender: 

San Marcos Resident: 

Hays County Resident: 

Self-identified Cyclist: 

Primary Discipline(s): 

Estimated Miles per Year: 
 

Part 2: Road-Sites for BLOS Analysis (maximum 40 minutes) 

Preselected Site #1 (expected High BLOS) 

Location: York Creek Road, approximately at Soechting Ln 

Location Description: halfway along York Creek, between Old Bastrop & Francis Harris 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 

 

Preselected Site #2 (expected Moderate BLOS) 

Location: Hunter Road, northeast from McCarty Ln 

Location Description: aka FM2439, approximately near Sienna Pointe Apartments 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 

 

Preselected Site #3 (expected Low BLOS) 

Location: East Hopkins, between North Guadalupe Street and North LBJ 

Location Description: East Hopkins, north of historic county courthouse and city square. 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 
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Participant Selected Site #_____  

Location: ____________________________________________________________ 

Location Description: __________________________________________________ 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 

Any Comments: ________________________________    

 

Participant Selected Site #_____  

Location: _______________________________________________________________  

Location Description: _____________________________________________________ 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 

Any Comments: ________________________________    

 

Participant Selected Site #_____  

Location: ___________________________________________________________  

Location Description: _____________________________________________________ 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 

Any Comments: ________________________________    

 

Participant Selected Site #_____  

Location: _______________________________________________________________  

Location Description: ______________________________________________________ 

Overall BLOS (perceived):  1 2 3 4 5 

Road Width (perceived):  1 2 3 4 5 

Traffic (perceived):  1 2 3 4 5 

Speed Limit (perceived): 1 2 3 4 5 

Hill Slope (perceived):  1 2 3 4 5 

Any Comments: ________________________________    
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Part 3: Open Discussion (maximum 10 minutes) 

a. What do you believe is the most important information to include for mapping bicycle 

routes? 

 

 

 

b. As a cyclist, can you describe a local hill that is ‘too steep’ (or at least, too steep for 

novice bicyclists, or one that you might avoid)?   

 

 

c. Is there a ‘perfect hill’ locally, a hill that gains elevation but at a lower effort? 

 

 

 

d. Is it possible to rank the importance of 1) road width, 2) traffic, and 3) speed limits, in 

regards to bicycling comfort? 
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APPENDIX C: Data Review 

To provide additional context for the model inputs, the following review is 

intended to summarize key attributes of secondary and primary datasets. 

 

Secondary Data – All Links in Region 

Table 9: Secondary data summary, all links 

Variable       

OBJECTID n = 42,775 road links 

       

Variable Min Median Mean Max St. Dev. 

Count 

NAs 

SPD_MAX 0 0 21.7 85 28.4  

SPD_MAX_FLR 21 21 34.6 85 18.8  

LANE_WIDTH 4 10 10.5 36 1.9 21 

LANE_WIDTH_O 8 10 12.3 53 5.3  

NUM_LANES 1 2 2.3 14 0.9 1 

S_WID_O 0 0 2.0 40 4.4 251 

ADT_CUR 1 405 11956.7 271276 30430.1 1 

TRK_AADT_P 0 3 5.0 56 5.2 1 

D1A_mean 0 1 1.4 31 1.8  

D1B_mean 0 2 3.3 72 4.0  

D1C_mean 0 0 2.5 203 13.2  

D3a_mean 1 9 10.4 44 7.9  

D3b_mean 0 23 39.6 813 49.6  
 

Variable       

S_USE_O Classes -- 1:Parking, 2:Parking, 3:Bicycle, 5:Emergency … 

S_TYPE_O Classes -- 1:Paved, 2:Concrete, 3:Unpaved, 5:Earth …  
SRF_TYPE Classes -- 1:Concrete, … 7:Composite, … 13:Gravel  
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Sampled Links – Secondary and Primary Data 

Table 10: Secondary and primary data summary, sampled links 

Variable      
Link_ID n = 131 road links 

Variable Min Median Mean Max St. Dev. 

SPD_MAX 0 40 39 65 15 

SPD_MAX_FLR 21 40 40 65 12 

LANE_WIDTH 8 10 10 16 2 

LANE_WIDTH_O 8 10 12 24 4 

NUM_LANES 2 2 2 4 1 

S_WID_O 0 0 2 15 3 

ADT_CUR 17 2706 7112 40149 8977 

TRK_AADT_P 0 3 4 22 3       

D1A_mean 0.02 0.24 0.94 3.96 1.12 

D1B_mean 0.04 0.66 3.05 16.50 4.28 

D1C_mean 0.00 0.32 2.99 49.91 8.33 

D3a_mean 1.14 4.02 8.43 23.58 7.47 

D3b_mean 0.66 8.60 33.87 163.99 41.15 

      

Rate_Overall 1 3 3.21 5 1.18 

Rate_Width 1 3 2.81 5 1.24 

Rate_Traffic 1 3 3.13 5 1.26 

Rate_Speed 1 3 3.15 5 1.04 

Rate_Hill 1 4 3.63 5 1.14 

      

ft_mile 0 54 62 238 45 

max.grad.50m 0.00 0.07 0.08 0.34 0.05 

      

BLOS_5 1.0 4.3 4.0 5.0 1.1 

BLOS_6 1.0 2.7 2.8 5.0 1.1 

BLOS_REGR 1.5 3.2 3.2 4.9 0.7 

BLOS_5_Rev 1.0 4.2 3.8 5.0 1.1 

BLOS_6_Rev 1.0 3.0 3.0 5.0 1.2 
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Table 11: Individualized regression results (Participants’ Overall Level of Service 

Ratings as follows their own ratings of Speed, Traffic, and Width) 

 Individual Regression Coef. Model Fit Revealed Priorities Stated Priorities 

ID b0 Speed Traffic Width r_sq p_val S T W S T W 

1 -3.26 0.55 0.40 0.98 0.95 0.00 2 3 1 2 3 1 

2 -0.24 0.08 0.94 0.20 0.67 0.81 3 1 2 2 1 3 

3 -0.39 0.26 0.89 0.01 0.84 0.24 2 1 3 2 1 3 

4 0.05 0.86 -0.13 0.29 0.68 0.04 1 3 2 2 3 1 

5 1.45 0.20 -0.02 0.38 0.21 0.37 2 3 1 3 2 1 

6 -2.05 0.27 0.93 0.47 0.61 0.42 3 1 2 2 1 3 

7 0.24 0.18 0.41 0.40 0.91 0.06 3 1 2 3 2 1 

8 -0.72 0.13 0.98 0.60 0.89 0.67 3 1 2 2 3 1 

9 0.00 0.06 0.67 0.28 0.87 0.82 3 1 2 3 2 1 

10 0.93 -0.05 0.20 0.65 0.80 0.82 3 2 1 3 2 1 

11 1.34 0.16 0.42 0.17 0.75 0.36 3 1 2 1 2 3 

12 0.33 -0.19 0.65 0.38 0.78 0.50 3 1 2 3 1 2 

13 0.07 1.50 -0.86 0.06 0.88 0.06 1 3 2 1 3 2 

14 -1.63 0.21 0.73 0.47 0.75 0.36 3 1 2 2 3 1 

15 1.09 1.59 -1.43 0.59 0.88 0.03 1 3 2 2 3 1 

16 -0.41 0.19 0.66 0.42 0.92 0.29 3 1 2 3 2 1 

Average Prioritization of Factors: 2.44 1.69 1.88 2.25 2.13 1.63 
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APPENDIX D: Data Management 

Road Digitization 

A duplicate copy of the TxDOT road-line features were created to enable 

advanced digitization of the features while preserving the original topology for potential 

future analysis (Figure 14).  The newly edited feature shapefile was reprojected to UTM 

Zone 14, and was also trimmed of extraneous attribute columns for faster processing: the 

attribute table includes only two fields, OBJECTID, a reference to the link in the TxDOT 

feature set, and Link_ID, the reference used for tracking road-links as selected by 

interview participants.   

 

Road Attributes 

The R programming language was used for many processing steps, as it is often 

faster than processing within a GIS environment.  Several road attributes were updated or 

derived from initial attributes.  One key attribute was road speed, stored as SPD_MAX.  

Figure 14: Advanced digitization of road network topology 
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For many road links, the speed was either 0 or null.  Links described by participants were 

manually updated to reflect real world conditions.  For all remaining links with missing 

values, the following code was used to update the field to a floor of 21 mph, as suggested 

in the Highway Capacity Manual. 

 
## Speed Limit, HCM FLOOR 
 
   yt <- roads_data 
 
   ## Update Null values to zero 
   yt$SPD_MAX[is.na(yt$SPD_MAX)] <- 0 
 
   ## If SPD_MAX < 21, update to 21, else leave as is 
   yt$SPD_MAX_FLR <- ifelse( yt$SPD_MAX < 21, 21, yt$SPD_MAX) 
 

For many BLOS models, the lane-width value is intended to include the outside 

shoulder width as well, assuming that the outside shoulder is paved and not designated as 

parking.  The following codes were used to create a new attribute field to represent the 

effective outside lane width, LANE_WIDTH_O.   

 
 
## Outside Lane Width -- Check that Outside Shoulder is paved,  
##     and not designated parking. 
    
   yt <- roads_data 
 
   ## Seed new field with existing Lane Width attributes 
    yt$LANE_WIDTH_O <- yt$LANE_WIDTH 
 
   ## Iterate across every road link 
   for (i in seq_along(yt$LANE_WIDTH_O)) { 
    
     ## If shoulder width is not null, proceed: 
     if (!is.na(yt[i, "S_WID_O"])) { 
  
     ## Assume Shoulder Width extends Lane Width 
      yt[i,"LANE_WIDTH_O"] <- yt[i,"LANE_WIDTH"]+yt[i,"S_WID_O"] 
           
     ## Undo change if Shoulder is unpaved, or parking: 
          if (yt[i, "S_USE_O"] == 1 || yt[i, "S_USE_O"] == 2) { 
           yt[i,"LANE_WIDTH_O"] <- yt[i,"LANE_WIDTH"]} 
          if (yt[i, "S_TYPE_O"] > 2 || yt[i, "S_TYPE_O"] < 1) { 
           yt[i,"LANE_WIDTH_O"] <- yt[i,"LANE_WIDTH"]} 
      }} 
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Density Attributes from the EPA Smart Growth Database 

The QGIS Graphical Processing Modeler was utilized to manage the many-to-one 

join between census block groups and intersecting road-links (Figure 15).  The output of 

the model is a line-feature shapefile mirroring the input line features; the new feature 

shapefile includes summary means from selected block-group attributes: land-use 

densities D1a, D1b, and D1c, as well as road-network densities D3a and D3b.  

Hillslope Derivation 

Estimation of hillslopes along links was complicated in two ways.  First, issues 

with the road network topology prevented implementation of the points along geometry 

on all links, limiting the application of hillslope derivation to manually-adjusted links.  

Second, even where meaningful chainages of the network were determined, hillslope 

estimates were occasionally exaggerated, either because of challenging terrain (roads 

along cliffsides), link-DEM mismatches (where road lines did not align with bridges), or 

where the National Elevation Dataset did not capture new road infrastructure (bridges, 

water crossings, and road-grade cuts).  Despite these challenges, a GIS process model 

Figure 15: Process model for summarizing block groups attributes for road links. 
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was useful for deriving hillslope estimates from topologically corrected links, from which 

the output could be manually validated (Figure 16).  The output is a shapefile of point 

features, each with a unique Point_ID, a reference to its source Link_ID, x and y 

coordinates (in UTM), and a z coordinate sampled from the input DEM (the USGS NED 

was used for this research).   

  The output data within Chainage_Points were further processed using an R 

script file.  The script tracks the distance along links as reported by the GIS and as 

derived from x and y coordinates.  For each increment, the process records the change in 

elevation, and then concludes by summarizing elevation gain and gradient using multiple 

referents.  The process operates on each link both forward and backward to consider 

differences in the directionality of hillslopes along links.   

 

Figure 16: Process model for deriving points (and elevations) along road links. 
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###### Hillslope Preparation ###### 
library(tidyverse) 
library(dplyr) 
options(scipen=999) 
 
####### BASIC DISTANCE/TRIGONOMETRY ATTRIBUTES ####### 
###### distance, elevation change, and gradient. ##### 
 
## FORWARD ALONG LINKS 
df <- Chainage_Points 
df <- data.frame(pid=df$Point_ID, Link_ID=df$Link_ID, 
distance=df$distance, 
                   x=df$xcoord, y=df$ycoord, z=df$rast_val) 
seed_dist = 0 
point_count = seed_dist 
 
df$dist <- seed_dist; df$dist.cum <- seed_dist 
df$dist_3d <- seed_dist; df$dist_3d.cum <- seed_dist 
df$vert_change <- seed_dist; df$gradient <- seed_dist 
df$gradient_30m <- seed_dist; df$gradient_50m <- seed_dist 
 
for (i in seq_along(df$distance)) { 
  if (df[i, "distance"] == 0) { 
  ## New Link; reset metrics 
     df[i,7:13]  <-seed_dist 
     point_count <-seed_dist 
  } 
   
  if (point_count > 0) {  
  ## Safe to compare current row to previous row 
    df[i, "dist"] <- sqrt((df[i, "x"]-df[i-1, "x"])^2 + 
                          (df[i, "y"]-df[i-1, "y"])^2) 
    df[i, "dist.cum"] <- df[i, "dist"] + df[i-1, "dist.cum"] 
     
    df[i, "dist_3d"] <- sqrt((df[i, "x"]-df[i-1, "x"])^2 + 
                             (df[i, "y"]-df[i-1, "y"])^2 + 
                             (df[i, "z"]-df[i-1, "z"])^2) 
 
    df[i, "dist_3d.cum"] <- df[i, "dist_3d"] + df[i-1, "dist_3d.cum"] 
    df[i, "vert_change"] <- df[i,"z"]-df[i-1,"z"] 
    df[i, "gradient"]    <- df[i,"vert_change"] / df[i,"dist"] 
  }  
 
  if (point_count > 3) {  ## Safe to reference third previous row 
    df[i, "gradient_30m"] <- (df[i,"z"]-df[i-3,"z"]) / 
(df[i,"dist.cum"]-df[i-3,"dist.cum"]) 
  } 
 
  if (point_count > 5) {  ## Safe to reference fifth previous row 
    df[i, "gradient_50m"] <- (df[i,"z"]-df[i-5,"z"]) / 
(df[i,"dist.cum"]-df[i-5,"dist.cum"]) 
  } 
 
  point_count = point_count+1} 
forward <- df 
 
## PARSE LINKS IN REVERSE 
df <- na.omit(Chainage_Points) 
df <- data.frame(pid=df$Point_ID, Link_ID=df$Link_ID, 
distance=df$distance,  
                   x=df$xcoord, y=df$ycoord, z=df$rast_val) 
 
seed_dist = 0 
point_count <- seed_dist 
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df$dist <- seed_dist; df$dist.cum <- seed_dist 
df$dist_3d <- seed_dist; df$dist_3d.cum <- seed_dist 
df$vert_change <- seed_dist; df$gradient <- seed_dist 
df$gradient_30m <- seed_dist; df$gradient_50m <- seed_dist 
 
df$pid <- rev(df$pid) 
df <- df[order(df$pid),] 
 
for (i in seq_along(df$pid)) { 
if (i > 1){ 
  if (df[i-1, "distance"] == 0) { 
  ## New Link; reset metrics 
      df[i, 7:13]  <- seed_dist 
      point_count  <- seed_dist 
    } 
  else { ## Safe to compare current row to previous row 
   
       
   df[i,"dist"]<-sqrt((df[i,"x"]-df[i-1,"x"])^2 + (df[i,"y"] -         
                                                  df[i-1,"y"])^2) 
   df[i, "dist.cum"] <- df[i, "dist"] + df[i-1, "dist.cum"] 
       
   df[i, "dist_3d"] <- sqrt((df[i, "x"]-df[i-1, "x"])^2+ 
                            (df[i, "y"]-df[i-1, "y"])^2+ 
                            (df[i, "z"]-df[i-1, "z"])^2) 
   
   df[i, "dist_3d.cum"] <- df[i, "dist_3d"] + df[i-1, "dist_3d.cum"] 
   df[i, "vert_change"] <- df[i,"z"]-df[i-1,"z"] 
   df[i, "gradient"]    <- df[i,"vert_change"]/df[i,"dist"] 
       
   if (point_count > 3) {## Safe to reference third previous row 
       df[i, "gradient_30m"] <- df[i, "z"] - df[i-3, "z"] /  
                             (df[i,"dist.cum"]-df[i-3,"dist.cum"]    
   } 
   if (point_count > 5) {## Safe to reference fifth previous row 
     df[i, "gradient_50m"] <- (df[i,"z"]-df[i-5,"z"]) /  
                            (df[i,"dist.cum"]-df[i-5,"dist.cum"]) 
   } 
        point_count = point_count+1}  
}} 
backward <- df 
 
## SUMMARY RESULTS (Forward/Backward/Generalized) 
 
for_result <- data.frame(Link_ID = unique(forward$Link_ID)) 
for (i in seq_along(for_result$Link_ID)){ 
  ## Subset unique link and attributes from large "df" 
  temp <- forward[forward$Link_ID == for_result[i, "Link_ID"],] 
  for_result[i, "dist_GIS"]           <- round(max(temp$distance),0) 
  for_result[i, "dist_h"]             <- round(max(temp$dist.cum), 0) 
  for_result[i, "dist_3d"]            <- round(max(temp$dist_3d.cum),0) 
  for_result[i, "elev.gain"]          <-  
               
round(sum(temp$vert_change[temp$vert_change>0]),0) 
  for_result[i, "elev.change.abs"]    <- round(sum(temp$vert_change),0) 
  for_result[i, "grad.avg.up"]        <-  
                     round(mean(temp$gradient[temp$gradient>0]),3) 
  for_result[i, "grad.trig.up"]       <- round(for_result[i,  
                     "elev.gain"]/for_result[i, "dist_h"],3) 
  for_result[i, "grad.max"]           <-                                                            
                                 round(max(temp$gradient_30m),3) 
  for_result[i, "grad.max.30m.abs"]   <-  
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                                 round(max(abs(temp$gradient_30m)),3) 
  for_result[i, "grad.max.50m.abs"]   <-  
                    round(max(abs(temp$gradient_50m)),3) 
  for_result[i, "ft_mile"]            <- round(for_result[i,  
         "elev.gain"*3.28084]/(for_result[i,"dist_3d"]*0.000621371),0) 
} 
 
bac_result <- data.frame(Link_ID = unique(backward$Link_ID)) 
for (i in seq_along(bac_result$Link_ID)){ 
  ## Subset unique link and attributes from large "df" 
  temp <- backward[backward$Link_ID == bac_result[i, "Link_ID"],] 
  bac_result[i, "dist_GIS"]           <- round(max(temp$distance),0) 
  bac_result[i, "dist_h"]             <- round(max(temp$dist.cum), 0) 
  bac_result[i, "dist_3d"]            <- round(max(temp$dist_3d.cum),0) 
  bac_result[i, "elev.gain"]          <-  
               round(sum(temp$vert_change[temp$vert_change>0]),0) 
  bac_result[i, "elev.change.abs"]    <- round(sum(temp$vert_change),0) 
  bac_result[i, "grad.avg.up"]        <-  
  round(mean(temp$gradient[temp$gradient>0]),3) 
  bac_result[i, "grad.trig.up"]       <- round(bac_result[i,   
                   "elev.gain"] / bac_result[i, "dist_h"],3) 
  bac_result[i, "grad.max"]           <-  
                   round(max(temp$gradient_30m),3) 
  bac_result[i, "grad.max.30m.abs"]   <-  
                   round(max(abs(temp$gradient_30m)),3) 
  bac_result[i, "grad.max.50m.abs"]   <-  
                   round(max(abs(temp$gradient_50m)),3) 
  bac_result[i, "ft_mile"]            <- round(bac_result[i,   
         "elev.gain"*3.28084]/(bac_result[i,"dist_3d"]*0.000621371),0) 
} 
 
## Generalized Hillslope Result 
gh <- left_join(for_result, bac_result, 
        by="Link_ID", suffix=c(".for", ".bac")) 
 
gh <- data.frame(  
  Link_ID          = gh$Link_ID,            dist_GIS = gh$dist_GIS.for, 
  dist_h           = gh$dist_h.for,          dist_3d = gh$dist_3d.for, 
  elev.gain.for    = gh$elev.gain.for, elev.gain.bac = 
gh$elev.gain.bac, 
  elev.gain.max    = gh$elev.gain.for, elev.gain.abs =  
  abs(gh$elev.change.abs.for), 
  elev.gain.sum    = gh$elev.gain.for + gh$elev.gain.bac, 
  grad.avg.up.for  = gh$grad.avg.up.for, 
  grad.avg.up.bac  = gh$grad.avg.up.bac, 
  grad.max.30m.abs = gh$grad.max.30m.abs.for,    
  grad.max.50m.abs = gh$grad.max.50m.abs.for, 
  ft_mile.for      = gh$ft_mile.for,     ft_mile.bac = gh$ft_mile.bac, 
  ft_mile          = (gh$ft_mile.bac + gh$ft_mile.for) / 2) 
 
  for (i in seq_along(gh$Link_ID)){ 
  gh[i,"elev.gain.max"] <- 
max(c(gh[i,"elev.gain.for"],gh[i,"elev.gain.bac"]))  }    
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Complete Model Coding 

options(scipen=999) 
library(dplyr) 
library(ltm) 
 
########################## 
#### RAW DATA SOURCES #### 
########################## 
 
## DEMOGRAPHICS (Table of User Demographic Data, no Roadways) 
de <- Survey_Res_Demographic 
 
## SURVEY DATA RESULTS (User Sample and Ratings of Roadways) 
dt <- Survey_Res_Location 
 
## ROAD EMPIRICS (Topologically Corrected, Roadway Attributes) 
yt <- Roads_Empirics 
 
## HILLSLOPE (Previously Derived from Chainage/Hillslope Scripts) 
gh <- gh 
 
######################################### 
#### OUTLIERS AND SAMPLE MANAGEMENT ##### 
######################################### 
 
## REMOVE OUTLIERS 
outliers <- c(105, 129, 991) 
dt <- dt[!(dt$Link_ID %in% outliers),] 
yt <- yt[!(yt$Link_ID %in% outliers),] 
 
## RANDOMIZE SAMPLE 
##dt <- dt[!dt$Participant_ID == round(runif(1,min(dt$Participant_ID), 

max(dt$Participant_ID))),] 
 
############################ 
#### DERIVED ATTRIBUTES #### 
############################ 
 
## Outside Lane Width -- Check that Shoulder is paved and not parking 
    yt$LANE_WIDTH_O <- yt$LANE_WIDTH 
      for (i in seq_along(yt$LANE_WIDTH_O)) { 
        if (!is.na(yt[i, "S_WID_O"])) { 
          yt[i,"LANE_WIDTH_O"] <- yt[i,"LANE_WIDTH"]+yt[i,"S_WID_O"] 
         
          if (yt[i, "S_USE_O"] == 1 || yt[i, "S_USE_O"] == 2) { 
           yt[i,"LANE_WIDTH_O"] <- yt[i,"LANE_WIDTH"]} 
          if (yt[i, "S_TYPE_O"] > 2 || yt[i, "S_TYPE_O"] < 1) { 
           yt[i,"LANE_WIDTH_O"] <- yt[i,"LANE_WIDTH"]} 
      }} 
 
## Effective Shoulder Width:  
    yt$SHOULDER_WIDTH <- yt$LANE_WIDTH_O - yt$LANE_WIDTH 
       
## Speed Limit, HCM FLOOR 
    yt$SPD_MAX[is.na(yt$SPD_MAX)] <- 0 
    yt$SPD_MAX_FLR <- ifelse( yt$SPD_MAX < 21,   21, yt$SPD_MAX) 
 
## ADT HOURLY, HCM FLOOR 
    yt$ADT_HR <- ifelse((yt$ADT_CUR/24) <     
      (4*yt$NUM_LANES),4*yt$NUM_LANES, yt$ADT_CUR/24) 
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## PREPARTIONS FOR BLOS 1 (RANKING REAL ATTRIBUTES) 
   #RANK ADT (--- per lane, per hour!---) 
  b <- c(0,150,250,350,450,99999);   a <- c("5","4","3","2","1") 
  yt$BLOS_1_rankADT <- cut((yt$ADT_HR/yt$NUM_LANES),breaks=b,labels=a)   
  ## BODGE TO GET NUMERIC RANKS: 
       yt$BLOS_1_rankADT <- (as.numeric(yt$BLOS_1_rankADT)-6)*(-1) 
       
  #RANK WIDTH 
    yt$BLOS_1_rankWidth <-  yt$S_WID_O + yt$LANE_WIDTH_O 
     b <- c(0, 11.5, 12.5, 13.5, 14.5,1000) 
     a <- c("1", "2", "3", "4", "5") 
    yt$BLOS_1_rankWidth <- cut(yt$BLOS_1_rankWidth,breaks=b,labels=a) 
    yt$BLOS_1_rankWidth <- as.numeric(yt$BLOS_1_rankWidth)   
           
   #RANK SPEED 
     b <- c(-1,26,31,36,46,100) 
     a <- c("5","4","3","2","1") 
    yt$BLOS_1_rankSpeed <- cut(yt$SPD_MAX, breaks=b, labels=a) 
     ## BODGE TO GET NUMERIC RANKS: 
    yt$BLOS_1_rankSpeed <- (as.numeric(yt$BLOS_1_rankSpeed)-6)*(-1) 
             
## END DERIVING ATTRIBUTES     
 
############################## 
#### DEMOGRAPHICS RESULTS #### 
############################## 
             
## COMPARE WITH KAPLAN(1975):2,332 Mi/Year; higher in Texas (2751-3250) 
  mean(de$Miles_Year) 
                   
##################################### 
#### PARTICIPANT ROADWAY RATINGS #### 
##################################### 
       
##### SUMMARY AND SKEW #####       
    Quick_Summary <- function(VectorToSummary){ 
      s <- double() 
      s[1] <- median(VectorToSummary) 
      s[2] <- mean(VectorToSummary) 
      s[3] <- sd(VectorToSummary) 
      return(s)} 
 
  Results_1a <- data.frame(Rating=character(), Median=integer(), 

Mean=double(), Sigma=double()) 
  Results_1a[1, "Rating"] <- "Overall" 
    Results_1a[1, 2:4] <- Quick_Summary(dt$Rate_Overall) 
  Results_1a[2, "Rating"] <- "Width" 
    Results_1a[2, 2:4] <- Quick_Summary(dt$Rate_Width) 
  Results_1a[3, "Rating"] <- "Traffic" 
    Results_1a[3, 2:4] <- Quick_Summary(dt$Rate_Traffic) 
  Results_1a[4, "Rating"] <- "Speed" 
    Results_1a[4, 2:4] <- Quick_Summary(dt$Rate_Speed) 
  Results_1a[5, "Rating"] <- "Hills" 
    Results_1a[5, 2:4] <- Quick_Summary(dt$Rate_Hill) 
  Results_1a$Skew <- (Results_1a$Mean - Results_1a$Median) / 

Results_1a$Sigma 
    Results_1a[,2:5] <- round(Results_1a[,2:5],3) 
   
##### VALIDITY: CORRELATION BETWEEN PERCEPTIONS AND EMPIRICS #####  
    xt <- '' 
    xt <- inner_join(dt, yt, by="Link_ID") 
    xt <- inner_join(xt, gh, by="Link_ID") 
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 Results_1b <-data.frame(Parameter=character(), 
Rate_Overall=double(),Rate_Width=double(),Rate_Speed=double(), 
Rate_Traffic=double(),Rate_Hills=double()) 

     
 Results_1b[1, "Parameter"]    = "LANE & SHOULDER WIDTH" 
 Results_1b[1, "Rate_Overall"] = cor(xt$Rate_Overall, xt$LANE_WIDTH_O) 
 Results_1b[1, "Rate_Width"]   = cor(xt$Rate_Width,   xt$LANE_WIDTH_O) 
 Results_1b[2, "Parameter"]    = "LANE WIDTH" 
 Results_1b[2, "Rate_Overall"] = cor(xt$Rate_Overall, xt$LANE_WIDTH) 
 Results_1b[2, "Rate_Width"]   = cor(xt$Rate_Width,   xt$LANE_WIDTH) 
 Results_1b[3, "Parameter"]    = "ROAD WIDTH" 
 Results_1b[3, "Rate_Overall"] = 

cor(xt$Rate_Overall,xt$LANE_WIDTH*xt$NUM_LANES) 
 Results_1b[3, "Rate_Width"]   = 

cor(xt$Rate_Width,xt$LANE_WIDTH*xt$NUM_LANES) 
 Results_1b[4, "Parameter"]    = "SHOULDER WIDTH" 
 Results_1b[4, "Rate_Overall"] = cor(xt$Rate_Overall, xt$S_WID_O) 
 Results_1b[4, "Rate_Width"]   = cor(xt$Rate_Width,   xt$S_WID_O) 
 Results_1b[5, "Parameter"]    = "MAX SPEED" 
 Results_1b[5, "Rate_Overall"] = cor(xt$Rate_Overall, xt$SPD_MAX) 
 Results_1b[5, "Rate_Speed"]   = cor(xt$Rate_Speed,   xt$SPD_MAX) 
 Results_1b[6, "Parameter"]    = "MAX SPEED (Floor 21mph)" 
 Results_1b[6, "Rate_Overall"] = cor(xt$Rate_Overall, xt$SPD_MAX_FLR) 
 Results_1b[6, "Rate_Speed"]   = cor(xt$Rate_Speed,   xt$SPD_MAX_FLR) 
 Results_1b[7, "Parameter"]    = "CURRENT AADT" 
 Results_1b[7, "Rate_Overall"] = cor(xt$Rate_Overall, xt$ADT_CUR) 
 Results_1b[7, "Rate_Traffic"] = cor(xt$Rate_Traffic, xt$ADT_CUR) 
 Results_1b[8, "Parameter"]    = "AADT * (1 + %Heavy)" 
 Results_1b[8, "Rate_Overall"] = 

cor(xt$Rate_Overall,xt$ADT_CUR*(1+(.01*xt$TRK_AADT_P))) 
 Results_1b[8, "Rate_Traffic"] = 

cor(xt$Rate_Traffic,xt$ADT_CUR*(1+(.01*xt$TRK_AADT_P))) 
 Results_1b[9, "Parameter"]    = "AADT * (1 + %Heavy)^2" 
 Results_1b[9, "Rate_Overall"] = 

cor(xt$Rate_Overall,xt$ADT_CUR*((1+(.01*xt$TRK_AADT_P))^2)) 
 Results_1b[9, "Rate_Traffic"] = 

cor(xt$Rate_Traffic,xt$ADT_CUR*((1+(.01*xt$TRK_AADT_P))^2)) 
 Results_1b[10, "Parameter"]    = "Feet per Mile (2-ways)" 
 Results_1b[10, "Rate_Overall"] = cor(xt$Rate_Overall, xt$ft_mile) 
 Results_1b[10, "Rate_Hills"]   = cor(xt$Rate_Hill,    xt$ft_mile) 
 Results_1b[11, "Parameter"]    = "Sum Elevation Gain (2-ways)" 
 Results_1b[11, "Rate_Overall"] = cor(xt$Rate_Overall,xt$elev.gain.sum) 
 Results_1b[11, "Rate_Hills"]   = cor(xt$Rate_Hill,xt$elev.gain.sum) 
 Results_1b[12, "Parameter"]    = "Max Elevation Gain (1-way)" 
 Results_1b[12, "Rate_Overall"] = cor(xt$Rate_Overall,xt$elev.gain.max) 
 Results_1b[12, "Rate_Hills"]   = cor(xt$Rate_Hill,xt$elev.gain.max) 
 Results_1b[13, "Parameter"]    = "Max. Gradient (1-way, 30m)" 
 Results_1b[13, "Rate_Overall"] = 

cor(xt$Rate_Overall,xt$grad.max.30m.abs) 
 Results_1b[13, "Rate_Hills"]   = cor(xt$Rate_Hill,xt$grad.max.30m.abs) 
 Results_1b[14, "Parameter"]    = "Max. Gradient (1-way, 50m)" 
 Results_1b[14, "Rate_Overall"] = 

cor(xt$Rate_Overall,xt$grad.max.50m.abs) 
 Results_1b[14, "Rate_Hills"]   = cor(xt$Rate_Hill,xt$grad.max.50m.abs) 
 Results_1b[15, "Parameter"]    = "Bike Lane (binary)" 
 Results_1b[15, "Rate_Overall"] = cor(xt$Rate_Overall, xt$BIKE_LANE) 
 Results_1b[16, "Parameter"]    = "  HCM OUTSIDE LANE" 
 Results_1b[16, "Rate_Overall"] = cor(xt$Rate_Overall, 
   -.005*xt$LANE_WIDTH_O^2) 
 Results_1b[16, "Rate_Width"]   = cor(xt$Rate_Width, 
   -.005*xt$LANE_WIDTH_O^2) 
 Results_1b[17, "Parameter"]    = "  HCM SPEED TERM" 
 Results_1b[17, "Rate_Overall"] = cor(xt$Rate_Overall, 
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   0.199*( 1.1199*log(xt$SPD_MAX_FLR-
20)+.8103)*(1+.1038*(.01*xt$TRK_AADT_P))^2) 

 Results_1b[17, "Rate_Speed"]   = cor(xt$Rate_Speed, 
0.199*(1.1199*log(xt$SPD_MAX_FLR-20) + 
.8103)*(1+.1038*(.01*xt$TRK_AADT_P))^2) 

 Results_1b[18, "Parameter"]  = "  HCM TRAFFIC TERM" 
 Results_1b[18, "Rate_Overall"] = cor(xt$Rate_Overall, 

.507*log(xt$ADT_HR/(4*xt$NUM_LANES))) 
 Results_1b[18, "Rate_Traffic"] = cor(xt$Rate_Traffic, 

.507*log(xt$ADT_HR/(4*xt$NUM_LANES))) 
 Results_1b[19, "Parameter"]    = "  BLOS 1: Width Classes" 
 Results_1b[19, "Rate_Overall"] = cor(xt$Rate_Overall, 

xt$BLOS_1_rankWidth) 
 Results_1b[19, "Rate_Width"]   = cor(xt$Rate_Width,   

xt$BLOS_1_rankWidth) 
 Results_1b[20, "Parameter"]    = "  BLOS 1: Speed Classes" 
 Results_1b[20, "Rate_Overall"] = 

cor(xt$Rate_Overall,xt$BLOS_1_rankSpeed) 
 Results_1b[20, "Rate_Speed"]   = 

cor(xt$Rate_Speed,xt$BLOS_1_rankSpeed) 
 Results_1b[21, "Parameter"]  = "  BLOS 1: Traffic Classes" 
 Results_1b[21, "Rate_Overall"]=cor(xt$Rate_Overall,xt$BLOS_1_rankADT) 
 Results_1b[21, "Rate_Traffic"]=cor(xt$Rate_Traffic,xt$BLOS_1_rankADT) 
     
    Results_1b[,2:6] <- round(Results_1b[,2:6],3) 
    Results_1b[is.na(Results_1b)] <- '--' 
 
##### Internal Consistency / Participant Reliability ##### 
 Results_1c <- data.frame(Measure=character(),  
     Result=numeric(), Items=double()) 
     
    # w/o Hills 
    Results_1c[1, "Measure"] = "Cronbach's Alpha" 
     temp <- data.frame(Overall=dt$Rate_Overall, Width=dt$Rate_Width, 
              Traffic=dt$Rate_Traffic, Speed=dt$Rate_Speed) 
    Results_1c[1, "Result"]  = cronbach.alpha(temp)$alpha 
    Results_1c[1, "Items"]   = cronbach.alpha(temp)$p 
      
     temp <- cor(temp) 
     temp <- ifelse(temp==1, NA, temp) 
    Results_1c[3, "Measure"] = "Mean Inter-item Correlation" 
    Results_1c[3, "Result"] = mean(temp, na.rm=TRUE) 
    Results_1c[3, "Items"]  = 4 
     
    # w/ Hills 
    temp <- data.frame(Overall=dt$Rate_Overall, Width=dt$Rate_Width, 
      Traffic=dt$Rate_Traffic, Speed=dt$Rate_Speed, Hills=dt$Rate_Hill) 
     
    Results_1c[2, "Measure"] = "--- w/ Hill Rating" 
    Results_1c[2, "Result"]  = cronbach.alpha(temp)$alpha 
    Results_1c[2, "Items"]  = cronbach.alpha(temp)$p 
     
      temp <- cor(temp) 
      temp <- ifelse(temp==1, NA, temp) 
    Results_1c[4, "Measure"] = "--- w/ Hill Rating" 
    Results_1c[4, "Result"] = mean(temp, na.rm=TRUE) 
    Results_1c[4, "Items"]  = 5 
 
##### REGRESSION: USER EVALUATIONS VS OVERALL EVAL ##### 
 Results_1d <- data.frame(Factor=character(),  
     Coef=double(), p_val=double()) 
     
 model <- lm(Rate_Overall ~ Rate_Speed+Rate_Traffic+ 
       Rate_Width+Rate_Hill, data=dt) 



 

111 

 Results_1d[8,    "Factor"] = "User Eval. Regression, w/ Hill Rating" 
 Results_1d[9:13, "Factor"] = names(model$coefficients) 
 Results_1d[9:13, "Coef"]   = model$coefficients[1:5] 
 Results_1d[9:13, "p_val"]  = summary(model)$coefficients[,4] 
 Results_1d[14, "Factor"] = "   Model r-sq" 
 Results_1d[14, "Coef"] = summary(model)$r.squared 
       
 model <- lm(Rate_Overall~Rate_Speed+Rate_Traffic+Rate_Width,data=dt) 
 Results_1d[1,   "Factor"] = "User Eval. Regression" 
 Results_1d[2:5, "Factor"] = names(model$coefficients) 
 Results_1d[2:5, "Coef"]   = model$coefficients[1:4] 
 Results_1d[2:5, "p_val"]  = summary(model)$coefficients[,4] 
 Results_1d[6, "Factor"] = "   Model r-sq" 
 Results_1d[6, "Coef"] = summary(model)$r.squared 
       
 Results_1d$Coef <- round(Results_1d$Coef, 3) 
 Results_1d$p_val<- round(Results_1d$p_val, 4) 
 
 ## Return Std-Residuals Plot 
    jpeg(file="Results_1d.jpg", width=600, height=350) 
     plot(model, which = 2) 
    dev.off() 
     
##### Stated vs Revealed Preference ##### 
  # Ranking of Factor Importance: Traffic, Speed, Width 
    pt <- data.frame(p = unique(dt$Participant_ID)) 
    temp <- 0 
 
  ## Regression for individual participants ratings/sample sites 
    for (i in seq_along(pt$p)) { 
      temp <- dt[dt$Participant_ID == pt[i, "p"],] 
      model <- lm(temp$Rate_Overall ~ 

temp$Rate_Speed+temp$Rate_Traffic+temp$Rate_Width) 
       
      pt[i, "b0"] <- model$coefficients[1] 
      pt[i, "b1"] <- model$coefficients[2] 
      pt[i, "b2"] <- model$coefficients[3] 
      pt[i, "b3"] <- model$coefficients[4] 
      pt[i, "r_sq"] <- round(summary(model)$r.squared,4) 
      pt[i, "p_val"]  <- round(summary(model)$coefficients[2,4],4) 
    } 
     
    ## find ranks from Regression 
    temp_matrix <- t(apply(-pt[,3:5], 1, rank)) 
    pt$rS = 0; pt$rT = 0; pt$rW = 0 
    pt[,8:10] <- temp_matrix 
     
    ## join with stated preference (from demographics table) 
    temp <- data.frame(p = de$Index, sS = de$Rank_Speed,  
                       sT = de$Rank_Traffic, sW = de$Rank_Width) 
    pt <- left_join(pt, temp, by="p") 
     
    Results_1e <- data.frame(Factor = c("Speed", "Traffic", "Width"), 
        Stated   = c(mean(pt$sS), mean(pt$sT), mean(pt$sW)),  
        Revealed = c(mean(pt$rS), mean(pt$rT), mean(pt$rW))) 
 
############################################# 
############ INITIAL BLOS MODELS ############ 
#############################################     
 
##### PRE-PROCESSING ##### 
## Aggregate many-to-one (Multiple Responses, One Site) 
dt$k = dt$Link_ID 
k    <- length(unique(dt$k)) 
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da <- data.frame(Link_ID = unique(dt$k)) 
for (i in 1:k) { 
  da[i, "Rate_Overall"] <- round(mean(dt$Rate_Overall[dt$k == da[i, 

"Link_ID"]]),2) 
  da[i, "Rate_Width"]   <- round(mean(dt$Rate_Width[dt$k == da[i, 

"Link_ID"]]),2) 
  da[i, "Rate_Traffic"] <- round(mean(dt$Rate_Traffic[dt$k == da[i, 

"Link_ID"]]),2) 
  da[i, "Rate_Speed"]   <- round(mean(dt$Rate_Speed[dt$k == da[i, 

"Link_ID"]]),2) 
  da[i, "Rate_Hill"]    <- round(mean(dt$Rate_Hill[dt$k == da[i, 

"Link_ID"]]),2) 
  da[i, "n"]            <- length(dt$Rate_Overall[dt$k == da[i, 

"Link_ID"]]) 
  da[i, "Var_Overall"]  <- round(var(dt$Rate_Overall[dt$k == da[i, 

"Link_ID"]]),2) 
} 
 
fa <- left_join(yt, da, by="Link_ID") 
 
 
## Create new working data table -- "Final Build" 
 
fb <- fa    
fb <- fb[!is.na(fb$Link_ID),] 
 
## Select key hillslope attributes 
 join_hills <- data.frame(Link_ID = gh$Link_ID, ft_mile = gh$ft_mile,  
                          max.grad.50m = gh$grad.max.50m.abs) 
fb <- left_join(fb, join_hills, by="Link_ID") 
 remove(join_hills) 
  
##### Write Processing Functions ##### 
  
 # FUNCTION: Rescale values 
 rescale <- function(value_toScale, invert=FALSE, min=1, max=5) { 
   if (invert){value_toScale <- value_toScale * -1} 
     a <- max(value_toScale)-min(value_toScale) 
     b = max-min 
   value_toScale <- (((value_toScale-min(value_toScale))*b) / a) + min 
   return(value_toScale) 
 } 
  
 # FUNCTION: Multiple Models Summary -- Paired t, Correlation, 

Regression 
 model_summary <- function(x, y){ 
   s <- vector() 
   model <- t.test(x, y, paired=TRUE) 
   s[1]  <- 0 
   s[2]  <- round(model$estimate,4) 
   s[3]  <- round(model$p.value,4) 
    
   model <- cor.test(x, y) 
   s[4]  <- round(model$estimate,4) 
   s[5]  <- round(model$p.value,4) 
    
   model <- lm(y~x) 
   s[6]  <- round(summary(model)$r.squared,4) 
   s[7]  <- round(summary(model)$coefficients[2,4],4) 
    
   s[8]  <- sigma(model) 
    
   return(s) } 
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 # FUNCTION: BLOS Equation 5  
 run_BLOS5 <- function(LU = 15, CCF = 42, PC = 4){ 
   ## LU:  'Land Use Intensity'   1-15 
   ## CCF: 'Curb Cut Frequency'   1-200 
   ## PC:  'Pavement Conditions'  1-5 
   BLOS_5_coefficientA1 = .01;   
   BLOS_5_coefficientA2 = .01;   
   BLOS_5_coefficientA3 = .024 
    
   BLOS5_Vector <- ((fb$ADT_CUR/fb$NUM_LANES)*(14/fb$LANE_WIDTH_O)^2 * 
                   (BLOS_5_coefficientA1*(fb$SPD_MAX/30)* 
                   

((1+(fb$TRK_AADT_P*1/100))^2)+(BLOS_5_coefficientA2*(1/PC))) + 
                   BLOS_5_coefficientA3*LU*CCF ) * .1 
   BLOS5_Vector <- rescale(BLOS5_Vector, TRUE)       
   return(BLOS5_Vector) 
 } 
  
######################################### 
######## INITIAL MODEL EQUATIONS ######## 
######################################### 
  
##### MODELS: BLOS EQ. 1 ##### 
 ## SUM RANKS and Normalize 
 fb$BLOS_1 <- as.integer(fb$BLOS_1_rankADT) + 

as.integer(fb$BLOS_1_rankSpeed) + as.integer(fb$BLOS_1_rankWidth) 
 fb$BLOS_1 <- rescale(fb$BLOS_1) 
  
##### MODELS: WEIGHTED BLOS EQ. 1 ##### 
 ## Weights for BLOS 1 with Coefficients from User Eval. Regression 
  
 a =  Results_1d[2, "Coef"] 
 b1 = Results_1d[3, "Coef"] 
 b2 = Results_1d[4, "Coef"] 
 b3 = Results_1d[5, "Coef"] 
  
 fb$BLOS_1_w <- a + (b1*fb$BLOS_1_rankSpeed) + (b2*fb$BLOS_1_rankADT) + 

(b3*fb$BLOS_1_rankWidth) 
 fb$BLOS_1_w <- rescale(fb$BLOS_1_w) 
  
##### MODELS: BLOS EQ. 2 ##### 
 ## Inputs require conversion to metric: meters, km/h 
 ## Initial Model: Fixed Parameters for "missing" data 
 fb$BLOS_2 <- (fb$ADT_CUR/(fb$NUM_LANES*2500)) +  
   ((fb$SPD_MAX*1.60934)/56) + 
   (4.25 - (fb$LANE_WIDTH*0.3048))*1.635 + 0 
  
 ## Revised w/ Location Factors (Programmatic Derivations) 
 fb$BLOS_2_wLF <- fb$BLOS_2 
 fb$BLOS_2_wLF <- ifelse(fb$D1A_mean > median(fb$D1A_mean),     

fb$BLOS_2_wLF+.50, fb$BLOS_2_wLF) 
 fb$BLOS_2_wLF <- ifelse(fb$D3b_mean > median(fb$D3b_mean),     

fb$BLOS_2_wLF+.50, fb$BLOS_2_wLF) 
 fb$BLOS_2_wLF <- ifelse(fb$ft_mile  > median(fb$ft_mile) ,     

fb$BLOS_2_wLF+.25, fb$BLOS_2_wLF) 
 fb$BLOS_2_wLF <- ifelse(fb$ft_mile  > quantile(fb$ft_mile)[4], 

fb$BLOS_2_wLF+.25, fb$BLOS_2_wLF) 
 fb$BLOS_2_wLF <- ifelse(fb$LANE_WIDTH_O-fb$LANE_WIDTH > 0,    

fb$BLOS_2_wLF-.75, fb$BLOS_2_wLF) 
 fb$BLOS_2_wLF <- ifelse(fb$S_USE_O==1,                         

fb$BLOS_2_wLF+.75, fb$BLOS_2_wLF) 
 fb$BLOS_2_wLF <- ifelse(fb$S_USE_O==2,                         

fb$BLOS_2_wLF+.50, fb$BLOS_2_wLF) 



 

114 

  
 ## Revised w/ Location Factor Weights from Epperson (1994) 
 fb$BLOS_2_wLF_2 <- fb$BLOS_2 
 fb$BLOS_2_wLF_2 <- ifelse(fb$D1A_mean > median(fb$D1A_mean),     

fb$BLOS_2_wLF_2+.25, fb$BLOS_2_wLF_2) 
 fb$BLOS_2_wLF_2 <- ifelse(fb$D3b_mean > median(fb$D3b_mean),     

fb$BLOS_2_wLF_2+.25, fb$BLOS_2_wLF_2) 
 fb$BLOS_2_wLF_2 <- ifelse(fb$ft_mile  > median(fb$ft_mile) ,     

fb$BLOS_2_wLF_2+.20, fb$BLOS_2_wLF_2) 
 fb$BLOS_2_wLF_2 <- ifelse(fb$ft_mile  > quantile(fb$ft_mile)[4], 

fb$BLOS_2_wLF_2+.30, fb$BLOS_2_wLF_2) 
 fb$BLOS_2_wLF_2 <- ifelse(fb$LANE_WIDTH_O-fb$LANE_WIDTH > 0,     

fb$BLOS_2_wLF_2-.75, fb$BLOS_2_wLF_2) 
 fb$BLOS_2_wLF_2 <- ifelse(fb$S_USE_O==1,                         

fb$BLOS_2_wLF_2+.75, fb$BLOS_2_wLF_2) 
 fb$BLOS_2_wLF_2 <- ifelse(fb$S_USE_O==2,                         

fb$BLOS_2_wLF_2+.25, fb$BLOS_2_wLF_2) 
  
 ## Normalize all BLOS 2 variants 
 fb$BLOS_2 <- rescale(fb$BLOS_2, TRUE) 
 fb$BLOS_2_wLF <- rescale(fb$BLOS_2_wLF, TRUE) 
 fb$BLOS_2_wLF_2 <- rescale(fb$BLOS_2_wLF_2, TRUE) 
  
##### MODELS: BLOS EQ. 3 ##### 
 ## Initial Model: Fixed Parameters for "missing" data 
 fb$BLOS_3 <- (fb$ADT_CUR/(fb$NUM_LANES*2500)) +  
   (fb$SPD_MAX/35) + (14 - fb$LANE_WIDTH)/2 + 0 
 
 ## Revised w/ Location Factors 
 fb$BLOS_3_wLF <- fb$BLOS_3 
 fb$BLOS_3_wLF <- ifelse(fb$D1A_mean > median(fb$D1A_mean),     

fb$BLOS_3_wLF+.50, fb$BLOS_3_wLF) 
 fb$BLOS_3_wLF <- ifelse(fb$D3b_mean > median(fb$D3b_mean),     

fb$BLOS_3_wLF+.50, fb$BLOS_3_wLF) 
 fb$BLOS_3_wLF <- ifelse(fb$ft_mile  > median(fb$ft_mile) ,     

fb$BLOS_3_wLF+.25, fb$BLOS_3_wLF) 
 fb$BLOS_3_wLF <- ifelse(fb$ft_mile  > quantile(fb$ft_mile)[4], 

fb$BLOS_3_wLF+.25, fb$BLOS_3_wLF) 
 fb$BLOS_3_wLF <- ifelse(fb$LANE_WIDTH_O-fb$LANE_WIDTH > 0,     

fb$BLOS_3_wLF-.75, fb$BLOS_3_wLF) 
 fb$BLOS_3_wLF <- ifelse(fb$S_USE_O==1,                         

fb$BLOS_3_wLF+.75, fb$BLOS_3_wLF) 
 fb$BLOS_3_wLF <- ifelse(fb$S_USE_O==2,                         

fb$BLOS_3_wLF+.50, fb$BLOS_3_wLF) 
  
 fb$BLOS_3 <- rescale(fb$BLOS_3, TRUE) 
 fb$BLOS_3_wLF <- rescale(fb$BLOS_3_wLF, TRUE) 
  
##### MODELS: BLOS EQ. 4 ##### 
 ## Inputs require conversion to metric: meters, km/h 
 ## Initial Model: Fixed Parameters for "missing" data 
 fb$BLOS_4 <- (fb$ADT_CUR/(fb$NUM_LANES*3100)) +  
   ((fb$SPD_MAX*1.60934)/48) + 
   ((fb$SPD_MAX*1.60934)/48) * (4.25 - (fb$LANE_WIDTH_O*0.3048))*1.635  
 
 ## Revised w/ Location Factors 
 fb$BLOS_4_wLF <- fb$BLOS_4 
 fb$BLOS_4_wLF <- ifelse(fb$D1A_mean > median(fb$D1A_mean),     

fb$BLOS_4_wLF+.25, fb$BLOS_4_wLF) 
 fb$BLOS_4_wLF <- ifelse(fb$D3a_mean > median(fb$D3a_mean),     

fb$BLOS_4_wLF+.25, fb$BLOS_4_wLF) 
 fb$BLOS_4_wLF <- ifelse(fb$ft_mile  > median(fb$ft_mile) ,     

fb$BLOS_4_wLF+.20, fb$BLOS_4_wLF) 
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 fb$BLOS_4_wLF <- ifelse(fb$ft_mile  > quantile(fb$ft_mile)[4], 
fb$BLOS_4_wLF+.30, fb$BLOS_4_wLF) 

 fb$BLOS_4_wLF <- ifelse(fb$LANE_WIDTH_O-fb$LANE_WIDTH > 0,     
fb$BLOS_4_wLF-.75, fb$BLOS_4_wLF) 

 fb$BLOS_4_wLF <- ifelse(fb$S_USE_O==1,                         
fb$BLOS_4_wLF+.75, fb$BLOS_4_wLF) 

 fb$BLOS_4_wLF <- ifelse(fb$S_USE_O==2,                         
fb$BLOS_4_wLF+.25, fb$BLOS_4_wLF) 

  
 fb$BLOS_4 <- rescale(fb$BLOS_4, TRUE) 
 fb$BLOS_4_wLF <- rescale(fb$BLOS_4_wLF, TRUE) 
  
##### MODELS: BLOS EQ. 5 ##### 
 fb$BLOS_5 <- run_BLOS5() 
  
##### MODELS: BLOS EQ. 6 ##### 
 fb$BLOS_6 <- .760 + (-.005*fb$LANE_WIDTH_O^2) +  
   (.507*log(fb$ADT_HR/(4*fb$NUM_LANES))) + 
   (0.199*( 1.1199*log(fb$SPD_MAX_FLR-20) + 

.8103)*(1+.1038*(fb$TRK_AADT_P*.01))^2) + 
   (7.066 / 4^2) 
 fb$BLOS_6 <- rescale(fb$BLOS_6, TRUE) 
  
 ##### PRINT MODELS SUMMARIES 
 Results_2a <- data.frame(model=as.character(),source= as.character(), 
   paired_diff=as.double(),paired_p=as.double(), 

r=as.double(),r_p=as.double(), 
   r_sq=as.double(),r_sq_p=as.double(),sigma=as.double()) 
  
   ## MODELS LIST (model='name', source='source column')     
   Results_2a[1:11, "model"]  <- c("BLOS 1", "BLOS 1, weighted",  
     "BLOS 2", "BLOS 3", "BLOS 2 w/LF", "BLOS 2 w/LF 2", "BLOS 3 w/LF",  
     "BLOS 4", "BLOS 4 w/LF", "BLOS 5", "BLOS 6") 
   Results_2a[1:11, "source"] <- c("BLOS_1", "BLOS_1_w", "BLOS_2",    
     "BLOS_3", "BLOS_2_wLF", "BLOS_2_wLF_2", "BLOS_3_wLF", "BLOS_4",     
     "BLOS_4_wLF",  "BLOS_5", "BLOS_6") 
 
   ## Models' Summary Results  
   for (i in seq_along(Results_2a$source)) { 
     y <- fb$Rate_Overall 
     x <- fb[,Results_2a[i,"source"]] 
     s <- model_summary(x, y) 
     Results_2a[i, 3:9] <- s[2:8] 
   } 
    
 ##################################### 
 ##### STEPWISE REGRESSION MODEL ##### 
 ##################################### 
  
 ## REGRESSION OF REAL ROADWAY ATTRIBUTES TO USER RATINGS 
 mod <- fb$Rate_Overall ~ fb$SPD_MAX_FLR + log(fb$ADT_CUR) + 
   fb$LANE_WIDTH_O + fb$TRK_AADT_P +  
   log(fb$D1B_mean) +     log(fb$D3a_mean) +  fb$ft_mile + fb$BIKE_LANE 
  
 step(lm(mod), direction="both") 
  
 Results_3a <- data.frame() 
 Results_3a[1, "Model"] = "fb$Rate_Overall ~ fb$SPD_MAX_FLR + 

log(fb$ADT_CUR) + fb$LANE_WIDTH_O + fb$TRK_AADT_P + 
      fb$D1B_mean + fb$D3a_mean + fb$ft_mile" 
  
 Results_3a[2, "Model"] = "fb$Rate_Overall ~ fb$SPD_MAX_FLR + 

log(fb$ADT_CUR) + fb$LANE_WIDTH_O + log(fb$D3a_mean)" 
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 Results_3a[3, "Model"] = "fb$Rate_Overall ~ fb$SPD_MAX_FLR + 
log(fb$ADT_CUR) +  fb$LANE_WIDTH_O" 

  
 Results_3a[4, "Model"] = "fb$Rate_Overall ~ fb$SPD_MAX_FLR + 

log(fb$ADT_CUR) + fb$LANE_WIDTH_O + fb$D3a_mean + fb$BIKE_LANE" 
  
 Results_3a[5, "Model"] = "fb$Rate_Overall ~ fb$SPD_MAX_FLR + 

log(fb$ADT_CUR) + fb$LANE_WIDTH_O + fb$D1B_mean + fb$BIKE_LANE" 
  
 ## SUMMARY OF BEST FIT REGRESSIONS 
 for (i in seq_along(Results_3a$Model)){ 
   Results_3a[i, "r_sq"] <- summary(lm(as.formula(Results_3a[i, 

"Model"])))$r.squared 
 } 
  
 ## MODEL SPECIFIC RESULTS 
 model <- lm(Results_3a[1, "Model"]) 
 Results_3b_1 <- data.frame( 
   Variable = variable.names(model),  
   Coefficient = summary(model)$coefficients[,1], 
   p_val     = round(summary(model)$coefficients[,4],4) 
 ) 
  
 model <- lm(Results_3a[2, "Model"]) 
 Results_3b_2 <- data.frame( 
   Variable = variable.names(model),  
   Coefficient = summary(model)$coefficients[,1], 
   p_val     = round(summary(model)$coefficients[,4],4) 
 ) 
 
 model <- lm(Results_3a[3, "Model"]) 
 Results_3b_3 <- data.frame( 
   Variable = variable.names(model),  
   Coefficient = summary(model)$coefficients[,1], 
   p_val     = round(summary(model)$coefficients[,4],4) 
 )  
  
 model <- lm(Results_3a[4, "Model"]) 
 Results_3b_4 <- data.frame( 
   Variable = variable.names(model),  
   Coefficient = summary(model)$coefficients[,1], 
   p_val     = round(summary(model)$coefficients[,4],4) 
 )  
  
 model <- lm(Results_3a[5, "Model"]) 
 Results_3b_5 <- data.frame( 
   Variable = variable.names(model),  
   Coefficient = summary(model)$coefficients[,1], 
   p_val     = round(summary(model)$coefficients[,4],4) 
 )  
  
 ## SAVE "BEST" REGRESSION RESULTS 
 fb$BLOS_REGR <- model$fitted.values 
  
 ##################################### 
 ######## Density Experiments ######## 
 ##################################### 
  
 # Checking for Modeled Fit Against: 
 y = fb$Rate_Overall   
  
 ## Blank Results Table for all Permutations 
 Results_4a <- data.frame(Model=as.character(),     
     Paired_diff=as.double(), Paired_p=as.double(),  
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     r=as.double(), r_p=as.double(),  
     r_sq=as.double(), r_sq_p=as.double(), sigma=as.double()) 
  
 ## BASELINE FIXED PARAMETERS 
 Results_4a[1,1] <- "Fixed LU = 15, Fixed CCF = 42" 
 Results_4a[1,2:8] <- model_summary(run_BLOS5(LU=15, CCF=42, PC=4), 

y)[2:8] 
  
 ## DENSITY FOR LU 
 Results_4a[2,1] <- "LU = Emp. Density, Fixed CCF = 42" 
 Results_4a[2,2:8] <-  model_summary(run_BLOS5( 
   LU=rescale(fb$D1C_mean, FALSE, 1, 15), CCF=42), y)[2:8] 
  
 Results_4a[3,1] <- "LU = Pop. Density, Fixed CCF = 42" 
 Results_4a[3,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1B_mean, FALSE, 1, 15), CCF=42), y)[2:8] 
  
 Results_4a[4,1] <- "LU = Res. Density, Fixed CCF = 42" 
 Results_4a[4,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1A_mean, FALSE, 1, 15), CCF=42), y)[2:8] 
  
 ## DENSITY FOR CCF 
 Results_4a[6,1] <- "Fixed Density, CCF = Intersection Density" 
 Results_4a[6,2:8] <- model_summary(run_BLOS5( 
   LU=15, CCF=rescale(fb$D3b_mean, FALSE, 1, 200)), y)[2:8] 
  
 Results_4a[7,1] <- "Fixed Density, CCF = Road Density" 
 Results_4a[7,2:8] <- model_summary(run_BLOS5( 
   LU=15, CCF=rescale(fb$D3a_mean, FALSE, 1, 200)), y)[2:8] 
  
  
 ## DENSITY FOR LU AND FOR CCF 
 Results_4a[9,1] <- "LU = Pop. Density, CCF = Road Density" 
 Results_4a[9,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1B_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200)), y)[2:8] 
  
 Results_4a[10,1] <- "LU = Res. Density, CCF = Road Density" 
 Results_4a[10,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1A_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200)), y)[2:8] 
  
 Results_4a[11,1] <- "LU = Emp. Density, CCF = Road Density" 
 Results_4a[11,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1C_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200)), y)[2:8] 
  
 Results_4a[13,1] <- "LU = Pop. Density, CCF = Intersection Density" 
 Results_4a[13,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1B_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3b_mean, FALSE, 1, 200)), y)[2:8] 
  
 Results_4a[14,1] <- "LU = Res. Density, CCF = Intersection Density" 
 Results_4a[14,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1A_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3b_mean, FALSE, 1, 200)), y)[2:8] 
  
 Results_4a[15,1] <- "LU = Emp. Density, CCF = Intersection Density" 
 Results_4a[15,2:8] <- model_summary(run_BLOS5( 
   LU=rescale(fb$D1C_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3b_mean, FALSE, 1, 200)), y)[2:8] 
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 ## PRESENT THREE_D TABLE 
 Results_4a$Paired_p <- as.double(format(Results_4a$Paired_p, 

nsmall=4)) 
 Results_4a$sigma <- round(Results_4a$sigma, 3) 
 ## CORRELATION MATRIX FOR DENSITIES, ROADWAY ATTRIBUTES 
 Results_4a_2 <- round(cor(fb[, 
   c("SPD_MAX", "LANE_WIDTH_O", "ADT_CUR", "D1A_mean", "D1B_mean", 

"D1C_mean", "D3a_mean", "D3b_mean")]), 4) 
  
####################################### 
######## Hillslope Experiments ######## 
####################################### 
  
 # Checking for Modeled Fit Against: 
 y = fb$Rate_Overall   
  
 ## Blank Results Table for all Permutations 
 Results_4b <- data.frame(Model=as.character(), 

Paired_diff=as.double(), Paired_p=as.double(),  
   r=as.double(), r_p=as.double(),  
   r_sq=as.double(), r_sq_p=as.double(), sigma=as.double()) 
  
 ## BASELINE FIXED PARAMETERS 
 Results_4b[1,1] <- "Fixed LU = 15, Fixed CCF = 42" 
 Results_4b[1,2:8] <- model_summary(run_BLOS5(LU=15, CCF=42, PC=4), 

y)[2:8] 
  
 Results_4b[2,1] <- "Fixed Density, CCF = Road Density" 
 Results_4b[2,2:8] <- model_summary(run_BLOS5( 
   LU=15, CCF=rescale(fb$D3a_mean, FALSE, 1, 200)), y)[2:8] 
  
 ## Add Hillslope (substitution for Pavement Condition) 
 Results_4b[4,1] <- "LU = Emp. Density, CCF = Road Density, PaveCon = 

ft_mile" 
 Results_4b[4,2:8] <- model_summary(run_BLOS5( 
   LU =rescale(fb$D1C_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC =rescale(fb$ft_mile,  TRUE,  1, 5)), y)[2:8] 
  
 ## Add Hillslope (substitution for Pavement Condition) 
 Results_4b[5,1] <- "LU = Fixed Density, CCF = Road Density, PaveCon = 

ft_mile" 
 Results_4b[5,2:8] <- model_summary(run_BLOS5( 
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC =rescale(fb$ft_mile,  TRUE,  1, 5)), y)[2:8] 
  
 ## Add Hillslope (substitution for Pavement Condition) 
 Results_4b[6,1] <- "LU = Emp. Density, CCF = Road Density, PaveCon = 

max grade (50)" 
 Results_4b[6,2:8] <- model_summary(run_BLOS5( 
   LU =rescale(fb$D1C_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC =rescale(fb$max.grad.50m,  TRUE,  1, 5)), y)[2:8] 
  
 ## Add Hillslope (substitution for Pavement Condition) 
 Results_4b[7,1] <- "LU = Fixed Density, CCF = Road Density, PaveCon = 

max grade (50)" 
 Results_4b[7,2:8] <- model_summary(run_BLOS5( 
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC =rescale(fb$max.grad.50m,  TRUE,  1, 5)), y)[2:8] 
  
 ## Add Hillslope (substitution for Pavement Condition) 
 Results_4b[8,1] <- "LU = Fixed Density, CCF = Road Density, PaveCon = 

13% Hill Penalty" 
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 Results_4b[8,2:8] <- model_summary(run_BLOS5( 
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC = ifelse(fb$max.grad.50m > .13, 2, 5) ), y)[2:8] 
  
 ## Add Hillslope (substitution for Pavement Condition) 
 Results_4b[9,1] <- "LU = Fixed Density, CCF = Road Density, PaveCon = 

8% Hill Penalty" 
 Results_4b[9,2:8] <- model_summary(run_BLOS5( 
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC = ifelse(fb$max.grad.50m > .08, 2, 5) ), y)[2:8] 
  
 Results_4b$sigma <- round(Results_4b$sigma, 3) 
  
 ################################# 
 ##### REVISED BLOS MODELS ####### 
 ################################# 
  
 ## Baselines (Eq. 5 and 6) 
 fb$BLOS_6 <- .760 + (-.005*fb$LANE_WIDTH_O^2) +  
   (.507*log(fb$ADT_HR/(4*fb$NUM_LANES))) + 
   (0.199*( 1.1199*log(fb$SPD_MAX_FLR-20) + 

.8103)*(1+.1038*(fb$TRK_AADT_P*.01))^2) + 
   (7.066 / 4^2) 
  
 ## Revised Eq. 5 (Density for LU/CCF, add Hillslope) 
 fb$BLOS_5_Rev <- run_BLOS5( 
   LU =rescale(fb$D1B_mean, FALSE, 1, 15),  
   CCF=rescale(fb$D3a_mean, FALSE, 1, 200), 
   PC =rescale(fb$ft_mile,  TRUE,  1, 5)) 
  
 ## Revised Eq. 6 (HCM) 
 fb$BLOS_6_Rev <- .760 + (-.005*fb$LANE_WIDTH_O^2) +  
   (.507*log(fb$ADT_HR/(4*fb$NUM_LANES))) + 
   (0.199*( 1.1199*log(fb$SPD_MAX_FLR-20) + 

.8103)*(1+.1038*(fb$TRK_AADT_P*.01))^2) + 
   -0.5*(1/rescale(fb$D1B_mean)) + 
   0.1*(1/rescale(fb$ft_mile, TRUE, 1, 5)) + 
   -1 * fb$BIKE_LANE 
  
 ## w/ Location Factors 
 fb$BLOS_6_wLF <- fb$BLOS_6 
 fb$BLOS_6_wLF <- ifelse(fb$D1A_mean > median(fb$D1A_mean),     

fb$BLOS_6_wLF+.25, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$D3a_mean > median(fb$D3a_mean),     

fb$BLOS_6_wLF+.25, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$ft_mile  > median(fb$ft_mile) ,     

fb$BLOS_6_wLF+.20, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$ft_mile  > quantile(fb$ft_mile)[4], 

fb$BLOS_6_wLF+.30, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$LANE_WIDTH_O-fb$LANE_WIDTH > 0,     

fb$BLOS_6_wLF-.50, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$BIKE_LANE == 1,                     

fb$BLOS_6_wLF-.50, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$S_USE_O==1,                         

fb$BLOS_6_wLF+.50, fb$BLOS_6_wLF) 
 fb$BLOS_6_wLF <- ifelse(fb$S_USE_O==2,                         

fb$BLOS_6_wLF+.25, fb$BLOS_6_wLF) 
  
 fb$BLOS_6 <- rescale(fb$BLOS_6, TRUE) 
 fb$BLOS_6_wLF <- rescale(fb$BLOS_6_wLF, TRUE) 
 fb$BLOS_6_Rev <- rescale(fb$BLOS_6_Rev, TRUE) 
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 ##### PRINT REVISED MODELS SUMMARIES ##### 
 Results_5a <- data.frame(model  = as.character(), source= 

as.character(),paired_diff=as.double(), paired_p=as.double(),  
   r=as.double(), r_p=as.double(),                          

r_sq=as.double(), r_sq_p=as.double(), sigma=as.double()) 
  
 ## MODELS LIST (model='name', source='source column')     
 Results_5a[1:6, "model"]  <- c("REGRESSION", "BLOS 5", "BLOS 5 Rev.", 

"BLOS 6",      "BLOS 6 w/ LF",    "BLOS 6 Rev.") 
 Results_5a[1:6, "source"] <- c("BLOS_REGR", "BLOS_5", "BLOS_5_Rev",  

"BLOS_6", "BLOS_6_wLF", "BLOS_6_Rev") 
  
 ## Models' Summary Results  
 for (i in seq_along(Results_5a$source)) { 
   y <- fb$Rate_Overall 
   x <- fb[,Results_5a[i,"source"]] 
   Results_5a[i, 3:9] <- model_summary(x,y)[2:8] 
 } 
  
 ################################## 
 ######  CONTEXTUAL ANALYSIS ###### 
 ################################## 
 
 Results_6a <- data.frame(Link_ID  = as.integer(), Name = 

as.character(),BLOS=as.double(),Rating=as.double(), 
Width_O=as.numeric(),Traffic=as.numeric(),Speed=as.numeric(), 
Bike_Lane=as.numeric(),Max_Grad=as.double(), Ft_Mi=as.double(), 
Res_Dens=as.double()) 

  
 Results_6a[1:8,"Link_ID"] <- c(16, 26, 17, 33, 34, 107, 21, 74) 
 for (i in seq_along(Results_6a$Link_ID)){ 
   temp <- fb[fb$Link_ID == Results_6a[i, "Link_ID"],  ] 
   Results_6a[i, "Name"]      <- temp$STE_NAM 
   Results_6a[i, "BLOS"]      <- temp$BLOS_6_Rev 
   Results_6a[i, "Rating"]    <- temp$Rate_Overall 
   Results_6a[i, "Width_O"]   <- temp$LANE_WIDTH_O 
   Results_6a[i, "Traffic"]   <- temp$ADT_CUR 
   Results_6a[i, "Speed"]     <- temp$SPD_MAX_FLR 
   Results_6a[i, "Bike_Lane"] <- temp$BIKE_LANE 
   Results_6a[i, "Max_Grad"]  <- temp$max.grad.50m 
   Results_6a[i, "Ft_Mi"]     <- temp$ft_mile 
   Results_6a[i, "Res_Dens"]  <- temp$D1B_mean 
  } 
  
 ## HILLS CONTEXT 
 temp <- c(130,33,991,19,30,24,35,39,8) 
 gb <- fb[(fb$Link_ID %in% temp),] 
 gb <- gb[order(gb$ft_mile),] 
   gb$Perfect <- c(1,1,1,1,1,0,1,0) 
   gb$Steep   <- c(0,0,0,0,0,1,1,1) 
  
 #Fulton Ranch 
 gb[9, "STE_NAM"] <- "FULTON RANCH RD" 
 gb[9, "ft_mile"]      <-   363 
 gb[9, "max.grad.50m"] <- .209 
 gb[9, "Perfect"] <-    0 
 gb[9, "Steep"]   <-    1 
 gb[9, "Rate_Hill"]    <-    "~1" 
 gb[4, "STE_NAM"] <- "WONDER WORLD / 12" 
gb <- gb[order(gb$ft_mile),];  Results_A3 <- gb[,c("Link_ID","STE_NAM", 

"ft_mile","max.grad.50m","Perfect","Steep","Rate_Hill")] 
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################################### 
#### FINAL COMPREHENSIVE MODEL #### 
################################### 
 
## ROAD EMPIRICS (Topologically Corrected, Roadway Attributes) 
rt <- Roads_Empirics 
  ## Remove "Functional Interstate Hwys" 
  rt <- rt[!(rt$F_SYSTEM == 1),] 
 
  ## Check and fill null values where needed 
  rt[is.na(rt)] <- 0 
   
  ## Limit Shoulder Width 
  length(rt$S_WID_O[rt$S_WID_O>16]) 
  rt$S_WID_O <- ifelse(rt$S_WID_O > 16, 16, rt$S_WID_O) 
 
  ## Limit Lane Width 
  length(rt$LANE_WIDTH[rt$LANE_WIDTH>16]) 
  rt$LANE_WIDTH <- ifelse(rt$LANE_WIDTH >= 16, 16, rt$LANE_WIDTH) 
 
#### DERIVED ATTRIBUTES #### 
 
## Outside Lane Width -- Checks that Shoulder is paved, not parking. 
rt$LANE_WIDTH_O <- rt$LANE_WIDTH 
for (i in seq_along(rt$LANE_WIDTH_O)) { 
  if (!is.na(rt[i, "S_WID_O"])) { 
    rt[i,"LANE_WIDTH_O"] <- rt[i,"LANE_WIDTH"]+rt[i,"S_WID_O"] 
    if (rt[i, "S_USE_O"] == 1 || rt[i, "S_USE_O"] == 2) { 
      rt[i,"LANE_WIDTH_O"] <- rt[i,"LANE_WIDTH"]} 
    if (rt[i, "S_TYPE_O"] > 2 || rt[i, "S_TYPE_O"] < 1) { 
      rt[i,"LANE_WIDTH_O"] <- rt[i,"LANE_WIDTH"]} 
  }} 
 
## Effective Shoulder Width:  
rt$SHOULDER_WIDTH <- rt$LANE_WIDTH_O - rt$LANE_WIDTH 
 
## Speed Limit, HCM FLOOR 
rt$SPD_MAX[is.na(rt$SPD_MAX)] <- 0 
rt$SPD_MAX_FLR <- ifelse( rt$SPD_MAX < 21,   21, rt$SPD_MAX) 
 
## ADT HOURLY, HCM FLOOR 
rt$ADT_HR <- ifelse((rt$ADT_CUR/24)<(4*rt$NUM_LANES), 4*rt$NUM_LANES, 

rt$ADT_CUR/24) 
 
####### CALCULATE BLOS ##### 
rt$BLOS_6_Rev <- .760 + (-.005*rt$LANE_WIDTH_O^2) +  
  (.507*log(rt$ADT_HR/(4*rt$NUM_LANES))) +  
  (0.199*( 1.1199*log(rt$SPD_MAX_FLR-20) + 

.8103)*(1+.1038*(rt$TRK_AADT_P*.01))^2) + 
  .1*(1/rescale(rt$D1B_mean,TRUE,1,5)) + 
  -1 * rt$BIKE_LANE 
 
## REMOVE ANY INCALCULABLE ROWS 
rt <- rt[!is.na(rt$BLOS_6_Rev),] 
 
## RECAST OUTLIERS AS MINIMA/MAXIMA 
    t_min <- quantile(rt$BLOS_6_Rev, probs=.05) 
    t_max <- quantile(rt$BLOS_6_Rev, probs=.95) 
  rt$BLOS_6_Rev[rt$BLOS_6_Rev <= t_min] <- t_min 
  rt$BLOS_6_Rev[rt$BLOS_6_Rev >= t_max] <- t_max   
 
rt$BLOS_6_Rev <- rescale(rt$BLOS_6_Rev, TRUE, 0.001, 5) 
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APPENDIX E: Results Tables 

Table 12: Results from the initial six BLOS models 

 

 

 

 

 

 

 

 

 

 

Table 13: Results from density experimentation. 

Model 𝒅̅ p-val r p-val r2 p-val RMSE 

BLOS 1 -0.44 0.00 -0.02 0.80 0.00 0.80 1.18 

BLOS 1, weighted -0.24 0.04 0.13 0.14 0.02 0.14 1.17 

BLOS 2 -0.55 0.00 0.14 0.11 0.02 0.11 1.17 

BLOS 3 -0.55 0.00 0.14 0.11 0.02 0.11 1.17 

BLOS 2 w/LF -0.51 0.00 0.24 0.01 0.06 0.01 1.15 

BLOS 2 w/LF 2 -0.67 0.00 0.19 0.03 0.03 0.03 1.16 

BLOS 3 w/LF -0.51 0.00 0.23 0.01 0.06 0.01 1.15 

BLOS 4 -1.06 0.00 0.05 0.54 0.00 0.54 1.18 

BLOS 4 w/LF -1.17 0.00 0.06 0.47 0.00 0.47 1.18 

BLOS 5 0.77 0.00 0.48 0.00 0.23 0.00 1.04 

BLOS 6 -0.42 0.00 0.38 0.00 0.14 0.00 1.10 

Model 𝒅̅ p-val r2 p-val RMSE 

Fixed LU = 15, Fixed CCF = 42 0.77 0.00 0.23 0.00 1.04 

LU = Emp. Density, Fixed CCF = 42 0.76 0.00 0.24 0.00 1.03 

LU = Pop. Density, Fixed CCF = 42 0.73 0.00 0.25 0.00 1.03 

LU = Res. Density, Fixed CCF = 42 0.71 0.00 0.25 0.00 1.03 
     

 

Fixed Density, CCF = Intersection Density 0.59 0.00 0.27 0.00 1.01 

Fixed Density, CCF = Road Density 0.46 0.00 0.30 0.00 0.99 
     

 

LU = Pop. Density, CCF = Road Density 0.59 0.00 0.29 0.00 0.99 

LU = Res. Density, CCF = Road Density 0.57 0.00 0.28 0.00 1.00 

LU = Emp. Density, CCF = Road Density 0.68 0.00 0.25 0.00 1.02 
      

LU = Pop. Density, CCF = Intersection 

Density 

0.64 0.00 0.27 0.00 1.01 

LU = Res. Density, CCF = Intersection 

Density 

0.62 0.00 0.26 0.00 1.02 

LU = Emp. Density, CCF = Intersection 

Density 

0.71 0.00 0.25 0.00 1.03 

Fixed LU = 15, Fixed CCF = 42 0.77 0.00 0.23 0.00 1.04 
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Table 14: Correlation matrix of urban densities. 
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LANE_WIDTH_O 0.42       

ADT_CUR 0.25 0.56      

D1A_mean -0.51 0.03 0.28     

D1B_mean -0.67 -0.05 0.08 0.67    

D1C_mean -0.27 0.00 0.13 0.63 0.43   

D3a_mean -0.59 0.02 0.27 0.91 0.77 0.54  

D3b_mean -0.58 -0.01 0.17 0.82 0.77 0.52 0.95 
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Table 15: Results from including hillslope in BLOS models. 

Model 𝒅̅ p-val r2 p-val RMSE 

Fixed LU = 15, Fixed CCF = 42 0.77 0.00 0.23 0.00 1.04 

Fixed LU = 15, CCF = Road Density 0.46 0.00 0.30 0.00 0.99 

      

LU = Emp. Density, CCF = Road Density, 

PaveCon = ft_mile 

0.67 0.00 0.26 0.00 1.02 

LU = Fixed Density, CCF = Road Density, 

PaveCon = ft_mile 

0.50 0.00 0.30 0.00 0.99 

      

LU = Emp. Density, CCF = Road Density, 

PaveCon = max grade (50) 

0.67 0.00 0.25 0.00 1.02 

LU = Fixed Density, CCF = Road Density, 

PaveCon = max grade (50) 

0.46 0.00 0.29 0.00 1 

      

LU = Fixed Density, CCF = Road Density, 

PaveCon = 13% Hill Penalty 

0.44 0.00 0.30 0.00 0.99 

LU = Fixed Density, CCF = Road Density, 

PaveCon = 8% Hill Penalty 

0.44 0.00 0.29 0.00 1 

 

 

Table 16: Results from revised BLOS models. 

 

  

Model 𝒅̅ p-val r p-val r2 p-val RMSE 

REGRESSION 0.00 1.00 0.60 0.00 0.36 0.00 0.95 

BLOS 5 0.77 0.00 0.48 0.00 0.23 0.00 1.04 

BLOS 5 Rev. 0.57 0.00 0.54 0.00 0.29 0.00 1.00 

BLOS 6 -0.42 0.00 0.38 0.00 0.14 0.00 1.10 

BLOS 6 w/ LF -0.18 0.09 0.42 0.00 0.18 0.00 1.07 

BLOS 6 Rev. -0.19 0.07 0.48 0.00 0.23 0.00 1.04 
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APPENDIX F: Hill Slope Results 

Although hillslope derivations demand careful attention to topology, the resulting 

measures were reliable for the majority of sampled links.  Hill slope preferences 

unsurprisingly varied significantly across participants (Table 17); nonetheless, their 

evaluations may be useful for classification of extreme hill slopes – slopes that might 

warrant representation on user maps.  In total, 8 links from this research were commented 

as either “the perfect hill” or “too steep” of a hill (Figure 17); one additional link was also 

frequently mentioned – the segment of Fulton Ranch Road which gruelingly ascends over 

300 feet from the Blanco River in about half of a mile.  Participants comfortability with a 

link’s hillslope declined significantly around max sustained gradients of 9-10%.  Even 

where gradients peak at 8-12%, if these grades are sustained (evidenced by higher feet 

per mile), participant’s assessment of the hill rating also decreased.  At gradients 

approaching 20%, even high-mileage bicyclists became uncomfortable.  For the moment, 

the suggestion follows that bicycle route maps should highlight gradients exceeding 8% 

and mark segments exceeding 100 feet per mile (an average gradient of just 2%).     

 

Table 17: Hillslope derivation results and participant assessments. 

    Participants 

Link_ID Street Name ft_mile max.grad Perfect Steep BLOS 

8 OLD BASTROP HWY 44 0.096 1 0 3.5 

130 OLD BASTROP RD 53 0.060 1 0 2 

33 FULTON RANCH RD 79 0.116 1 0 2.5 

39 WONDER WORLD / 12 88 0.081 1 0 2.5 

19 BURLESON 119 0.087 1 0 2 

30 ACADEMY ST 140 0.132 0 1 1.67 

35 N LBJ DR 154 0.111 1 1 1 

24 SESSOM 236 0.234 0 1 1.2 

NA FULTON RANCH RD 363 0.209 0 1 ~1 
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Figure 17: Map of participants’ perfect and steep hills. (Author’s illustration.) 
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